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FINITENESS OF COMINUSCULE

QUANTUM K-THEORY

 A S. BUCH, P-E CHAPUT,
L C. MIHALCEA  N PERRIN

A. – The product of two Schubert classes in the quantum K-theory ring of a homoge-
neous space X = G/P is a formal power series with coefficients in the Grothendieck ring of algebraic
vector bundles on X. We show that if X is cominuscule, then this power series has only finitely many
non-zero terms. The proof is based on a geometric study of boundary Gromov-Witten varieties in the
Kontsevich moduli space, consisting of stable maps to X that take the marked points to general Schu-
bert varieties and whose domains are reducible curves of genus zero. We show that all such varieties
have rational singularities, and that boundary Gromov-Witten varieties defined by two Schubert va-
rieties are either empty or unirational. We also prove a relative Kleiman-Bertini theorem for rational
singularities, which is of independent interest. A key result is that when X is cominuscule, all boundary
Gromov-Witten varieties defined by three single points in X are rationally connected.

R. – Le produit de deux classes de Schubert dans l’anneau de K-théorie quantique d’un es-
pace homogène X = G/P est une série formelle à coefficients dans l’anneau de Grothendieck des fibrés
vectoriels algébriques au-dessus de X. Nous montrons que pour X cominuscule, cette série formelle n’a
qu’un nombre fini de termes non nuls. La preuve repose sur une étude géométrique de certaines variétés
de Gromov-Witten contenues dans le bord de l’espace de modules de Kontsevitch. Ces variétés para-
mètrent des applications stables à valeurs dans X, dont la courbe source est une union réductible de
courbes rationnelles, et qui envoient les points marqués dans des sous-variétés de Schubert générales.
Nous montrons que ces variétés de Gromov-Witten sont à singularités rationnelles et que celles défi-
nies par seulement deux sous-variétés de Schubert sont soit vides soit unirationnelles. Nous présentons
également un énoncé relatif, de type Kleiman-Bertini pour les singularités rationnelles, d’intérêt indé-
pendant. Un résultat-clé pour notre preuve est le fait que toutes les variétés de Gromov-Witten du bord
de l’espace de modules de Kontsevitch, définies par trois variétés de Schubert ponctuelles dans X, sont
rationnellement connexes.
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1. Introduction

The goal of this paper is to prove that any product of Schubert classes in the quantum
K-theory ring of a cominuscule homogeneous space contains only finitely many non-zero
terms.

Let X = G/P be a homogeneous space defined by a semisimple complex Lie group
G and a parabolic subgroup P , and let M0,n(X, d) denote the Kontsevich moduli space
of n-pointed stable maps to X of degree d, with total evaluation map
ev : M0,n(X, d) → Xn. Given Schubert varieties Ω1, . . . ,Ωn ⊂ X in general position,
there is a Gromov-Witten variety ev−1(Ω1 × · · · × Ωn) ⊂ M0,n(X, d), consisting of all
stable maps that send the i-th marked point into Ωi for each i. The Kontsevich space and
its Gromov-Witten varieties are the foundation of the quantum cohomology ring of X,
whose structure constants are the (cohomological) Gromov-Witten invariants, defined as
the number of points in finite Gromov-Witten varieties. More generally, the K-theoretic
Gromov-Witten invariant Id( OΩ1

, . . . , OΩn
) is defined as the sheaf Euler characteristic

of ev−1(Ω1 × · · · × Ωn), which makes sense when this variety has positive dimension.
The K-theoretic invariants are more challenging to compute, both because they are not
enumerative, and also because they do not vanish for large degrees.

Assume for simplicity that P is a maximal parabolic subgroup of G, so that
H2(X;Z) = Z. The (small) quantum K-theory ring QK(X) is a formal deformation of
the Grothendieck ring K(X) of algebraic vector bundles on X, which as a group is defined
by QK(X) = K(X) ⊗Z Z[[q]]. The product Ou ⋆ Ov of two Schubert structure sheaves is
defined in terms of structure constants Nw,d

u,v ∈ Z such that

Ou ⋆ Ov =
∑

w, d≥0

Nw,d
u,v qd Ow .

In contrast to the quantum cohomology ring QH(X), the constants Nw,d
u,v are not single

Gromov-Witten invariants, but are defined as polynomial expressions of the K-theoretic
Gromov-Witten invariants. A result of Givental asserts that QK(X) is an associative ring
[13]. Since the K-theoretic Gromov-Witten invariants do not vanish for large degrees, the
same might be true for the structure constants Nw,d

u,v , in which case the product Ou ⋆ Ov

would be a power series in q with infinitely many non-zero terms. When X is a Grass-
mannian of type A, a combinatorial argument in [3] shows that this does not happen; all
products in QK(X) are finite. In this paper we give a different geometric proof that shows
more generally that all products in QK(X) are finite whenever X is a cominuscule homo-
geneous space. As a consequence, the quantum K-theory ring QK(X) provides a honest
deformation of K(X). The class of cominuscule varieties consists of Grassmannians of
type A, Lagrangian Grassmannians, maximal orthogonal Grassmannians, and quadric
hypersurfaces. In addition there are two exceptional varieties of type E called the Cayley
plane and the Freudenthal variety.

Let dX(n) be the minimal degree of a rational curve passing through n general points
of X. The numbers dX(n) for n ≤ 3 have been computed explicitly in [7, 9], see the table
in §4 below. Our main result is the following.

T 1. – Let X be a cominuscule variety. Then Nw,d
u,v = 0 for d > dX(2).
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Theorem 1 holds also for the structure constants of the equivariant quantum K-theory
ring QKT (X), see Remark 5.3. The bound on d is sharp in the sense that qdX(2) occurs in the
square of a point in QK(X). In addition, this bound is also the best possible for the quantum
cohomology ring QH(X) that does not depend on u, v, and w (cf. [12]).

Our proof uses that the structure constants Nw,d
u,v can be rephrased as alternating sums

of certain boundary Gromov-Witten invariants. Given a sequence d = (d0, d1, . . . , dr)

of effective degrees di ∈ H2(X;Z) such that di > 0 for i > 0 and
∑

di = d, let
Md ⊂ M0,3(X, d) be the closure of the locus of stable maps for which the domain is a
chain of r + 1 projective lines that map to X in the degrees given by d, the first and second
marked points belong to the first projective line, and the third marked point is on the last
projective line. Then any constant Nw,d

u,v can be expressed as an alternating sum of sheaf Euler
characteristics of varieties of the form ev−1(Ω1×Ω2×Ω3)∩Md. We use geometric arguments
to show that the terms of this sum cancel pairwise whenever X is cominuscule and d > dX(2).

Set Zd = ev(Md) ⊂ X3. A key technical fact in our proof is that the general fibers of
the map ev : Md → Zd are rationally connected. Notice that these fibers are boundary
Gromov-Witten varieties ev−1(x× y × z)∩Md defined by three single points in X, and the
result generalizes the well known fact that there is a unique rational curve of degree d through
three general points in the Grassmannian Gr(d, 2d) [5]. In the special case when d = (d) and
Md = M0,3(X, d), it was shown in [3, 9] that the general fibers of ev are rational; our proof
uses this case as well as Graber, Harris, and Starr’s criterion for rational connectivity [14].

We also need to know that Md has rational singularities. For this we prove a relative
version of the Kleiman-Bertini theorem [18] for rational singularities. This theorem implies
that any boundary Gromov-Witten variety in M0,n(X, d) has rational singularities, for any
homogeneous space X. The Kleiman-Bertini theorem generalizes a result of Brion assert-
ing that rational singularities are preserved when a subvariety of a homogeneous space is
intersected with a general Schubert variety [1].

Finally, if Ω1 and Ω2 are Schubert varieties in general position in a homogeneous space
X, we prove that ev−1

1 (Ω1) ∩ Md is unirational and ev−1
1 (Ω1) ∩ ev−1

2 (Ω2) ∩ Md is either
empty or unirational. In particular, we have Id( OΩ1

) = 1 and Id( OΩ1
, OΩ2

) ∈ {0, 1}. This is
done by showing that any Borel-equivariant map to a Schubert variety is locally trivial over
the open cell. In particular, any single evaluation map evi : Md → X is locally trivial.

Our paper is organized as follows. In Section 2 we prove the Kleiman-Bertini theorem for
rational singularities and give a simple criterion for an equivariant map to be locally trivial.
These results are applied to (boundary) Gromov-Witten varieties of general homogeneous
spaces in Section 3. Section 4 proves some useful facts about images of Gromov-Witten
varieties of cominuscule spaces, among them that the general fibers of ev : Md → Zd

are rationally connected. Finally, Section 5 applies these results to show that K-theoretic
quantum products on cominuscule varieties are finite.

Parts of this work were carried out during visits to the Mathematical Sciences Research
Institute (Berkeley), the Centre International de Rencontres Mathématiques (Luminy), the
Hausdorff Center for Mathematics (Bonn) and the Max-Planck-Institut für Mathematik
(Bonn). We thank all of these institutions for their hospitality and stimulating environments.
We also benefited from helpful discussions with P. Belkale, S. Kumar, and F. Sottile. Finally,
we thank the anonymous referee for a careful reading and several helpful suggestions.
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2. A Kleiman-Bertini theorem for rational singularities

D 2.1. – Let G be a connected algebraic group and X a G-variety. A splitting
of the action of G on X is a morphism s : U → G defined on a dense open subset U ⊂ X,
together with a point x0 ∈ U , such that s(x).x0 = x for all x ∈ U . If a splitting exists, then
we say that the action is split and that X is G-split.

Notice that any G-split variety contains a dense open orbit. Recall that if X = G/P is a
homogeneous space defined by a semisimple complex Lie group G and a parabolic subgroup
P , then a Schubert variety in X is an orbit closure for the action of a Borel subgroup of G.
Schubert varieties are our main examples of varieties with a split action.

P 2.2. – Let G be a semisimple complex Lie group, P ⊂ G a parabolic
subgroup, and X = G/P the corresponding homogeneous space with its natural G-action. Then
X is G-split. Furthermore, if B ⊂ G is a Borel subgroup and Ω ⊂ X is a B-stable Schubert
variety, then Ω is B-split.

Proof. – Let Ω ⊂ X be a B-stable Schubert variety, Ω◦ ⊂ Ω the B-stable open cell, and
x0 ∈ Ω◦ any point. According to e.g., [20, Lemma 8.3.6] we can choose a unipotent subgroup
U ⊂ B such that the map U → Ω◦ defined by g 7→ g.x0 is an isomorphism. The inverse of
this map is a splitting of the B-action on Ω. Since X is a Schubert variety, it follows that X

is B-split and consequently G-split.

Recall that a morphism f : M → X is a locally trivial fibration if each point x ∈ X has
an open neighborhood U ⊂ X such that f−1(U) ∼= U × f−1(x) and f is the projection to
the first factor.

P 2.3. – Let f : M → X be an equivariant map of irreducible G-varieties.
Assume that X is G-split. Then f is a locally trivial fibration over the dense open G-orbit in X,
and the fibers over this orbit are irreducible.

Proof. – Let x0 ∈ U ⊂ X and s : U → G be a splitting of the G-action on X. Then the
map ϕ : U×f−1(x0) → f−1(U) defined by ϕ(x, y) = s(x).y is an isomorphism, with inverse
given by ϕ−1(m) = (f(m), s(f(m))−1.m). Since f−1(U) ∼= U × f−1(x0) is irreducible, so
is f−1(x0).

In the rest of this section, a variety means a reduced scheme of finite type over an alge-
braically closed field of characteristic zero. An irreducible variety X has rational singularities
if there exists a desingularization π : ‹X → X such that π∗ O

X̃
= OX and Riπ∗ O

X̃
= 0 for all

i > 0. An arbitrary variety has rational singularities if its irreducible components have ratio-
nal singularities, are disjoint, and have the same dimension. Zariski’s main theorem implies
that any variety with rational singularities is normal. Notice also that if X and Y have ratio-
nal singularities, then so does X × Y . The converse is a special case of the following lemma
of Brion [1, Lemma 3].

L 2.4 (Brion). – Let Z and S be varieties and let π : Z → S be a morphism. If Z

has rational singularities, then the same holds for the general fibers of π.
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The following generalization of the Kleiman-Bertini theorem [18] was proved by Brion in
[1, Lemma 2] when p and q are inclusions and Y is a Schubert variety. We adapt his proof to
our case.

T 2.5. – Let G be a connected algebraic group and let X be a split and transitive
G-variety. Let p : Y → X and q : Z → X be morphisms of varieties, and assume that Y and Z

have rational singularities. Then g.Y ×X Z has rational singularities for all points g in a dense
open subset of G.

Proof. – It follows from Proposition 2.3 that the map m : G × Y → X defined
by m(g, y) = g.p(y) is a locally trivial fibration. Set Q = (G × Y ) ×X Z and consider the
diagram:

Q //

��

G × Y
pr1

//

m

��

G

Z // X.

Since G × Y has rational singularities, it follows from Lemma 2.4 that m−1(x) has rational
singularities for x ∈ X. Since m is a locally trivial fibration, so is the map Q → Z, hence the
assumption that Z has rational singularities implies that Q has rational singularities. Finally,
Lemma 2.4 applied to the map Q → G implies that g.Y ×X Z has rational singularities for
all points g in a dense open subset of G.

In the situation of Theorem 2.5, notice that if the map p : Y → X is G-equivariant, then
the isomorphism class of g.Y ×X Z is independent of g. It follows that Y ×X Z has rational
singularities.

2.1. Rationality

Before we continue, we recall some rationality properties of algebraic varieties that are
required in later sections. An algebraic variety X is called rational if it is birationally equiv-
alent to a projective space Pn. It is called unirational if there exists a dominant morphism
U → X where U is an open subset of Pn; here n is allowed to be greater than the dimen-
sion of X, but in such cases one can replace Pn with a linear subspace to obtain a generically
finite map from U to X. Finally, X is said to be rationally connected if a general pair of points
(x, y) ∈ X × X can be joined by a rational curve, i.e., both x and y belong to the image of
some morphism P1 → X. Rational implies unirational, which in turn implies rational con-
nectivity when X is complete. Notice also that any rationally connected variety is irreducible.
The relevance of these notions to our study of quantum K-theory originates in the fact that,
if X is any rationally connected non-singular projective variety, then Hi(X, OX) = 0 for all
i > 0 [10, Cor. 4.18(a)], hence the sheaf Euler characteristic of X is equal to one. In addition,
rational connectivity is one of the hypotheses needed in Proposition 5.2 below. The following
result from [14] provides an important tool for proving that a variety is rationally connected.

T 2.6 (Graber, Harris, Starr). – Let f : X → Y be any dominant morphism of
complete irreducible complex varieties. If Y and the general fiber of f are rationally connected,
then X is rationally connected.
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3. Geometry of Gromov-Witten varieties

Let X = G/P be a homogeneous space, where G is any semisimple complex linear
algebraic group and P a parabolic subgroup. Given an effective class d ∈ H2(X;Z) and an
integer n ≥ 0, the Kontsevich moduli space M0,n(X, d) parametrizes the set of all n-pointed
stable genus-zero maps f : C → X with f∗[C] = d, and is equipped with a total evaluation
map ev = (ev1, . . . , evn) : M0,n(X, d) → Xn := X × · · · × X. A detailed construction of
this space can be found in the survey [11]. The space M0,n(X, d) is a projective variety with
rational singularities, and it was proved by Kim and Pandharipande that this variety is also
rational [17].

C 3.1. – Let Ω1, . . . ,Ωn ⊂ X be Schubert varieties of X in general position.
Then the Gromov-Witten variety ev−1(Ω1×· · ·×Ωn) ⊂ M0,n(X, d) has rational singularities.

Proof. – Since the component-wise action of Gn on Xn is transitive and split, this result
follows by applying Theorem 2.5 to the inclusion Ω1 × · · · × Ωn ⊂ Xn and the evaluation
map ev : M0,n(X, d) → Xn.

The following proposition will be used to show that one-point and two-point Gromov-
Witten varieties are unirational.

P 3.2. – Let M be a unirational G-variety and let f1 : M → X and
f2 : M → X be G-equivariant maps. Let Ω1,Ω2 ⊂ X be opposite Schubert varieties.

(a) The variety f−1
1 (Ω1) ⊂ M is unirational.

(b) The image Ω̃ = f2(f
−1
1 (Ω1)) ⊂ X is a Schubert variety in X, and the map f2 : f−1

1 (Ω1) → Ω̃

is a locally trivial fibration over the open cell Ω̃◦ ⊂ Ω̃.

(c) The intersection f−1
1 (Ω1) ∩ f−1

2 (Ω2) ⊂ M is either empty or unirational.

Proof. – It follows from Proposition 2.3 that f1 is a locally trivial fibration, so the
assumption that M is unirational implies that the fibers of f1 are unirational. Part (a) fol-
lows from this because f1 : f−1

1 (Ω1) → Ω1 is also locally trivial. Choose opposite Borel
subgroups B, Bop ⊂ G such that Ω1 is B-stable and Ω2 is Bop-stable. Then f−1

1 (Ω1) and Ω̃

are B-stable, and since Ω̃ is also closed in X and irreducible, it is a Schubert variety. Part (b)
now follows from Proposition 2.3 because f2 : f−1

1 (Ω1) → Ω̃ is B-equivariant. Parts (a) and
(b) imply that the fibers of f2 : f−1

1 (Ω1) → Ω̃ over Ω̃◦ are unirational. Since Ω̃ is normal,
it follows using Stein factorization that all fibers of f2 : f−1

1 (Ω1) → Ω̃ are connected. If
f−1
1 (Ω1) ∩ f−1

2 (Ω2) 6= ∅, then the Kleiman-Bertini theorem [18, Rmk. 7] implies that
this intersection is locally irreducible. Part (c) follows from this, using that the Richardson
variety Ω̃ ∩ Ω2 is rational.

C 3.3. – (a) Let Ω ⊂ X be a Schubert variety and n ≥ 1. Then
ev−1

1 (Ω) ⊂ M0,n(X, d) is unirational.

(b) Let Ω1,Ω2 ⊂ X be opposite Schubert varieties and n ≥ 2. Then the two-point Gromov-
Witten variety ev−1

1 (Ω1) ∩ ev−1
2 (Ω2) ⊂ M0,n(X, d) is either empty or unirational.

Proof. – This follows from parts (a) and (c) of Proposition 3.2.
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R 3.4. – Proposition 2.3 can also be used to prove unirationality of certain
3-point Gromov-Witten varieties. A result of Popov [19] shows that the diagonal action of G

on X3 has a dense open orbit if and only if X is a cominuscule variety, and it is natural
to ask if the action is also split. It turns out that a splitting can be constructed when X is
a Grassmann variety of type A or a maximal orthogonal Grassmannian, but no splitting
exists for a Lagrangian Grassmannian. When X3 is G-split, it follows from Proposition 2.3
that ev−1(x, y, z) ⊂ M0,3(X, d) is either empty or unirational for all points (x, y, z) in the
dense open G-orbit of X3. This partially recovers results from [3, 9] asserting that 3-point
Gromov-Witten varieties are rational for all cominuscule varieties (see Theorem 4.8 below).
It is interesting to note that Lagrangian Grassmannians also required special treatment
in [9].

R 3.5. – Jason Starr reports that the results of [16] can be used to prove the
following statement. If P ⊂ G is a maximal parabolic subgroup and d is sufficiently large,
then ev−1(x, y, z) ⊂ M0,3(X, d) is rationally connected for all points (x, y, z) in a dense open
subset of X3.

Our applications require generalizations of Corollaries 3.1 and 3.3 to Gromov-Witten
varieties of stable maps with reducible domains. Let d = (d0, d1, . . . , dr) be a sequence of
effective classes di ∈ H2(X;Z), let e = (e0, . . . , er) ∈ Nr+1, and set |d| =

∑
di and

|e| =
∑

ei. We consider stable maps f : C → X in M0,|e|(X, |d|) defined on a chain C

of r+1 projective lines, such that the i-th projective line contains ei marked points (numbered
from 1 +

∑
j<i ej to

∑
j≤i ej) and the restriction of f to this component has degree di. To

ensure that such a map is indeed stable, we demand that ei ≥ 1+ δi,0 + δi,r whenever di = 0.
Let Md,e ⊂ M0,|e|(X, |d|) be the closure of the locus of all such stable maps. In the cases

we are interested in, this variety can also be defined inductively as follows. If r = 0, then
Md0,e0

= M0,e0
(X, d0). Otherwise set d

′ = (d0, . . . , dr−1) and e
′ = (e0, . . . , er−2, er−1 +1),

and consider the product over X of the maps ev|e′| : Md′,e′ → X and ev1 : Mdr,er+1 → X.
We thank the referee for pointing out that the condition e0er 6= 0 is necessary in the following
proposition, which follows from [11, Lemma 12] by induction on r.

P 3.6. – Assume that e0 > 0 and er > 0. Then, with the above notation, we
have an isomorphism

Md′,e′ ×X Mdr,er+1

∼=
−→ Md,e .

Given subvarieties Ω1, . . . ,Ωm of X with m ≤ |e|, define a boundary Gromov-Witten
variety by Md,e(Ω1, . . . ,Ωm) =

⋂m
i=1 ev−1

i (Ωi) ⊂ Md,e. The varieties Ωi will often, but not
always, be chosen in general position.

We also define the varieties Zd,e(Ω1, . . . ,Ωm) = ev(Md,e(Ω1, . . . ,Ωm)) ⊂ X |e| and
Γd,e(Ω1, . . . ,Ωm) = ev|e|(Md,e(Ω1, . . . ,Ωm)) ⊂ X. If no sequence e is specified, we will
use e = (3) when r = 0 and e = (2, 0, . . . , 0, 1) when r > 0; this convention will
only be used when di 6= 0 for i > 0. For example, if x, y ∈ X and d ∈ H2(X;Z),
then Γd(x) ⊂ X is the union of all rational curves of degree d passing through x, and
Γd(x, y) is the union of all rational curves of degree d passing through x and y. The variety
Zd,2 ⊂ X ×X contains all pairs of points that are connected by a rational curve of degree d,
and Zd = Zd,3 ⊂ X × X × X consists of the triples of points connected by such a curve.
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If Ω ⊂ X is a B-stable Schubert variety, then so is Γd(Ω) by Proposition 3.2(b) and the
following result. This fact was also used in [8].

P 3.7. – The variety Md,e is unirational and has rational singularities.

Proof. – By induction on r we may assume that Md′,e′ is unirational and has rational
singularities. Since all maps in the Cartesian square

Md,e

p //

q

��

Mdr,er+1

ev1

��
Md′,e′

ev|e′| // X

are equivariant, it follows from Theorem 2.5 that Md,e has rational singularities. Proposi-
tion 2.3 implies that ev1 is locally trivial, and since Mdr,er+1 is rational, we deduce that the
fibers of ev1 are unirational. This in turn implies that q is a locally trivial map with unirational
fibers. Finally, since Md′,e′ is unirational, we conclude that Md,e is unirational as well.

C 3.8. – Let Ω1,Ω2, . . . ,Ωm ⊂ X be Schubert varieties in general position,
with m ≤ |e|. Then Md,e(Ω1, . . . ,Ωm) has rational singularities. Furthermore, the one-point
Gromov-Witten variety Md,e(Ω1) is unirational, and the two-point Gromov-Witten variety
Md,e(Ω1,Ω2) is either empty or unirational.

Let d ∈ H2(X;Z) be an effective class and let π1, π2 : Zd,2 → X denote the projections.
Define the variety

Z
∗
d,2 = Zd,2 \

⋃

d′

Zd′,2

where the union is over all degrees d′ ∈ H2(X;Z) for which Zd′,2  Zd,2. This is a G-stable
dense open subset of Zd,2 because Zd,2 = ev(Md,2) is irreducible. For x ∈ X we also set
Γ∗

d(x) = π2(π
−1
1 (x) ∩ Z

∗
d,2), a dense open subset of Γd(x).

L 3.9. – Let d ∈ H2(X;Z) be an effective class and Ω ⊂ X a Schubert variety.

(a) The variety Zd,2 is rational and has rational singularities.

(b) The intersection Ω∩Γd(z) is unirational and has rational singularities for all points z in the
open cell Γd(Ω)◦ ⊂ Γd(Ω).

(c) Let Ω∗ ⊂ Ω be any dense open subset. Then Ω∗ ∩Γ∗
d(z) 6= ∅ for all points z in a dense open

subset of Γd(Ω).

Proof. – It follows from Proposition 2.3 that the projection π1 : Zd,2 → X is a locally
trivial fibration. Since each fiber π−1

1 (x) ∼= Γd(x) is a Schubert variety in X, we deduce that
π−1

1 (Ω) is rational and has rational singularities. Part (a) follows as a special case of this.
Since Proposition 3.2(b) implies that π2 : π−1

1 (Ω) → Γd(Ω) is a locally trivial fibration over
Γd(Ω)◦, it follows that π−1

1 (Ω) ∩ π−1
2 (z) ∼= Ω ∩ Γd(z) is unirational for all z ∈ Γd(Ω)◦,

and Lemma 2.4 implies that Ω ∩ Γd(z) has rational singularities. This proves (b). Since
π1( Z

∗
d,2) = X and π−1

1 (Ω) is irreducible, we deduce that U = π−1
1 (Ω∗) ∩ Z

∗
d,2 is a dense

open subset of π−1
1 (Ω). Part (c) follows from this because π2(U) contains a dense open subset

of Γd(Ω), and Ω∗ ∩ Γ∗
d(z) ∼= U ∩ π−1

2 (z) 6= ∅ for all z ∈ π2(U).
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4. Gromov-Witten varieties of cominuscule spaces

Let X = G/P be a homogeneous space, where G is a simple complex linear algebraic
group and P is a maximal parabolic subgroup. In the remainder of this paper we require
more precise notation for the Schubert varieties in X, which we now introduce. Fix a maximal
torus T and a Borel subgroup B such that T ⊂ B ⊂ P ⊂ G, and let R be the associated
root system, with positive roots R+ ⊂ R and simple roots ∆ ⊂ R+. Let W = NG(T )/T

be the Weyl group of G and WP = NP (T )/T ⊂ W the Weyl group of P . The subgroup
P corresponds to a simple root α ∈ ∆, such that WP is generated by all simple reflections
except sα. The variety X is called cominuscule if α is a cominuscule simple root, i.e., when the
highest root of R is expressed as a linear combination of simple roots, the coefficient of α is
one. The collection of cominuscule varieties include the type A Grassmannians Gr(m, n),
Lagrangian Grassmannians LG(n, 2n), maximal orthogonal Grassmannians OG(n, 2n),
quadric hypersurfaces Qn ⊂ Pn+1, as well as two exceptional varieties called the Cayley
Plane (E6/P6) and the Freudenthal variety (E7/P7). We will assume that X is cominuscule
in the following.

Each element u ∈ W defines a T -fixed point u.P ∈ X and a Schubert variety X(u) =

Bu.P ⊂ X. Both u.P and X(u) depend only on the coset of u in W/WP . Let WP ⊂ W

be the set of minimal length representatives for the cosets in W/WP . Then WP is in one-
to-one correspondence with the set of T -fixed points in X as well as the set of B-stable
Schubert varieties in X, and for u ∈ WP we have dim X(u) = ℓ(u). We will identify
H2(X;Z) = Z [X(sα)] with the group of integers. The degree of a curve C ⊂ X is the integer
d ∈ N for which [C] = d [X(sα)].

Given two points x, y ∈ X, we let d(x, y) denote the smallest degree of a rational curve
containing x and y [22]. Equivalently, d(x, y) is minimal with the property that (x, y) ∈

Zd(x,y),2. For any n ∈ N we also let dX(n) be the smallest degree for which any collection
of n points in X is contained in a connected rational curve of degree dX(n), i.e., dX(n) is
minimal such that ZdX(n),n = Xn. Notice that dX(2) = max{d(x, y) | x, y ∈ X}, and it
follows from [12] that dX(2) is the smallest degree of the quantum parameter q that occurs in
the square of a point in the small quantum ring QH(X). Furthermore, for any degree d ∈ N

we have Z
∗
d,2 = {(x, y) ∈ X2 | d(x, y) = d′} and Γ∗

d(x) = {y ∈ X | d(x, y) = d′}, where
d′ = min(d, dX(2)). The numbers dX(2) and dX(3) were computed in [7, Prop. 18] and [9,
Prop. 3.4]. We reproduce these numbers in the following table, correcting some typos from
[9]. The proof of Proposition 4.5 will also provide an argument for the values of most of these
numbers.

X dim(X) dX(2) dX(3)

Gr(m, m + k) mk min(m, k) min(2m, 2k,max(m, k))

LG(n, 2n) n(n+1)
2 n n

OG(n, 2n) n(n−1)
2 ⌊n

2 ⌋ ⌈n
2 ⌉

Qn n 2 2

E6/P6 18 2 4

E7/P7 27 3 3
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We require the following proposition, which combines parts of Prop. 18 and Lemma 21
from [7]. Notice that part (c) implies that dX(2) is equal to the number of occurrences of sα

in a reduced word for the element u ∈ WP for which X(u) = X.

P 4.1 ([7]). – Let X = G/P be a cominuscule variety.

(a) The diagonal action of G on Z
∗
d,2 is transitive for each d ∈ [0, dX(2)].

(b) Let x, y ∈ X and set d = d(x, y). Then the stabilizer in G of the subvariety Γd(x, y) ⊂ X

is a parabolic subgroup of G that acts transitively on Γd(x, y).

(c) Let u ∈ WP . Then d(1.P, u.P ) is the number of occurrences of sα in any reduced expression
for u.

Proposition 4.1 is the foundation of the following construction from [7]. Fix a degree
d ∈ [0, dX(2)] and let Yd be the set of all subvarieties Γd(x, y) of X for which
d(x, y) = d. The group G acts on Yd by translation, and by parts (a) and (b) of Propo-
sition 4.1 we can identify Yd with a projective homogeneous space for G. The points of
the variety Yd provide a generalization to cominuscule varieties of the kernel-span pairs of
curves in classical Grassmannians [4, 5]. For example, when X = Gr(m, n) is a Grassman-
nian of type A, the space Yd is the two-step flag variety Fl(m − d, m + d;n) of kernel-span
pairs of expected dimension. Notice that the homogeneous space Yd contains a unique
B-fixed point, which implies that there is a unique B-stable Schubert variety in X of the
form Γd(x, y). We denote this non-singular Schubert variety by Xd.

L 4.2. – Let x, y ∈ X. Then there exists a chain of d(x, y) rational curves of degree
1 through x and y.

Proof. – We may assume that x = 1.P and y = u.P are T -fixed points, with u ∈ WP .
Let u = sβ1

sβ2
· · · sβℓ

be a reduced expression for u, and let j1 < j2 < · · · < jd(x,y) be the
indices for which βji

= α. Set u0 = 1 and ui = sβ1
sβ2

· · · sβji
for each i ∈ [1, d(x, y)]. Then

u0.P = x, and since u ∈ WP , we must have u = ud(x,y), so ud(x,y).P = y. Finally notice
that d(ui−1.P, ui.P ) = d(1.P, u−1

i−1ui.P ) = 1, so ui−1.P and ui.P can be joined by a line
in X.

R 4.3. – The assumption that X is cominuscule is necessary in Lemma 4.2. For
example, if X = OG(2, 7) is the orthogonal Grassmannian of 2-dimensional isotropic
subspaces in C7 equipped with a non-degenerate symmetric bilinear form, then two general
points in X are joined by an irreducible curve of degree 2, but not by a union of two lines.
The same is true if X is any adjoint variety [8].

It follows from Lemma 4.2 that if d = (d0, . . . , dr) ∈ Nr+1 is any sequence with di > 0

for i > 0, and Ω ⊂ X is any closed subvariety, then Γd(Ω) = Γ|d|(Ω). The following result
shows how to find the degree 1 neighborhood of a Schubert variety in X. Let wP denote the
unique longest element in WP .

L 4.4. – Let u ∈ WP be such that X(u) 6= X. Then Γ1(X(u)) = X(uwP sα).
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Proof. – Notice that Γ1(X(u)) is a B-stable Schubert variety in X. The inclusion
X(uwP sα) ⊂ Γ1(X(u)) follows because d(u.P, uwP sα.P ) = d(1.P, sα.P ) = 1. To prove
the opposite inclusion it is enough to show that any T -fixed point w.P ∈ Γ1(X(u)) is con-
tained in X(uwP sα). Since T acts on the projective variety of all degree one curves from w.P

to X(u), there exists a T -stable curve of this kind, hence we have d(w.P, v.P ) = 1 for some
fixed point v.P ∈ X(u). We may assume that v, w ∈ WP , so that v ≤ u. Proposition 4.1(c)
implies that we can write v−1w = xsαy where x, y ∈ WP . Since the assumption X(u) 6= X

implies that uwP ≤ uwP sα, we obtain wy−1 = vxsα ≤ uwP sα, so w.P ∈ X(uwP sα) as
required.

P 4.5. – Let d ∈ [0, dX(2)]. Then we have ΓdX(3)−d(Xd) = X.

Proof. – We check the truth of this statement case by case. Assume first that
X = Gr(m, n) is the type A Grassmannian of all m-dimensional subspaces in Cn. Set
k = n − m. Since Gr(m, n) ∼= Gr(k, n), we may assume that m ≤ k. It follows from
[4, Lemma 1] and [5, Prop. 1] that for x, y ∈ X we have d(x, y) = dim(x + y) − m,
where x + y = Span(x, y) ⊂ Cn. It follows that dX(2) = m. We furthermore have
Xd = Gr(d, B/A) = {x ∈ X | A ⊂ x ⊂ B} for some (A, B) ∈ Fl(m − d, m + d;n).
We claim that Γk−d(Xd) = X. Let y ∈ X be any point and notice that dim(B ∩ y) ≥

2m + d − n = m + d − k. Since m + d − k ≤ d, there exists a point x ∈ Xd such
that dim(x ∩ y) ≥ m + d − k, or equivalently d(x, y) ≤ k − d, as required. We finally
prove that dX(3) = min(k, 2m). The inequality dX(3) ≥ min(k, 2m) follows from [4,
Lemma 1], and the opposite inequality follows from the claim and the observation that
Γ2m−d(Xd) ⊃ Γm(point) = X. The identity ΓdX(3)−d(Xd) = X follows.

Next assume that X = LG(n, 2n) is the Lagrangian Grassmannian of maximal isotropic
subspaces of a symplectic vector space C2n. For x, y ∈ X we have d(x, y) = dim(x+ y)−n,
which implies that dX(2) = n, and Xd = LG(A⊥/A) ⊂ X for some isotropic A ⊂ C2n with
dim(A) = n− d. In particular, we have Xn = X, so dX(3) = n. Let y ∈ X be any point and
set x = (y ∩ A⊥) + A. Then x ⊂ C2n is isotropic. Write dim(y + x) = dim(y + A) = n + t.
Then dim(y ∩ A⊥) = dim((y + A)⊥) = n − t and dim(y ∩ A) = n − t − d. It follows that
dim(x) = (n− t)+(n−d)− (n− t−d) = n, so x ∈ Xd and d(x, y) = t ≤ n−d, as required.

Let X = OG(n, 2n) be an orthogonal Grassmannian. Given an orthogonal form on C2n

and a fixed maximal isotropic subspace x0 ⊂ C2n, this space consists of all maximal isotropic
subspaces x ⊂ C2n such that dim(x + x0)−n is even. We have d(x, y) = 1

2 (dim(x + y)−n)

for x, y ∈ X, hence dX(2) = ⌊n
2 ⌋, and Xd = OG(2d, A⊥/A) ⊂ X for some isotropic

subspace A ⊂ C2n of dimension n−2d. We claim that dX(3) = ⌈n
2 ⌉ and ΓdX(3)−d(Xd) = X.

Given any point y ∈ X, set x = (y∩A⊥)+A and write dim(x+y) = n+t. Then dim(x) = n

and t ≤ n − 2d. If t is even, then x ∈ Xd and d(x, y) = t
2 ≤ ⌊n

2 ⌋ − d. Otherwise we can find
a point z ∈ Xd such that dim(x+ z) = n+1, and this implies that d(z, y) = t+1

2 ≤ ⌈n
2 ⌉−d,

proving the claim.

Let X = Qn ⊂ P(Cn+2) be a quadric hypersurface consisting of all isotropic lines
through the origin in the vector space Cn+2 equipped with an orthogonal form. Then [7,
Prop. 18] shows that dX(2) = 2 and X2 = X. It follows that dX(3) = 2. We must show that
Γ1(X1) = X. We have X1 = P(V ) for some 2-dimensional isotropic subspace V ⊂ Cn+2.
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Given any point y ∈ X, choose a 1-dimensional subspace x ⊂ V ∩ y⊥. Then x ∈ X1, and
since x and y are joined by the line P(x + y) ⊂ Qn we have d(x, y) = 1, as required.

Let X = E7/P7 be the Freudenthal variety. In other words, G has type E7 and α is the
7-th simple root of the Dynkin diagram:

1 3 4 5 6 7

2

According to [7, Prop. 18] we have dX(2) = 3 and X3 = X, which implies that
dX(3) = 3. The description of the varieties Xd in terms of quivers given in [7] also
reveals that X2 = X(s7s6s5s4s2s3s4s5s6s7). (Alternatively, the variety X2

∼= Q10

can be identified as the unique non-singular Schubert variety in X of dimension 10.)
By Lemma 4.4 we now obtain Γ1(X2) = X. We also have X1 = X(s7), Γ1(X1) =

X(s1s3s4s2s5s4s3s1s7s6s5s4s2s3s4s5s6s7), and Γ1(Γ1(X1)) = X.
Finally, let X = E6/P6 be the Cayley plane, i.e., G has type E6 and α is the 6-th simple root

of the Dynkin diagram obtained by discarding node 7 in the above diagram. By [7, Prop. 18]
we have dX(2) = 2 and [9, Lemma 2.14] shows that dX(3) = 4. We obtain dX(3) − d ≥ 2,
so ΓdX(3)−d(Xd) ⊃ Γ2(point) = X.

C 4.6. – Let x, y ∈ X and let d ≥ d(x, y). Then we have Γd(x, y) =

Γd−d(x,y)(Γd(x,y)(x, y)). In particular, Γd(x, y) is a Schubert variety in X.

Proof. – Let z ∈ Γd(x, y). We must show that z ∈ Γd−d0
(Γd0

(x, y)), where d0 = d(x, y).
If d ≥ dX(3), then this follows from Proposition 4.5. On the other hand, if d ≤ dX(2),
then [7, Prop. 19] implies that x, y, z are contained in a translate of Xd. It follows from [7,
Prop. 18] that Xd is a cominuscule variety, and using [7, Fact 20] we obtain dXd

(3) = d.
It now follows from Proposition 4.5 applied to Xd that z ∈ Γd−d0

(Γd0
(x, y)). Finally, if

dX(2) < d < dX(3), then X is a Grassmannian of type A or the Cayley plane E6/P6. We
consider these cases in turn.

If X = Gr(m, n) is a Grassmannian of type A, then [4, Lemma 1] implies x, y, z ∈ X ′ :=

Gr(m − a, B/A) for some subspaces A ⊂ B ⊂ Cn such that a := dim(A) ≥ m − d and
dim(B) ≤ m + d. Since dX′(3) ≤ d we deduce that z ∈ Γd−d0

(Γd0
(x, y)) by applying

Proposition 4.5 to X ′.
Finally, assume that X = E6/P6 is the Cayley plane, in which case we have d = 3. Since

Γ2(X1) = X, we may also assume that d0 = 2 and Γ2(x, y) = X2. With the notation
from the proof of Proposition 4.5 we have X2 = X(s6s5s4s2s3s4s5s6), the only non-singular
Schubert variety of dimension 8, and Lemma 4.4 implies that Γ1(X2) is the unique Schubert
divisor in X. Since dX(3) = 4, we also have Γ1(X2) ⊂ Γ3(x, y) ( X. We conclude that
Γ1(X2) = Γ3(x, y) as Γ3(x, y) is irreducible.

C 4.7. – Let d = (d0, d1, . . . , dr) be a sequence with di > 0 for i > 0. Then
Zd = {(x, y, z) ∈ Zd0,2 × X | z ∈ Γ|d|(x, y)}.

Proof. – By definition we have Zd = {(x, y, z) ∈ X3 | z ∈ Γd(x, y)}. The corol-
lary is true because Γd(x, y) 6= ∅ if and only if (x, y) ∈ Zd0,2, in which case we have
Γd(x, y) = Γ|d|(x, y) by Corollary 4.6 and Lemma 4.2.
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We need the following rationality property of Gromov-Witten varieties defined by triples
of points, which in some cases are in special position [9, Thm. 0.2]. Notice that when X is a
Grassmannian of type A, this follows from [3, Thm. 2.1].

T 4.8 ([9]). – Let X = G/P be a cominuscule variety and let d ∈ N. Then the
variety Md,3(x, y, z) ⊂ M0,3(X, d) is rational for all points (x, y, z) in a dense open subset
of Zd,3 ⊂ X3.

T 4.9. – Let X = G/P be cominuscule and d = (d0, . . . , dr) any sequence with
di > 0 for i > 0. Then Md(x, y, z) is rationally connected for all points (x, y, z) in a dense open
subset of Zd ⊂ X3.

Proof. – The result follows from Theorem 4.8 when r = 0, so assume that r > 0.
By induction on r we may assume that Md′(x, y, t) is rationally connected for all points
(x, y, t) in a dense open subset of Zd′ , where d

′ = (d0, . . . , dr−1). Let (x, y) ∈ Z
∗
d0,2 and set

Ω = Γd′(x, y). Since G acts transitively on Z
∗
d0,2 by Proposition 4.1(a), there exists a

dense open subset Ω∗ ⊂ Ω such that Md′(x, y, t) is rationally connected for all t ∈ Ω∗. By
Lemma 3.9 there exists a dense open subset Γ∗ ⊂ Γd(x, y) = Γdr

(Ω) such that Ω∗ ∩ Γ∗
dr

(z) 6= ∅

and Ω ∩ Γdr
(z) is unirational and normal for all z ∈ Γ∗.

By replacing Γ∗ with a smaller set, we may also assume that Md(x, y, z) is locally
irreducible for all z ∈ Γ∗. Indeed, since Md(x) is unirational by Corollary 3.8, and Propo-
sition 3.2(b) implies that ev2 : Md(x) → Γd0

(x) is locally trivial over Γ∗
d0

(x), it follows
that Md(x, y) is unirational. Since Γd(x, y) is a Schubert variety by Corollary 4.6 and
ev3 : Md(x, y) → Γd(x, y) is surjective, the Kleiman-Bertini theorem [18, Rmk. 7] applied
to the Borel action on the open cell Γd(x, y)◦ shows that Md(x, y, z) is locally irreducible
for all points z in a dense open subset of Γd(x, y).

We claim that Md(x, y, z) is rationally connected for all z ∈ Γ∗. The space Md is
the product of the maps ev3 : Md′ → X and ev1 : Mdr,2 → X. Let f : Md → X

be the morphism defined by the product. This map restricts to a surjective morphism
Md(x, y, z) → Ω ∩ Γdr

(z), whose fibers are given by f−1(t) ∩ Md(x, y, z) = Md′(x, y, t) ×

Mdr,2(t, z). Since Mdr,2(z) is unirational and Proposition 3.2(b) implies that the map
ev2 : Mdr,2(z) → Γdr

(z) is locally trivial over Γ∗
dr

(z), it follows that Mdr,2(t, z) is unira-
tional for all t ∈ Γ∗

dr
(z). We deduce that f−1(t) ∩ Md(x, y, z) is rationally connected for all

t ∈ Ω∗ ∩ Γ∗
dr

(z). By using the Stein factorization of the map Md(x, y, z) → Ω ∩ Γdr
(z) and

the fact that Ω ∩ Γdr
(z) is normal, it follows from Zariski’s main theorem [15, III.11.4] that

Md(x, y, z) is connected and therefore irreducible. The claim now follows from Theorem 2.6.

Define a morphism ρ : G × Γd(x, y) → Zd by ρ(g, z) = (g.x, g.y, g.z). It follows from
Proposition 4.1(a) that the image of ρ contains Zd∩( Z

∗
d0,2×X), which is a dense open subset

of Zd. This implies that ρ(G×Γ∗) contains a dense open subset of Zd, which completes the
proof of the theorem.
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5. Quantum K-theory of cominuscule varieties

Let X = G/P be a cominuscule variety and let K(X) denote its Grothendieck ring. A
short summary of the properties of this ring can be found in [6, §3], while many more details
can be found in [2]. Each element w ∈ WP defines a Schubert class Ow = [ OX(w0w)] ∈ K(X),
where w0 ∈ W is the longest element, and these classes form a Z-basis for K(X). The dual
Schubert classes O

∨
w ∈ K(X) are defined by χ

X
( Ou · O

∨
v ) = δu,v for u, v ∈ WP , where

χ
X

: K(X) → Z is the sheaf Euler characteristic map.

Given classes α1, . . . , αn ∈ K(X), we set α1 ⊗ · · · ⊗ αn =
∏n

i=1 π∗
i (αi) ∈ K(Xn), where

πi : Xn → X is the i-th projection. Together with a degree d ∈ N, these classes define the
K-theoretic Gromov-Witten invariant

Id(α1, . . . , αn) = χ
Md,n

(ev∗(α1 ⊗ · · · ⊗ αn)) .

The quantum K-theory ring of X is an algebra over Z[[q]], which as a Z[[q]]-module is given
by QK(X) = K(X) ⊗Z Z[[q]]. The multiplicative structure is defined by

Ou ⋆ Ov =
∑

w,d

Nw,d
u,v qd Ow ,

where the sum is over all w ∈ WP and d ∈ N. The structure constants Nw,d
u,v are defined by

Nw,d
u,v =

∑

d=(d0,...,dr),κ1,...,κr

(−1)r Id0
( Ou, Ov, O

∨
κ1

)

r∏

i=1

Idi
( Oκi

, O
∨
κi+1

) ,

the sum over all sequences d = (d0, . . . , dr) with |d| = d and di > 0 for i > 0, and all
elements κ1, . . . , κr ∈ WP . Notice that the sign (−1)r and the number of elements κi depend
on the length of d, and we write κr+1 = w. A theorem of Givental [13] states that QK(X) is
an associative ring.

In this section we prove that any product of Schubert classes in QK(X) has only finitely
many non-zero terms. We start by observing that each structure constant Nw,d

u,v can also be
expressed as an alternating sum of Euler characteristics computed on the spaces Md. The
following lemma generalizes to any homogeneous space with the same proof.

L 5.1. – Let u, v, w ∈ WP and let d = (d0, d1, . . . , dr) be any sequence such that
di > 0 for i > 0. Then

χ
M

d
(ev∗( Ou ⊗ Ov ⊗ O

∨
w)) =

∑

κ1,...,κr

Id0
( Ou, Ov, O

∨
κ1

)

r∏

i=1

Idi
( Oκi

, O
∨
κi+1

)

where the sum is over all κ1, . . . , κr ∈ WP and we set κr+1 = w.

Proof. – We may assume that r > 0. Set d
′ = (d0, . . . , dr−1). It is enough to show that

(1) χ
M

d
(ev∗( Ou ⊗ Ov ⊗ O

∨
w)) =

∑

κ∈W P

χ
M

d′
(ev∗( Ou ⊗ Ov ⊗ O

∨
κ )) · Idr

( Oκ, O
∨
w) .

Let ∆ : X → X2 be the diagonal embedding. The projection formula implies that
χ

X2
(∆∗[ OX ] · Oσ ⊗ O

∨
τ ) = χ

X
( Oσ · O

∨
τ ) = δσ,τ for all σ, τ ∈ WP , and the class
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∆∗[ OX ] ∈ K(X2) is uniquely determined by this property. We deduce that (cf. [2,
Thm. 3.4.1(i)])

∆∗([ OX ]) =
∑

κ∈W P

O
∨
κ ⊗ Oκ ∈ K(X2) .

Since the horizontal maps are flat in the fiber square

Md′ × Mdr

ev3 × ev1 // X2

Md
//

∆′

OO

X

∆

OO

we obtain ∆′
∗[ OMd

] = (ev3 × ev1)
∗∆∗[ OX ] =

∑
κ ev∗

3( O
∨
κ )⊗ ev∗

1( Oκ). Equation (1) follows
from this by another application of the projection formula.

We need the Gysin formula from [3, Thm. 3.1] stated as Proposition 5.2 below. Notice that
the statement in [3] requires that the general fibers of f are rational. However, this was used
only to conclude that the structure sheaf of any general smooth fiber has vanishing higher
cohomology, and rational connectivity suffices for this, see e.g., [10, Cor. 4.18(a)].

P 5.2 ([3]). – Let f : X → Y be a surjective morphism of projective
varieties with rational singularities. If the general fibers of f are rationally connected, then
f∗[ OX ] = [ OY ] ∈ K(Y ).

Proof of Theorem 1. – For each sequence d = (d0, . . . , dr) with di > 0 for i > 0 we
choose a resolution of singularities π : Z̃d → Zd. By Corollary 4.7 we may assume that this
resolution depends only on |d| and min(d0, dX(2)). Then form the following commutative
diagram, where M ′

d
⊂ Z̃d× Zd

Md is the irreducible component mapping birationally to Md,
and M̃d is a resolution of singularities of this component.

M̃d

ϕ // M ′
d

⊂ // Z̃d × Zd
Md

π′
//

ev′

��

Md

ev

��
Z̃d

π // Zd

⊂ // X3

It follows from Zariski’s main theorem that the fibers of π′ϕ are connected. Using The-
orem 4.9 we deduce that the general fibers of ev′ ϕ are connected. Since the map ev′ ϕ is
smooth over a dense open subset of Z̃d by [15, III.10.7], it follows that the general fibers
of ev′ ϕ are in fact irreducible. Theorem 4.9 therefore shows that the general fibers of ev′ ϕ

are rationally connected, so we obtain (ev′ ϕ)∗[ O‹Md

] = [ O
Z̃d

] by Proposition 5.2. Since Md

has rational singularities, we also have (π′ϕ)∗[ O‹Md

] = [ OMd
]. We deduce from the projection

formula that

χ
M

d
(ev∗( Ou ⊗ Ov ⊗ O

∨
w)) = χ

Z̃
d

(π∗( Ou ⊗ Ov ⊗ O
∨
w)) .
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Now Lemma 5.1 implies that

Nw,d
u,v =

∑

d

(−1)r χ
M

d
(ev∗( Ou ⊗ Ov ⊗ O

∨
w))

=
∑

d

(−1)r χ
Z̃
d

(π∗( Ou ⊗ Ov ⊗ O
∨
w))

where both sums are over all sequences d = (d0, . . . , dr) with di > 0 for i > 0 and
|d| = d, and the sign (−1)r depends on the length of d. Notice that the terms of the second
sum depend only on min(d0, dX(2)) and r. In particular, the contributions of the sequences
d = (d) and d = (d − 1, 1) cancel each other out. Now let 0 ≤ d′ ≤ d − 2. For each r with
1 ≤ r ≤ d − d′, there are exactly

(
d−d′−1

r−1

)
sequences d in the sum for which d0 = d′ and the

length of d is r + 1. Since
∑d−d′

r=1 (−1)r
(
d−d′−1

r−1

)
= 0, it follows that the corresponding terms

cancel each other out. This completes the proof.

R 5.3. – Theorem 1 is true also for the structure constants of the equivariant
quantum K-theory ring QKT (X), with the same proof. In fact, if Z̃d and M̃d are chosen to
be T -equivariant resolutions [21, Thm. 7.6.1], then all maps used in the proofs of Lemma 5.1
and Theorem 1 are equivariant, and the arguments go through without change. More details
about the ring QKT (X) can be found in [3].
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