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Abstract. Let M" , n > 3, be an oriented minimally immersed complete

hypersurface in Euclidean space. We show that for n = 3, 4, 5 , or 6, the

index of M" is finite if and only if the total scalar curvature of M" is finite,

provided that the volume growth of M" is bounded by a constant times r" ,

where r is the Euclidean distance function. We also note that this result does

not hold for n > 8 . Moreover, we show that the index of M" is bounded

by a constant multiple of the total scalar curvature for all n > 3 , without any

assumptions on the volume growth of M" .

1. Introduction

The index of a minimally immersed hypersurface M" in Rn+ is defined

to be the limit of the indices of an increasing sequence of exhausting compact

domains in M. The index of a domain D is the number of negative eigenvalues

of the eigenvalue problem

(A + \A\2)<f>+ X<t> = 0 on D,       4>\dD=0.

Here, |^4| denotes the length of the second fundamental form of Mn as a

submanifold of Rn+i . Geometrically, the index of M can be described as the

maximum dimension of a linear space of compactly supported deformations

that decrease the volume up to second order. D. Fischer-Colbrie [2], obtains

the very interesting result that a complete oriented minimal surface in R has

finite index if and only if it has finite total curvature. The proof of this result

uses the conformai invariance of the Dirichlet integral in dimension two and

does not seem to generalize to higher dimensions.

In the present paper we extend the results mentioned above to minimal hy-

persurfaces in R , R , R and R , satisfying a certain volume growth con-

dition. We also observe that the theorem does not hold in Rn+l for n > 8.

More precisely, we show the following: Let M" ç Rn+l , « = 3 ,4, 5, or 6, be

Received by the editors November 26, 1986 and, in revised form, April 22, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 53C42; Secondary 58C40.
Key words and phrases. Minimal hypersurface, index, eigenvalue, second fundamental form.

©1989 American Mathematical Society

0002-9939/89 $1.00+ $.25  per page

429

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



430 JOHAN TYSK.

a complete oriented minimally immersed hypersurface with

( * ) lim —--=—^—^ < oo ,
r—»oo f

where r is Euclidean distance and B(r) is a Euclidean ball of radius r . Un-

der these assumptions, we prove that Mn has finite index if and only if M"

has finite total scalar curvature. The total scalar curvature of Mn is defined

to be fM„ \A\" , which is a generalization of the total curvature for surfaces.

We call this integral total scalar curvature since for minimal submanifolds of

Euclidean space, \A\ is equal to minus one times the scalar curvature. The

volume growth condition (*) is quite natural since if fM„ \A\" < oo, then (*)

holds, see M. Anderson [1]. In fact, we show that the index is bounded by a

multiple, depending only on the dimension n , of the total scalar curvature, in

all dimensions n > 3 (a similar estimate also holds for n = 2, see J. Tysk [8]).

However, the converse is not true for n > 8, as mentioned above, and it is not

known if finite index implies that (*) is satisfied.

We would like to thank the referee for pointing out that the original formu-

lation of the main theorem contained a redundant assumption on M.

2. Notation, statement of the theorem, and some remarks

The notation to be used throughout the rest of the paper is the following:

A = the second fundamental form of M" as a submanifold of Rn+ ;

r = the distance function in the ambient Euclidean space;

B(r) = a ball of radius r in the ambient Euclidean space;

Bp(r) = same as above but with specified center p ;

D0(p) - a geodesic ball in M" with radius p centered at 0 ;

con = the volume of the Euclidean unit ball in Rn.

Our main result is the following theorem.

Theorem. Let M", n = 3 ,4, 5, or 6, be an oriented minimally immersed

complete hypersurface in Euclidean space, satisfying the following volume growth

condition

. vol(A/n5(r))
(*) hm --n-^<oo.

Then M has finite index if and only if fM\A\" < oo.

Remarks. In R and in higher dimensional Euclidean spaces there are area-

minimizing graphs with infinite total scalar curvature. These minimizing graphs

satisfy the volume growth condition (*) and are, of course, stable, or equiva-

lently, they have index zero, making it clear that our theorem does not generalize
g

to these dimensions. In R , there are stable cones which cause our method of

proof to fail. However, it is not known if there are stable nontrivial (regular)

minimal hypersurfaces in R , or for that matter, in R4, R , R , or R .

Our result might therefore still be true in R  . Another interesting question is
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FINITENESS OF INDEX AND TOTAL SCALAR CURVATURE 431

whether the volume growth condition of our theorem is necessary. We use the

volume growth assumption to carry out a scaling argument. The scaling appears

to be unavoidable, therefore it seems that the only way to eliminate the volume

growth restriction is to determine if stability or finite index, by themselves,

imply a restriction on the volume growth.

In the proof of our theorem we will need the proposition and lemmas of the

next section.

3. An upper bound for the index,

and some consequences of finiteness of the index

Proposition. Let n>3, and let Mn be a minimally immersed oriented complete

hypersurface in Rn+ . Then the index of M" satisfies the following upper bound,

Proof. This proposition follows immediately from Theorem 2 of P. Li and

S.-T. Yau in [3]. We only need to replace the Sobolev inequality for Euclidean

space, that they use, by the Sobolev inequality for minimal submanifolds, see

[4]. In fact, in their paper P. Li and S-T. Yau point out that their argument is

also valid on manifolds on which a Sobolev inequality holds.

Remark. The method of P. Li and S.-T. Yau used above does not carry through

for n — 2 . However, as mentioned in the introduction, a similar index estimate

does hold for n = 2 (see J. Tysk [8]).

For the sake of completeness we include the following well-known lemma.

We give the proof as it is presented in [2].

Lemma 2. If M has finite index there is a compact set C so that M - C is

stable.

Proof. Recall that D0ip) denotes the geodesic ball centered at some fixed point

0 in M. Set

/?, = 2sup{p: D0ip) is stable}.

If pl is infinite, then M is stable and we are done. Otherwise, let

p2 = 2sup{/>: D0(p) - D0(p{) is stable}.

If p2 is infinite the proof is complete. If not, we note that by the domain

monotonicity for eigenvalues, D0(p2) - D0(p¡) is unstable. We then define,

continuing this process, a strictly increasing sequence {/>.} so that D0(pt) -

Dq(Pí-i) is unstable for each pi in the sequence. The first eigenvalue for the

stability operator A+|,4|2,on £>0(/?,)_M)(^/-i) is therefore negative. Let f. be

the corresponding eigenfunction. Since the fi 's have disjoint support, they are

linearly independent and the quadratic form associated to the second variation

operator is negative definite on their linear span. Now, the index of M is equal

to the maximum dimension of a space on which the associated quadratic form
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is negative definite, so the assumed finiteness of the index of M implies that

there are only finitely many fi 's. The above construction must therefore stop

after a finite number of steps and hence, M is stable outside some compact set

C = D0(pk).
We will need the following lemma on the uniqueness of tangent planes at

infinity for manifolds of finite index.

Lemma 3. Let Vn c Rn+ be a connected minimal oriented n-dimensional

submanifold of finite index, which is complete and properly immersed into the

complement of some bounded open set in Rn+l. Assume that for any sequence

{/,•} of real numbers tending to infinity, the rescalings

±-V=ljx:xeVncRn+x\,

have a subsequence converging smoothly on BQ(\) - {0}, to a hyperplane of

multiplicity one. Then this limiting hyperplane is unique, i.e. it does not depend

on the sequence {r.}.

Proof. To prove the uniqueness of the limiting hyperplanes we argue by contra-

diction: we assume that for some sequence of real numbers tending to infinity,

{■*,}/*!i > tne corresponding rescalings {jV}°li converge to a hyperplane n2,

different from the limit nl of another sequence {j-V}^. Now let K denote

the closure of

and let «, be the normal of n{ obtained as the limit of the normals to

Arn(V).

Similarly, let n2 be the normal of n2 obtained as the limit of the normals to

*n(V),

where we used the fact that the limiting hyperplanes have multiplicity one and

the smooth convergence of the rescalings to guarantee that these normals con-

verge. Now set a = «j - »,, and consider the function V" 3 p —► f(p) —

(en+l(p) ,a), where en+l(p) is the oriented unit normal of V at p. For i

large enough, / is positive on (r¿K) n V, and negative on (s¡K) n V. There

therefore exists some bounded domain D in V - C, so that / is positive

on D and zero on the boundary of D , where C is chosen in accordance with

Lemma 2 so that V - C is stable. We now recall the following well-known iden-

tity for minimal hypersurfaces, Af + \A\ / = 0. The function / is therefore

an eigenfunction with eigenvalue zero of A + \A\   on D :

Af + \A\2f = 0 on D,       f\0D = 0.
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Hence, on some domain D' strictly containing D , the eigenvalue problem

A(p + \A\2(p + X(f) = OonD',       <p\dD, = 0,

has a negative eigenvalue by the domain monotonicity for eigenvalues. This

means that V - C is unstable, contradicting Lemma 2, hence completing the

proof of Lemma 3.

In our particular problem Lemma 3 has the following consequence.

Lemma 4. Let M", n = 3,4, 5, or 6, be as in the statement of the theorem

and with finite index. Then each end of Mn has a unique tangent plane of

multiplicity one at infinity.

Proof. Let {J,-}^. be a sequence of real numbers tending to infinity and fix x0 e

Rn+ . Since by the monotonicity formula for minimal varieties in Euclidean

space, the function
voljMn B(r))

7
is nondecreasing in r, a subsequence of the rescalings

Mi = {s((x - x0) : x e M} ,       i > 1,

will, by standard Geometric Measure Theory, converge to a rectifiable current

in any fixed ball centered at x0 . If the immersion of M is not proper, and x0

is chosen so that M(~\BXo(r0) is a noncompact subset of M for all r0 > 0, one

can easily derive a contradiction to the assumed upper bound for the volume

growth of M from such convergent sequences of rescalings. Alternatively, use

the isoperimetric inequality and the co-area formula to bound the volume of

geodesic balls in M from below, and then apply this bound to show that the

immersion is proper. From Lemma 2, we know that M - C is stable for some

compact set C. From this stability, the properness of the immersion of M,

and the assumed volume growth restriction, we can conclude using Theorem 3

by R. Schoen and L. Simon [6], that \A\ < KJr, where K} is some constant

and r the Euclidean distance function. Let {r-}*, be any seqeuence of real

numbers tending to infinity. The homothetic rescalings

yM=iyx:xeM"cRn+l\

are therefore minimal submanifolds whose second fundamental forms are uni-

formly bounded on any compact subset of B0(l) - {0}. By the Smooth Com-

pactness Theorem, see for instance M. Anderson [1], a subsequence of the rescal-

ings {l/r.M} therefore converges to minimal variety M, which is smooth in

BJl) - {0}. The proof of the Smooth Compactness Theroem is based on the

fact that if the second fundamental form is uniformly bounded, then in balls

whose radii depend only on n and the bound on the second fundamental form,

the components of minimal variety are graphs over their tangent planes. The

estimate on the second fundamental form gives a C 'a,  a < 1 , bound on
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the solutions to the minimal surface equation over these balls. Elliptic regular-

ity theory combined with the covering argument then gives the desired smooth

convergence.

Combining this smooth convergence with the monotonicity formula for mini-

mal submanifolds of Euclidean space, we obtain the well-known result that such

a limit has the structure of cones on minimal codimension one submanifolds of

Sn. Since M - C is stable, these limiting cones also have to be stable. By the

fundamental results of J. Simons [7], the only stable cones in R ,R,R , and

R , are in fact, hyperplanes. The tangent cones of Mn at infinity are therefore

tangent planes, possibly with multiplicities. In fact, using an argument appear-

ing in [1], we can show that these multiplicities have to be one. Let n be a

limiting hyperplane with multiplicity m > 1. Then for some i large enough,

one of the components of l/r¡M n dB0(l) would, by the smooth convergence,

provide a nontrivial covering of the equatorial sphere nndB0(l), which is not

possible since the dimension of this sphere is at least two.

By the monotonicity formula for minimal varieties, we see that the assumed

volume growth restriction shows that there are only finitely many limiting tan-

gent planes. By abuse of notation, let {1/rM} converge smoothly on B0(l) -

{0}. As / tends to infinity any connected component of l/r¡M in 50(|) -

B0(\), has to converge to precisely one of the limiting hyperplanes, by the

smooth convergence. This argument can be repeated for any sequence of ho-

mothetic shrinkings of M . Outside some compact set, M therefore consists of

connected components, referred to as ends and denoted { V.}, for which a sub-

sequence of {l/r¡Vk} converges smoothly to one of the limiting hyperplanes.

Note that the number of ends is finite, since the argument above can be applied

to every end, showing that each end has a subsequence of rescalings converging

to some limiting hyperplane of which, as we have seen, there are only finitely

many, each with multiplicity one. The uniqueness of the tangent plane of any

end at infinity now follows from Lemma 3, completing the proof.

4. Proof of the theorem

Combining the proposition and lemmas of the preceding section we obtain

the proof of the theorem in the following way.

Proof of the Theorem. If ¡M\A\" < oo, the proposition shows that the index

of Af" is finite.

Conversely, if the index of M" is finite we know from Lemma 4, that Mn

has unique tangent planes of multiplicity one at infinity. Also we remarked that

outside some compact set in Rn+ , M" consists of finitely many ends. Since,

as we showed above, M" is properly immersed, we know that only a compact

set in Mn can be included in a compact set in Rn+1 , so we need only prove

that the integral of \A\" over the ends is finite. Now, since there are only finitely

many ends, we need only show that the integral over any end is finite.
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Since the ends of Mn converge to hyperplanes of multiplicity one, we can

conclude that outside some compact set, each end is a graph of bounded slope

over the tangent plane at infinity. According to Proposition 3 by R. Schoen [5],

this means that on the ends the second fundamental form satisfies the estimate

\A\ < K2/r" , for some constant K2. Since the ends converge to hyperplanes

of dimension n , we clearly have ¡V\A\" < oo, for all ends V, showing that

¡M„ \A\" < oo, thus completing our proof.
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