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FINITENESS THEOREMS FOR DISCRETE SUBGROUPS
OF BOUNDED COVOLUME IN SEMI-SIMPLE GROUPS

by ArMaAND BOREL and GoraL PRASAD*

Introduction

1. Itis well-known that a real non-compact simple Lie group not locally isomorphic
to SLy(R) or SL,(C) has only finitely many conjugacy classes of discrete subgroups of
covolumes bounded by a given constant [44]. Motivated by the results of [17], J. Tits asked
whether the same would be true for p-adic groups, not only for a single ambient group,
but also when the ground field and the group are allowed to vary, witb a specific universal
normalization of Haar measures. This problem was our starting point. We were naturally
led to consider also an analogue for groups over R or C and then, as a common gene-
ralization, irreducible discrete subgroups of products of simple groups over local fields.

2. In this introduction we shall outline some of the main results obtained so far,
referring to §§7, 8 for the most precise assumptions and general statements. We let %
be a global field; V, V, V, respectively be the set of places, of archimedean places,
and of nonarchimedean places of 2 and %, the completion of 2 at v € V. Let G be an
absolutely almost simple simply connected k-group and G’ be a k-group centrally
k-isogenous to G. If » e V,, we let u, be the Haar measure on G’(k,) which assigns the
volume one to the stabilizer of a chamber in the Bruhat-Tits building of G(k,). This
is (essentially) the normalization proposed by J. Tits, so u, will be called here the Tits
measure. If v is archimedean, and %, is identified with R or C, then yp, is the Haar
measure which gives the volume one to a2 maximal compact subgroup of R, x(G")(C).
(Originally, we had considered the measure associated to the Killing form. This ., was
suggested to us by P. Deligne.) For a finite set of places SCV, we let ug be the Haar
measure on Gy = II, .4 G'(,) which is the product of the u;’s. When G’ = G, we
set pg = pg. Then we have (7.8):

Theorem A. — Let ¢ > 0 be given. Assume k runs through the number fields. Then there
are only finitely many choices of k, of G'[k of absolute rank > 2 up to k-isomorphism, of a finite
set S of places of k containing all the archimedean places, of arithmetic 1" C Gy up to conjugacy,
such that pi(Gg/T') < ¢
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[The proof will also yield the finiteness of the number of natural equivalence
classes of (k, G’, S, I'") in the function field case, under some mild restrictions. We note
also that, in view of the arithmeticity results of [23] and [43], irreducible discrete sub-
groups of finite covolume of simple groups over local fields are of the type considered
here under rather general assumptions. This leads to an apparently different formulation
of this finiteness theorem. See Remark 7.9.]

3. The starting point of the proof is a formula of [31] for pg(Gg/A,), where A,
is a *“ principal > S-arithmetic subgroup contained in G(%). (The volume formula in [31]
involves the Tamagawa number 7,(G) of G, which has recently been proved to be
equal to one if k£ is a number field.) To deal with a subgroup of Gg commensurable
with the image of A, we need an estimate for the index of the latter in its normalizer.
This is done by consideration of the first Galois cohomology set with coefficients in the
center G of G (or flat cohomology if G is not reduced) via a slight generalization of an
exact sequence due to Rohlfs [32] (see §§2, 5). The proof uses number theoretical
estimates, in particular some involving discriminants given in §6. These arguments
yield first the finiteness of the set of triples (£, G, S) in 7.3. The finiteness of the number
of conjugacy classes of IV in a given Gg, which follows from [3] in characteristic zero,
is proved in 7.7 with respect to conjugacy under (Ad G) (). For the proof of the fini-
teness theorems in §7, we have to know that given a finite subset Z of V, the set of inner
forms of G which are % -isomorphic to G for all v ¢ # is finite. This is well-known in
characteristic zero [5]. A proof in the function field case is supplied in Appendix B.

4. Another possible natural normalization of Haar measures in the nonarchi-
medean case is the absolute value of the Euler-Poincaré measure introduced by J.-P. Serre
in [33]. If v eV, we may use on G'(k,) a similar measure, provided G’(k,) has a
compact Cartan subgroup. If this condition is fulfilled for every v € V, N S, then the
corresponding product measure on Gy is also a Haar measure. It may be smaller then ug,
but by a controllable factor (see 4.4) and the estimates are good enough to ensure that
Theorem A also holds for this choice of the Haar measure in these cases except maybe
if G is of type A,. With that proviso, it yields therefore the finiteness of the number
of (k, G, S, I') such that 0 % | x(I'") | < ¢ where y is the Euler-Poincaré characteristic
in the sense of C. T. C. Wall {see 7.3, 7.8).

5. Earlier results pertaining to p-adic groups in characteristic zero, announced
in [4], were proved in a completely different way, by comparing the index of an Iwahori
subgroup in a maximal parahoric subgroup with an estimate for the order of finite
subgroups of G(K), where K is a nonarchimedean local field of characteristic zero and G
is a semi-simple group defined over K. This method does not depend on any information
on Tamagawa numbers and allows us to vary G, and also K among local fields having
a bounded absolute ramification index. This is the subject matter of §8.
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6. The main result of [17] gives an explicit list of triples (F, G, I') where F is a
nonarchimedean local field, G an absolutely almost simple F-group of F-rank > 2 and
I' a discrete subgroup of G(F) which acts transitively on the chambers of the Bruhat-
Tits building of G(F). In particular this set is finite. It is clear from the definition of the
Tits measure p, of G(F) that, in that case, up(G(F)/T") < 1. Therefore this finiteness
assertion follows from Theorem A. More generally, we show the finiteness of the number
of triples (F, G, I') consisting of a nonarchimedean local field F of characteristic zero,
an absolutely almost simple F-group G of absolute rank > 2, and a discrete subgroup
I’ of G(F) which is transitive on the set of the facets of a given type of the Bruhat-Tits
building of G(F). In fact, we shall establish more general results in the S-arithmetic
framework (see 7.10, 7.11).

7. Let G be as in 2. Let S be a finite subset of V containing V. A collection
P = (P,),ev,—s, where P, is a parahoric subgroup of G(%,), is said to be coherent if
the product of the P,’s by Gy = II, o G(%,) is an open subgroup of the adéle group G(A).

It is known that if either % is 2 number field or G is anisotropic over %, and (P,),cv 2
is a coherent collection of parahoric subgroups, then the ¢ class number ”

() = # (G x L RI\G(A)/G()

is finite (and, by strong approximation, equal to one if G, is non-compact), where
G,=1Il,¢ v,, Gy Arguments similar, in fact in part common, to those of 7.3 and 7.7 yield
(see 7.2, 7.6):

Theorem B. — Let ¢ € N be given. Then there are, up to natural equivalence, only finitely
many number fields k, absolutely almost simple simply connected k-groups G with G, compact,
and coherent collections P of parahoric subgroups such that ¢(P) < ec.

We thank Moshe Jarden and A. M. Odlyzko for conversations and correspondence
on discriminant and class numbers of global fields. We are indebted to J. Tits for having
kindly provided more conceptual proofs of two properties of volumes of parahoric sub-
groups stated in 3.1 and proved in Appendix A, and for his careful reading of the
manuscript and his helpful suggestions.

TABLE OF CONTENTS

INTRODUGTION i ttiiettntieentetannaesannaaseseaanesasasnsessnnnssesonansssananssnnnanenonnn 119
§0. Notation, conventions and preliminaries . ...c..viviiriiiiniirerriiiiinereinnsnneerenss 122
§1. Remarks on arithmetic SUbgroups ......c.eviiiiiiiiiiiiiin ciiiiniiireennrenrnearnnns 126
§2. The action of the first Galois cohomology group of the center of Gon Ay .............. 128
§3. Lower bound for the covolumes of arithmetic SUbBErOUPS ... .oivinri et eiiinnenns 132
§4. Euler-Poincaré characteristic of arithmetic groups .......... ..ottt 137
§5. An upper bound for the order of HY(B, C)g ... oovviniininiiiiiiiiiiiiiiieininnenns 139
§6. A number theoretic Tesult ... ...ttt it ittt iiititeeriiiieerannensanans 141

16



122 ARMAND BOREL AND GOPAL PRASAD

§7. The finiteness theOremSs ... ....uuuutieieiiisissseiessesnsenoceeesssssnsssassossess 146

§8. Upper bound for the order of finite subgroups and a lower bound for the covolumes of discrete
SUDBIOUDS v vunineouinnnnsininiaeeeeiaeessasessrsseesessseeesossossosennnananns 155
ArpeNDIX A: Volumes of parahoric SUBGrOUPS «..vvuvereiiininirtetiiinnetesessnniensererannnns 157
AprPENDIX B: A theorem in Galois cohomology ......coiiiiiiiiiiiiiii i i it iee e 161
AprpeEnDIx C: Verification of the inequalities £, > 1 and ffF2 > 1 ..ovviiiiiiiiiiiiiiiiiiiiiinne, 162
REFERENCES « v tvvtetontaaeeeneeeeeeesensesenennsnansssssnssssesnssosssessssssassasesatsesens 169

0. Notation, conventions and preliminaries

In this section, we recall or fix some notation and conventions, often to be used
without reference. In addition we prove some facts about global fields (mostly function
fields), for which we could not give references.

0.0. As usual Q, R and C will denote respectively the fields of rational, real and
complex numbers; Z the ring of rational integers.
The number of elements of a finite set S will be denoted by # S.

0.1. Throughout this paper % is a global field i.e. a number field or the function
field of a curve over a finite field, and A is the %-algebra of adeles of £ endowed with the
usual locally compact topology. Let V be the set of places of &, and V, (resp. V) the
subset of archimedean (resp. nonarchimedean) places. For a set S of places of %, let
S, =8NV, and S, =5SnNnV,_.

For » € V, k, denotes the completion of & at » and | |, the normalized absolute
value on &,. For v € V, let £, be the maximal unramified extension of %,; let o, and 8, be
the ring of integers of k, and %, respectively; let ¢, be the cardinality of the residue
field of %, and v(x) the normalized additive valuation of x €%, . Recall that, for x e &,

l x 10 = [DD : xDV]_l = q;-ﬂ(m) if x € Dv’

| %]y = [x0,: 0,] = ¢;"® if x ¢o,.

0.2. Except in §8, G will be an absolutely almost simple, simply connected algebraic
group defined over %, G its adjoint group (i.e. the group of its inner automorphisms),
¢: G — G the natural central isogeny and G’ a k-group centrally k-isogeneous to G.
We fix a central k-isogeny 1 : G — G’ and let ¢’ : G’ — G be the unique central isogeny
such that ¢ = ¢’.1; it is defined over &.

Let C be the center of G and C’ that of G'. Let r be the absolute rank of G and
for » e V,, let 7, be its rank over 75,,.

0.3. For a subset Z of V, let G4 (resp. G%) denote the direct product of the G(,)
(resp. G'(k,)), v e &, if Z is finite, and their restricted direct product if & is infinite.
The group G(k) (resp. G'(k)) will always be viewed as a subgroup of G4 (resp. Gg)
in terms of its diagonal embedding.
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For eV and ZCV, the homomorphisms G(k) — G'(k), G(k,) - G'(%,),
Gg — Gy, induced by . will also be denoted by .

0.4. Let S be a finite set of places of 2 containing all the archimedean ones. We
assume that for every nonarchimedean » €S, G is isotropic over %,, or, equivalently,
G(k,) is noncompact. Let & = &(G) be the subset of S consisting of the places # such
that G is isotropic over £,. We assume further that % is nonempty.

0.5. We shall assume familiarity with the Bruhat-Tits theory of reductive groups
over nonarchimedean local fields. All we need is stated in [41], and the proofs of most
of the results can be found in [8].

For v € V,, we shall let X, denote the Bruhat-Tits building of G{k,). We recall
that G(&,) acts on X, by special simplicial automorphisms; in particular any simplex
stable under an element g € G(%,) is pointwise fixed by g.

0.6. Let o be a compact open subgroup of Gy_g4. Let A = G(k) NnA". Any
subgroup of Gg (resp. Gg) commensurable with A (resp. «(A)) is called an S-arithmetic
subgroup.

Let Gg - Gy and Gg — G be the natural projections. Then any subgroup of
Gy (resp. Gg) commensurable with the projection of an S-arithmetic subgroup of Gy
(resp. Gg) will be called an arithmetic subgroup. Arithmetic subgroups are discrete
and of finite covolume.

0.7. If K is a number field, ¢(K) will denote the number of its archimedean places,
Dy the absolute value of its discriminant over Q , and &g its class number.

0.8. If K is a global function field, let a(K) = 1, g be its genus, ¢g be the car-
dinality of its field of constants, and kz be its ‘‘class number ” i.e. the order of the
quotient of the group of its divisors of degree zero by the subgroup of principal divisors.
Let Dg = ¢¥=~2 in this case. The following bounds for the class number Ag are known.

(1) (g — )= < he < (g5 + )%=

For the sake of expository completeness we sketch a proof pointed out to us by Manohar
Madan: The zeta-function {g(s) of K can be written in the form

_ Ploe )
= ST e a gy

where P is a polynomial of degree 2g, with integral coefficients, P(0) = 1 and P(1) = A
([45: Chapter VII, §6, Theorem 4]). According to the “ Riemann hypothesis” for
curves over finite fields proved by A. Weil (see [1] for an elementary proof), the roots
of P have absolute value gg%. This at once implies the above bounds.

It is a well known result of Hermite and Minkowski that (up to isomorphism)
there are only finitely many number fields with a given discriminant (see [20: Chapter V,
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Theorem 5]). For global function fields the following finiteness assertion holds. Its proof
was supplied to us by Moshe Jarden and Dinesh Thakur.

0.9. Proposition. — For given g and q, there are only finitely many global function fields
of genus g and field of constants of cardinality q.

For its proof we need the following lemma.

0.10. Lemma. — Let K be a global function field of genus g and field of constants K,.
Suppose that K[K, has a prime divisor P of degree 1. Then K = K(x, ), where (x,y) satisfy
an equation f(x, y) = 0 with coefficients in K, of degree at most 4g.

Proof. — To each divisor D of K we associate the K, -vector space
ZMD)={xeK|(x) + D=0}, andset dim(D) = dim(Z(D)).

If g =0, then K = Ky(x) with & transcendental over K, ([11: §18, Theorem]).
So, assume that g > 0. By the Riemann-Roch theorem, dim(rP) ==z 4+ 1 — g if
n>2g — 2. Hence, £((2g — 1) P) C #(2¢P) C #((2g + 1) P). Choose

xeP(2P) — L((2 —1)P) and yeL((2 + 1)P) — L(2P).

Then vp(x) = — 2g, vp(y) = — (2g + 1) and (x), = 2gP 1i.e., deg(x), = 2g, where
vp is the additive valuation associated with P.
If 7 and j are integers between 0 and 4g, then

0,(# %) = — 2 — (2 + 1) j> — 1682 — 4,
and therefore, »'y’ e L ((16g2 + 4g) P). As
dim 2((16g% + 4g) P) = 162 + 3¢ - 1 < (4g + 1)2,

there exist a;; € K,, 0< i, j< 4g, not all zero, such that 2 ;g;
that K = K,(», »).

Note that [K: Ky (x)] = deg(x),, by the theorem on [11: p. 25]. Therefore, by
the above, [K :Kgy(x)] = 2g. Hence, in order to prove that K = Ky(x, y), it suffices
to show that [Ky(x,») : Ko(¥)] > 2¢. If we had [Ky(x, ) : Ko(x)] < 2g, there would
exist 4;; € K, with 0 < j< 2¢ — 1, not all 0, such that X b, x* » = 0. Hence there would
exist distinct pairs (7,7) and (r, s) with 0< j, s< 2g — 1 such that vp(x' y7) = vp(x"»°).
Thus 2g: 4+ (2¢g + 1)j=2gr + (2¢ + 1) s. As 2¢g and 2¢ + 1 are relatively prime,
this would imply that 2g divides s — j. It would then follow that s = j and r = i. This
contradiction concludes the proof.

%y = 0. We prove

Proof of Proposition 0.9. If g = 0, then K is either a rational function field over K,
or K = K,(x,») where (x, y) satisfy a quadratic equation with coefficients in K, ([12]).
If g = 1, then, by a theorem of F. K. Schmidt, K has a prime divisor of degree 1 [9].
So in view of the above lemma we may (and we shall) assume that g> 2.
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Denote the unique extension of degree (2¢ — 2)! of K, by K;. As K has a prime
divisor of degree < 2g — 2 ([11: p. 52]), K’ = K K has a prime divisor of degree 1.
By the preceding lemma, K’ = K{(x, ), where (x, y) satisfy an equation of degree < 4g
with coefficients in K{. There are therefore only finitely many possibilities for K’. For
each of these possibilities K is an intermediate field between Ky(x) and K'. Let p be the
characteristic of K. Since [K(x) : K,(x)?] = p, the field K’ is generated over K, by one
element [12: Lemma 24.31]. Hence there are only finitely many possibilities for K[21].

0.11. Lemma. — A global function field L contains only finitely many subfields K such
that L/K is a Galois extension.

Any subfield K of L such that L/K is a Galois extension is the fixed field of a
suitable subgroup of the automorphism group of L. Now the lemma follows from the
well-known result that the automorphism group of any global function field is finite.

Let K be a global field and z be a positive integer. Let K, be the subgroup of K*
consisting of all x e K* such that for every normalized nonarchimedean valuation o
of K*, v(x) end. Clearly, K, DK**

The proof of the following proposition was suggested by Moshe Jarden and
Dipendra Prasad.

0.12. Proposition. — #(K,[K**) < ke n*®,

Proof. — If K is a number field (resp. global function field), let £ be the group
of all fractional principal ideals (resp. principal divisors) of K and .# be the group of
all fractional ideals (resp. divisors of degree zero). We shall use multiplicative notation
for the group operation in both £ and £. The kernel of the natural map x — (x) of K*
onto & is precisely the group U of units. This gives us our first short exact sequence

(1) l1>U—>K*>Z > 1.

Let € = J[Z; then the class number Ag equals $% and we have a second short exact
sequence

(2) 1l P >S4 >€ — 1.

Now note first that since U n K*" = U", (1) gives rise to the following short
exact sequence,

(3) 1 - U/U" - K*/[K** > P[P* - 1.

As UCK,, (3) yields another short exact sequence:

(4) 1 > U/U" > K [K** > (P N I"[P* > 1.

On the other hand, let €, be the subgroup of all elements of € whose order is a divisor

of n. If for x e K*, there exists I € £ such that (x) = I®, then I is unique. Therefore
the map (x) — I# induces an isomorphism

(5) (P ISP =¥,.
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Combining (4) and (5) we get
[K,:K**] =[U:U"] #%,.

Obviously, #%, < kg. So it suffices to prove that [U: U"] < n*®,

If K is a number field, then by Dirichlet’s unit theorem, U z p(K) x Z*® -t
where u(K) is the cyclic group of roots of unity in K ([45:1V, Theorem 9]). Thus U is
the direct product of a(K) cyclic groups. From this we conclude that [U: U"] < n*®,

If K is a global function field, then U is the group of non-zero elements of the
field of constants (loc. cit.). As the latter field is finite, U is cyclic. Therefore, [U : U"] < n.

1. Remarks on arithmetic subgroups

In this section, for the sake of completeness, we prove in our framework some
properties of arithmetic subgroups which are well-known in characteristic zero.

1.1. Let v € V,. We observe first that the fixed point set F of a compact open
subgroup H of G(%,) on the Bruhat-Tits building X, of G(%,) is compact. In fact, H acts
continously on the compactification X, of X, constructed in [6]. If F were not compact,
then H would have a fixed point in X, — X,. But there, by construction, the isotropy
subgroups are of the form P(%,), where P is a proper parabolic %,-subgroup of G, and
those subgroups do not contain any open subgroup of G(k,).

1.2. Proposition. — Let I be an arithmetic subgroup of Gg. Then o' (1) is contained
in G(k) and is Zariski-dense. The subgroups T' N G'(k) and T N (G(k)) are normal sub-
groups of TV,

The subgroup I N (G(%)) is of finite index in I, hence contains a subgroup Iy
which is normal, of finite index, in I'V. Since G'(%) is contained in the commensurability
group of I'y, the latter is Zariski-dense in G’, and hence ¢'(I'}) is a Zariski-dense sub-
group of G. For ¥’ € I, the element ¢’(y") normalizes ¢'(Ty), so it is a £-automorphism
of G. This implies that ¢’(I") C G(%) and that I'" normalizes G'(%) and «(G(k)), hence
also IV N G'(k) and I N (G(R)).

1.8. For 2 € V,, Aut(G(k,)), and so in particular G(k,), acts on the building X,
by simplicial automorphisms. In view of 1.2, this allows one to define an action of any
arithmetic subgroup of G5 on X, (v € V,). This will be used in the sequel without
further reference.

A compact open subgroup J# of Gy_g contains, as a subgroup of finite index,
a direct product II,",, where, for v¢8S, £, is a compact open subgroup of G(k,)
which is hyperspecial for all the #’s outside some finite subset T of V containing S;
see [41: 3.9]. If ¢ is such a group, then A, = G(E) N A" is an S-arithmetic subgroup
of Gg, and in its natural embedding in Gy _g, its closure is 2#° by strong approximation

([30], [22]).
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1.4. Proposition. — Let T be an arithmetic subgroup of Gy and A be the inverse image

in G(k) of TV N (G(R)) under 1.

(1) The fixed point set of T in X, (v ¢S) is compact, not empiy.

(ii) For any field extension K of k, the normalizer of ¢'(T) in G(K)¥ is contained in G(k)
(G(k) embedded in G(K)? diagonally), o'(Y") is of finite index in its normalizer, and the
normalizer N(I'") of T in Gy is arithmetic.

(iil) TV is contained in only finitely many arithmetic subgroups.

(iv) If T is maximal, then for v ¢S, the closure P, of A in G(k,) is a parahoric subgroup of
G(k,), A = G(k) n1I,P,, and T’ is the normalizer of (A) in Gi.

Proof. — By strong approximation, the projection of A in Gy_g is dense in a
compact open subgroup. Therefore, its fixed point set &, in X, is compact (1.1), non-
empty (by the fixed-point theorem of Bruhat-Tits [8: I, 3.2.4]), and reduced to the
unique fixed point of a hyperspecial parahoric subgroup P, for v € V. — T, where T is
a suitable finite subset of V containing S (1.3). Since 1(A) is of finite index in I, the
group of automorphisms of X (for » ¢ S) determined by I' is relatively compact, there-
fore its fixed point set F, is not empty; F, is obviously contained in &, and so in parti-
cular it is compact and (i) is proved.

By 1.2, ¢'(I") is contained and Zariski-dense in G(%). Therefore its normalizer
in G(K)¥ is contained in G (%) and so it coincides with the normalizer N(¢'(I")) of o’(I")
in G(). Obviously, F, is stable under the natural action of N(¢'(I")) on X,. Hence,
for all » ¢ S, N(¢'(I")) is a relatively compact subgroup of G(#,). From this we conclude
that N(¢'(I")) is a discrete subgroup of Gy := Il, 4 G(%,), and as it contains ¢'(I"),
which is a discrete subgroup of Gy of finite covolume, the index of ¢’(I") in it is finite*.
This implies in particular that the normalizer N(I'') of I in Gy is arithmetic, which
proves (ii). :

For v €T — S, let #, be the (finite) set of parahoric subgroups of G(k,) which
fix some facet contained in &,. For P =1I . P,, where P,eZ, if 1T — S, and
P, is the hyperspecial parahoric subgroup as above if v e V — T, let A, = G(k) n P,
Ap = (Ap) and N(Ap) be the normalizer of Ap in Gg. As (by (i)) any arithmetic sub-
group containing I'" has a fixed point in &, v ¢S, it is contained in the normalizer
of Ap for a suitable P. Since according to (ii), N(Ap) itself is an arithmetic subgroup,
it follows that I = N(A;) for some P if IV is maximal. This proves (iv). Also, since
there are only finitely many P’s and, for each P, [N(A3) : I'"] is finite, we conclude
that the arithmetic subgroups of G containing I' are finite in number, which proves (iii).

1.5. The group A defined in 1.4 (iv) will be called the principal S-arithmetic subgroup
determined by the coherent collection P = (Po)vevf—s of parahoric subgroups. We
shall also say that A and I = N(.(A)) are associated to P.

* For a different proof, see §1.5 in Lattices in semi-simple groups over local fields by G. Prasap, Advances
in Math. Studies in Algebra and Number Theory, Academic Press (1979).
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2. The action of the first Galois cohomology group of the center of G on A,

2.1. For » nonarchimedean, let T, be a maximal E,-split torus of G which is
defined over %k, and contains a maximal k_split torus of G; according to the Bruhat-
Tits theory such a torus exists. Let I, be an Iwahori subgroup of G(%,) defined over k,
(i.e., stable under the Galois group of E,/k,,) such that the chamber in the Bruhat-Tits
building of Gk, fixed by I, lies in the apartment corresponding to T,, and let
I, = T,, N G(k,). Let A, be the basis of the affine root system of G/E, relative to T,,
determined by the Iwahori subgroup I,, and A, be the basis of the affine root system of
G/k, relative to the maximal £,-split torus contained in T,, determined by the Iwahori
subgroup I, of G(%,).

2.2. Any subset ©,C A, determines a parahoric subgroup Pq, of G(%,), con-
taining I, (which is assigned to the empty set); moreover any parahoric subgroup
of G(k,) is conjugate to a unique subgroup of the form Pg . A parahoric subgroup
of G(k,) which is conjugate to Pg_is said to be of type ©,.

Aut(G(k,)), and so in particular G(k,), acts on the set of parahoric subgroups of
G(k,), and there is a homomorphism

£,: G(k,) — Aut(A,)

such that for g € G(%,), the conjugate of Py, (©,CA,) under g is a parahoric subgroup
of type £,(g) (0,)-
There is a similar homomorphism
g,: G(k,) — Aut(4,).

Furthermore, £, (resp. £,) is trivial on o(G(k,)) (resp. o(G(k,))). Let E, (resp. E,) be its
image.

2.8. Lemma. — Let g € G(R,).

@ I a:(g) is trivial, then so is £,(g). In particular, Z, is a subquotient of év.
(i1) Assume G to be quasi-split over k,. If £,(g) =1, then g.,(g) = 1.

Progf. — (i) The first assertion follows immediately from the fact that two parahoric
subgroups of G(k,) which are defined over k, are conjugate in G(k,) if, and only if,
their intersections with G(k,) are conjugate in G(k,) [8: II, Proposition 5.2.10 (ii)].

(i1) Assume G to be quasi-split over %,. If it does not split over 75,, then it is resi-
dually split over k; A, then has a natural identification with A, and the second assertion
of the lemma is obvious. We assume therefore that G splits over k,. Then G(k,) has a
hyperspecial parahoric subgroup ([41:1.10.2]) to which corresponds a hyperspecial
vertex of A,. If £,(g) = 1, then this vertex is fixed under ,(g). But, by [16: 1.8], the
group év operates freely on the set of hyperspecial vertices of ZAS,. Therefore, g,,(g) =1,
whence (ii).
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Remark. — The conclusion of (ii) may fail if G is not quasi-split over %,; it fails, for
example, if G is anisotropic over k, or if it is an inner form of type D, whose k-rank is r — 2.

2.4. Let K be a field and H be an affine algebraic group-scheme over K. If K
is of characteristic zero, then H'(K, H) denotes as usual the first Galois cohomology set
with coefficients in H. If K is of positive characteristic, then we let it stand for the set
denoted H'(Spec(K),, H) in [25: II1, §3, 4], or HY(K, H), HY(K, H), in [34]. If H
is commutative, similar groups are defined in all positive degrees. The usual exact
sequence in Galois cohomology associated to a short exact sequence of group schemes
is also available [25: III, Prop. 4.5] as well as the long exact cohomology sequence
associated to a short exact sequence of commutative group schemes [34]. Moreover,
if H is smooth, then these two cohomology sets are canonically isomorphic [25: III,
Theorem 3.9]. (It is assumed there that the group-scheme is commutative, and the
assertion is proved for cohomology groups in any degree i > 0, but this assumption is
not used for ¢ = 1, as is tacitly understood later in 4.8.) From this it follows that we
need not distinguish between the two cases in our discussion below of cohomology with
coefficients in C.

2.5. Let C be the center of G. It is k-isomorphic to the center of the unique simply
connected, quasi-split inner k-form & of G.

The natural central k-isogeny ¢ : G — G gives rise to the following commutative
diagram with exact rows:

1 — CG(k) —> G() —*> G(k) —> HY%, Q) -— H!(G)

! ! !

1 — G(k) —> G(k,) —%> G(,) —>> H'(k,, G) —> H(%, G),
(&,

I 1

) %> G(k,) —2> H'(,, C) — H'(,, G).

Since for any nonarchimedean », H'(%,, G) and H*(%,, G) vanish, ([19], [8: III]; [38])
3, and 3, are both surjective, therefore we have a commutative diagram

IZQO’

G(k,)/9(G(k,) —> H'(k,; C)

(1 l l

G(k,)/9(G(%,)) —> H(%,;C)

[P &4

As £, and 2, are trivial on ¢(G(k,)) and o(G(%,)) respectively, they induce homo-
morphisms

(2) Hi(k,, C) - Aut(4,),  H!(%, C) - Aut(3,),

also to be denoted £, and &, respectively.
17
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2.6. Let ¢ = ¢(G) = 2 if G is of type D, with r even, and let it be 1 otherwise.
Let n =n(G) =74 1if G is of type A,; n =2 if G is of type B,, C, (r arbitrary),
or D, (with 7 even), or E;; » = 3 if G is of type Eg; n = 4 if G is of type D, with r odd;
n = 11if G is of type E;, F, or G,.

Let p; be the kernel of the endomorphism m, : ¥ — x® of (GL,)% If G splits over
some field K, then C is isomorphic to pf over K. For any field K, HY(K, p%) is canoni-
cally isomorphic to (K*/K*™),

Let now v € V, be such that G splits over k,. Then C is isomorphic to ¢ over %,.
Moreover, it is known [16: 1.8] that ﬁ, is isomorphic to (Z/nZ)®. The second assertion
of 2.3 (i) then shows that the order of E, is a divisor of n®. We identify C with p in
terms of a fixed ﬁ,—isomorphism 0:C — . This then provides an identification of
H(k,, C) with (EX/kX™?*, with respect to which we have:

2.7. Proposition. — Let v be a nonarchimedean place of k such that G splits over 13,,. Then
the kernel of &, is the subgroup (8 X»[RX™* of (RX[RX™".

Proof. — Let us write € for (GL,)% Let H = (¥ x G)/C,, where
Ce = {(e(x)a x_l) I xeC b

and Z be a maximal E,,—split torus of H; it is a maximal torus of H and T:=G nZ
is a maximal torus of G. Since in a split torus, every subtorus is split and a direct factor,
there exists a E,-subtorus D of Z, of dimension ¢, such that Z = D X T, hence such that
H = D <G is a semi-direct product of D and the normal subgroup G. Let p be the
projection of H onto D. Then we have a sequence of isomorphisms:

(1) HE,C) 25 Gk /e(Gk,)) <> H(E)/E(HR,) GR) > D(B,)D(E)".

We extend ¢ to 2 homomorphism of H onto G, also denoted ¢. Its kernel is preci-
sely €. Since the latter is k,-split, the homomorphism H(k,) - G(k,) is surjective
(Hilbert’s Theorem 90). The inverse image in H(E,,) of o(G(k,)) is € (75,,) G(E,), whence
the second isomorphism in (1). The kernel of p: H(E) — D(E,) 18 G(E,). By restriction
to €, p defines a k,-morphism

% = (GL,)* > D

whose kernel is G, and with a suitable identification of D with (GL,)%, this }E)momor-
phism is the homomorphism m, defined above. Therefore, the image of ¥(%£,) under
pis D(E,,) *. This yields the third isomorphism in (1). The aforementioned identification
of D with (GL,)® gives an identification of D(&,)/D(k,)" with (kX[kX")%, and with this
identification, the isomorphism H(%,, C) — (B /75;‘")‘, induced by 0, is the composite
of the three isomorphisms in (1).

The composite &,.¢ defines a homomorphism H(%,) — Aut(A,), which is trivial
on ‘K(E,) G(E,,) and also on the maximal bounded subgroup Z, of Z(ﬁ,) (see [41: 2.5]).
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But it is obvious that in the identification of D(E,)/D(k,)* with (kX/kX™*, the image
of the maximal bounded subgroup of D(k,) in D(E,)/D(E,)*" is (B kX®[kX™*. This shows
that in the identification of HY(%,, C) with (& /EX")%, the kernel of €, contains (8 BX"/RX™".
As the groups =, and (BX/0) EX™* have equal order (= %, see 2.6), the kernel of &,
cannot be bigger. This proves the proposition.

2.8. For v ¢S, let P, be a parahoric subgroup of G(k,) such that Gg.II ¢4 P,
is an open subgroup of G(A). Let ©,( CA,) be the type of P,. Let A = G(k) nIl, ¢4 P,
and A’ = ((A). In the sequel, we shall view A and A’ as arithmetic subgroups of G,
and Gy respectively. Let IV be the normalizer of A’ in Gg; it is an arithmetic subgroup
of Gj (see 1.4 (ii)). We recall that ¢’(IV) is contained in G(k); see 1.2. Hence
the natural homomorphism & : G(k) — H(k, C), whose kernel is ¢(G(k)), induces
a homomorphism

9: /A’ — H1(k, C).

Let E, be as in 2.2, and let E be the direct sum of the &,, v ¢ S. Then E acts on
A:=1l,¢eA,. Let @ = H,$s®,(C A); let Eg be the stabilizer of ® in E, and Eq
that of @, in 5.

For ¢ e H(%, C), let ¢, denote the cohomology class in H'(%,, C) determined
by ¢. The maps &,’s induce a map &:H(k C) > & given by &(¢c) = (§,(¢,))vev—s
(c e HY(%, C)). Let

H(k, C)g = {c e H'(%, C) | &(c) € Eq },
H(k, C) = { ¢ e H'(, C)q | ¢, €8, ¢'(G'(k,)) for all v e &}
and 3(G(E))s = 8(G(R)) N HI(E, C)j.

Let v € I". Then ¢'(y’) belongs to G(k) (1.2), and it stabilizes A, hence also P,

for all v ¢ S. Therefore, 8, ¢'(y') € E,. This shows that & maps I''/A’ into §(G(k))g.
In the notation introduced above we have:

2.9. Proposition. — The following sequence is exact
1> (I C&)/(C&) nA) TN 2 S(G(k))s — 1.
vES

Apart from minor modifications, the above proposition is due to J. Rohlfs when
G is k-split [32]. It was already remarked in [24] that the proof of [32] goes over without
change to the more general case if £ is a number field. Since our context is slightly more
general (for example, we allow % to be of positive characteristic), we repeat the proof.

We begin by showing that 2 is surjective. Let ¢ € 8(G(k))5, and g € G(k) be such
that 8(g) = ¢. Then the parahoric subgroup g(P,) is of the same type as P, (v ¢S).
There exist therefore 4, € G(k,) such that g(P,) = k, P,k !. Moreover, for » outside
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a finite set T of places containing S, we have g(P,) = P, and so k, € P,. By strong
approximation ([30], [22]), we can find an & € G(k) such that for all v ¢ T, £ eP,,
and which is so close to #,, for v € T — §, that 4, P, A ! = AP, A1, This last equality
is then true for all v ¢ S. Therefore, ¢(h)~! g stabilizes P, for all v ¢ S. Also,

(k)" g) = 3(g) = <.

As ¢ € 3(G(k))y, there is, for v e &, a vy, € G'(%,) such that ¢'(y.) = @(k)~'g. Then
since (k)™ g stabilizes P, for all » ¢ S, the element ¥' = (¥,), cs belongs to I''. Therefore
0 is surjective. If now 3¢'(y’) = 1, then ¢'(y’) = ¢(g) for some g € G(k) and, conse-
quently, ¥’ e(g).Il, C'(%,). From this the exactness on the left follows.

2.10. As 3(G(k))e C HY(%, C)g, Proposition 2.9 gives the following exact sequence:
> (IL C'(k)/(C'(R) NA') - TN > Hi(R, C)g.
vES

Now let H'(k, C)y ={ce H'(k, C) | &) =1},
and H'(%, C); ={ce H'(k, C)¢ | ¢, € 3,9'(G'(%,)) }-
It is obvious that

(*) $H'(E, Clo < $H'(:, C)g. 11 #E,,
vEV—S8

and since $G'(2,) < »® for all », we conclude from the above exact sequence that

[[":AT< 4 01 C'k,) $H'(E C)F. I #E,,
vES veEV-—8

< ¥ gH'(R, C)g. II #E, .

vEV—S8

3. Lower bound for the covolumes of arithmetic subgroups
We shall continue to use the notation introduced in §§0 and 2.

3.1. In the sequel, we shall use the fact that for v € V, a parahoric subgroup P} of
G(k,) of maximal volume is necessarily special. We also need to know that if P, is a para-
horic subgroup of G(%,), of type O, such that PJ' n P, contains an Iwahori subgroup I,
then

(%) [P : L]> [P, : L] (#Z)-

This could be rather laboriously checked case by case, using the ¢ reduction mod p ”
of the parahoric subgroup P, (see 3.5, 3.7 in [41]) to compute the index of an Iwahori
subgroup it contains. More conceptual proofs are given in Appendix A.
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3.2. Let I be a maximal arithmetic subgroup of G5, A’ = I'" N «(G(k)) and A be
its inverse image in G(&) under t. Then according to Proposition 1.4 (iv), for v ¢ S, the clo-
sure P, of A in G(k,) is a parahoric subgroup of G(k,), and A = G(k) NnII,¢s P,.
Let ©,(C A,) be the type of P, and @ =[], ¢4 9,-

For all but finitely many », P, is a hyperspecial parahoric subgroup of G(k,) and
so is of maximum volume ([41: 3.8.2]). Let T be the smallest set of places containing
S such that for » ¢ T, the parahoric subgroup P, is of maximum volume. Then for all
v¢T, as P, is special (3.1), g ={1}

For every v € T — S, we fix a parahoric subgroup PJ' of G(%,) of maximum volume
such that PJ* N P, contains an Iwahori subgroup I,. Let

A"=G{E) n( II P& II P).

veT—8 v@&T

Then A™ is an arithmetic subgroup.

3.3. Using strong approximation, we see at once that

[A™:A™ N A] [P™:1,]
[A:A"NA]  ver-s [P,:L]°

Also, for v e T — S,
[Py : L]
[P,: 1]

[A™: A™ A A] -
[A:A"AA] - ,,el;l_s#“@"'

> $EHg, (see 3.1).
Hence,

3.4. For v €V, let p, (resp. p,) be the Haar measure on G(k,) (resp. G'(%,))
with respect to which the volume of any Iwahori subgroup of G(,) (resp. the volume
of the stabilizer in G'(%,) of any chamber in X)) is 1.

It is known that (G(k,)) is a closed normal subgroup of G’(k,) and that
G'(k,) [\(G(%,)) is a compact abelian group ([7: 3.19 (i)]). Let I, be an Iwahori subgroup
of G(k,) and I, be the stabilizer in G’(k,) of the chamber pointwise fixed by I,. Then
I,.«(G(k,) = G'(k,) and (I,) = I, n(G(%,)). Using these facts it is easy to see that
u, is the measure determined by the Haar measure on the closed normal subgroup +(G(%,))
with respect to which (I,) has volume 1, and the normalized Haar measure on the
compact group G'(k,)[i(G(%,)).

(We note that I is not always an Iwahori subgroup, as defined in Tits [41: 3.7],
but it contains a unique such subgroup, necessarily of finite index.)

3.5. For v archimedean, let ., (resp. u,) be the Haar measure on G(k,) (resp.
G’(k,)) such that in the induced measure, any maximal compact subgroup of R; »(G) (C)
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(resp. R, g(G’) (C)) has volume 1. In particular, if £, = R and G is anisotropic over &,,
then u,(G(k)) = 1 = ul(G'(k,)).

3.6. Let py (resp. py) denote the product measure Il,cq u, (resp. I, oo uy)
on Gy (resp. Gg) as well as the induced measure on their quotients by discrete subgroups.
Then

e (Ge/T7) = [ : AT pg(Gy[A'),
and it follows, using the alternate description of the Haar measure p, given in 3.4, that

A" A" N A
u(GHIN) > wp(Gylh) = L[X—A—,,,—n”—A]—] (G /A™).

Hence (see 3.3)
Hy(G.V/A) 5 Hoev—s #Ee,

’ ’ ’ m
Now as
(2) [TV:A] < % g H (%, C):. I1 #E(%
vEV—S8
(cf. 2.10), we conclude that
(%) wr(Go/T') 2 n™ ¥ ($ H'(k, Q)) " po(Gy/A™).

3.7. In [31] the volumes of arithmetic quotients of semi-simple groups have been
computed. We shall now describe the result. We begin by observing that since for
veS — &, G is anisotropic over k,, G(k,) is compact and p,(G(%,)) = 1, and hence
for any S-arithmetic subgroup A of G(&), ug(Gg/A) = pe(Gg[A); where pg is the
measure on Gg/A induced by the product measure Il, g p, on Gq.

We recall that r is the absolute rank of G, and, for » € V,, 7, the rank of G over
the maximal unramified extension E, of k,. Let ¢ be the unique quasi-split, simply
connected inner k-form of G. If G is not a k-form of type *D,, let £ be the smallest Galois
extension of & over which # splits. If G is a k-form of type ®D,, let £ be a fixed cubic
extension of k contained in the Galois extension, of degree 6, over which ¢ splits.

Let s = (%) = 0 if & splits over k; if ¥ does not split over £ (i.e. if G is an outer

form of a split group), then let s = % (r — 1) (r + 2) if G is an outer form of type A,

with r odd, s = —;-r(r + 38) if G is an outer form of type A, with r even, s = 2r — 1
if G is an outer form of type D, (r arbitrary), and s = 26 if G is an outer form of type Eg;

see [31: 0.4]. In particular, we have

5 if 4 does not split over &
s(9) >
7 if @ is an outer form of type D, (r> 4).
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Let m; (1 < ¢< r) be the exponents of the compact simply connected real-analytic
Lie group of the same type as G; see [31: 1.5]. Note that r + 2 X! m, = dim G.

Let 7,(G) be the Tamagawa number of G[k (see, for example, [31: 3.3]).

With these notations we have ([31: Theorem 3.7]): Let P = (Pooev,—s be
a coherent collection of parahoric subgroups and A the principal S-arithmetic subgroup
determined by P (1.5). Then

e (Gy[A) = ug(Gg/A)
_ D’%dimG(Dl/D;l:k])%s( I

vE Vg

T

m )n(G) &),

i=1 (2m)™it |

where &(P) = H,,esfe(l,,) d,cv_se(P,); the e(I,) and ¢(P,) are positive real
numbers computable in terms of P, the structure of G/k and the Bruhat-Tits theory.
For v €S, (resp. v eV — 8S), ¢(I,) (resp. e(P,)) is the inverse of the volume of any
Iwahori subgroup of G(k,) (resp. of P,) with respect to the Haar measure vy, ;; where
v, is defined in §1.3 and w; in §2.1 of [31]. In this paper we need the following infor-
mation, see [31: 3.10, 2.10, 2.11] (the unexplained notation is as in [31]):

(1) for all 7 €8S, ¢(I,)>1 and for all eV — 8§, ¢P,) > 1;
@ e(L) = ($T.(R)) 70 g am > (g, 4 1)~ gpine 9%,
(3) e(Iv) — (qv _ 1) (qz,, _ 1)—(r+1)/dv 9;('+3”2> (Qv _ 1) q;(r+1)l2—1

if G(k,) = SLi, 4 1)4,(®,), where D, is a central division algebra of degree 4, < (r + 1)

over k,, and v €S,.

(4) e(P,) = gm¥otam AR (g M,(F))7F (2eV,—S).
Moreover:
(5) e(P) > (g, + 1)7*.qp*?

if eV, — S and either G is not quasi-split over %,, or P, is not special, or G splits
over k, but P, is not hyperspecial. Also,

(6) e(P) > (g, — 1) gt ter—tr+iza—ne
if G(k,) = SLi; 11y4,(D,), where D, is a central division algebra of degree d,< 1+ 1
over k,, and

(7) e(Pv) > q(r+1)/2

v

if G is an outer form of type A,, r odd, of k,-rank (r — 1)/2, which does not split over k,.

In the sequel, we write e, for e(1,) and e for e(P,), where P, is a parahoric subgroup
of G(k,) of maximal volume.
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3.8. As every arithmetic subgroup of G is contained in a maximal one (1.4 (iii)),
combining the bound (*) of 3.6 and the formula for the volume of G4/A given above,
we obtain the following:
ui(GHIT") > n~*#7 (s Hi(k, C)p) " DE*™ (DD ™" (

vE Vi

where, in the notation of 3.7,

€= Ile. M €
vE8F  vEV—8
This shows that the volumes pge(Gg[I") have a strictly positive lower bound, as T runs through
the arithmetic subgroups of G . This is then, of course, true with respect to any Haar measure
on Gg.
In §5 we shall give an upper bound for the order of H!(%, C),.

3.9. Proposition. — Let K' be a compact open subgroup of the restricted product G5 _g
of the groups G'(k,) (v € V — S). Then the number of double cosets G'(R)\G'(A)/(Gg K') is
Sfinite.

This is the finiteness of the class number of G’ (at any rate for Gg non-compact,
which is a standing assumption in this paper). It is well-known in the number field
case [2], but we do not know of a reference in the function field case (except when G’
is anisotropic over k, where S may be taken empty [14: 2.2.7 (iii)]).

We fix a Haar measure v on G'(A) = Gg X Gy_5. It is a product of Haar
measures vg and vy_g on Gy and Gy _g respectively. The double cosets mod Gg K’
and G’'(k) correspond bijectively to the orbits of Gg K’ on G'(k)\ G'(A), which are all
open. Since G'(k)\ G'(A) has finite Haar measure, it is enough to show that the volumes
of these orbits have a strictly positive lower bound. The double cosets are represented
by elements of G5, _g; it suffices therefore to consider the orbit of the image of an element
xeGy_g. It is isomorphic to T \GgaK’'x~!, where I, =G'(k) nGgaxK’'x™ %
Let T, be the projection of I, into Gg, with respect to the decomposition
G'(A) = Gy X Gy_g. Then v(G'(R)\G'(E) *Gg K') = vg(T,)\Gg) . vy_g(K’). As sK' 57!
is a compact open subgroup of Gy _g4, I, is an S-arithmetic subgroup. Then the next
to last assertion in 3.8 yields our claim.

3.10. Proposition. — Let X be a finite subset of V containing S, suchk that G is quasi-split
over k, and splits over E, for all v ¢ R. Then the set of arithmetic subgroups T of G associated
to coherent collections (P,), ¢ of parahoric subgroups (see 1.5) whick are hyperspecial for v ¢ &
Jorm finitely many classes with respect to G(R)-conjugacy.

In view of the construction of the I (see 1.5), it is equivalent to show that
the P’s in which P, is hyperspecial for all » ¢ Z form finitely many classes under
G(k)-conjugacy. For any v € V,, the parahoric subgroups of G(,) form finitely many
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conjugacy classes under G(%,), hence a fortiori under G(k,). It suffices therefore to
consider the P’s in which P, belongs to a given conjugacy class of parahoric subgroups
in G(k,) for v e Z — S. Let P and P’ be two such coherent collections. Of course, P, = P,
for almost all #’s. For v ¢ %, any two hyperspecial subgroups of G(k,) are conjugate
under G(k,) [41: 2.5]. There exists then g € G(A) such that P = P’. Let P, be the
stabilizer of P, in G(%,) (v ¢S). Then P = Hv$sE is a compact open subgroup of
Gy_g and G4 P is the stabilizer of P in G(A). The G(k)-conjugacy classes of the P’s
satisfying our conditions correspond therefore to the double cosets of G(A) mod G(k)
and G4 P. They are finite in number by 3.9 and the proposition follows.

4. Euler-Poincaré characteristic of arithmetic groups

We assume in this section that if % is of positive characteristic, then the k-rank
of G is zero. Then any arithmetic subgroup of Gy has a torsion free subgroup of finite
index ([33: Theorem 4]) and there exists a Gg~invariant measure p3 on Gy such that,
for any arithmetic subgroup I' of Gy,

| 2(T)| = w(Gg/T),

where (I} is the Euler-Poincaré characteristic of I' in the sense of C. T. C. Wall
(see [33: §81.8, 3]).

4.1. It follows from [33: Proposition 25] that, up to sign, p is the product of
the Euler-Poincaré measures on the groups G(k,) (v € &) introduced in [33: §3], and
to be denoted here by uX*. Also, for any nonarchimedean v, p;® is a non-zero mul-
tiple a, p, of the Tits measure y, defined in 3.4; here

2, = pg (L) = (= 1 (Wy(q™")7F

where I, is an Iwahori subgroup of G(k,), s, is the k,rank of G and W,(q) is the
Poincaré series associated with the Tits system on G(k,) whose B is an Iwahori sub-
group (of G(%,)) and “N” is the group of k,rational elements of the normalizer of
a suitable maximal k,-split torus of G ([33: Theorem 6]).

Ifve &, uy is non-zero if and only if G(%,) contains a compact Cartan subgroup
([33: Proposition 23]). Thus if £ is a global function field, then y3 is non-zero; if % is

a number field, and pg & 0, then % is necessarily totally real.

4.2. For v € &, the Hirzebruch proportionality principle ([33: §3.2]) at once
implies that if G(%,) contains a compact Cartan subgroup, then, up to sign, p;* equals
Cy bys Where p, is the Haar measure on G(%,) defined in 3.5 and ¢, is the Euler-Poincaré
characteristic of the compact dual of the symmetric space associated with G(k,) (i.e., the
quotient of a suitable maximal compact subgroup of G(G) by a maximal compact
subgroup of G(&,)). The constant ¢, is therefore a non-zero integer.

18
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4.3. Assume that G, = I, . #,, G(k,) has a compact Cartan subgroup. Then,

combining the above observations, we conclude that for any arithmetic subgroup T
of Gy,

[x(T)] > IL | W(q™")[" ug(Ge/T).
vESf

4.4. A lower bound for | W,(q~) |~ As before, for v € V,, let %, be the maximal
unramified extension of £,. Let o, denote the Frobenius automorphism of %,k,. Then
there is a natural action of o, on the affine Weyl group of G/k, and the subgroup of
the fixed points is the affine Weyl group of G/k,. Now the results contained in 1.10.1,
1.11 and 3.3.1 of Tits [41] together with those in 1.30, 1.32, 1.33 and 3.10 of Stein-
berg [39] imply that
o (1—ejg™ %) (1 — < 477")

(wu(q_l))_l = jl;Il (1 _ 3}’ q”—d,(l)) . ]

where the d,(j)’s are certain positive integers > 2, and ¢}, ¢); are certain roots of unity
(see Steinberg [39: Theorem 3.10]).

From the above expression for (W, (q™'))~% it is obvious that as the d,(j)’s and
the ¢,’s are > 2,

1 — —-1)2 Ty (q _ 1)2 ry
1 —1y!~1 ( q' — v > ~1 .
¢ war > (G = (B e 5
As a consequence, we have in particular
(2) | x(D) | = u*(Gy/T) > 57D uy(GyT), (5, G) = X 7).

ue.S’f

4.5. For the proof of Theorem 7.3, we need to know | W, (q~)|~" explicitly for
certain G and ». Using Proposition 24 and Theorem 6 of [33] and the Bruhat-Tits
theory, | W,(q~')|™! can be easily computed; the values are given in Appendix G, as
they are needed.

4.6. Now let T, A’ and A be as in 3.2. Then
()] = [T A]77 [ x(A)]
and it is obvious that | x(A')] = | x(A)|. Therefore, under the hypothesis of 4.3 we have
|%(T)] > [T AT x(A)]
>[I A']"ﬂgyfl Wo(@™) |77 ke(Ge/A)
> (g HE, Q) TL | Wola™)| s Go/A™
(cf. 3.6), where A™ is as in 3.2. By 3.7,

r !
m,!

i=1 (2m)m™it?

Hy(Gy/Am) — Dk%dhnG(Dl/DLl:k])%s( H

V€V,

) Tk(G) é”
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where & is as in 3.8; therefore we get the following bound:

()] > n=#($ R, Q)9 L | W,(q )|~ DF (DD} )
vESr

( 1
VE Vo

r
m,!

cl;Il (2m)mi+t

) 7(G) &

for every arithmetic subgroup I".

5. An upper bound for the order of H'(%, C);

In this section we shall give a “ good * upper bound for the order of the group
H(%, C), introduced in 2. 10.

As in 3.7, let  be the unique simply connected, quasi-split inner k-form of G.
Then the center G of G is k-isomorphic to that of ¥. We shall begin by considering the
case where ¥ is k-split, i.e. G/k is an inner k-form (of a &-split group). As recalled in 2.6,
C is k-isomorphic, in this case, to p%, where ¢, » and p} are as in 2.6. We identify C
with p} in terms of a fixed k-isomorphism. This then provides an identification of H*(K, C)
with (K*/K*™)* for any field extension K of k. For x € (K*)%, we denote by x the
element of H!(K, C) which it determines. For 2 € V, x, will denote the cohomology
class in H'(%,, C) determined by x e (B*)"

Each v €V, gives a homomorphism (£*)* — Z°, which will be denoted again
by 2. Let now T be the (finite) set of places » ¢ S such that G does not split over k,.
Then in view of Lemma 2.3, it follows from Proposition 2.7 thatfor v ¢ S U T and
x e (RX)% E,(%,) is trivial if and only if »(x) € (nZ)®%. From this we conclude that
H(%, C)g N (k,/k*™)*® is a subgroup of H(k, G); of index < n**¥®/Y™, where k, is
the subgroup of * consisting of the elements x such that #(x) € nZ for all nonarchimedean .
As ¥(k,JE*™ < k, n*® (Proposition 0.12), this implies the following:

5.1. Proposition. — If G|k is an inner form of a split group,

$HL(k, C)y < hf nso® T8 SrUD,

5.2. In the rest of this section we treat the case where GJk is an outer form.
Then ¥ is a non-split, quasi-split group of type A,, or D,, or Eg. Let £ be as in 3.7.
Note that ¢ is a separable quadratic extension of 2 except when G is a triality form of
type D, in which case it is a separable (but not necessarily Galois) extension of & of
degree 3. For v nonarchimedean, let {, =¢/®,k,. If £, is a field, let ¥ denote its nor-
malized additive valuation (i.e. the additive valuation whose set of values is Z). Its
restriction to &, is a multiple of ». If v splits over ¢, let 7; (i = 1, 2 and possibly 3) be the
normalized additive valuations of £ ““lying > over » (i.e. whose restriction to 2* is a
multiple of 2); in this case £, is a direct sum of 2 or 3 local fields.
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5.8. Let n be as in 2.6 and p., be the kernel of the endomorphism x s x" of GL,.
Then, except in the case where G/k is a form of type 2D, with r even, the center C of G
is k-isomorphic to the kernel of the norm map

Ny : Ryp(eeg) — 0y

If G/k is of type D, with r even, then C is k-isomorphic to R, ().
Assume first that G[k is not of type 2D, with r even. Using the above description
of the center C, we get the following commutative diagram:

Ul No(a(8))  —> HY(E, C) —> £xjexe <o

! ! ! !

Balt) Noa(Ra() () —> Hi(k,, G) —> (1@, k) (1@, k)%™ ~5 kX [kx»

} l l !

-~ ”~ ”~ ”~ >~ N ”~ o~
p’n(kv)/Nl/k(Rllk(p'n) (kv)) — Hl(kv’ C) —-—> ([ ®k kv) x/([ ®k kv) o 'ﬂ; k:/k:”

in which the rows are exact. Note that the order of w (k)/N,,(@,(£)) is at most 2, and
this group is trivial if either z is odd or [¢: %] = 3. This is evident from the fact that
Ny (#a(f)) contains ., (k)¥:®, and if [£: k] = 3, then (G/ is a triality form of type D,
and) n = 2. Next we assert that if 7 is 2 nonarchimedean place such that G splits over %,,
then the image of w,(k,) /Ny (Ryi(w,) (&) in HY(%,, C) acts trivially on A,. To prove
this, in view of Lemma 2.3 (i), it suffices to note that if G splits over ;,, then ¢ ®, %,
is a direct sum of [{:k] (> 2) copies of I;,,, hence Ny,(R (e, (k) = p (k) and so
the image of w,(R,) /Ny (Rp(w,) (,)) in Hl(ﬁ,,, C) is trivial.

Assume now that G/ is of type 2D, with 7 even. Then n = [{: k] = 2. In this
case G is k-isomorphic to R, (@) and will be identified with it in terms of a fixed
k-isomorphism. For any field extension K of %, the group H'(K, C) is canonically iso-
morphic to ({®, K)*/(t®,K)*2 In particular, H'(k, C) = ¢*/¢*2, and ¢* acts on A,
and A, through the quotient £*/¢*2; we shall denote the induced homomorphism
X > E (CAutA) by &, in the sequel.

5.4. Lemma. — Let veV,.

(i) Assume Gfk 1s not of type *D, with r even. Let L = {x €£* | Ny,(x) €k*"} and x L.
If v does not split over ¢, then ¥(x) € nZ if v is ramified in ¢, or if one of n, [£: k] is odd. In
particular, if v does not split over ¢, T(x) € 2Z if G is a triality form of type D,.

(ii) Assume G to be split over k, and quasi-split over k. Then ¥(x) € nZ if v does not split over ¢,
and T,(x) e nZ for all i if v splits over £, where x €¢* if G is of type *D, with r even,
and x € L otherwise and £, (x) = 1.

(If G is not of type 2D, with r even, then the image of H(k, G) in £*[£*" is L[>,
see 5.3. At any nonarchimedean place » such that G splits over k,, £, induces a
homomorphism of L into E, (C Aut A,) which we have also denoted by £,.)
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Proof. — If v does not split over ¢, and ¢, is a ramified extension of k,, then for
x€t*,7(x) = v(Ny,(x)); if £,is an unramified extension of ,, then 7(x) = o(N,,(x))/[£: k],
so for x € L, it is an integral multiple of n/[£ : £]. Now assertion (i) of the lemma is obvious.
Note that if [¢: k] is odd, then G is a triality form of type D, and n = 2.

The second assertion of the lemma follows from 2.3 and 2.7.

5.5. Let # (resp. T) be the set of places v ¢ S such that G does not split over E,
(resp. splits over %, but is not quasi-split over k,). Both # and T are finite. Let S} be
the subset of S, consisting of all places v such that either v splits over ¢ or¢, is an unramified
extension of %,.

Let £, be the subgroup of £* consisting of the elements x such that 7'(x) € nZ for
every normalized nonarchimedean valuation 7" of £. Then 5.4 implies that if GJk is
not of type 2D, with r even, then the subgroup H(%, C), mapping into /,/¢*" has
index < n¥®fYD if G is not a triality form, and index < 2¥#+2#6}VDif G s a triality
form. It also implies that if G is of type 2D, with r even, then H(k, C); N (4,/f*?) is a
subgroup of H!(%, C), of index at most 2%# +2fEfuD)

By 0.12, the order of ¢, /¢** is < k,n*". Moreover, 2¥* < D,/DV:®,
see [31: Appendix], and as we saw in 5.3, if G is not of type 2D, with r even, the kernel
@, (%) /Ny (@, (€)) of the homomorphism H(k, C) —¢*[¢*" is trivial if G is a triality
form and is of order at most 2 in all other cases. Combining all this information, we get:

5.8. Proposition. — Assume that G is an outer form (of a split group). Then
(1) If G is of type D, with r even (including the triality forms of type D),
$H(k, C) < ky 9at) + 24 8fUD) D,/DY:#,

(i1) In all the other cases,
$H(k, C); < 2k, B+ Esfun.

6. A number theoretic result

In this section we shall assume that % is a number field and prove the following
proposition, which is needed for the proof of the finiteness theorems in §7.

Let e, n be as in 2.6 and m, < ... < m, be the exponents of G (3.7). Recall that
n*< r+ 1 and €< 2. As before, a(k) will denote the number of archimedean places
of k.

6.1. Proposition. — Given a positive real number ¢ and a nonnegative integer a, there exist
effectively computable positive integers m,, m, , and n,, n, , such that

(i) if either r> m, or D> ng, then
. r m.! k:Q
Q) D,%“’““G(H -—i—) > ¢

s=1 (2m)™ 1
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(1) if G is an inner k-form (of a split group) of type other than A, and A, and either r> m,,

or D> n, ,, then
. — seat) e Lama [ m‘! [%:Ql ]
(ll) n hk D,? (‘1;_[1 (_Q—TE_)_MTE > an,
(11i) +f Glk is an outer form of type other than A, and either r > my, , or Dy > n, ., then
K]+ ey alk) T— dim G : i m) A\ ¥ ca
(iii) p~ iR+ erah) po1 D;% (D,/D¥:4) (‘l;ll (21:)"""+1) > cn®e;
(iv) of D> m,,, then
(iv) (2% wP)— %@ 3= 200 -1 D> 30,
(v) if k is totally real and D, > n, ,, then
(V) (23 T‘:2)—[k:tl] h,:l D;"‘;/2 > 98 .

(vi) There is a positive integer n , suck that if D, > 1, ,, then

¢, a)

(VI) (24 TC.’))—[k:Q] g— k) —atl) }Zl—l Dlt(Dl/Dlzc)z > 3%e.

Proof. — In the proof of assertions (v) and (i) of this proposition we shall use some
ideas of [10].

For a number field K, let Dg, kg, Rg be respectively the absolute value of its
discriminant, its class number and regulator. Let Zg(s) (= II (1 — (Np)~=*)~%) be its
Dedekind zeta-function. Recall that {(s) has a simple pole at s = 1 and the residue
is 21®(2m)® po Re/wye DY, where r,(K) (resp. 7,(K)) is the number of real (resp.
complex) places of K and wy is the order of the finite group of roots of unity in K. Let

Zg(s) = — () [Ck(s) = §log(NP)/((Np)“ -1

be the negative of the logarithmic derivative of {g(s).
According to the Brauer-Siegel theorem ([35: Hilfssatz 1]), for all real s> 1,

r(K)
(1) hK RK< wKs(s - 1) 92— r(K) T (;_) F(s) r+(K) (2—2r,(K) T K:Q] DK) 8/2 CK(S)-

R. Zimmert [47] has given the following lower bound for the regulator:
(2) Ry > 02wy exp(.46r,(K) + .1ry(K))
> .02wg exp(.1a(K)),
where a(K) = r(K) + 7,(K) is the number of archimedean places of K.

A. Odlyzko ([27: Theorem 1]; see also [29]) has provided the following lower
bound for Dg:

(3) If [K:Q]> 10% then D> (55)r,(K) (21)29-.(1{)'
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Moreover, it follows from his results that there exist absolute positive constants (i.e. cons-
tants not depending on K) ¢,, ¢, (< 2) such that for all s e (1,1 4 ¢,)

(4) D> (55)"% (21)™% exp(2Zg(s) — 2(s — 1)7" — ¢).
Since the absolute value of the logarithmic derivative of the Gamma-function is

. . 1 .
bounded above in the interval [5, 2], there exists a constant ¢; such that, for 1 € s< 2,

I(3) < = explasts — 1)

T(s) < explesls — 1))-

(5)

Also, it follows at once from [26: Lemma 2] that there is an absolute constant ¢, such
that for all s> 1,

(6) Ci(s) < exp(Zg(s) + ca(s — 1) ¢(K)).
Taking s = 2 in (1) and using (2) and (3) we obtain
) he < 10° (%)[K:Q]DK

(as Ce(2) < (G(2))™ ¥ = (%)IK:M)'

We shall now prove the assertions (), (i¢) and (%) of the proposition. We begin
by recalling that for at most one ¢, m; = m, , (and if m; = m, _, for some ¢, then G is
of type D, with r even) and m, — oo with r — oo; see [31: 1.5]. From this it is clear
that, as m! > (2x)™** for all m > 0, there exist positive integers m,< m, , such that
if r> m, (resp. 7> m,,), then

’ m,!

' r
™~ +1 (resp. (r+1)~6+t2 I ———— > 10%c + 1)).

61;11 (2m)mit?t i=1 (2m)mit!
Now as D, is a positive integer, inequality (i) holds if r > m,. Also as
dim G > 2 max(e, [£: &]),

n*< r+ 1 and both ea + 2ca(k) and ea + ([£: k] + ¢) a(k) are < (5 + 24) [k:Q ],
the inequalities (ii) and (iii) evidently hold for > m,, in view of the bound for the
class number given by (7). Let us now assume that 2< r<<m,,. We observe that,
if r> 2 and G is not an inner or outer form of type A,, then

' ¢ 3

T
n—2 11 m‘!z =, p—Wiki—e I m‘! >—,
i=1 4 i=1 16

r r
and nt [l m!>1, pmWRTOR TT gt > 1,
i=1 i=1
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Now recall that dim G = r + 227_, m,. Using this it is easy to see that if G is not of
type A or A,, then

r+ El m; < -i—% (% dim G — max(s, [¢: k])).

Also 7 + Xm; > 6. Let ¢,, be the smallest positive integer such that
((2m)~ 181, 21) 0 > (10* me ,c)¥™,

then using (3) and (7), for K = % and ¢, we conclude that if [k:Q ]> max(¢,,, 10°),
then (ii) (hence also (i)) and (iii) hold. On the other hand, using (7) it is seen that there
is a positive integer u,, such that if [2:Q]< max(¢,,, 10°) and r< m,,, then for
D,>u,,, (1), (1) and (iii) hold. Let 1, = u, ,. We shall later choose an integer 1, , > u, ,.

We shall now prove that, for all sufficiently large D,, the inequality (iv) holds.

For this we note that using (7) (for K = %), we have
(24 ,n.5)~[k:Q] 3—-2a(k) Izk—l D,t > 10-—2(((22_ 3)1/8 nz)—r,(k)(22/3 Tt2)_2"(k) Dk)sa
so if [k: Q1> 10% in view of (3),

(24 ns)—[k:m g—20k) p—1 s > 102 55 ra(k) 9] \zn®\s
PR (2%.3)18 2 o 2

> 1072((2.4)"® (1.3)%n)®
> 10~2(1 . 3)8[k:Q1,

which implies that there is a positive integer n,,> 10° such that for [k: Q] > =,
(24 ns)—[k:m 3— 2a(k) h]-c—l D’4c > 38,
It is obvious that we can find a positive integer u; , such that the inequality
(((22 3)1/3 7:2)— (k) (22/3 Tcz)—Zr.(k) Dk)s > 102' 3a ¢
holds for all 2 with [k: Q]< n,, and D, > u . Hence for all & with D, > ug,, the
inequality (iv) holds.
We shall now prove that there is a positive integer u, , such that if D, > ug ,
(v) holds.
(1) and (2) for K = % give us the following (recall that in (), % is assumed to be
totally real):

¢, a

ri(k)
k. < 50s(s — 1) 2= =@ T (%) (e~ *: D2 (5) exp(— .la(k)).
This, along with (4), (5) and (6) imply that if [£: Q1> 105
(55)(3—3)/2 r1(k)
(23 TcZ)—-r,(k) hk—l D2/2> 02(5‘(5 _ 1))—1 ( )

22 75(5 — 8)/2

.exp ((2 —5)Z,(s) — %cl(?) —s5)—(8—s5)(s— D1
+ (I —(+2c)(s—1)) f;(k))-
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Now observe that 55/22 72> 1.3, and exp((2 — s) Z,(s)) > 1 if s< 2. So by choosing
s(> 1) sufficiently close to I, the above gives the following bound:
There is an absolute constant ¢,, such that
(8) (22 n?) =@ B DY > ¢5(1.3)"%  for all £ with [k: Q] > 10°
On the other hand, using (7) we find that
(28 nz)— (k) hk_ 1 D:’Z > 10——2(27:3/3)— (k) Dllclz-

From this and (8) it is obvious that there is a positive integer #,’, such that for all &
with D, > uy,, the inequality (v) holds.

! "
Take n,, = max(u, ,, 4, ., Ug,)-

We now finally prove that there exists a positive integer nj , such that if D, > n; ,,
then (vi) holds. Since

) < [+: Q1 = 5 (rlf) + 20,

it suffices to prove that there is a positive integer m,, such that if D,> n,,, then
(24 ﬂs)—[l:m/z g—8nl2—2rdl) ht—l D,‘,(D,/Di)z

—_ (22 33/2'755/2)— ry(d) (24 32..“:5)— r3(f) hl_l D? > 3%,

Now using (1), (2), (4), (5) and (6) for K = ¢, we conclude that if [¢: Q) > 10° then

(22.3%2, n¥2) ~ 7 (24,32 8)— ) 1 D

5 ‘02(5‘(3 _ 1))_1( (55)(4—3)/2 2)r,(l) ( (21)(4—5) )r.(l)

2‘38/2.1':(6—:)/ 2(4—«).32.1:(5—0)

- €Xp ((3 — ) Z4(s) — % 4—-9g—¢4—5@E-—1n""1

+ (1= (e+e)(s—1) a(f))
Now as
(55)%2(2.3%%. 752 > 2.2, (21)%/28.3%.n* > 1.3,

and exp((3 —s)Z,(s)) 21 if s<2,

by choosing s(> 1) sufficiently close to 1, we infer that there is an absolute constant cg
such that

(9) (22.3%2 b2y =it (94 82 8y~ n) pr1 2> (2.2)74 (1.3)"0 ¢,
for all ¢ with [£: Q] > 10°% Also, using (7) for K =/, we find that
(10) (22'3812.7:6/2)—r,(l) (24'32_1.:5)—1,(1) h;—l D% > 10—2(31/2.7_:7/2)—',(!) T 7ra(d) Dl'

From (9) and (10) it is clear that there exists a positive integer 1, , such that for all %
and ¢ with D,> n}, the inequality (vi) holds.

19
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7. The finiteness theorems

This section is devoted to the proof of the main results of this paper (Theorems 7.2,
7.3, 7.8 and 7.11).

7.1. Let € be a sct of pairs (%, G) consisting of a global field £ and an absolutely
almost simple, simply connected algebraic group G defined over & such that (i) there is
a non-zero lower bound « for the Tamagawa numbers 7,(G) for (&, G) € € and (ii)
if £ is a global function field of genus zero, then G is anisotropic over % i.e. k-rank G = 0.
We recall here that over a global function field, any absolutely almost simple anisotropic
group is necessarily an inner or outer form of type A ([15: §3, Korollar 1]).

It was conjectured by A. Weil that the Tamagawa number of any simply connected
semi-simple group, defined over an arbitrary global field, is 1. This conjecture has recently
been proved over number fields ([18]; see also [31:3.3]). The Tamagawa number
of any simply connected group of inner type A over an arbitrary global function field
is known to be 1 (see [46]). However, whether this is the case in general over a global
function field is not yet known,

In view of the above results, we may assume € to contain all pairs (k, G) such that
either £ is a number field and G is arbitrary, or % is a global function field and G is of
inner type A.

T7.2. Theorem. — Let ¢ be a positive integer and let €, be the subset of € consisting of
the pairs (k, G) such that (i) if k is a global function field, its genus is > 0; (ii) G s anisotropic
over k and G := HveV@ G(k) is compact; (iii) the class number

¢(P) := #(Go I, e v, PA\G(A)/G(£))
of GJk with respect to some coherent collection of parahoric subgroups (P,),evf ts < c. Then (up
to natural equivalence) €, is finite.

We recall that a collection P = (P,), ¢ v, of parahoric subgroups P, of G(%,) is said
to be coherent if Il ¢ v _G(%,).l,c v, P, is an open subgroup of the adéle group G(A).

7.8. Theorem. — Let ¢ be a positive real number and ¥, be the set of triples (k, G, S)
such that (i) (k, G) € € and the absolute rank of G is at least 2 (i.e. G is not a form of SL,),
(i1) S is a finite set of places of k containing all the archimedean ones so that for all nonarchimedean
v €8, G 1s isotropic at v and the subset S(G) of S consisting of the places where G s isotropic
is nonempty, (iii) there is a k-group G’ which is centrally k-isogenous to G and an arithmetic sub-
group TV of Gy, such that either g (Gye)/T") < ¢, or TV is virtually free*, 0 + | y(I') | < ¢
and G is not of type A,, where pgq, is as in 3.6 and (') is the Euler-Poincaré characteristic
of TV in the sense of C. T. C. Wall. Then (up to natural equivalence) ¥, is finite.

c

We shall prove these theorems together.

* Equivalently, G is anisotropic over % if the latter is a number field.
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7.4. Let (k, G) € ¥. As before, let r denote the absolute rank of G and r, its rank
over the maximal unramified extension %, of k, if v eV,. Let ¢, &, and s(¥) be as
in 3.7 and let  be the adjoint group of %.

a) Let (k, G) € 4,. Then since G, is assumed to be compact, if £ is a number
field, it is totally real. Let P = (P,,)uevf be a coherent collection of parahoric subgroups
such that the class number ¢(P) of G with respect to P is < ¢. It follows from [31: 4.3,
2.10 and 2.11] that

(1) ¢z ¢(P) > G(9[k)L(P),
where
(4Y) S| i m,.!
@ C(%/k) = DF*"?(D,/DY ")} CONI |

and {(P) = Hvevfe(Pv), with

3) o(B,) = gimMtmmAn (1 M,(f,)) > 1 (ve V).
(The unexplained notation is as in [31].) We have
(4) e(P) > (g, + D7 gr™?

if either G is not quasi-split over ,, or P, is not special, or G splits over , but P, is not
hyperspecial (3.7 (5)), and

(5) e(P,) > (g, — 1) gt rer—trru2ai—ne
if G(k,) = SL, 1 1y4,(D,), where D, is a central division algebra of degree d, over %,

(3.7 (6)).
(1) and (3) yield

(6) C(9[kR) < ¢/x
or, more generally,
(6)" C(@k) I e(R) < cfx (ACV).

b) If (&, G,S) € ¥,, then from the result stated in 3.7, 3.8 and the bounds
obtained in §§4, 5, we get that

(7 either ¢> B(9/k)rF or c¢> B(G[k)xF™,
where
—_9—1,—calk)—¢ all) j—¢e %dimg £ k1\s'(F . mS!
Q B(gR) = 2~ a2 ¢ DER YDy 11| MR

The constants n, € are as in 2.6, ¢’ = ¢ if ¥ is k-split, ¢’ = 1 otherwise, and
> > P

’

@ s(%)2 —1 if gk is an outer form of type D,, r even,
() = 5(9)/2 otherwise,

(9) F =1l fw F= =11 fvEP’

vEVf vEVf
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with

(10) So=ent ST =enTt [ W(qT) T =S, | W (g7’
if veS, and ¢/, =¢(®, k%, is a ramified field extension of %,

(11) Jo=e,n7% ST =e,n7* | W(q [T =/, | Wy(q™) [}
otherwise (v €S,),

(12) So=fT ="

if » € T(G), where T(G) is the set of places » ¢ S such that G splits over %, but is not
quasi-split over &,, and finally

(13) fi=fF=e' if v¢SuT(G).
(The e, and ¢;"s are as in 3.7). Also recall from 4.4 that
(14) [Wo(a™)[7'> (9, — D* (e + D)7 (2 577) (veV)).
Now we claim that, for v eV,
> 1,
(15) %

SE>1, unless G is of type A, and ¢, < 3.

If r, > 4, this already follows from the previous inequalities. It will be checked in
all cases in Appendix C.
We get then from (7) and (15)

(16) B(9[k) <¢fx
or again, more generally, for any subset #Z of V,

(16)’ B(g/k) TI f,< ¢/, B(@/k) 1 fE=< ¢l
vER vER

¢) Next we remark that D,/D¥¥> 1, This follows, e.g., from Theorem A in
the Appendix of [31].

d) Let now £ be a number field. Then we deduce from 6.1 (for ¢ = 0) the exis-
tence of integers m,, 1, and n; such that
a7 C(9/k) =

B(%[k) >

if either r> m, or D, > n, or D, > n,.

¢) Assume now & to be a function field. We want to prove a similar assertion. If G
is of type A, which is necessarily the case if G is anisotropic over & by [15: §3, Kor. 1},
we let A(G) denote the set of places v of 2 where G is a non-split inner form of type A.
We now claim that there exist positive integers g,, ¢, m, and q, such that:

(1) If & is a global function field of genus > 1 and either g,> @, or g,> Q,, or the absolute
rank of G is greater than mg, or q,> q,, then G(9/[k) > B(¥9[k) > ¢/x.

¢ (& is assumed to be totally real when r = 1),

¢ (r>2),
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(i1) If k is a global function field of genus 1 and G is anisotropic over k, then
C(Z/R) .11, ¢ siq) e(P,) > c|x if either g, > @, or the absolute rank of G is greater than m,,
or 4, > d.-

(iii) Ifk is a global function field of genus 1, then both B(9[k) .11, o f, and B(Z[k) .11, o ¢ f2
are greater than c[~ if either g, > @, or the absolute rank of G is greater than m,, or ¢, > q,.

(iv) If k s a global function field of genus zero, and G is anisotropic over k, then both
B(G[k) M, cs0uefe and B(G[R).IL, coyne f57 are greater than cofx if either

8> Qo or the absolute rank of G is grealer than m,, or q;> q,.

(If the genus of £ is < 1, then D, < 1 and (6), (16) do not allow one to limit dim G
and therefore 7. But the point of (ii), (iii) and (iv) is to show that we can compensate
for that by multiplying B(%/%) or G(%/k) by some of the factors ¢(P,) or f,, 7, which
is allowed in view of (6)’, (16)".)

(1) and (iii) follow easily, we only need to use the upper bound for the class number
given in 0.8 (1) and the estimate for e, provided by 3.7 (2).

We already pointed out that in (ii), (iv), G is a form of type A,. If it is an inner one,
then there is a central division algebra D of degree r + 1 over % such that G = SL,(D).
It is well-known from class field theory that if d, is the order of D ®, %, in the Brauer
group, then d, = 1 for all but finitely many s, r 4 1 is the least common multiple of
the d,’s and the local invariants m,/d, of D, where m, is an integer prime to d,, add up
to zero mod 1. This implies that one of the following three conditions is fulfilled:

(¢) The number of places where d, = r 4 1, i.e. where D, = D ®, £, is a division
algebra, or, equivalently, where G is anisotropic, is at least two.

(«¢) r> 5. There is exactly one place where d, = r 4 1, at least another one
where d,> 2 and a third one where d,> 3.

(+++) 7= 5. There are as least one place where d,> 2 and two other places where
d,> 3.

14

If G is an outer form (of type A,), then there exists a central division algebra 2
over a separable quadratic extension ¢ of # and an involution ¢ of &, of the second kind,
such that G(k) ={d e 2*|ds(d) = 1and Nrd(d) = 1}. The local invariant of &
at any place of £ which is fixed under the Galois conjugation of /% is zero. On the other
hand, the sum of the local invariants of £ at any two conjugate places of ¢ is zero. This
implies that one of the following conditions is fulfilled:

(¢) There is a place v of £ where G/k, is an anisotropic inner form of type A,,
i.e. G(k,) = SL,(D,), where D, is a central division algebra of degree r 4 1 over %,.

(++) There are two places v, v, of k2 which split over ¢, such that
G(k,) = SL(; +1y4,(D;), where D; is a central division algebra of degree d4; over £,
and dy> 2, dy 2> 3.

The assertions (ii) and (iv) can now be proved using the estimates for ¢, given
by 3.7 (2), (3), (6), and the upper bound for the class number given in 0.8 (1). Note
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that for ve 8, if G(k,) = SL, ) (D,), where D, is a central division algebra of
degree d, over k,, then

= DT, — 1) (g — )

J) It was proved by Hermite and Minkowski (see [20: Chapter V, Theorem 5])
that there are only finitely many number fields 2 and ¢ such that D, < 1, and D, < nj.
Also it follows from Proposition 0.9 and Lemma 0.11 that there are only finitely
many global function fields %, each of them having only finitely many separable
extensions ¢ of degree < 3, such that g, < g,, g < g, and ¢,< q,. Since ¥, being
quasi-split, is uniquely determined by its absolute type and the fields %, ¢, we now conclude
that there is a finite set 2, of pairs (%, &) consisting of a global field £ and an absolutely
almost-simple, simply connected, quasi-split 2-group % such that if either (%, G) € ¥,
or (k, G, S) € ¥, then G is an inner %-form of ¢ for some (%, ¢) in this finite set. Over
the finite set 2, both B(%/k) and C(%[k) have a strictly positive lower bound.

Fix (k, %) € 2,. Then n and r are fixed and 7r,< r. It is then clear from (4)
and (14) that ¢(P,), f, and f* tend to infinity with ¢, if G is not quasi-split over %,.
Therefore we conclude that if there is an inner k-form G of ¢ such that (¢, G) € %,
or (k,G,S) e ¥, for some S, then the cardinality of the residue fields at all non-
archimedean places where G fails to be quasi-split is bounded by a constant depen-
ding only on %k, %, ¢; moreover, in the latter case, the cardinality of the residue
fields at places contained in S, is also bounded in view of 3.7 (2). Since the set of
places of a global field where the cardinality of the residue field is less than a given
integer is finite, we see now that there are only a finite number of possibilities for S
and that there exists a finite subset # of V such that G is quasi-split outside #, hence
such that the element of H(k, ) which defines the inner k-form G of ¢ belongs to
the kernel of the natural map

re: HYE 4) - I1 Hk, 9).

vEV-R

But this kernel is known to be finite, see Appendix B. This shows that there are only
finitely many possibilities for G and concludes the proof of 7.2 and 7.3.

7.5. In order to complete the proofs of Theorem A and B of the introduction,
there still remains to prove a finiteness assertion for the P’s in 7.2 and the I'’s in 7.3.
In view of these theorems, it suffices to show this for one group. Note that, as long as we
deal with one group, some of the restrictions made in 7.2 and 7.3 are not necessary.

The group (Aut G’) (A) operates canonically on G’(A) and similarly (Aut G')g
operates on Gf. In particular G(A), Gy and G(%,) act on G'(A), G}, G'(k,) respec-
tively. This will be referred to as G(A) or G4 or G(k,)-conjugacy.

7.6. Theorem. — Assume G is anisotropic over k and G, is compact. Let ¢ > 0. Then,
up to G(A)-conjugacy, there are only finitely many coherent collections P = (Po)oe v, of parahoric
subgroups such that ¢(P) < c.
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Let ¢y = G(9/k) x. Then ¢(P) > ¢, for any P (see 7.4 (1), (3)), therefore we may
assume ¢ > ¢,.

There is a finite subset # of V with the following properties: (i) £ DV ,; (ii) for
v ¢ A, G is quasi-split over &, and splits over k,; (iii) g,> 3¢/2¢,-

Let P be a coherent collection of parahoric subgroups. Assume that, for some
v ¢ &, the group P, is not hyperspecial. Then, since ¢(P,) > (g, + 1)  ¢7»*? (see 7.4 (4))
and ¢,> 2, we have ¢(P,) > ¢/¢c,, whence

¢(P) > e.

As a consequence, if ¢(P) < ¢, then P, is hyperspecial for v ¢ #. Since any two hyper-
special subgroups of G(k,) are conjugate under G(k,), (v ¢ %), [41: 2.5], it follows
that (P,),cv—_g is determined uniquely up to G(A)-conjugacy. But for a given v ¢ %
there are only finitely many possibilities for P, up to conjugacy in G(k,), whence the
theorem.

T7.7. Theorem. — Fix (k, G, S), a central isogeny +: G — G’ and ¢ > 0. We assume
S DV, and Gg is not compact. Let & be the subset of S consisting of all places where G is isotropic.
Then, up to G(k)-conjugacy, G, contains only finitely many finitely generated arithmetic subgroups ( for
the k-structure defined by Glk) suck that either pgy(GL[TY) < ¢, or IV is virtually torsion-free
and 0% | x(I")| < e

As there is a constant ¢ such that we have, for every IV, | x(I') | = eug(Gg/TV),
it suffices, in order to prove the theorem, to show that there are only finitely many
finitely generated arithmetic subgroups IV with pg(Gg/TV) <e.

Since a finitely generated group contains only finitely many subgroups of a given
finite index, it suffices, in view of 1.4 (iii), to prove that Gg has only finitely many
maximal arithmetic subgroups IV such that pg,(G4/I') < ¢. Let then IV be maximal.
According to 1.4 (iv), there exists a coherent collection P = (P,),cy_5 of parahoric
subgroups such that I'" is the normalizer of L(A) where A = G(k) NnII,P,. Forv eV — §,
let ®, be the type of P, and Eg be as in 2.8.

It follows from the first inequality of 3.6 (1), 3.6 (2) and the formula for the volume
rge(Gg/A) given in 3.7 that there is a constant C depending only on G, £ and S such that

(%) ue(Gy/T) 2 C T1 ($E8g)7".¢(P,),
vEV—S8
where, for v € V — §, ¢(P,) is as in 3.7. Now let ¢' be as in 3.7. Then the inequalities
3.1 (%) and 3.7 (1) imply at once:
(N ($#Eq,) " 1.e(P,) = g > 1.
Let T be the smallest subset of V containing S such that, for all v ¢ T, the group G
is quasi-split over &, and splits over %,. If for a » ¢ T, P, is not hyperspecial, then

(2) e(P) > (g, + 1) gp
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Let # be a finite subset of V, containing T, such that
(3) g,> 3¢c(r + 1)[2C for v ¢ A.

If for some v ¢ #Z, P, is not hyperspecial, then e¢(P,) > ¢(r + 1)/C, as easily follows
from (2) and (3); now since $Eq <7+ 1 for every s, we conclude from (#) that
e (Gy/T) > ¢. Thus if pg(Gy/I') < ¢, then P, is hyperspecial for » ¢ #. The finiteness
of the number of G(k)-conjugacy classes of the I'’s now follows from 3.10.

7.8. Theorem. — a) Under the assumptions of 7.2, the set of (k, G, P) suck that ¢(P) < ¢
is finite under natural equivalence.

b) Under the assumptions of 7.3, the set of (k, G, S, G’, I"') such that pgyq)(Gge)/T') < ¢
(resp. T is virtually torsion-free, 0 < | x(I'')| < ¢ and G is not of type Ay) is finite under natural
equivalence.

Theorem 7.2 reduces the proof of a) to the consideration of the possible P’s for
a given (%, G), in which case it follows from 7.6. Similarly, 7.3 reduces the proof of b)
to the case of one system (k, G, S) and, since G has only finitely many centrally iso-
geneous groups, of the arithmetic subgroups of one G’, which is settled by 7.7.

7.9. Remark. — In characteristic zero, the arithmeticity results of Margulis [23]
allow us to express the previous finiteness results in a different way:

We consider the 4-tuples (S, k5, Hg, I'), where S =§_ U S, is a finite set, &4
stands for a collection %, of local fields of characteristic zero which are archimedean
for s €S, and non-archimedean for s € S,, Hy is a product of groups H,(%,), where H,
is an absolutely almost simple %,-group and I' an irreducible discrete subgroup of finite
covolume of Hg. Assume moreover that the groups H, are isotropic for 5 € S, and that
the sum of the %,ranks of the H, (s € S) is at least two. If T is not cocompact, then [23]
shows that T' is S-arithmetic for a suitable choice of £ having the completions %, and
of a k-group G’ isomorphic to H, over %, for s € S. If T is cocompact, then we may have
possibly to enlarge S, and use a k-group G’ which is anisotropic at the new archimedean
places. It follows that 7.8 implies the finiteness of the 4-tuples (S, %23, Hg, I') under
natural equivalence.

In positive characteristic, we deduce from [43] a similar result if we assume more-
over I' to be finitely generated.

7.10. Corollary. — We keep the assumptions of 7.3 and assume moreover that G is
anisotropic over k, isotropic over k, for v €S, and, in case k is a number field, that G(k,)
is compact for v archimedean. Fix an integer ¢ > 0. Let Xy be the product of the Bruhat-Tits
buildings X, of G over k, (v €S,). Then, up to natural equivalence, there exist only finitely many
5-tuples (k, G, G', S,, I") such that I has at most ¢ orbits on the set of chambers of Xg.

Let I be the stabilizer of a chamber in Xy. The number of orbits of T in the set
of chambers is also the number of orbits of I'' on Gg/Ig, which, in turn, is equal to the
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number of orbits of Iy on Gg/I". By definition pg(Ig) = 1, therefore each orbit of I
in Gg/T” has volume < 1. Moreover, if & is a number field and » is archimedean, then
G'(k,) is compact by assumption, hence pu,(G’(k,)) = 1 by definition (cf. 3.5). Conse-
quently pg(G4/T”) < ¢, and the corollary now follows from 7.8.

Remarks. — (1) If the discrete subgroup I' of Gy has finitely many orbits on the
set of chambers of Xg, then, as pointed out above, the stability group of a chamber has
finitely many orbits on Gg/I'” and the latter quotient is necessarily compact. Therefore
the supplementary assumptions made here on G are necessary. In the function field
case, they imply that G is of type A.

(2) Assume now that I'" consists of special automorphisms of X and has finitely
many orbits on the set of facets of some given type. Then, as before, we see that the
stability group of one such facet has finitely many orbits on Gg/I", hence the latter
quotient is compact. However its volume is not bounded by a universal constant, and tends
to infinity with the relative ranks at S, (if the facet is not a chamber). But if the number
of elements of S, is bounded, then the growth of the volume is sufficiently slow so that
a minor modification of the previous arguments will again yield a finiteness theorem:

7.11. Theorem. — Let a, ¢ be two positive integers. Then up to natural equivalence, there
exist only finitely many pairs (k, G) consisting of a number field k and an absolutely almost simple,
simply connected k-group G suck that (1) G is anisotropic at all the archimedean places of k, (ii) there
is a k-group G’ k-isogenous to G, a finite set & of nonarchimedean places of k of cardinality a and
an arithmetic subgroup T of G, whick acts by special automorphisms on the product X, =11, o X,
of the Bruhat-Tits buildings X, of Glk,, ve &, with at most ¢ orbits in the set of facets conjugate
to some facet ¥ = Il F,. Moreover, up to natural equivalence, there are only finitely many 5-tuples
(R, G, S, G', I") suck that $ = a and 1" has at most ¢ orbits in the set of facets conjugate
to some facet ¥ = Il F,, where none of the F’s is a vertex.

Proof. — Let k, G, G, & be such that # ¥ = a and G, contains an arithmetic sub-
group I which acts by special automorphisms on the product X, of the Bruhat-Tits
buildings X, of G/k,, v € &, with at most ¢ orbits in the set of facets conjugate to some
facet F = II, F,. Let C be a chamber of X, containing F. Then C is a product II, G,,
where G, is a chamber of X, and F, a facet of G, v € &. Let I, (resp. P,) be the stabilizer
of G, (resp. F,) in G(&,). Let ug be the product of the Tits measures on G'(%,), v € &.
We want to show first

(1) p(GyT) < c. I1 [P, L,].
vEF

Let I, (resp. P,) be the stabilizer of C, (resp. F,) in G’(#,) and G, , be the subgroup
of G'(k,) operating on X, by special automorphisms. The latter is open of finite index
in G'(k,) and contains «(G(k,)). Let P, =G, NP, and I, , = G, , nI,;; we have
G'(k,) = (G(k,)).I,, P, o =1(P,).I, ,, hence
(2) [B,0: L,,] = [P, : L].

20
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The group Gy, := I, » G; , is transitive on the facets of any given type and I C G, ,.
We have therefore, by assumption,

(3) $(T'\Gg,o/Py,) < ¢, where Py, = ,,IE—IyP""(”

which implies

(4) (G, o/T) < ¢.pg(Py o) = c. vgly [Peo: Lol [L: Lol ™
and as

te(Ge/T") =[Gy : Gy, o] ne(Gy,o/I") = vle]y [L, : L, 0] - e (G, o/ 1)
we conclude that

(5) e (Gy/T) < c. 11 [P, 4: 15 ],
vES

so that (1) follows from (2) and (5). Proceeding as in 7.4 and taking (1) into account
we get first (recall that 7,(G) = 1 as 2 is a number field)

(6) ¢z B (Fk).( 1l ¢[P,:L]7Y). II f,
vEF vEV—F
where B'(9[k) = B(9[k) n—
and ¢, f,, B(¢/k) are as in 7.4. In the notation of [31: 2.2],
7 e[P, : 1,]7" = gm et am R4 M (F,)) .
By definition ¢, [P, : I,]7" is the ¢(P,) of 7.4, therefore it satisfies
(8) (P L' > 1 (ve )
and
(9) a[Py: L7 2 (¢, + )7 ™!

if either G is not quasi-split over k,, or P, is not maximal (i.e. if F, is not a vertex).
Since f, > 1 (Appendix C), we deduce first from 6.1, (6) and (8), as in 7.4, that there
are only finitely many possibilities for 2, 4. Then from (9) and 3.7 (5), we see that,
for given (k, &), there are only finitely many » € V, where G may not be quasi-split,
whence the finiteness of the G’s (hence also of G”’s). Moreover, as P, is maximal if and
only if F, is a vertex, if for no v € &, F, is a vertex, then we conclude from (9) that the
cardinality of the residue fields at all » in & is bounded by a constant depending only
on %k, G and ¢, which implies the finiteness of the possible &’s; the finiteness of the pos-
sible I now follows from 7.8 b).

7.12. The following example shows the necessity of the restriction imposed by
(i) in 7.1, namely that if % is a global function field of genus zero, then G is anisotropic.

Let n> 2 be an integer, ¢ be a power of a prime and F, be the finite field with
g elements. Let %2, be the global function field F (¢). It is of genus zero and its zeta-
function is

L) = (1= g~ (1 = ¢~
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Let T, , = SL,(F,[t7*]). Then I', , is an arithmetic subgroup of SL,(F(())), and
with respect to the Tits measure on the latter, its covolume is

n—1

g~ TIESL(F)) (¢ — D70 g et 0T g (m 4 1),
m=1

(See, for example, [31: Theorem 3.7].) Since ¢™~»> $SL (F,), we find that the
covolume of I’ _ in SL,(F,((#))) tends to zero if either » or g — co.

Similarly, 7.11 is not valid in general over a function field. In fact, [42] provides
infinitely many examples of arithmetic subgroups of anisotropic forms of A, which are
transitive on the edges of a given type on the building of SL, over £(( »)), where % runs
through finite fields.

8. Upper bound for the order of finite subgroups
and a lower bound for the covolumes of discrete subgroups

In this section we shall sketch an alternative approach to get a lower bound for
the covolume of discrete subgroups of the group of rational points of a connected semi-
simple isotropic group defined over a nonarchimedean local field of characteristic zero
and finite products of groups of this form. This approach was announced in [4]. For
arithmetic subgroups, it does not give bounds as sharp as those obtained earlier, and it
does not allow one to vary the ground field arbitrarily. However it applies to arbitrary
(i.e., not necessarily arithmetic) discrete subgroups and it does not require any infor-
mation on Tamagawa numbers. It depends on the following two results (Propositions 8.1,
8.2) on upper bounds for the order of finite subgroups, which may be of some indepen-
dent interest.

Let K be a finite extension of the field Q , of p-adic numbers. Let ¢ be its ramifi-
cation index over Q , and ¢ be the cardinality of its residue field.

8.1. Proposition. — (i) The order of any finite abelian subgroup of SL,(K) is less than
(2e + 1" (¢ + D"

(i1) There exists an absolute constant ¢, not depending on XK or n, suck that the order of any
finite subgroup of SL,(K) is less than 2°%M%"(2¢ - 1)* (¢ + 1)~

8.2. Proposition. — Let G be a simply connected semi-simple K-subgroup of SL,. Let r
be the rank of G over the maximal unramified extension of K and w be the order of its absolute Weyl
group. Then

(1) The order of any finite abelian subgroup of G(K) s less than w(2¢ + 1)* (¢ + 1)".
(i) There exists a constant d, depending on n but not on K, such that the order of any finite sub-
group of G(K) is less than dw(2e + 1)" (¢ + 1)".

We will prove these two propositions together.
Let A be a finite abelian subgroup of either G(K) or SL,(K). Let A, be the
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p-primary component of A and A’ be the sum of prime-to-p-primary components of A.
Then A=A @A’

Let o be the ring of integers of K, p the unique maximal ideal of p and F = pfp
be the residue field. After replacing A by a conjugate under an element of GL,(K), we
may (and do) assume that A is contained in the maximal compact subgroup SL, (o)
of SL,(K). Now since the kernel of the ¢ reduction mod p > SL,(0) - SL,(F) is a
pro-p group, this map is injective on A’. Let A’ denote the image of A’, let V be the

natural n-dimensional representation of SL,(F) and let V = ®1<s<a V; be the decom-
position of V as a direct sum of irreducible F[A']-submodules. Set dim V; = m,. Then
¢, m =n. It is clear that

) sA = gA'< (g — D7 (I (g% = 1)< (g 4 1)

Now assume that A is a finite abelian subgroup of G(K) and let P be a maximal para-
horic subgroup of G(K) containing A’. Since G is simply connected, the ‘“reduction mod p”’
of P is a connected linear algebraic group defined over the residue field F, see [41: §§3.4,
3.5]. Let M be the quotient of this linear algebraic group by its unipotent radical.
Then M is a reductive F-group of absolute rank < 7, and the order of its absolute Weyl
group is as most w. As A’ is a finite abelian group of order prime to p, the natural homo-
morphism of P into M(F), maps it isomorphically onto an abelian subgroup A’ of M(F).
Now according to a result of Springer and Steinberg [37: Chapter II, Theorem 5. 16},
A’ normalizes a maximal F-torus T of M(F) and hence (see [31: Lemma 2.8])

) $A" = $A’< wiT(F) < w(g + 1)".

We shall now estimate the order of A . For this purpose we consider a maximal
commutative semi-simple K-subalgebra o7 of the matrix algebra M,(K) containing A .
Being semi-simple, &7 is a direct sum of certain field extensions K; of K; 1< i< b.
Let [K,:K] =n,. Then 2?_,n =n, and so, in particular, 1< &< n. Now recall
that any finite subgroup of the multiplicative group of a field is cyclic, and let ¢; be the
largest positive integer such that K, contains a primitive p%th root of unity. Then it
is obvious that #A, < [I?_, p% On the other hand, the field extension obtained by
adjoining a primitive p%th root of unity to Q, has ramification index p%~'(p — 1)
over Q , and the ramification index of K; over Q , is at most en;; hence, p5~(p — 1) < en,,
which implies that p%< ep(p — 1)~ * n,. Therefore,

b b
#A, < ILp9< (ep(p — 1)7N° 1L m< (ep(p — 1)7)° (nfb)
i=1 =1

(since 2!_, n, = n). Now it is easily seen, by computing the maxima of the function
Slx) = (ep(p — 1)™1)* (»/x)® in the range [1, ], that
(3) $A, < (2 4+ 1)

The assertions 8.1 (i) and 8.2 (i) now follow from (1), (2) and (3).
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Let now & be a (not necessarily abelian) finite subgroup of SL,(K). Then, as K
is embeddable as a subfield of the field of complex numbers, the quantitative version of
a theorem of Jordan proved by Frobenius (see [36: §70, Satz 200]), implies that F
contains an abelian normal subgroup A whose index is < n!12%™®+D+D where
w(n 4 1) is the number of positive primes < (= + 1). Using now the bound for the order
of finite abelian subgroups obtained above, we conclude that

(4) #grg n! 12Mn(n+1)+1)(2€ + 1)" (q + l)n—l
and if & is a finite subgroup of G(K), that
(5) 2 F < nl 12 FDAD 449 + 1) (¢ + 1)

Thus 8.2 (ii) is satisfied with d = n! 12" +D+1)
To prove the second assertion of Proposition 8.1, we note that according to
the prime number theorem, =(n 4 1) log(n 4 1)/(n + 1) -1 as n — w. Moreover,

n! < n" and, for every i, (logn)/n -0 as n — 0. There exists therefore an absolute
constant ¢ such that n! 12%n+D+D L gen¥logn Together with (4), this proves 8.1 (ii).

8.3. Let us now assume that G is a simply connected semi-simple K-subgroup
of SL,. Let p be the Tits measure on G(K) i.e. the Haar measure with respect to which
every Iwahori subgroup of G(K) has volume 1. Let I' be a discrete subgroup of G(K)
and P be a parahoric subgroup of maximum volume. The G(K)-invariant measure
on G(K)/T" induced by p will also be denoted by p. The group P n I', being compact
and discrete, is finite. Also, pn(P) = [P :I]. As the natural inclusion of P in G induces
an injective map P/P nT' — G/I', we conclude that

w(G/T) > w(P).(#(P A T))~* = [P: I] (#(P A )",

Using the “reduction mod p”’ and the Bruhat-Tits theory (see [41: §§3.5, 3.7]) it
is easy to give a good lower bound for [P : I] and Propositions 8.1, 8.2 provide an upper
bound for the order of finite subgroups of G(K). Combining these we get a lower bound
for the volume of G/I'. For example, if G is an absolutely simple group of type Eg, then
G is K-split, P is hyperspecial and [P : I] > ¢'* (recall that the root system of type Eg
has 240 roots), and considering the embedding of G in SL,,, given by the adjoint represen-
tation, we find from Proposition 8.2 that there is a constant ¢, which does not depend
on K, such that the order of any finite subgroup of G(K), and so in particular of P N T,
is less than ¢(2¢ + 1)2® (¢ + 1)%. Hence

w(GIT) > c*(2e + 1)~ (g + 1) ¢,
Note that for a fixed ¢, the above lower bound goes to infinity with q.

Appendix A: Volumes of parahoric subgroups

This section provides in particular the proofs of two assertions made in 3.1. The
arguments are minor modifications of those communicated to us by J. Tits.
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A.1. We let K be a non-archimedean local field, ¢ the order of its residue field,
H an isotropic absolutely almost simple simply connected K-group, and X the Bruhat-
Tits building of H(K). We fix an apartment A of X, a chamber C in A and let A be
the set of vertices of C. As usual, the elements of A represent either a basis of the affine
root system @, of H/K or the vertices of the local Dynkin diagram 2. Let I be the sta-
bility group of G in H(K). It is an Iwahori subgroup. Let W be the affine Weyl group
of H/K. The isotropy group of an element ¢ € C in H(K) (resp. W) is denoted P,,
(resp. W,). We let yu, be the Tits measure on H(K). Therefore if the parahoric subgroup P
contains I, then pn(P) = [P: I].

A 2. In the classification tables of [41], each vertex B of & is equipped with a
positive integer d(B) (written explicitely only if it differs from 1). If 7, is the fundamental
reflection associated to B € A, i.e., to the wall of C opposite B, then ¢*® = #(Ir, I/I)
{41: 3.3.1]. Moreover, if w is in the affine Weyl group Wand w = r, ... r, is a reduced
decomposition of w, where the 7; are fundamental reflections, then

(1) $(Iwlfl) = g, = I1£%,

where B, € A is the vertex representing 7; (loc. cit.). This also shows that ¢, ., = ¢,.4,
if {(w.w') ={(w) + {(w').

A.3. We have to refine and reformulate this. Let T be the maximal K-split torus
in H such that T(K) stabilizes A. We let ®™ be the system of non-divisible roots in the
relative root system ® = ®(H, T). We view it as a subset of X*(T) ® R, which, in turn,
is identified with the dual A* of the space of translations A of A. Given an affine root «,
there is a unique element a € ®™ such that « is a positive rational multiple of the vector
part of «, and any a € ®™ occurs in this way. For ¢ e ®™, let T', = U o~ *(0), where the
union is over all the affine roots with vector part proportional to ¢. It is a union of
parallel hyperplanes in A. If c e C N T,, we let 7, be the reflection in the hyperplane
of T, containing c. It belongs to W. Our previous 7 is then rg , for any b in the interior
of the closed facet of codimension one of C not containing B. If now « € A is such that
¢ ez, then

(1) $(Irz I/T) = ¢**9, where 1< d(a, ¢) < d().
In fact, d(a, ¢) can take at most two values as ¢ varies (besides zero when ¢ ¢ I'z). The
group W, is generated by the rg ,, where B runs through the set A, of vertices of A

defining the type of the facet of G containing ¢. Then A, = {B |8 €A} is a basis of
the sub-root system @, of @™ given by

(2) O, ={a|cely, (xePy}

By the Bruhat decomposition we have P, = Il . IwI, whence

(3) [P,:I]= X g¢(w,c), where g(w,c):= §(Iwl/I).
wEW,
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As above, if w = 1,7, ... 7, is a reduced decomposition of w in W,, where 7, is one of
the 75 ,(B € A,), then
@ a(, ) =Tl o).

A.4. For the purpose of this discussion, we shall say that a special vertex ¢ of G
is very special if d(c) has the smallest possible value among the d(b)’s for 4 special. (There
are in fact at most two possible values.) We have d(b) = 1 if b is hyperspecial, as is
shown by inspection of the tables in [41], or could be deduced from 3.8.1 there, hence
any hyperspecial point is very special. The parahoric subgroup P, is said to be very
special if ¢ is so.

In the sequel we fix a very special vertex ¢,. We have

(1) d(B,c) =d(B) BeldA—{cq}),
hence
(2) d(B,co) > d(B,c) (BeA—{¢}, ceC).

The B’s for 8 € A — { ¢, } form a basis A, of ® and — ¢, is the dominant root (with respect
to A,). We identify W, in this way with the Weyl group W of ®. For ¢ € G, we now
identify W, with the subgroup W, of W generated by the reflections r5 (8 € A,).
Then @, is the subroot system of @™ generated by the corresponding roots and W, is
the Weyl group of ®@,. If «, 8 € A, are transformed into one another by an element
of W,, then d(a,¢) and d(B,¢) are equal. We may therefore extend the definition
of d(a, ¢) to all « such that « e ®, and ¢ € I'; by requiring that it be W -invariant. We
fix the ordering on ®™ defined by the basis A, and, for ¢ € C, let ®} (resp. ®;) be the
set of roots in @, which are positive (resp. negative) under this ordering. In view of the
relation between reduced decompositions and positive roots transformed into negative
ones, we can also write A.3 (4) as

(3) gw,e) = I f=o

e, wa <0
A.5. Proposition. — Let u be a Haar measure on H(K).

() w(P,) (c € C) is maximal among the volumes of parahoric subgroups of H(K) if and only
if ¢ is very special.
(i) Assume ¢ € C is not special. Then

(1) w(Pe) = u(P,). (1 4+ ¢([W: W] —1)).

In the proof we may assume that p = pq. Let first ¢ be special. In view of A.3 (3)
and A.4 (3), we have ¢(w, ¢;) = ¢q(w, ¢) for all w e W. But, if ¢ is not very special, we
have a strict inequality for at least one w, therefore, by A.3 (3), u(P,)> w(P,). This
shows (i) for ¢ special. On the other hand, the second factor on the right hand side
of (1) is > 2. Therefore (ii) implies (i) for nonspecial ¢’s. There remains to prove (ii),
which we now proceed to do.
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Assume ¢ to be nonspecial. Let
We={weW|w®)Cot}.

This is a set of representatives for the left cosets W/W . Let u e W% w e W, and a e ®}.
If w.a<0, then w.a e®,; and therefore uw.a < 0, hence

w0 NOF = (uw) ' O~ N D,

In view of A.4 (3), this shows that

() g(uw, ¢o) > q(w, c)
and
(3) quw, ¢g) > q.q(w, ¢) if (uw) ' d” N0t —w 1O~ NPt £+ @,

If (uw) *® N®T =w 1O~ NP, then
{ac®f,w.a<0}={ae® uw.a<0}.

Given w, this determines uw, hence can happen for at most one u € W¢; therefore

(4) 2 q(uw, ¢) > g(w, ¢) (1 + ¢([W: W] — 1)).

vEW

Then, in view of A.3 (3), the assertion (ii) follows from (4) by summing over w e W,.

A.6. Asin 2.4, we let E be the group of automorphisms of A defined by (Ad H) (K).
For ¢ € C, let ®, be the type of the face of G containing ¢, i.e., the subdiagram of A
whose vertices correspond to the faces of codimension one of C containing ¢, and E, be
the subgroup of = leaving @, stable. Then we have the following corollary, whichis 3.1 (*)
in a different notation.

A.1. Corollary. — p(P,) > u(P,) ($E,).

If ¢ is special, then E_ =1 and the assertion follows from A.5 (i). Let now ¢ be
non-special. In view of A.5 (ii), it suffices to show that
(1) L4+ g([W: W] —1)> $E,.

The left-hand side being > 3, we have only to consider the cases where $E,> 4. Then H
is either an inner form of type A, of K-rank r (r> 2), or a K-split form of type D,
(r= 4). In the former case, E is a cyclic group of order r 4 1. Since E < 1, it is a
cyclic group of some order m dividing r + 1 and ®, is isomorphic to the direct product
of m copies of the Weyl group of A, for some s < d, where d + 1 = (r 4 1)/m. Then W
has order < ((d + 1)!)™, therefore

[W:W]sr+1,

[

and hence the left-hand side of (1) is at least 2r - 1.
In the second case, &, is of order 4. It is casily verified that no subgroup of index 2
of W is the Weyl group of a subroot system. Hence the left-hand side of (1) is > 4.
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Appendix B: A theorem in Galois cohomology

At the end of the proof of 7.2 and 7.3, we have used a finiteness theorem in Galois
cohomology which is well-known in the number field case, but for which we do not
know of a reference in the function field case. The purpose of this appendix is to supply
a proof. The groups G and G’ are as before.

B.1. Theorem. — The fibres of the canonical map
(1) N Hi(E G) — T1 H(k,, G)
vEV

are finile.

[In other words, N} is proper with respect to the discrete topology.]

If % is a number field, this follows from Theorem 7.1 in [5]. From now on % is a
function field. Let N be the (scheme theoretic) kernel of the central isogeny ¢ : G — G'.
It is a finite group scheme of multiplicative type, contained in any maximal torus of G.
By definition, we have an exact sequence

(2) 1 > N->G->G -1

and, similarly, if T is a maximal k-torus of G and T’ = (T, an exact sequence

3) 1> N->T->T —»1.

By [15] and [8: III],

4) HY(%, G) = 0= HY(%,,G) (veV).
From this and the exact sequence associated to (2),
(5) ... > HY(%, G) - Hi(%, G') 3 H2(%, N),

it follows that & is injective. At first, it shows only that §~!(0) is the zero element. But
the case of an arbitrary fibre of 8 is reduced to the previous one by the familiar trick
of twisting by a cocycle ¢ representing a given element of H'(%, G’) and replacing the
original exact sequence (2) by

1 >N->G,»>G,~>1,

noting that G, is also semisimple and simply connected. See e.g. [5: 1.10], in the Galois
cohomology case, i.e., if N is reduced. But all this formalism is also available in the
flat cohomology case, as is shown in much greater generality in [13: IV, 4.3.4].

Similarly, 3,: H'(%,, G') — H*,, N) is injective. Since H?*(k,, N) is finite (see
Proposition 78 in [34]), this shows that H'(%,, G') is finite. [This had already been
pointed out by J.-C. Douai, C. R. Acad. Sci. Paris, 280 (1975), 321-323, who has showed
moreover that 3, is bijective, but we shall not need this result.]

21
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As a consequence, we are reduced to showing that the fibres of the analogous map

(6) Mo H(h, N) > T1 H¥(k,, N)
vE

are finite. But we now deal with commutative groups, so this amounts to proving that
ker 2% is finite. We consider the following commutative diagram with exact rows asso-
ciated to the exact sequence (3):

HY, T) —» H( T) -5 HkN) Y HYET)

|4 = ) b s

I, H'(, T) > I,H'(, T') > I,H%,N) -5 I,H%,T).

By [28: IV, 2.7], the kernel of AL is finite. This reduces our task to proving that
M = ker y N ker A} is finite. An element ¥ € M is the image of some element y € H'(%, T')
such that A.(y) belongs to the kernel of B, hence to the image of & Recall that for a
connected smooth group scheme, the image of the localization map A! belongs to the
subset of elements all but finitely many components of which are zero; following [28]

we denote it by II. By §2.6 in [28: IV], the kernels and cokernels of
AN H'(ET) - UHY%,, T) and Aa.:HY% T') - 1IHY(%,, T")

are finite. By diagram chasing, we see that the set of possible y’s is finite modulo the
image of « and the (finite) kernel of AL.. Its image under B is therefore finite, as was
to be proved.

B.2. Corollary. — Let R be a finite subset of V. Then the kernel of the map
M g i Hik, &) > I Hi(k,, @)
! vER
is finite.

This follows from B.1 and the fact that H'(%,, G’) is finite (see [5] in characteristic
zero, and the previous proof otherwise).

Appendix C: Verification of the inequalities f, > 1 and f** > 1

C.1. In this appendix, we use the notation of §7 freely. Our goal is to check
the assertion 7.4 (15), namely

(1) Jo>1 (0eVy),
(2) SF>1 unless Gis of type A, and ¢,<3 (veV,).

Ifv ¢S, U T(G), then (see 7.4 (13)) f, and £ are both equal to ¢, which is > 1

by 3.7 (1). If v e T(G), then f, = f;* by 7.4 (12). We have therefore to consider f,
for v €S, U T(G) and f;* for » €S,.
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C.2. Proof of (1) for v € T(G). In that case
So=fr=¢en"
Now recall from 3.7 (5) that
€= (g, + )7 grtt
(1) G s of type B, C, or E.,: Then r,=1r, n* =2 and
Soz (g, + D)7lght1 271> 1,
(ii)) G is of type E; Then n* =3 and r, = 6, hence
Sz (g, + 17137 > L
(iii) G is of type D,: Then r,=r> 4 and n* =4, so
So2 (g + 1)TT g AT 2 (g, + DT g > L
(iv) G is aform of type A, (which splits over k, since v € T(G)): Thenr, = r,n* =r + 1 and
Szl + )T+ DT>+ )72 ifr> 3.
If r = 2, then, as » e T(G), G/, is anisotropic and G(k,) = SL,(D,), where D, is a
division algebra of degree 3. By the inequality in 3.7 (6),
&> (¢ — 1) 5
SO £z, —1¢31>1.
C.3. Now let us assume that » €S,. Then f, = ¢,n™*if {, =¢®, %, is a ramified

field extension of %,, and f, = ¢, n~* otherwise.
Recall from 3.7 (2) that

¢ (g, + 1)7 7 g O
(i) Gis of type B, C or E;: Then n* =2, and r,=r> 2. So
e, %> (g, + 1)~ glorveg-2
>gre-b29=2>1 ifr> 3.
If r = 2, then G is of type B, and we need to use the exact value of ¢,
¢, = (g, — 1)7%¢% if G splits over %,,
e, = (2 —1)""¢® if G is of rank 1 over k,.
In both cases ¢, > ¢% and
Jo=1¢€2"%2>4t272> 1.
(i1) G is of type Eg Then n* = 3, 7, equals 4 or 6 and
Joz (g + D)o gpet 372> 1



164 : ARMAND BOREL AND GOPAL PRASAD
(iii) G s of type D,: Then 7,> 2.
a) I r,=2, GJk, is a triality form of type D,. In this case,
6 =1(4—17"¢
and fizen®=(q—1)"2¢472> 1,
b) If G/E, is not a triality form, then 7,2 3 and, using 3.7 (2), we get
Fo3 017> (g, + )70 gt 475,
which is > 1 if 7,> 3. On the other hand, if r, = 3, then G is of type D, and
e = (8T, (f) 7 ge =2 (g, + 1)7° g
(note that 4, is a group of type By; therefore, its dimension is 21) and
fi3 e w B> (g, + 1) g e > L,

A\

(iv) a) G is of type A, and splits over 75,,:‘ Then 7, =r, n®* =r + 1 and, by 3.7 (2),
2> (4, + )77 g7,
$0 o fize,n %2 (g, + V)" rget¥2(r 4 1)y"2>1 if r>2
Let now 7 = 2, G/k, must be isotropic since v € S,. Then
e, = (q,— 1)"2¢% if GJk, is of inner type A,,
¢, = (2 — 1)1 ¢ if G[k, is of outer type A,,
and in both cases,‘
f,=en*=¢3%>1 foral g,
(iv) &) G s of type A,, not splitting over 75,,: Sy =r¢,(r + 1)"" in this case. r, = /2
if 7 is even, and equals (r + 1)/2 if r is odd. By the inequality in 3.7 (2),
Sz (g, + )7 gt B 4 1),
and it can be easily checked that tile number on the right-hand side is greater than 1
if 7,> 3. Let now 7, = 2. Then G/, is an outer form of type A,, A; or A,. Making

use of the fact that $T,(f,) < (g, + 1)™ ([31: 2.8]), we see from the equality in 3.7 (2)
that, if G/, is of type 2A; or ?A,, then ' ‘ -

€2 (g, +1)7% g5
% £iz (g, + D)2 g5 1> 1 for all g,.
If G/ﬁ, is of type 2A,, then

o= (g,— 1)7" ¢
and fi=(q—1D"1¢3"1>1 for all q,.
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C.4. We now take up the verification of f7* > 1 for v € S; and G not of type A,.

(i) G is of type B, C, or E;: Then r,> 2, n* = 2, and
26,272 | W, (q~ )|},

where (#T (fv)) (r,,+dlm.1?,,)/2

Now recall that #T,,(f,,) < (g, + ) ([31: 2.8]), | W,(g™Y)|7'> 57" (4.4) and A,
is an absolutely almost simple group of the same type as G. As G is of type B, C, or E,
we conclude that dim.#, > 7,(2r, + 1), and so

DEP> (qv + 1)——rg q;v(rp+1) 2—2 5= %> 1 if 7‘,,2 4.

Let r, = 3. If GJk, is split, then

¢, = (g, — )72 g
_ l 2\8
and, as | W, (a7 )| > (—%’;—TT)—) (4.4),

we get Srz (g, — 1)~

> 1.

g+ 1 (o +1)°

If G/k, is a form of B; of relative rank 2, then

— 1)2\®
and so Sz (g, — D7 (g, + D)7 g 27 (( )) ~ET

#Tv(fv) = (gv — 1)2 (qv + 1)

27 (¢, — 1)*

3 912 2~2 (-(qv — 1)2)3 — 272 qtz(qv s 1)3

g+ 1

for all ¢,.

and

SO

If GJ&, is a form of type C; of relative rank 1, then
#Tv(fv) = v(qo + 1)2 (Qv - 1),
[ W@ )P = (s —D(F+ 1) (g + 1)
P g — 1)

T4+ D@+ (g, + D)2 (g,— 1)

)% (g, +

1)

>1

12/ 4 3 2 1
_ Gt atatetl)

Heo+ 1) (6 + 1) (g, + 1)

Let G now be of type B,. If it is split over %,, then
#Tv(fv) = (qv - 1)2’

[ Wel@™)IT = (g =D (g, — D (6 + D7 (g + D75
and if it is a form of type B, of &,-rank 1,

$T,(f,) = (£ — 1)
| Wo(@™ 1|7 = (¢, — 1) (g5 + 1) (q., + 17!

and so =G+ e+ D@+ D)7 g+ DT>,

in both cases.
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(i) G is of tpe D,:
a) GJk, is a triality form. Then
€y = (qo - 1)—2q3’
IWola™) [T = (=D (e—1D* (g — D7 (g + D7
50 P24 —D (-0 (¢ + )7 > 1
b) If G/k,, is not a triality form, then r,> 3, T (f,) < (¢, + 1) ([31: 2.8]);
A, is of type D, if G splits over %, and in this case the dimension of ., is r(2r — 1).
If G is not split over %, r,=r— 1 and ., is of type B,_,, its dimension
is (2r—1) (r—1).
We take up first the case where G (is of type D, and) splits over %,. Then
&> (¢, +1)7"q)
and so = > (g, + )45 7> 1 if r> 5.

Let us assume now that r = 4. Then there are the following possibilities for GJ/k,.
(1) G splits over &,. In this case #T,(f,) = (¢, — 1)* and
ey = (g, — 1)7*
therefore,
£ g0g, — 174471574 > 1
for all ¢,.
(2) GJk, is of type *Dgy (and it splits over %,). In this case
¥T.(F) = (65— 1) (g, — 1)%,
so & =1(¢— 17" (¢ — D7 &,
and hence, for all ¢,
frzafe — D7 (g, — DT> L
(3) G/k, is of type D, (and it splits over %,). Then #T,(f,) = (¢ — 1)% so
¢, = (¢ — 1)7% g%, In this case we need to know the precise value of | W, (q7%)|77,
which is
(e —1) ) (o + 17 (gg + 1)7% (g, + 17N
Hence
=47 — D (e—DE—-D G+ g+ 1) >1
for all g¢,.
(4) GJk, is of type *D, , (and it splits over k). Then #T,(f) = (¢ — 1) (¢, — 1),
hence
6= (G—17"(¢—1)7" ¢
In this case

W@ )| =(g —D(a—D(+D@—-D*(@a+) " (g—D2
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Hence, for all g¢,,
o @G- D@D+ 14— 1)
’ o+ 1) (o —D* (g — 1)
(5) Gk, is of type *DP; (and it splits over %,). In this case #T,(f,) = (¢* — 1)
&= (% — 17"
W@ [T =(@—-D(p+ D7+ D"
and so, for all ¢,,
fE =g — 1) (¢ — 1) (g, + D)7 > L.
¢) Let us assume that G is a form of type D, which does not split over &,. Then
r,=r—1 and 4, is of type B,_,. Therefore
dim, = (2r — 1) (r—1) and ¢,> (g + 1)~" VgD,
5o fEs 471 =Yg L ])= =D 5=,
From this it is easily seen that if 7> 5, then f;*> 1. Let r = 4. Then
$T,(f) = (g, — 1)* if G is of rank 3 over &,
and $T,f,) = (2 —1) (¢, + 1) if G is of rank 1 over k,.

> 1.

In the first case
> 47g, — 1)7%¢g2573> 1 for all g¢,.
In the second case, we need to know the value of | W, (q~*)|~! which is
(@ —1) (@ + D)7 (g + 1)
We get
24— D — D7 g+ D7 g+ DT> 1 for all g,.

(iii) Let Gk, be an inner form of type A,: Let D, be the central division algebra such
that G(%,) = SL, (D,) and d, be its degree. Then d,n, =1 + 1,

#Tv(fv) = (?’:” - l)”v (qv - 1)_1

so o= (gl — 17" (g, — 1) g7+
As | Wo(@™) [T = (g — )™ (g7 — 1)7,
we have

S = (4 17RO, — 1) (gt — 1),
which is easily seen to be greater than 1 if either 7 > 2 or ¢,> 3, and less than 1 if r = 2
and ¢, = 2. ~
(iv) Let Gk, be an outer form of type A, which splits over k,: In this case r, = r and
00> (g, + 1) gr v om
So EP > (T + 1)—2 5—1-(91J + 1)—f q;(r+8)12_

?
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This implies that f=> 1 if r> 6. If r =6, then T, (f) = (¢ — 1)%,
— @1

and SEZ2T257 g —1)"3g">1 for all g¢,.

If r=5, $T,(f,) = (¢ — 1)*(¢g, — 1) or (g2 — 1)2(g, + 1) depending on whether
the %, rank of G is 3 or 2;

&= (g, —1)7% (g, — )7 g7’
in the first case, and
6 ={(6—1)"" @+ )"
in the second case. As
2672575
we conclude that in the first case f;* > 1. In the second case, the value of | W, (q~1)| ! is
(o= 1D (g — 1D (g+ )7 (@ + D)7 (¢ + 17N
It is now simple to see that, for all ¢,,
Jor=6""¢ | W(q7h)[7T > 1.

Let now r = 4. Then

_ L) (= 1) (g2 —1
T = G- (W= e e
and e, = (g5 — )72 gt
So
o 5Pqtgs + D) (¢E—1)

> 1.

@D (@D (E -1 (g, + 1)

We assume now that r = 3. Then #$T,(f,) = (¢ — 1) (¢, — 1) if k,-rank G = 2
and $T,(f,) = (& — 1) (¢, + 1) if k-rank G = 1. In the first case

W@ )T =(G—D(g—-D(e+ D"+

and in the second case it is equal to (¢3 — 1) (2 + 1)~*. So, in both cases,
=g - DG -0 G+ DT g+ DT> L

Let r = 2. Then #T,(f,) = (g5 — 1), IW (@) t=1(g+1(g~—1) (g4 +1)"" and
Sr=3 g+ D (G + D) @+ D7

which is > 1 if ¢,> 3 and <1 if ¢, = 2.



FINITENESS THEOREMS FOR DISCRETE SUBGROUPS 169

(v) Let GJk, be an outer form of type A, which does not split over k, and r> 2:

If r = 2n, A, is an absolutely almost simple group of type B,, its dimension
is n(2n + 1),

&= (¢, — 1)7" g
and FE> @0 1) (g, — )7 guen 5,
sofF>1ifnz23 Ifn=2,

W@ )" =(@g—D(— D@+ g+
so, in this case, for all ¢,,

ST=5"qgs + ¢+ D (G + 17 (g + DT> 1

Now let 7 = 2z + 1 (n> 1). In this case the group .4, is of type C, ., its dimension
is (n+ 1) (2rn + 3). Morcover $T(f,) = (¢, — 1)*** if k-rank (G) =n + 1 and
#Tu(fo) = (qv - 1)” (Qv + 1) if kv'rank (G) = n. So

ﬁP> (2n + 2)—1 (g, — 1)—»-1 qg’n+1)(n+2) 5—n—1
in the first case; in the second case
fm’z (Qn + 2)—1 — 1\ 4+ 1)t (n+1(n+2) 5—n—1
v D) T 90

In both cases, f* > 1 if n> 2. So let us assume that » = 1. Then, G/%, is an outer form
of type A, which does not split over &,, and we have

W)t =(s—D (g — D+ (g + D"
if k-rank (G) =2, and

W@ )| T'=(@—D(+D g+
if krank G = 1. So

JE=4"q+ e+ DG+ D7 g+ )P
in both cases.

(vi) If G is of type Eq, Eg, F, or G;, the verification of £, > 1 is easy.
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