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Introduction. If P is a ring and M a left P-module, then homological alge-
bra attaches three dimensions to M, projective, weak, and injective(1)- By
taking the supremum of one of these dimensions as M ranges over all left
P-modules, one obtains one of the left "global" dimensions of R. Auslander
and Buchsbaum [3] and, subsequently, Serre [14], found it relevant and
fruitful, in the study of commutative Noetherian rings, to introduce a
"finitistic global" dimension defined by restricting the supremum of projec-
tive dimensions to finitely generated modules of finite projective dimension.
The impressive theory developed by these authors prompted Kaplansky to
consider, for general commutative rings, a similar finitistic dimension (waiv-
ing the restriction, in the above, to finitely generated modules), and, in a
seminar at the University of Chicago (1958), he proved the theorem below,
characterizing commutative rings R for which this dimension vanishes. This
result is the origin of the present paper.

Definition. If N is an ideal in a ring P, we say that N is left T-nilpotent
i"T" ior transfinite) if, given any sequence {at} of elements in N, there exists
an re such that ai • • • an = 0. iRight T-nilpotence requires instead that
a„ • • • oi = 0.)

Theorem (Kaplansky). The following are equivalent for a commutative
ring R.

(1) Every R-module has projective dimension 0 or «j.
(2) R is a direct sum of a finite number of locali2) rings, each with T-nil-

potent maximal ideal.

Now, the (finitistic) global dimensions described above are obviously spe-
cial examples of a whole family of (finitistic) global dimensions; we describe
each by specifying the type of dimension and the modules allowed to contend
in taking the supremum.

Part II of this paper presents the results of a general investigation of
these dimensions. The principal results here are characterizations of rings for
which various of these dimensions vanish, and, in some cases, equal one. In
particular, we prove the noncommutative extension of Kaplansky's theorem

Received by the editors July 20, 1959.
(') All rings have units, and all modules are unitary. For the notions of homological alge-

bra, we refer to the ubiquitous Cartan-Eilenberg [5].
(2) By a "local" ring we mean only one with a unique maximal left ideal.
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(Theorem 6.3). These results are of the same genre as the theorems describing
the vanishing of the ordinary global dimension [5, I, Theorem 4.2] and of
the weak global dimension (Auslander [2], and Harada [9]). Corollary 7.3
puts into better perspective the observation (see, e.g., [l]) that the global
dimension of a quasi-Frobenius ring is either 0 or oo. Part II concludes in
§8 with the proofs of certain general inequalities relating the several global
dimensions of a given ring, and it includes examples illustrating the preceding
results.

There is another related, but perhaps more interesting result growing out
of Kaplansky's theorem. This result provides one of those gratifying in-
stances in which several ostensibly diverse notions are shown to be intimately
related. Before stating the result, let us review the relevant background.

One easily sees that every module is an epimorphic image of a projective
(even free) module. Dually, every module Mean be embedded in an injective
module, though this is not as easily proved. In an elegant little paper [7],
Eckmann and Schopf prove not only this, but that there is a minimal such
embedding which is unique in a very strong sense. This minimal containing
injective is called the injective envelope of M.

If we dualize the notion of an injective envelope, we rediscover what are
essentially the "minimal epimorphisms" of Eilenberg and Nakayama [9],
and Eilenberg [8]. However, it is convenient for us to alter slightly the defini-
tion of minimal epimorphism here. We shall call the dual of an injective
envelope a "projective cover." In contrast with the Eckmann Schopf theo-
rem, projective covers seldom exist; e.g. an abelian group (Z-module) has a
projective cover only if it is free. Their usefulness is established in Eilenberg's
homological dimension and syzygies [8] wherein he studies the dimension
theory for modules having projective covers. Eilenberg calls a category of
modules "perfect" if every module in it has a projective cover. Thus, we
call a ring R left perfect if every left P-module has a projective cover. As an
interesting consequence of Eilenberg's results, if R is left perfect, then every
left P-module has the same weak as projective dimension.

We use the following terminology in the sequel: If R is a ring, the Jacob-
son radical is denoted J-radical, and we call R J-semi-simple if the 7-radical
is zero. Semi-simple shall mean 7-semi-simple and Artinian (i.e. with both
minimum conditions). The socle of a module is the sum of all simple sub-
modules.

Theorem P. Let Rbe a ring, N its J-radical. Then the following are equiva-
lent.

(1) N is left T-nilpotent and R/N is semi-simple.
(2) R is left perfect.
(3) Every left R-module has the same weak as projective dimension.
(4) A direct limit of left R-modules of projective dimension fg n has projective

dimension fgw.
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(5) A direct limit of projective left R-modules is projective.
(6) R satisfies the descending chain condition on principal right ideals.
(7) R has no infinite sets of orthogonal idempotents, and every nonzero right

R-module has nonzero socle.

The basic idea for this theorem came from the observation of S. Schanuel
that the rings described by Kaplansky's theorem are precisely the com-
mutative perfect rings. Moreover, we note that after the author communi-
cated the implications (1)«=>(2) (more precisely, Theorem 2.1) to Dock Sang
Rim, the latter developed proofs of them independently in a seminar at
Columbia University.

Part I of this paper is devoted to the proof of Theorem P. Theorem 2.1
generalizes the implications (1)<=*(2), and §3 provides various examples, in-
cluding a ring which is left, but not right, perfect.

This paper is an expansion of portions of the author's dissertation at the
University of Chicago, and it was written during his tenure as a National
Science Foundation Fellow. The author is deeply indebted to Professor Kap-
lansky as the source of most of the ideas and several of the proofs in what
follows. He is also grateful to S. Chase and S. Schanuel for numerous stimu-
lating conversations.

Part I. The Proof of Theorem P

1. (3)=K4)=K5)=K6)=K7)=>(1). We prove Theorem P by first establish-
ing the above implications in this section. Then in §2 we prove a theorem
which includes the implications (1)<=>(2). Finally, using information from
these arguments, we prove (2)=>(3) at the end of §2.

Notation. If A is a left (right) P-module, we shall denote by PdsiA),
WduiA), and Id^A) the projective, weak, and injective dimensions, respec-
tively, of A as a left (right) P-module.

(3) implies (4). Let A =Lim, Aa with PdRiAf) ^ re for all a. Then WdRiAf)
Sn for all a, so, since TorB commutes with direct limits, WduiA) Sn. There-
fore PdniA) S w, by (3).

(4) implies (5) is trivial.
We base the proof that (5) implies (6) on a close analysis of a special type

of projective resolution. This information, to which we shall refer several
times, is recorded in the following three lemmas.

Notation. Let {a„}„=i,2,... be any sequence of elements in a ring P.
Then we denote by [P, {an}, G]

(i) A free left P-module F with basis Xi, x% • • •,  and
(ii) The submodule G of P generated by {x„ —OnXn+i}„=i,2,.... The image

of xn in F/G we denote by z„.

Lemma 1.1. PJb(P/G) SI, and F/G is a direct limit of projective modules,
so WdniF/G)=0.
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Proof. Let Gn be the submodule of F generated by Xi — _._x2, • • ■ , x„
— anxn+i. We see easily that these are free generators of Gn and that F/Gn
is free. Therefore, G has {x„ — anxn+i} as a free basis, so Pd_.(F/G) fgl.
Moreover, F/G = Yimn^x F/Gn.

Lemma 1.2. 7/7* = {rGP|ro„ • • • ak+n = 0 for some n], then ((0): zf) =Jk-

Proof. We see this by viewing F/G as a direct limit, or with a coordinate
argument, as follows. Clearly JkQ((0): zf) since Zk = akZk+i = ■ • ■ =<**•••
_.;.+nZA+>.+i = • • • . Suppose rz„ = 0; i.e. rxkE:G. Then

rx* = _C »".(*. — a<xi+i).
_

By comparing coefficients of the x, we see that r. = 0 for i < fe and

r = r*

0 = r*+i — rkttk

0 =  Tk+n — rk+n-lOk+n-l-

Thus, rk+n  =  fk+n-iak+n-l  = rk+n-iak+n-iQk+n-1  =   ■  ■   ■   = rkak  •   ■  ■ ak+n-1
= rak • • • ak+n-i- But, for sufficiently large n, rk+n = 0.

Lemma 1.3. Suppose G is a direct summand of F. Then the chain
{ai ■ • ■ anR} of principal right ideals terminates.

Proof. Identifying F/G with a direct summand of F, we may write
F = F/G®G and x„=z„+g„, with gn(E.G. If we expand

Zn =  CnlXi +   •   •  •  + CnkXk +   •  •  "

then the row finite matrix ((c^)) is idempotent, since it defines the endomor-
phism which projects F onto F/G. Let 7 be the right ideal generated by
{cn, C12, • • • , Cin, ■ ■ ■ }, the coordinates of zi. Since Zi = ciiZ2= • ■ • =Oi • • •
cXnZ„+i= • • • we have 7Cl~l„ (a. • • • anR). We shall prove the lemma by
showing that, for some m, ai - ■ ■ amG.P

Since ((e,-.)) is idempotent, we have, for sufficiently large n, and for all j,
n+1

Clj  =   2-1 ClkCkj-
k—l

From Zk=ak ■ ■ • anzn+i we have Ckj = ak • ■ ■ ancn+ij for k fg n and for all j.
Therefore, for all j,

n+1

cij = 2-i cikOk ' • • anc„+ij
k=l

— I    Z-i ClkQk  •   •   ■ an jCn+lj.
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Let 7= £jij CifcO/t • • • a„. Then these equations assert that Zi=7z„+i. There-
fore, by (1.2), y — ai • ■ ■ anEJn+i', i-e. for some h^l, (7 —ai • • • af)an+i ■ ■ ■
an+h = 0. But then, if we set m = n+h, Oi • • • am = yan+i • • • an+hEI since

yEI-
Now we resume the proof of Theorem P.
(5) implies (6). Any decreasing chain of principal right ideals in P is

clearly expressible in the form {ai ■ ■ ■ anR} for some sequence {an} in R.
Form [F, {an}, G] as above. By (1.1), F/G is a direct limit of projectives,
so by (5), F/G is itself projective. Therefore, G is a direct summand of P, so,
by (1.3), the chain {ai • • • anR} terminates.

(6) implies (7). Clearly any infinite set of orthogonal idempotents gives
rise to an infinite decreasing chain of principal right ideals.

Now let A he a right P-module and O^aEA. If ocR is not simple there
exists an aiER such that (0) ^aaiR^aR. If aaiP is not simple, there exists
an a2ER such that (O^aaia^P^aaiP. If, continuing in this way, we never
reach a simple module, we produce a chain

aR 9^ aaiR f* • • • 9* aai ■ ■ ■ a„R p* • • • .

By (6) we know that, for some re, ax • • ■ an=ai ■ ■ ■ an+ir. Therefore,
aai ■ ■ ■ anEaai ■ ■ ■ an+iR; contradiction.

(7) implies (1). Let N he the J-radical of P and define inductively
No = (0), Na+i is such that Na+i/Na is the socle of the right P-module N/Na,
and, if a is a limit ordinal, Na = \fp<a Np. We know, by (7), that for some
ao, N = Nar Therefore, if aEN, we can define hia) to be the least a such that
aENa. Note that hia) can never be a limit ordinal since, if s£U/«a N$, then
aENp for some fi<a. Therefore, if a^O, we may write hia) =fi + l for some
fi. Now, since Np+iNENp, we have, for any bEN, hiab) <hia).

Suppose given a sequence {an} of elements of TV. Then if di • • • an^0
for all re, {hiai ■ ■ ■ af)} is an infinite strictly decreasing chain of ordinals, a
familiar impossibility. Thus, TV is a left P-nilpotent. In particular, since iV
is nil, it is well known that the nonexistence of an infinite orthogonal set of
idempotents is inherited on R/N. We shall show that R/N has minimum con-
dition by showing that R/N equals its right socle, S. In fact, since R/N is
J-semi-simple, each minimal right ideal is generated by an idempotent. It
therefore follows from the above remarks that 5 must be a finite direct sum
of minimal right ideals, so S is itself a direct summand of R/N. But then the
complementary summand is a right P-module with zero socle, so is zero by
(7).

Remarks, (i) The requirement on idempotents cannot be dropped in con-
dition (7), for the (weak) direct sum of infinitely many copies of a field
(together with the identity) satisfies the weaker hypothesis.

(ii) Condition (7) has a natural dual which asserts, in addition to the con-
dition on idempotents, that every nonzero left P-module has a simple epi-
morphic image. Left perfect rings have this property, and a ring with this
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property must have left 7-nilpotent 7-radical. Thus, to prove that the latter
are left perfect one may reduce to the 7-semi-simple case. We do not know
whether this condition characterizes left perfect rings.

2. Perfect and semi-perfect rings: (1)<=>(2)=>(3). In this section we
prove (1)<=>(2), so we must first make precise the various concepts discussed.

Let Af be a module, K a submodule. We call K essential in M if, for a sub-
module 5 of M, S(~\K = (0)=>S=(0). We call K superfluous in M if, for a
submodule S of M, S+K = M^>S= M. Given a homomorphism/: A—>B, we
call / essential if im / is essential in B; we call / minimal if ker / is superfluous
in A. An injective envelope of M is an essential monomorphism of M into an
injective module. A projective cover of M is a minimal epimorphism of a pro-
jective module onto M. We reserve the notation E(M) and P(M) for these
respective objects. Thus, E(M) is an injective module which we regard as
containing M, and Mis essential in £(M). P(M) denotes a projective module
together with an (undenoted) minimal epimorphism P(M)—->M—>(0). We
call a ring R left perfect if every left P-module has a projective cover, and we
call R left semi-perfect if every cyclic left P-module has a projective cover.

The equivalence (1)<=>(2) of Theorem P is the last statement of Theorem
2.1 below. With the information from the proof of Theorem 2.1 we easily
conclude the proof of Theorem P at the end of this section by showing (2)
=>(3).

Theorem 2.1. Let R be a ring, N its J-radical. Then the following are equiv-
alent.

(a) R is left semi-perfect.
(a') R is right semi-perfect.
(b) R/N is semi-simple and idempotents can be lifted modulo N.
(c) Every finitely generated left R-module has a projective cover.
(c1) Every finitely generated right R-module has a projective cover.
Moreover, R is left perfect if and only if, in addition to (b), N is left T-nil-

potent.

Since (b) is left-right symmetric, and (c) trivially implies (a), it suffices
that we prove (a)=>(b), (b)=>(c), and, finally, the last statement of the theo-
rem. We shall carry out the proof in this order, first preparing for (a)=>(b)
with the following four lemmas.

Lemma 2.2. Let I be a two sided ideal in R. Then if P—>_4—>(0) is an R-
projective cover of an R/I-module A, the induced map P/2P—>_4—>(0) is an
R/I-projective cover of A. Consequently, if R is (semi) perfect, so also is R/I.

Proof. Let K = ker(P-^A). Since IA = (0), IPCfK and the second map is
well defined. Moreover, P/IP is P/2-projective. If S/IP+K/IP' = P'/IP
then S+K=P, so S = P and therefore S/IP=P/IP; i.e. P/IP-+A is mini-
mal.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



472 HYMAN BASS [June

Lemma 2.3. (Uniqueness of projective covers.) Suppose (0)—>2£—>P
—>_4—>(0) is exact with P projective and P(A)—*A—>(0) is a projective cover.
Then we can write P=P(A)®P' with P'QK and KC\P(A) superfluous in
P(A).

Proof. Since P is projective, there exists a map P—>P(_4) making

P-*A-»(0)

V
P(A)

commutative. Since im(P-+P(_4))+ker(P(_4)-+_4) =P(A), im(P^P(A))
= P(A), so P—>P(_4) is an epimorphism and therefore splits. (We have used
the two defining properties of P(^4).) Thus, identifying P(A) with a direct
summand of P, we may write P = P(_4)©P', where P' = ker(P—>P(^4))
Cker(P—>_4) =K. Moreover, P—>_4 induces the given minimal epimorphism
P(A)-^A on P(A), and the induced kernel is KC\P(A). From this the last
statement follows.

Lemma 2.4. If I is a left ideal of R, then P—»na*2?/7—>(0) is minimal if and
only if IQN (the J-radical). Moreover, if R is left semi-perfect, either IQN or
I contains a nonzero direct summand of R.

Proof. 2 is superfluous in R if and only if 2 is comaximal with no proper
left ideal, i.e. if and only if 2 is contained in every maximal left ideal.

Suppose now that R is left semi-perfect, so that R/I has projective cover.
Then, by (2.3), we can write R=P(R/I)®P' with P'C2 and IC\P(R/I)
superfluous in P(R/I). If PV (0) we are finished. Otherwise P(R/I) = R, so
IQN by the first part of the lemma.

Lemma 2.5. If R is J-semi-simple and left semi-perfect then R has minimum
condition.

Proof. We shall establish this by showing that R equals its left socle, S.
If not, SCM for some maximal left ideal M. Applying (2.3) to the exact
sequence (0)-^M->P->P/M^(0) we have R = P®Q with <2CMand MfYP
superfluous in P. The latter condition guarantees that MC^P can contain no
direct summand of P, so also of P. Therefore, by the 7-semi-simplicity and
the last part of (2.4), MC\P = (0). But then P^R/M so PQS; contradiction.

Now we are prepared to prove: (a) implies (b). If R is semi-perfect so
also is R/N, by (2.2). Therefore, by (2.5), R/N has minimum condition.
Now we see easily that the ability to lift idempotents modulo N is tanta-
mount to being able to lift direct sum decompositions of R/N to decomposi-
tions of P. Suppose R/N = A®B, and let P-+_4-+(0) and Q-^B-^(0) be
projective covers. Then we check easily that P®Q—*A ®B—»(0) is a projec-
tive cover. But, by (2.4), R-^>R/N = A ©P—>(0) is a projective cover. There-
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fore, R = P®Q, by the uniqueness of the cover, and we have lifted the de-
composition of R/N.

The proof that (b) implies (d) and of half the final statement of Theorem
2.1 is based on the following lemma which is essentially proved in Eilen-
berg's paper [8].

Lemma 2.6. Suppose R/N is semi-simple and idempotents can be lifted
modulo N. Then for a left R-module A to have a projective cover, it suffices that
for any left R-module B requiring no more generators than A,B= NB=>B = (0).

Proof. Our hypotheses permit us to write A/NA = £i©Pel/7Vei, where
ei is an idempotent in P. Let P= £i©Pet-. Since P is projective, there is a
map P—>A making

P->A

\/
A/NA

commutative. We claim P—*A is a projective cover. If we show that
A—>A/NA is minimal (i.e. that NA is superfluous in A) it will follow that
P—>A is an epimorphism. To show then that P—fA is minimal, since,
ker(P—>.<4)Cker(P—=>A/NA) =NP, it will suffice to show NP is superfluous
in P. Thus we conclude the lemma by showing that if C = either A or P, and
5 is a submodule such that S+NC=C, then S=C; i.e. C/S=(0). But since
C/S clearly requires no more generators than A, this follows from the fact
that NiC/S) = C/S.

Now we prove, (b)=>(c). We need only observe that for any finitely
generated left P-module P, P=7VP=>P = (0). This is one form of "Naka-
yama's Lemma."

We use Lemma 2.6 also to prove: if P/7V is semi-simple and N is left
P-nilpotent, then P is left perfect. Since idempotents can be lifted modulo
any nil ideal, we need only show that for any module P?^(0), B^NB.

Suppose O^aGP and B=NB. Then

a = £ OiiCtto        o-ii E N,        a.j G B.
»i

Again, for each ii

oti, = £ 0tIi2 a,-,*,,        aili% E N,       a,,,-, G B.

We continue indefinitely in this way;

atv••<.-] = £ ail...inail...in,        air..in E N,        aiv..in E B.
i

Then for each w,
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a =      zZ     ailaili2...ail...inail...in,
il,i%, • • • ,in

so, there is a sequence ii„, ■ ■ ■ , in0 such that

a'loahoho   '   '   '   ff'lo!'2o-"in.   ^   "•

Letting such sequences be the vertices of a tree, in which an edge corresponds
to adjoining one new index, we see that each vertex has finite index, and
there exist paths of arbitrary length. Now by the Konig Graph Theorem we
conclude that there exists an infinite path; i.e. there exists a sequence
iu, iio, ■ • ■ , ino • • • such that for all n,

ailoahoi-lo   '   '   '   °'lo---»_.   ^   "•

This contradicts the 7-nilpotence of N. QED.
To conclude the proof of Theorem 2.1, it remains only to show, conversely,

that if R is left perfect, then R/N is semi-simple and N is left P-nilpotent.
The semi-simplicity is contained in the implication (a)=>(b) which we have
already proved. For the latter we require the following useful result.

Proposition 2.7. Let R be any ring, N its J-radical, and P a nonzero
projective left R-module. Then P^NP.

Proof. Suppose P®Q = F, a free module with a basis {*<} and PQNF.
Writing Xi = yi+Zi, ytQP, ztQQ, and expanding yi=zZiaax3< we have
atjQN tor all i and j. Since z< = x,-—y,-, z,= zZi (Si,—aif)Xj. We shall show
that the z/s are linearly independent. For suppose s_, • • • , z„ is any finite
set of them. If we project F onto the coordinates of x_, • • • , xn, then the
z.'s map onto elements z'. We assert even that zi, ■ ■ ■ , zf are linearly in-
dependent. For

n

Zi   = zZ (5« — aif)xf, i = 1, ■ • • , n.

Now, if 2 is the «X« identity matrix, and A = ((a,.)),-,,_i, ■•■,*, then, by [10,
I, §7, Theorem 3], A belongs to the 7-radical of the «X» matrix ring, so
I —A is invertible; in particular its rows are linearly independent. But the
rows of I — A are the coordinate vectors of the z..

Now suppose a_Xi+ • • • +a„xnQP. Then by projecting F onto Q (with
kernel P), we see that ci_zi+ • • • +a„z„ = 0. Therefore ai= • • • =an = 0;
i.e. P = (0).

Remark. One can show easily that for any projective module P, ATP is
the intersection of the maximal submodules of P. Thus, an equivalent formu-
lation of 2.7 asserts that "every nonzero projective module has a maximal
submodule."

Now, we will show that if R is left perfect, then N is left P-nilpotent. Let
{an} be a sequence of elements in N and form [P,  {an}, G] (see beginning
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of §1). Applying (2.3) to the exact sequence

(0) -» G -> F -> F/G -»(0)
we may write F = P®Q with QCG and GHP superfluous in P. Clearly,
F=G+NF,so

F = G + NF
= [iG C\ P) © Q] + [NP © NQ]
= [iG r\P) + NP] ®[Q + NQ]
= [iG C\P) + NP] © Q.

Therefore, P = iGC\P) +NP. But, since GC\P is superfluous in P, P = TVP.
Finally, by (2.9), P = (0); i.e. G = F. Hence, since lzi = 0, Oi • • • a„ = 0 for
some re, by (1.2). QED.

Theorem 2.1 is now proved.
We proceed finally to conclude the proof of Theorem P. We must prove

(2) implies (3); i.e. if P is left perfect and A is a left P-module, then PdR(A)
= WdR(A). For completeness, we reproduce Eilenberg's argument in [8].

Let

On "n—l
-> P„ -> P„_i->-> Po -> 4 -» (0)

be a projective resolution of A where each dn is a minimal epimorphism onto
the kernel of dn-i- Then, since dn(Pn) ENPn-i for every re, the sequence

-» R/N ®R Pn -* R/N <g>« Pn_i ->-> R/N ®R P0 -> (0)

has zero differentiation. But the homology of this complex is just
Tor«(P/TV, A). Therefore, Tor*(P/TV, A)^Pn/NPn. Hence, if WdR(A) <n,
Tor*(P/TV, A) = (0) so P„ = (0) and PdR <«.

Remark. Conditions (1) and (6) of Theorem P are purely algebraic, yet
we know of no nonhomological proof that (1) implies (6). In this connection
S. Chase has found an algebraic proof that any semi-primary ring satisfies
the descending chain condition on finitely generated ideals. We do not know
whether perfect rings enjoy this stronger property.

3. Examples. (1) Rings with minimum condition, and, more generally, all
semi-primary rings are both left and right perfect. If P is left or right per-
fect, then R is left Noetherian if and only if R has left minimum condition.

(2) If R/N has minimum condition and TV is a direct sum of two sided
nilpotent ideals, then P is left and right perfect, but need not be semi-
primary (even when P is commutative).

(3) If P is left perfect, so also is the ring of reXre matrices over P.
(4) If TV is left P-nilpotent, then the set of all finitely nonzero matrices

iiaa))i,j=i,t,-■ ■ ,aa€zN, is left P-nilpotent.
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(5) Let F be a field and let Fw denote the algebra of all row finite matrices
iian))i.j~i,t,--- with coordinates in P. We denote by TV the set of all strictly
lower triangular matrices in Fw having only a finite number of nonzero co-
ordinates, and let R he the subalgebra of Fw generated by TV together with
the identity. Then P has radical TV, P/TV^P, TV is left P-nilpotent and locally
nilpotent, but TV is not right P-nilpotent. Thus, P is left perfect but not right
perfect.

(6) Let P be a commutative ring. Then R is semi-perfect if and only if
R is a direct sum of finitely many local rings, and P is perfect if and only if,
moreover, their maximal ideals are P-nilpotent.

If R is left perfect, then Eilenberg has shown [8], essentially as in the
proof of (2.6) that every projective left P-module is a direct sum of direct
summands of P. We shall have occasion to use this fact below.

Remarks. If TV is left P-nilpotent, then every finite subset of TV generates
a nilpotent subring. In all the examples we know, however, TV is even nil-
potent on every finitely generated right ideal I in TV, (i.e. some power of TV
right annihilates I). One might ask whether in general every finitely generated
right ideal in TV must be nilpotent.

Another problem has to do with the (transfinite) "Loewy length" of TV,
where the "Loewy series" of TV is constructed as in the proof that (7) implies
(1) of Theorem P (§1). Specifically, can this length be an arbitrary ordinal,
or, say, must it be a countable one?

Part II. Finitistic dimension
4. Duality. If A is a left (right) P-module, we write

A* = KomRiA, R),

the dual of A, which is a right (left) P-module. As usual, the natural pairing
AXA*—>P defines annihilator relations between subsets of A and A*. 11 S
is a subset of ^4(^4*) we denote its annihilator in A*iA) by S'. We call S" the
closure of 5 and we call a submodule S of A closed if S = S". An elementary
argument shows that S' is a closed submodule for any subset 5 of A (or A*).

The pairing also provides us with a "natural" homomorphism

SA: A -> A**.

By this we mean that the S^ constitute natural transformations from the
identity functors to **. We call A torsionless if SA is a monomorphism, re-
flexive if 5^ is an isomorphism.

For a more detailed discussion of this duality theory, we refer the reader to
[6] or [13]. We shall list briefly below only those elementary facts that we
shall need in the sequel. The omitted proofs can be supplied directly from
the definitions.

(4.1) Given an exact sequence
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(0) -» A -> B -* _4/P -> (0)

the dual sequence

(0)->(A/B)*-*B*-> A*

is exact, and (A/B)* is thus identified with A' in B*.
(4.2) A module is torsionless if and only if every nonzero element in it

can be separated from zero by a homomorphism into P. Therefore, if KQA,
K is closed in A if and only if A/K is torsionless.

(4.3) The dual of a finitely generated projective (free) module is a projec-
tive (free) module with the same number of generators. If P is finitely gen-
erated and projective, then P is reflexive, so we shall use 5_> to identify P
with P**.

(4.4) PJ is a closed submodule of a free left P-module of rank n (< oo)
if and only if K = B*, where B is a right P-module generated by n elements.

Proof. Suppose K is a closed submodule of P. Then, by (4.1), K = K"
= (F*/K')*, so B = F*/K' works.

Conversely, given B, resolve, (0)—>27—»G—>P—>(0) with G free of rank n.
Then, by (4.1), B* = H', a closed submodule of G*, and G* is free of rank n,
by (4.3).

(4.5) A submodule of a projective module is torsionless. Conversely, if
P is right Noetherian, then a finitely generated torsionless left P-module B
can be embedded in a finitely generated free module.

Proof. The first statement is trivialized by (4.2). For the converse, resolve,
F->_3-*(0) with P free of finite rank. Then (0)->F>*->F* embeds B* in a
finitely generated right P-module, so B* is finitely generated (P being right
Noetherian). Now resolve B*, G^>73*—>(0), with G free of finite rank. Then
(0)—>P**—>G* embeds B** in a free module of finite rank. But, since B is tor-
sionless, 8b embeds B in B**.

(4.6) In the pairing of R with P* ( = P, with operators on the opposite
side), the duality annihilator relations are just the ordinary annihilator rela-
tions between left and right ideals.

(4.7) If P is an integral domain, then a finitely generated P-module is
torsionless if and only if it is torsion free. If A is finitely generated and torsion
free, then closed submodules are just pure submodules. If 7 is a nonzero ideal
in P, then 2*___;2-1.

(4.8) ("Dual Basis Lemma," [5, VII, Proposition 3.1]). A left P-module P
is projective if and only if there exist subsets {aA of P and {/»} of P* such
that, for each aQP,f,(a) =0 tor almost all *, and a= E</*(0)a;- Moreover, if
P is projective, {aA may be taken to be any generating set of P.

The next result tells us when an element generates a direct summand of a
free module.

(4.9) ("Unimodular Row Lemma"). Let F he a free left P-module with
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basis «i, • • • , u„, and let a = aiux + ■ - ■ +a„u„EF. Denote by A the right
ideal generated by ai, • • • , o„. Then the following are equivalent.

(i) A =eR for an idempotent eER-
(ii) Ra is a direct summand of F isomorphic to Re with a<->e.
Proof, (ii) is equivalent to the existence of a homomorphism /: F—*Re

with fia)=e and ea=a. The last condition is equivalent to A EeR, and,
since any homomorphism /: F—»P is defined by the images r* of m,-, we have
e=fia) = £,• a^iEA from the first condition.

5. Applications to homological dimension. We define the left finitistic
dimensions of P as follows:

1 GP (P) = sup {P^r (,4 )| ,4 is a left P-module}.
lFPDiR)=sup{PdRiA)\A is a left P-module with PdRiA) < °o }.
lFWDiR) =sup{WdRiA)\A is a left P-module with WdR(A) < oo }.
lFID(R)=sup{ldR(A)\A is a left P-module with IdR(A)<«>}.
lfPD(R) =sup{PdR(A)\A is a finitely generated left P-module with

PdR(A)<«>}.
We shall have need of
Proposition 5.1 (Auslander, [l]). lGDiR) = sup {PdRiA)\ A is a finitely

generated left R-module}.
The idea of the applications to follow is that, with sufficient chain condi-

tions, the duality theory provides an intrinsic description of the kernels that
arise in the early stages of finitely generated projective resolutions. If a
module has finite projective dimension, we can, by "moving out" in a resolu-
tion, reach kernels of all lower dimensions. Moreover, with appropriate chain
conditions, we can guarantee that we remain in the category of finitely gen-
erated modules, if we start there.

Thus, let A he a finitely generated left P-module, and let (0)—>PJ—>P
—>^4—*(0) be a resolution with P finitely generated and projective. Then, by
(5.1), 1GP(P)^2 if and only if the K that arise in this way all have PdSl-
Moreover, if P is left Noetherian, we see by the above remarks that lfPD(R)
SI it and only if these K never have Pd = l. What are the possible modules,
K: If P is left Noetherian, they are all finitely generated. Hence, if R is also
right Noetherian, they are, by (4.5) precisely the finitely generated torsion-
less left P-modules.

Suppose now that P is left and right Noetherian and we resolve, (0)—>H
->G->P:->(0), with G free of finite rank. Then by (4.2) and (4.4), the H that
arise in this way are precisely the duals of finitely generated right P-modules.
We have now proved:

Proposition 5.2. If R is left and right Noetherian, the following are equiva-
lent.

(1) 1GD(R)S2.
(2) The dual of any finitely generated right R-module is projective.
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Proposition 5.3. If R is left and right Noetherian, the following are equiva-
lent.

(1) l/PP(P)fgl.
(2) If A is a finitely generated right R-module, A* is projective only if A is.
(3) If A is a right ideal then A* is projective only if A is.

Proof. The discussion above shows that l/P7>(P)fgl if and only if no
finitely generated torsionless left P-module has Pd = 1.

(1) implies (2). Let A be a finitely generated torsionless right P-module
such that A* is projective, and let (0)—>P—>F—>_4—->(0) be a resolution with
F free of finite rank. Then we have (0)^_4*^F*^F*/_4*->(0) exact with
F*/A* = F*/K' finitely generated and torsionless. Therefore, since A* is
projective, our hypothesis forces A*=K' to be a direct summand of F*.
Therefore, K = K" is a direct summand of F, so A is projective.

(2) implies (1). Let B be a finitely generated torsionless left P-module,
and suppose (0)—>P—>F—*B—>(0) is a resolution with F free of finite rank
and K projective. Then we must show that K is a direct summand of F. In
the dual sequence (0)-^F*^F*^F*/P*^(0), F*/B* = F*/K' is a finitely
generated torsionless right P-module, and (F*/B*)* = (F*/K')* = K" =K,
by (4.1) and the fact that B is torsionless. Therefore, since K is projective,
our hypothesis guarantees that F*/B* is projective, so B* = K' is a direct
summand of F*, and, finally, K = K" is a direct summand of F.

(2) implies (3) is trivial, by (4.5) and the assumption that R is right
Noetherian.

(3) implies (2). Suppose A is a finitely generated torsionless right P-
module and A* is projective. Then A*®B is free of finite rank for some
finitely generated P. Moreover, (A ®B*)*=A*®B** =A*®B, so, since A is
projective if and only if A ®B* is, we may reduce to the case where A* is
free of finite rank.

Now write A* =R®S with 5 free of one smaller rank. Then (A/R')*
= R"=R, and A/R' is torsionless. Therefore, 8Aib>: A/R'->(A/R')** =R*
is a monomorphism, so A/R' is isomorphic to a left ideal. Now (3) implies
A/R' is projective. Hence, _4/P' = (_4/P')**=P*, and A =R'®R*. We finish
by applying induction to R', since (R')* = S.

Remark. The restriction of A to ideals in (5.1) (2), as was done in (5.2),
is not possible since any unique factorization domain satisfies the weaker
hypothesis.

By virtue of (4.7), the conditions of (5.2) become somewhat more con-
crete when R is an integral domain.

Corollary 5.3. If R is a Noetherian integral domain, the following are
equivalent.

(1) fPD(R) fgl.
(2) For any nonzero ideal I, 2_1 is invertible only when I is.
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This corollary is due originally to Kaplansky, as is the following theorem,
for commutative P. This result describes a consequence of the condition
lfPD(R)=0.

Theorem 5.4. The following are equivalent for any ring R.
(1) A finitely generated projective submodule of a projective left R-module is

always a direct summand.
(2) The left annihilator of a finitely generated proper right ideal is always

nonzero.
(3) (P/K)*9^(0) whenever P is a finitely generated projective right R-mod-

ule and K is a finitely generated proper submodule.

Proof. (1) implies (2). Let A = (au • • • , af) he a finitely generated right
ideal with no left annihilator. If Pis a free left P-module with basis Mi, • ■ ■ ,un,
and a=aiUi+ ■ ■ ■ +anunEF, then Ra~R (with a<-»l). By (1), therefore,
Ra is a direct summand of P, so, by the "unimodular row lemma" (4.9),
A=R.

(2) implies (3). By adding a finitely generated projective module to P
and K, if necessary, we may assume P is free. After successive removal of
basis elements lying in K we may assume that, relative to some basis of P,
K contains no element with first coordinate 1. Thus, we may write P = R®S,
where, if ir is the projective of P onto P, ir(K)^R. Therefore, since ir(K) is
finitely generated, (2) provides us with an r^O such that r7r(P) = (0). Now
define/: P-^R by f(x) =rir(x). Then/ induces a nonzero element of (P/K)*.

We shall need a lemma before concluding the proof.

Lemma 5.5. Let K be a finitely generated submodule of a finitely generated
projective right R-module S. Then (5.4) (3) implies that K' is a direct summand
of S* only when K is a direct summand of S.

Proof. If K' is a direct summand of S*, then K" is a direct summand of
S. Therefore, K" is finitely generated and projective. Moreover, since any
homomorphism K"—*R can be extended to S, we see that (K"/K)* = (0).
Therefore, by (5.4) (3), K = K", a direct summand of 5.

(3) implies (1). Let (0)—>()—>P be exact with P and Q projective left P-
modules and Q finitely generated. By adding a complement to make P free
and then reducing to a finitely generated direct summand containing Q, we
may assume also that P is finitely generated. We have the "restriction" map
P*—>Q*, and since every nonzero element of Q is separated from zero by a
homomorphism from P to P, (imP*)' = (0), a direct summand of Q** = Q.
Therefore, since im P* is finitely generated, (5.5) allows us to conclude that
im P* is a direct summand of Q*. Hence, im P* = (im P*)" = (0)' = Q*; i.e.
every homomorphism from Q to P can be extended to P.

Now take ai, • • • ,anEQ and fi, ■ ■ ■ ,/„ EQ* as in the Dual Basis Lemma
(4.8), and let gi be an extension of /,■ to P. We define g:P—>P by g(a)
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= zZi gi(a)ai. Then g is idempotent with range Q, so Q is a direct summand
of P.

Corollary 5.6. Consider the conditions:
(1) lfPD(R)=0.
(2) A proper finitely generated right ideal in R has nonzero left annihilator.
Then (1) always implies (2), and if R is left Noetherian they are equivalent.

6. The condition 1FPD(R)=0.

Lemma 6.1. Suppose that R is left perfect and that R satisfies the conditions
of Theorem 5.4. Then 1FPD(R)=0.

Proof. We must show that, if QQP with P and Q projective left P-mod-
ules, then Q is a direct summand of P. Since P is left perfect, Q is a direct
sum of cyclic modules (see §3), and, by our hypothesis, every finitely gener-
ated direct summand of Q is a direct summand of P. Therefore, Q is a direct
limit of direct summands of P, so P/Q is a direct limit of projective modules.
Therefore, since R is left perfect, P/Q is projective, by (5) of Theorem P.

The following result was proved by S. Chase by dualizing an argument
used in proving (7.1) of the following section.

Lemma 6.2. If R is left perfect, then 1FPD(R) =0 if and only if every simple
left R-module is a homomorphic image of an injective module.

Proof. Suppose 1FPP(P)=0 and let 5 be a simple left P-module. Then
we have the following commutative diagram,

^P(E)
s S

v
(0)-> P(S)-* E

S*
with £ injective, where/i exists because P(S) is projective,/2 exists because
f"i is a monomorphism and 1FPD(R) =0, and/3 exists since

ker(P(£) -*E)C NP(E) Q ker(P(£) -+S),

where N is the 7-radical of P, the last inclusion following from the simplicity
of 5.

Conversely, suppose given

(0) -» K -» P(B) ~^B-^(0)
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with K projective. We must show K = (0). If not, there exists an epimorphism
K—>S—>(0) with S simple (since K^NK and K/NK is completely reducible),
and, by hypothesis, an epimorphism £—>S—>(0) with £ injective. Now we
have the commutative diagram

(0)--P-->P(B)-*B->(0)->\\ i /
\x i '
\ s '
\   N        f I

\      \ /2       '

\      E    i /,
\ /

\      /
v *
S

(0)
where /i exists since K is projective, /2 because £ is injective, and /3 exists

ker(P(P) -> B) Q NP(B) Q ker(P(B) -» 5).
But then P—>5 can be factored through K-+P(B)—j>B, the zero map; con-
tradiction.

Theorem 6.3. The following are equivalent for any ring R.
(1) 1FPD(R)=0.
(2) R is left perfect and lfPD(R) =0.
(3) P is left perfect and every finitely generated proper right ideal has non-

zero left annihilator.
(4) P is left perfect and every simple left R-module is a homomorphic image

of an injective module.

Proof. Suppose that P is left perfect. Then (1) implies (2) trivially, (2)
implies (3) by (5.6), and (3) implies (1) by (6.1). Moreover, (1)<=>(4) by
(6.2). Therefore, it remains only for us to show that if 1FPD(R) =0, then P
is left perfect.

Let {ai ■ ■ ■ a„R] he a decreasing chain of principal right ideals in P.
Form [F, {an}, G] as in §1. Since PdR (F/G) fgl, by (1.1), our hypothesis
guarantees that Pdji(F/G) =0, so G is a direct summand of F. Therefore,
by (1.3), the chain terminates.

7. The condition 1FID(R)=0. Throughout this section all modules will
be left P-modules, all ideals left ideals, and all sequences exact. Our object
is to prove the following result, together with several interesting corollaries.
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Theorem 7.1. For any ring R the following conditions are equivalent.
(a) 1FID(R)=0.
(b) Every injective left R-module is the injective envelope of a submodule of

a projective module.
(c) Every nonzero left R-module contains a nonzero submodule isomorphic

to a iprincipal) ideal.
(d) Every injective left R-module is isomorphic to the injective envelope of a

direct sum of principal ideals.

To prove this theorem we exploit heavily the theorem of Eckmann-
Schopf (see Introduction), so we first review the fundamental properties of
injective envelopes. 11 A is a submodule of B we denote by A EeB the fact
that A is essential in B (see §2). Recall, an injective envelope £(.4) of A is
defined by the conditions: AEeEiA) and EiA) is injective.

The following lemma is essentially the dual of (2.3).
(7.2) If A EF and P is injective, then we can write P = P(yl) ©P'.
Proof. There exists a homomorphism P(^4)—>P extending the identity on

A, because P is injective; since AEeEiA) this must be a monomorphism.
Therefore, since EiA) is injective, its image must be a direct summand of P.

(7.3) It A EC and BEeC, then iAC\B)EeA.
Proof. Suppose O^aEA. Since BEeC there exists an rER such that

O^raGP. But then raEAC\B.
(7.4) If CEeB and A-+'B-+iO), then irliC)CA.
Proof. Suppose aEA, «G'""_1(0- Then 7r(a)^0 so there exists an rER

such that 0^nr(a) =ir(ra)GC. Therefore, O^raEir^iC).
Now we can initiate the proof of Theorem 7.1.
(a) implies (b). Let E he any injective module and let P—>E—>(0) be a

resolution with P projective. Then we have a commutative diagram

(0)->P-*E(P)
/•/2      //   ,

//'     /l
//■> ■   /V

£"<

(0)

where/i exists since E is injective, and/2 exists because/i is an epimorphism
and 1FID(R)=0. Thus, identifying P with a direct summand of P(P), we
can write E(P) =PffiP. Then, since PCP(P), (7.3) tells us that (PfYE) CeP,
soP = P(Pnp).

To prove (b)=Ka) we need
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Lemma 7.5. If F—>"£(P)—>(0) with F injective and P projective, then ir
splits.

Remark. This lemma can be thought of as describing the projective
objects in the category of injective modules.

Proof. Let Q = ir~l(P). ir| Q: Q —> P —> (0) so, since P is projective,
Q = K®P' where P = ker(ir| Q) =ker(-7r) and ir induces an isomorphism of P'
onto P. By (7.4) <2C<P; therefore, F = E(Q) =E(K)®E(P'). Since tt|P' is
an isomorphism, the uniqueness property of the injective envelope guaran-
tees that ir maps £(P') isomorphically onto £(P). Now let aQE(K); we
may choose $QE(P') such that ir(a)=ir(r3). Therefore a-$QKQE(K) so
r3QE(K)(~\E(P') = (0). Therefore ir(a) =ir(0) =0, so aQK; i.e. K = E(K), a
direct summand of P.

(b) implies (a). Suppose F—>*£—->(0) with F and £ injective; we must
show that 7r splits. There exists, by (b), a projective module P and a sub-
module SCP such that E = E(S). By (7.2), E(P)=E(S)®E' for some £'.
Hence, by adding £' to both F and £ and making ir the identity on £', we
may assume £ has the form £(P) with P projective. Now we are in the set-
ting of (7.5).

We have thus shown (a)«=>(b). We shall now prepare to prove (b)=>(c)
<=>(d)=>(b). To facilitate the arguments we introduce an auxiliary concept.

Definition. Let 2 be a nonvacuous family of nonzero cyclic P-modules.
A ^-module is a nonzero direct sum of modules each of which is isomorphic
to a member of 2. 2 is called an injective basis (IB) for P if every nonzero
injective P-module contains a 2-module.

Example (7.6) 2 = {P/2| 2 is any proper left ideal} is an IB.
Example (7.7) If R is right perfect then 2= {P/M| M is any maximal

left ideal} is an IB.
Proof. This follows from condition (7) of Theorem P.
Example (7.8) (Matlis, [12]). If P is commutative and Noetherian,

then 2= JP/P|P is any prime ideal} is an IB.
Proof. Let A be any nonzero P-module. Choose a^O in A such that

((0):a)=P is maximal. Then P must be a prime. For suppose rsQ-P and
sGP- Then rG((0): sa) QP, but, by the maximality of P (note that sa^O)
we have ((0): 5a) =P.

The existence of bases for vector spaces is generalized in this context by

Proposition 7.9. 2/2 is an IB for R, then every nonzero injective R-module
is the injective envelope of a H-module. In particular, for any ring R, every
injective R-module is the injective envelope of a direct sum of cyclic modules.

Proof. Let £ be a nonzero injective module. Consider subsets X of £
satisfying (i) Rx is a 2-module for each x in X, and (ii) the submodule gener-
ated by X is 2x©Px. These sets are inductively ordered by inclusion, so we
may take a maximal such set X. If D is the (2-) module generated by X
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then, by (7.2), we may write P = P(P)ffiP for some injective module P. If
.F?^(0) then P contains a S-module, by hypothesis. In particular, there is an
element yEF such that Ry is a S-module. Then IU|y} contradicts the
maximality of X. Therefore P=(0) and P = P(P).

Remark. In view of (7.9), condition (4) of Theorem (7.1) amounts to
saying that the principal ideals in R constitute an IB.

Lemma 7.10. A nonzero submodule of a projective module contains a nonzero
submodule isomorphic to a principal ideal.

Proof. The lemma easily reduces to showing that if P is a free module of
finite rank and O^aEF, then Ra contains a nonzero submodule isomorphic
to an ideal. Let us write the elements of P as re-tuples; then a = (ai, • • • , an).
We proceed by induction on the number of nonzero coordinates of a. If
a = (oi, 0, • • • , 0) then Ra=Rai. Alter a permutation of the basis, now, we
may assume Oi, • • • , ak9^0, ak+i= ■ ■ ■ =an = 0. Then if ((0):ai)= • • •
= ((0):a*), Ra=Rai. Therefore, say ((0): af) (£((0): af). Then choosing
rG((0): af), rG((0): af) we see that O^ra and ra has fewer nonzero coordi-
nates, so we finish by induction in Rra.

We now easily conclude the proof of Theorem 7.1.
(b) implies (c). Let A be a nonzero P-module. Then P(^4)=P(5) where

SCP for some projective module P. By (7.3), iAC\S)EeA, so AC\S^i0).
Therefore, by (7.10), AC\S contains a nonzero submodule isomorphic to an
ideal.

(c) implies (d). Condition (c) clearly implies that the set of nonzero prin-
cipal ideals is an IB. Proposition (7.9) then proves (d).

(d) implies (b) is trivial since a direct sum of ideals is clearly embeddable
in a projective module. QED.

Now suppose 1PLD(P)=0 and that A is a nonzero P-module such that
every nonzero cyclic submodule of A is isomorphic to A. Then (c) implies
that A is embeddable in P. We have thus proved

Corollary 7.11. If 1PLD(P)=0, then every simple left R-module is iso-
morphic to an ideal; i.e. every left ideal has nonzero right annihilator.

Corollary 7.12. If R is commutative and PPD(P)=0, then R/P is iso-
morphic to an ideal for every prime P.

These corollaries can be reversed in special cases.

Corollary 7.13. // R is right perfect the following are equivalent.
(1) lFIDiR)=0.
(2) Every simple left R-module is isomorphic to an ideal.
(3) Every left ideal has nonzero right annihilator.

Proof. The equivalence of (2) and (3) is trivial and (1) implies (2) by
(7.11). But (2) together with example (7.7) clearly implies that the principal
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ideals in P constitute an 7P.

Corollary 7.14. If R is commutative and Noetherian, then FID(R) =0 if
and only if every prime in R belongs to (0). Thus, FID(R) =0 implies that R
has only finitely many primes, so the Krull dimension of R is at most one.

Proof. Example (7.8) shows that if R/P is embeddable in P for every
prime P then the principal ideals in P constitute an IB. The last statements
are well known from Noetherian ideal theory.

Remark. Corollary (7.14) suggests, for P commutative and Noetherian,
that FID(R) 5: (Krull dimension of P) — 1. This fact is proved in [4].

8. Comparison of finitistic dimensions. Examples. Let P be a ring and let
K denote the rational numbers modulo 1. If B is an abelian group we write
P* = Homz(P, K); when B is a left P-module B* is a right P-module. The
duality isomorphism [5, VI, Proposition 5.1] then asserts, in the situation
(AB, rB), that

ExtB(A, B*) = TorR(A,B)*.

From this we conclude that WdR(B) =IdR(B*), and hence 1FWD(R)
fgrF2P(P).

Now suppose that P is left Noetherian and we are in the situation
(_4r, Br) with A finitely generated. Then the duality isomorphism [5, VI,
Proposition 5.3] asserts that

YorR(B*, A) = ExtR(A, B)*.

But it is sufficient, when computing injective dimension, to test B against
finitely generated modules. We therefore conclude that IdR(B) = WdR(B*),
and consequently 1FWD(R) ^rFID(R)(3).

These results suggest comparing 1FPD(R) and 1FIFD(P) with rFID(R)
rather than 1FID(R). In fact, examples of S. Chase and of Rosenberg and
Zelinsky show that, even for finite dimensional algebras, 1FPD(R)
( = 1FWD(R)) and 1FID(R) can differ more or less arbitrarily. However, the
conclusions above, together with some elementary considerations, allow us
to determine the following inequalities.

(8.1) General P

1GD(R) ̂  1FPD(R) __; lfPD(R),
rFID(R) __; 1FWD(R).

(8.2) P left Noetherian

( 1FPD(R) )1GD(R) >  \ > _S lfPD(R).
~   \rFID(R) = 1FWD(R))

(3) These applications of the duality homomorphisms are due to E. Matlis (oral commu-
nication).
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(8.3) P left perfect

lGDiR) ^ rFIDiR) ^ 1FPD(R) = lFWDiR) 5; lfPD(R).

(8.4) P left Artinian (= left minimum condition)

IGDiR) ^ rFIDiR) = 1FPD(R) = 1FWD(R) ^ \fPD(R).
A number of questions regarding the completeness of these inequalities

can be raised. For example, let R be left perfect. Then one might inquire
whether the chain condition is necessary for the equality of fFIDiR) and
1FPD(R). Our results permit us to answer this affirmatively. For, by (6.3),
1PPP(P)=0 if and only if every finitely generated proper right ideal has
nonzero left annihilator, and, by (7.13), rFID(R)=0 if and only if every
proper right ideal has nonzero left annihilator.

Example 8.5 (Chase). The ring R below has the following properties:
(i) P is semi-primary (the cube of the radical is zero).
(ii) P has an involution.
(iii) Every finitely generated proper right ideal in P has nonzero left

annihilator and
(iv) P has a maximal right ideal with zero left annihilator. Hence

rFIDiR) > lFPDiR) = 0,    and    1FID(R) > rFPD(R) = 0.

Let K be a field, Fan infinite dimensional P-space with a nondegenerate
symmetric inner product [ , ]: FX V—>K, and let 5 be the truncated poly-
nomial ring P[x]/(x2). Then P is the ring of all 2X2 "matrices"

C     JX       aEK,u,vEV,fix)ES,
\u    fix)/

with coordinate wise addition and multiplication defined by

/a      v \ /a'      v'  \      /        aa' av' + vf'(0)      \

\u  f(x))\u' fix)) ~ \ua' +fi0)u'   fix)f'ix) + [u, v]x) '

The associativity depends on the fact that, lor f(x)ES, xf(x)=xf(0).
Rosenberg and Zelinsky have raised the following questions, which are

unanswered even for finite dimensional algebras: (i) Is lFPDiR) = 1/PP(P)?
And (ii) is lfPD(R) finite? Question (i) is answered affirmatively, even for
left perfect rings, when lfPD(R)=0, by (6.3).

If P is commutative, then our results show easily that FPDiR) =0 implies
FID(R)=0. It seems plausible that, for P commutative, one always has
FPD(R) 2: FID(R). This is indeed true if P is also Noetherian, and is proved
in [4]. Moreover, the example below shows that the inequality may be strict,
so this, together with example (8.5) shows that there is no universal in-
equality relating 1FPD(R) to rFID(R).
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Example 8.6. The ring P below has the following properties:
(i) P is commutative with an infinite set of orthogonal idempotents.
(ii)  FPD(R)>FID(R)=0.
Let S be the ring of all sequences (a0, au ■ ■ ■ , an, - - ■ ) with coordinates

in the integers modulo four (with pointwise operations). If en is the sequence
with 1 in the nth place and zeroes elsewhere, we take P to be the subring of
5 generated by {en|w = l, 2, • • • }, the identity, and the sequence
(2, 0, • • • , 0, • • • )• (Note that e0 £P.)

Finally, for examples of semi-primary rings P with 1FID(R) =0 (and hence
also rFPD(R)=0), we refer the reader to Auslander [l, Propositions 14 and
15]. In particular, these include all quasi-Frobenius rings.
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