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Abstract. Let � be a finite-dimensional algebra and G be a finite group whose

elements act on � as algebra automorphisms. Assume that � has a complete set E

of primitive orthogonal idempotents, closed under the action of a Sylow p-subgroup

S � G. If the action of S on E is free, we show that the skew group algebra �G and

� have the same finitistic dimension, and have the same strong global dimension if

the fixed algebra �S is a direct summand of the �S-bimodule �. Using a homological

characterization of piecewise hereditary algebras proved by Happel and Zacharia, we

deduce a criterion for �G to be piecewise hereditary.

2010 Mathematics Subject Classification. 16G10, 16E10.

1. Introduction. Throughout this note let � be a finite-dimensional k-algebra,

where k is an algebraically closed field with characteristic p � 0, and let G be a finite

group whose elements act on � as algebra automorphisms. The skew group algebra

�G is the vector space � ⊗k kG equipped with a bilinear product · determined by

the following rule: for λ,μ ∈ �, g, h ∈ G, (λ ⊗ g) · (μ ⊗ h) = λg(μ) ⊗ gh, where g(μ)

is the image of μ under the action of g. We write λg rather than λ ⊗ g to simplify the

notation. Correspondingly, the product can be written as λg · μh = λg(μ)gh. Denote

the identity of � and the identity of G by 1� and 1G respectively.

It has been observed that when |G|, the order of G, is invertible in k, �G and

� share many common properties [4, 11, 13]. We wonder for arbitrary groups G,

under what conditions this phenomenon still happens. This problem is considered in

[9], where under the hypothesis that � has a complete set E of primitive orthogonal

idempotents closed under the action of a Sylow p-subgroup S � G, we show that �

and �G share certain properties such as finite global dimension, finite representation

type, etc., if and only if the action of S on E is free. Clearly, this answer generalizes

results in [13] since if |G| is invertible in k, the only Sylow p-subgroup of G is the trivial

group.

In this note, we continue to study representations and homological properties of

modular skew group algebras. Using the ideas and techniques described in [9], we

show that � and �G share more common properties under the same hypothesis and

condition. Explicitly, we have:

THEOREM 1.1. Let � and G be as above, and let S � G be a Sylow p-subgroup.

Suppose that � has a complete set E of primitive orthogonal idempotents closed under

the action of S. Then:
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(1) If the action of S on E is free, then �G, �, and �S (the fixed algebra by S)

have the same finitistic dimension.

(2) �G has finite strong global dimension if and only if �S has finite strong global

dimension and S acts freely on E. In this situation, �G and �S have the same

strong global dimension; moreover, if � ∼= �S ⊕ B as �S-bimodules, then �S

and � have the same strong global dimension.

In [4], it has been proved that if � is a piecewise hereditary algebra (defined in

Section 3) and |G| is invertible in k, then �G is piecewise hereditary as well. The

second part of the above theorem generalizes this result by using the homological

characterization of piecewise hereditary algebras by Happel and Zacharia in [6].

We introduce some notations and conventions here. Throughout this note all

modules are finitely generated left modules. Composition of maps and morphisms is

from right to left. For an algebra A, gl. dim A, fin. dim A, and sgl. dim A are the global

dimension, finitistic dimension, and strong global dimension (defined in Section 4) of

A respectively. For an A-module M, pdA M is the projective dimension of M. We use

A-mod to denote the category of finitely generated A-modules. Its bounded homotopy

category and bounded derived category are denoted by Kb(A) and Db(A) respectively.

2. Projective dimensions and finitistic dimensions. We first describe some

background knowledge and elementary results. Most of them can be found in literature.

We suggest the reader to refer to [1–3, 9–14] for more details.

For every subgroup H � G, elements in H also act on � as algebra automorphism,

so we can define a skew group algebra �H, which is a subalgebra of �G. The induction

functor and the restriction functor are defined in the usual way. For a �H module V ,

the induced module is V ↑G
H= �G ⊗�H V , where �G acts on the left side. Every �G-

module M can be viewed as a �H-module, denoted by M ↓G
H . Observe that �G is

a free (both left and right) �H-module. Therefore, these two functors are exact, and

perverse projective modules.

PROPOSITION 2.1. Let H � G be a subgroup. Then:

(1) Every �H-module V is isomorphic to a summand of V ↑G
H↓G

H .

(2) If |G : H| is invertible in k, then every �G-module M is isomorphic to a

summand of M ↓G
H↑G

H .

Proof. This is Proposition 2.1 in [9]. �

The above proposition immediately implies:

COROLLARY 2.2. Let H � G be a subgroup. For every M ∈ �G-mod, pd�H M ↓G
H�

pd�G M. If |G : H| is invertible in k, then the equality holds.

Proof. Take a minimal projective resolution P• → M of �G-modules and apply

the restriction functor termwise. Since this functor is exact and preserves projective

modules, we get a projective resolution P• ↓G
H→ M ↓G

H of �H-modules, which might

not be minimal. Thus pd�H M ↓G
H� pd�G M, which is true even for the case that either

pd�H M ↓G
H= ∞ or pd�G M = ∞.

Now, suppose that |G : H| is invertible in k. Take a minimal projective

resolution Q• → M ↓G
H of �H-modules and apply the induction functor termwise.

Since, it is exact and preserves projective modules, we get a projective resolution
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Q• ↑G
H→ M ↓G

H↑G
H of �G-modules, so pd�G M ↓G

H↑G
H� pd�H M ↓G

H . But M is

isomorphic to a summand of M ↓G
H↑G

H , so pd�G M � pd�H M ↓G
H . Putting two

inequalities together, we get the equality. �

Let E = {ei}i∈[n] be a set of primitive orthogonal idempotents in �. We say it is

complete if
∑

i∈[n] ei = 1�. Throughout this note we assume that G has a Sylow p-

subgroup S such that E is closed under the action of S. That is, g(ei) ∈ E for all i ∈ [n]

and g ∈ S. In practice, this condition is usually satisfied. A trivial case is that |G| is

invertible in k, and hence S is the trivial subgroup.

We introduce some notations here. Let �S be the space consisting of all elements

in � fixed by S. Clearly, �S is a subalgebra of �, and S acts on it trivially. For every

M ∈ �S-mod, elements v ∈ M satisfying g(v) = v for every g ∈ S form a �S-module,

which is denoted by MS. Let FS be the functor from �S-mod to �S-mod, sending M to

MS. This is indeed a functor since for every �S-module homomorphism f : M → N,

MS is mapped into NS by f .

We collect in the following proposition some results taken from [9].

PROPOSITION 2.3. Let S � G and E be as above and suppose that E is closed under

the action of S. Then:

(1) The set E is also a complete set of primitive orthogonal idempotents of �S,

where we identify ei with ei1S.

(2) �S = {
∑

g∈S g(μ) | μ ∈ �}.

(3) The global dimension gl. dim �S < ∞ if and only if gl. dim � < ∞ and the

action of S on E is free.

Moreover, if the action of S on E is free, then

(4) �S is a matrix algebra over �S, and hence is Morita equivalent to �S.

(5) The functor FS is exact.

(6) The regular representation �S�S ∼= �|S|, where � is the trivial �S-module.

(7) A �S-module M is projective (resp., injective) if and only if the �-module

�M is projective (resp., injective).

Proof. See Lemmas 3.1, 3.2, 3.6 and Propositions 3.3, 3.5 in [9]. �

Recall for a finite-dimensional algebra A, its finitistic dimension, denoted

by fin. dim A, is the supremum of projective dimensions of finitely generated

indecomposable A-modules M with pdA M < ∞. If A has finite global dimension,

then fin. dim A = gl. dim A. The famous finitistic dimension conjecture asserts that the

finitistic dimension of every finite-dimensional algebra is finite. For more details, see

[15].

An immediate consequence of Proposition 2.1 and Corollary 2.2 is:

LEMMA 2.4. Let H � G be a subgroup of G. Then fin. dim �H � fin. dim �G. If

|G : H| is invertible in k, the equality holds.

Proof. Take an arbitrary indecomposable V ∈ �H-mod with pd�H V < ∞ and

consider Ṽ = V ↑G
H . We claim that pd�G Ṽ < ∞. Indeed, by applying the induction

functor to a minimal projective resolution P• → V termwise, we get a projective

resolution �G ⊗�H P• → Ṽ . The finite length of the first resolution implies the

finite length of the second one. Therefore, pd�G Ṽ < ∞. Consequently, pd�G Ṽ �

fin. dim �G.
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By Corollary 2.2, pd�G Ṽ � pd�H Ṽ ↓G
H . Since, V is isomorphic to a summand of

Ṽ ↓G
H by Proposition 2.1, we get fin. dim �G � pd�G Ṽ � pd�H Ṽ ↓G

H� pd�H V . In

conclusion, fin. dim �G � fin. dim �H.

Now, suppose that |G : H| is invertible in k. Take an arbitrary indecomposable

M ∈ �G-mod with pd�G M < ∞. By applying the restriction functor ↓G
H to a

minimal projective resolution Q• → M termwise, we get a projective resolution of

M ↓G
H , which is of finite length. Therefore, pd�H M ↓G

H� fin. dim �H. By Corollary

2.2, we have pd�G M = pd�H M ↓G
H� fin. dim �H. In conclusion, fin. dim �G �

fin. dim �H. Combining this with the inequality in the previous paragraph, we have

fin. dim �G = fin. dim �H. �

LEMMA 2.5. If a Sylow p-subgroup S � G acts freely on E, then fin. dim �S �

fin. dim �.

Proof. Take an arbitrary indecomposable M ∈ �S-mod with pd�S M = n < ∞

and a minimal projective resolution:

· · · → 0 → Pn → · · · → P1 → P0 → M → 0.

Regarded as �-modules, we get a projective resolution:

· · · → 0 →� Pn → · · · →� P1 →� P0 →� M → 0.

Clearly, for every 0 � s � n, the syzygy �s(M) viewed as a �-module is a direct

sum of �s(�M) and a projective �-module. We claim that for each 0 � s � n, the

syzygy �s(�M) �= 0. Otherwise, �s(M) viewed as a �-module is projective. By (7)

of Proposition 2.3, �s(M) is a projective �S-module, which must be 0. But this

implies pd�S M < n, contradicting our choice of M. Therefore, for each 0 � s � n,

�s(�M) �= 0. Consequently, �M has a summand with projective dimension n, so

n � fin. dim �. In conclusion, fin. dim �S � fin. dim �. �

Now, we can prove the first statement of Theorem 1.1.

PROPOSITION 2.6. If G has a Sylow p-subgroup S acting freely on E, then �G and �

have the same finitistic dimension.

Proof. Since |G : S| is invertible in k, by Lemma 3.1, fin. dim �G = fin. dim �S.

Also by this lemma, fin. dim �S � fin. dim � since S contains the trivial group. The

previous lemma tells us fin. dim �S � fin. dim �. Putting all these pieces of information

together, we get fin. dim �G = fin. dim � as claimed. �

From the previous proposition we conclude immediately that if the action of S

on E is free, then the finiteness of finitistic dimension of � implies the finiteness of

finitistic dimension of �G. We wonder whether this conclusion is true in general. That

is,

CONJECTURE 2.7. Let �, G, E and S be as before and suppose that E is closed under

the action of S. If fin. dim � < ∞ (or even stronger gl. dim � < ∞), then fin. dim �G <

∞.

Hopefully the proof of this question can shed light on the final proof of the finitistic

dimension conjecture.
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3. Strong global dimensions and piecewise hereditary algebras. A finite-

dimensional k-algebra A is called piecewise hereditary if the derived category Db(A)

is equivalent to the derived category Db(H) of a hereditary abelian category H as

triangulated categories; see [5–8]. If A is piecewise hereditary, then gl. dim A < ∞ since

the property having finite global dimension is invariant under derived equivalence [5].

Therefore, Db(A) is triangulated equivalent to the homotopy category Kb(AP), where

AP is the full subcategory of A-mod consisting of all finitely generated projective

A-modules.

Now, let A be a finite-dimensional algebra with gl. dim A < ∞. Since Db(A) ∼=

Kb(AP), we identify these two triangulated categories. For every indecomposable object

0 �= P• ∈ Kb(AP), consider its preimages P̃• ∈ Cb(AP), the category of so-called perfect

complexes, i.e., each term of P̃• is a finitely generated projective A-module, and all but

finitely many terms of P̃• are 0. We can choose P̃• such that it is minimal. That is, P̃•

has no direct summands isomorphic to

· · · �� 0 �� Ps id
�� Ps+1 �� 0 �� · · · ,

or equivalently, each differential map in P̃• sends its source into the radical of

the subsequent term. Clearly, this choice is unique for each P• ∈ Kb(AP) up to

isomorphism, so in the rest of this note we identify P• and P̃•. Hopefully this

identification will not cause trouble to the reader.

Take an indecomposable P• ∈ Kb(AP) and identify it with P̃•. Therefore, there

exist r � s ∈ � such that Pr �= 0 �= Ps, and Pn = 0 for n > s or n < r. We define its

length l(P•) to be s − r. 1 The strong global dimension of A, denoted by sgl. dim A, is

defined as sup{l(P•) | P• ∈ Kb(AP) is indecomposable}. By taking minimal projective

resolutions of simple modules, it is easy to see that sgl. dim A � gl. dim A. Moreover, if

A is hereditary, then sgl. dim A = gl. dim A � 1 (see [5]). It is not clear for what algebras

of finite global dimension, sgl. dim A = gl. dim A.

Happel and Zacharia proved the following result, characterizing piecewise

hereditary algebras.

THEOREM 3.1 (Theorem 3.2 in [7]). A finite-dimensional k-algebra is piecewise

hereditary if and only if sgl. dim A < ∞.

In [4] Dionne, Lanzilotta, and Smith show that if � is a piecewise hereditary

algebra, and |G| is invertible in k, then the skew group algebra �G is also piecewise

hereditary. This result motivates us to characterize general piecewise hereditary skew

group algebras. Using the above characterization, we take a different approach by

showing that sgl. dim �G = sgl. dim � under suitable conditions.

We first prove a result similar to Lemma 2.4.

LEMMA 3.2. Let H be a subgroup of G and suppose that gl. dim �G < ∞. Then

sgl. dim �H � sgl. dim �G. The equality holds if |G : H| is invertible in k.

Proof. Note that gl. dim �H � gl. dim �G < ∞ by (2) of Corollary 2.2 in [9]. Take

an indecomposable object P• ∈ Kb(�HP). Up to isomorphism, its minimal preimage

1By this definition, the length of a minimal object X• ∈ Kb(AP) counts the number of arrows between the
first nonzero term and the last nonzero term in X•, rather than the number of nonzero terms in X•. In
particular, a projective �-module, when viewed as a stalk complex in Kb(AP), has length 0.
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in Cb(�HP) can be written as:

· · · → 0 → Pr dr
�� · · · �� Ps−1

ds−1
�� Ps → 0 → · · · .

Applying the exact functor �G ⊗�H − termwise to the above complex, we get an object

P̃• = P• ↑G
H∈ Cb(�GP) as follows:

· · · → 0 → �G ⊗ Pr 1⊗dr

�� · · · �� �G ⊗ Ps−1
1⊗ds−1

�� �G ⊗ Ps → 0 → · · · .

Applying the restriction functor termwise, the second complex gives an object P̃• ↓G
H∈

Cb(�HP). We claim that P• is isomorphic to a direct summand of P̃• ↓G
H .

Indeed, there is a family of maps (ιi)i∈� defined as follows: for i > s or i < r, ιi = 0;

for r � i � s, ιi sends v ∈ Pi to 1 ⊗ v ∈ �G ⊗�H Pi. The reader can check that (ιi)i∈�

defined in this way indeed gives rise to a chain map ι• : P• → P̃• ↓G
H .

We define another family of maps (δi)i∈� as follows: for i > s or i < r, δi = 0;

for r � i � s, δi sends h ⊗ v ∈ �H ⊗�H Pi to hv ∈ Pi and sends all vectors in g ⊗ v ∈⊕
1�=g∈G/H g ⊗ Pi to 0. Again, the reader can check that (δi)i∈� gives rise to a chain

map δ• : P̃• ↓G
H→ P•. Moreover, we have δ• ◦ ι• is the identity map. Therefore, P• is

isomorphic to a direct summand of P̃• ↓G
H .

This claim has the following consequence: for every indecomposable object

X• ∈ Kb(�HP) (identified with a minimal perfect complex in Cb(�HP)), there is an

indecomposable object X̃• ∈ Kb(�GP) such that X• is isomorphic to a direct summand

of X̃• ↓G
H . Clearly, we have l(X̃•) � l(X•). Therefore, by definition, sgl. dim �G �

sgl. dim �H.

Now, suppose that |G : H| is invertible in k. Take an indecomposable object P• ∈

Kb(�GP). Up to isomorphism, its minimal preimage in Cb(�GP) can be written as:

· · · → 0 → Pr dr
�� · · · �� Ps−1

ds−1
�� Ps → 0 → · · · .

Applying the restriction functor and the induction functor termwise to the above

complex, we get another object in P̃• = P• ↓G
H↑G

H∈ Cb(�GP) as follows:

· · · → 0 → �G ⊗ Pr 1⊗dr

�� · · · �� �G ⊗ Ps−1
1⊗ds−1

�� �G ⊗ Ps → 0 → · · · .

We claim that P• is isomorphic to a direct summand of P̃•.

Define a family of maps (θ i)i∈� as follows: for i > s or i < r, θ i = 0; for r � i � s, θ i

sends v ∈ Pi to 1
|G:H|

∑
g∈G/H g ⊗ g−1v ∈ �G ⊗�H Pi. We check that (θ i)i∈� defined in

this way gives rise to a chain map θ• : P• → P̃•. Indeed, for r � i � s − 1 and v ∈ Pi,

we have

(θ i+1 ◦ d i)(v) = θ i+1(d i(v)) =
1

|G : H|

∑

g∈G/H

g ⊗ g−1d i(v)

=
1

|G : H|

∑

g∈G/H

g ⊗ d i(g−1v) = (1 ⊗ d i)(θ i+1(v)).

Define another family of maps (ρ i)i∈� as follows: for i > s or i < r, ρ i = 0; for

r � i � s, ρ i sends g ⊗ v ∈ �G ⊗�H Pi to gv ∈ Pi. Again, we check that (ρ i)i∈� gives
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rise to a chain map ρ• : P̃• → P• as shown by:

(ρ i+1 ◦ (1 ⊗ d i))(g ⊗ v) = ρ i+1(g ⊗ d i(v))) = gd i(v) = d i(gv) = d i(ρ i(g ⊗ v)).

Moreover, ρ• ◦ θ• is the identity map. Therefore, as claimed, P• is isomorphic to a

summand of P̃•.

This claim tells us that for every indecomposable object X̃• ∈ Kb(�GP) (identified

with a minimal perfect complex in Cb(�GP)), there is an indecomposable object X• ∈

Kb(�HP) such that X̃• is isomorphic to a direct summand of X• ↑G
H . Therefore, l(X•) �

l(X̃•), and sgl. dim �H � sgl. dim �G. The two inequalities force sgl. dim �G =

sgl. dim �H. �

REMARK 3.3. In this lemma we actually proved a stronger conclusion. That is, the

induction and restriction functor induce an ‘induction’ functor and a ‘restriction’

functor between the homotopy categories of perfect complexes. Moreover, every

indecomposable object X• ∈ Kb(�HP) can be obtained by applying the ‘restriction’

functor to an indecomposable object in Kb(�GP) and taking a direct summand. When

|G : H| is invertible, every indecomposable object X̃• ∈ Kb(�GP) can be obtained by

applying the ‘induction’ functor to an indecomposable object in Kb(�HP) and taking

a direct summand.

Now, we are ready to prove the second part of our main theorem.

PROPOSITION 3.4. Let �, G, S, and E as before. Then �G has finite strong global

dimension if and only if �S has finite strong global dimension and S acts freely on E. In

this situation, �G and �S have the same strong global dimension.

Proof. Since the strong global dimension of �G equals that of �S, without

loss of generality we assume that G = S. Note that the strong global dimension is

always greater than or equal to the global dimension. Therefore, �S has finite global

dimension, so S must act freely on E by (3) of Proposition 2.3. Then by (4) of this

proposition, �S is Morita equivalent to �S, so they have the same finite strong global

dimension. Conversely, if the action of S on E is free, then again �S and �S are Morita

equivalent, so they have the same strong global dimension. �

An immediate corollary of this proposition and Theorem 3.1 is:

COROLLARY 3.5. Let �, G, S, and E as before. Then �G is piecewise hereditary if

and only if the action of S on E is free and �S is piecewise hereditary.

Proof. By Theorem 3.1, a finite-dimensional algebra is piecewise hereditary if and

only if its strong global dimension is finite. The conclusion follows from the above

proposition. �

In the rest of this section, we try to get a get a criterion such that the strong global

dimension of � equals that of �S when the action of S on E is free. Since, we already

know that �S is Morita equivalent to �S (Proposition 2.3), instead we show that

sgl. dim � = sgl. dim �S under a certain condition. Note that �S is a subalgebra of �,

so we can define the corresponding restriction functor from �-mod to �S-mod and

the induction functor � ⊗�S − from �S-mod to �-mod.

By [9], � is both a left free and a right free �S-module, but might not be a

free bimodule; see Example 3.6 in that paper. Now, assume that � = �S ⊕ B as
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�S-bimodule. For instance, if �S is commutative, this condition is satisfied. Under

this assumption, we have a split bimodule homomorphism ζ : � → �S.

For M ∈ �S-mod, we define two linear maps:

ψ : M → (� ⊗�S M) ↓�
�S , v → 1 ⊗ v, v ∈ M;

ϕ : (� ⊗�S M) ↓�
�S→ M, λ ⊗ v → ζ (λ)v, v ∈ M, λ ∈ �.

These two maps are well defined �S-module homomorphisms (to check it, we need

the assumption that AS is a summand of � as �S-bimodules). We also observe that

when λ ∈ �S,

ϕ(λ ⊗ v) = ζ (λ)v = λv.

Therefore, ϕ ◦ ψ is the identity map.

PROPOSITION 3.6. Suppose that a Sylow p-subgroup S � G acts freely on E, and

� ∼= �S ⊕ B as �S-bimodules. Then sgl. dim � = sgl. dim �S.

Proof. By Lemma 3.2 and Proposition 3.4, sgl. dim � � sgl. dim �S = sgl. dim �S.

Therefore, it suffices to show sgl. dim � � sgl. dim �S. The proof is similar to that of

Lemma 3.2, using the corresponding induction and restriction functors for the pair

(�S,�) and the two maps ψ, ϕ defined above.

Take an indecomposable object P• ∈ Kb(�SP) and write its minimal preimage in

Cb(�SP) as follows:

· · · → 0 → Pr dr
�� . . . �� Ps−1

ds−1
�� Ps → 0 → . . . .

Applying � ⊗�S − and the restriction functor termwise, we get another object in

P̃• = P• ↑�
�S↓

�
�S∈ Cb(�SP) :

· · · → 0 → � ⊗ Pr 1⊗dr

�� · · · �� � ⊗ Ps−1
1⊗ds−1

�� � ⊗ Ps → 0 → · · · .

We claim that P• is isomorphic to a direct summand of P̃•.

As in the proof of the previous lemma, (ψi)i∈� gives rise to a chain map ψ• : P• →

P̃•. We check the commutativity: for r � i � s − 1 and v ∈ Pi,

(ψi+1 ◦ d i)(v) = ψi+1(d i(v)) = 1 ⊗ d i(v) = (1 ⊗ d i)(1 ⊗ v) = (1 ⊗ d i)(ψi(v)).

Similarly, the family of maps (ϕi)i∈� gives rise to a chain map ϕ• : P̃• → P• as shown

by:

(ϕi+1 ◦ (1 ⊗ d i))(λ ⊗ v) = ϕi+1(λ ⊗ d i(v)) = ζ (λ)d i(v)

= d i(ζ (λ)v) = (d i ◦ ϕi)(λ ⊗ v).

Moreover, ϕ• ◦ ψ• is the identity map, so as claimed, P• is isomorphic to a summand

of P̃•.

Therefore, for every indecomposable object X• ∈ Kb(�SP), there is an

indecomposable object X̃• ∈ Kb(�P) such that X• is isomorphic to a direct summand

of X̃• ↓�
�S . Consequently, l(X•) � l(X̃•), and sgl. dim �S � sgl. dim �. �
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