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0. Imtroduction. Over the past thirty years, a powerful theory of monotone dynamical
systems has been developed by many authors. A partial list of contributors would include N.
Alikakos, E. N. Dancer, M. Hirsch, P. Hess, M.A. Krasnoselskii, U. Krause, H. Matano, P.
Polacik, H.L. Smith, P. Taki¢ and H. Thieme. If one understands the subject more generally
as a c¢hapter in the study of linear and nonlinear operators which map a subset of a “cone”
C}, into a cone Cy, then the relevant literature, encompassing as it does the beautiful classical
theory of positive linear operators, is enormous. Usually, in the study of monotone dynamical
systems, it has been assumed that the map or flows in question are “strongly monotone.”
In this paper we shall try to show that a significant part of this theory does not depend on
monotonicity, and is a special case of results about maps 7" which take a metric space (M, p)
into itself and satisfy

p(T(x), T(y)) <p(x,y) forall xs#y or 0.1
p(T(x), T(y)) < plx,y) foral x,y, (0.2)

or sometimes are just assumed Lipschitzian. We will usually assume that M is a subset of
a cone C in a vector space and p will be either the “part metric” or “Hilbert’s projective
metric” (see Section 1 below). We specifically emphasize that we allow equation (0.2) (so
T is “nonexpansive”) and that in this case there are many intriguing open and apparently
difficult questions concerning the behaviour of iterates of T': see Section 3 below.

As we have already remarked, the assumption of strong monotonicity has usually been
made; and in many applications this is a natural assumption. It seems less widely known
that there are important applications where strong monotonicity fails and where, in addition,
equation (0.2), but not equation (0.1), is satisfied. To illustrate this point, we mention a class
of examples which arises in statistical mechanics [14, 15, 21, 22], in machine scheduling
problems [4, 16, 17] and elsewhere. Let S denote a compact Hausdorff space, C(S) = X,
the Banach space of continuous, real-valued functions on S (in the sup norm), X the cone of

nonnegative functions in C(S) and X the interior of K. If S is the set of positive integers i,
1<i<n,C(S)=R"and

K=K'={xeR":x;>0 for 1 <i <n}.
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Let a(s, t) be a given continuous, real-valued function on § x § (write a(s, ) = a;; if
S={i:1<i<n,ie€Z}))anddefine F: X > XandG: X — X by

(F@))(s) =max(a(s, 1) + X (@), (G())(s) = min(als, ) +x(1)). (0.3)

One is interested in behaviour of iterates of F or of G. By making the change of variables
x(t) = log(y(t)) for y € K and a(s, t) = log(c(s, 1)), one can equivalently study the maps
F:K—>K,andG: K — K given by

(FONE) = max(es, Hy®), (GO = min(e(s, HYE). 0.4)

The maps F and G are monotone (1 < v implies F'(u) < F(v)), compact and nonexpansive
with respect to the sup norm on X; and F and G are monotone, nonexpansive with respect to

the part metric and Hilbert’s projective metric on K, and homogeneous of degree one. The
maps are not, in general, strongly monotone, nor do they satisfy equation (0.1).

In this generality, not too much is rigorously known about behaviour of iterates of F or G.
If X = R", the maps F and G are given coordinate-wise by

F;(x) =max{a;; +x;: 1 < j <n} and G;(x) =min{a;; +x; : 1 < j <n}. 0.5)

Essentially complete analyses of the behaviour of iterates of F' and G were obtained indepen-
dently in [4] and [41], which contain further references to the extensive literature on equation
(0.5).

For & = %1 and S any set of reals, define ;s(S) = max({s : s € S}) if § = +1 and
ws(S) =min({s : s € S} if § = —1. Letg;;, 1 <i,j <n,and §;, 1 <i < n, be given sets
of real numbers with |g;;] = 1 = |§;| for all i, j. Define amap H : R* — R" coordinate-wise
by

H;(x) = ps,({a;; +e5x; 1 1 < j <n}), (0.6)

so H generalizes F and G in equation (0.5). Itis easy to show (use Proposition 1.2 below) that
H is nonexpansive with respect to the /,-norm on R* and H is monotone (but not strongly
monotone) if &;; = 1 for all i, j. However, it is interesting to note that even if one assumes
that H has a fixed point and is monotone, the detailed analysis in [4] and [41] concerning
iterates of H fails completely; and the same is certainly true for the general map in equation
(0.6), although results described in Section 3 (see Theorem 3.1) provide some information.
A first step in applying results about maps which are Lipschitz in the part metric or Hilbert’s
projective metric is to determine useful criteria for computing the Lipschitz constant of a map
in these metrics. For maps which are monotone, some results in this direction can be found
in the literature: see [11], [19], [29], [35], [36], [37], [42], [52], [56]. We especially mention
beautiful, classical results concerning the Lipschitz constant of positive linear operators with
respect to Hilbert’s projective metric: see [7], [8], [11], [12], [13], [19], [20], [27] and the
discussion on pp. 4245 of [36]. However, very little has been done on the problem of
computing Lipschitz constants for maps which may not be monotone (although the reader
should note Theorem 4.1 in [29]). For this reason Sections 1 and 2 of this paper are devoted
to establishing geometric facts about the part metric p and Hilbert’s projective metric d, these
metrics being considered on appropriate subsets S of a general cone K in a normed linear
space X. The key step is to determine a class of minimal geodesics for p and d and to
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describe “Finsler structures” for (S, p) and (S, 4). Once a Finsler structure has been given,
it is possible to give useful formulas for the Lipschitz constants of maps f defined on S. It
may be interesting to note that our results provide new information even in the case of linear
maps: see Corollary 2.2, Remark 2.2 and Remark 2.3 in Section 2.

In the important special case that ¥ = K" C R" and § = K"or§ = Sy ={x¢€ K"
¥ (x) = 1}, where ¢ is a given linear functional which is positive on K", these results are not
new. In fact define ® : K" — R”" by

@ (x) =log(x) = (log(x1), log(x2), . .. , log(xa)).

It is observed in [35] and in Proposition 1.6 on p. 20 of [36] that & : (K", p) = R, - lleo)

is an isometry onto, so (K", p) obtains a Finsler structure from (R, || - [|lco). Similarly, define
V ={y € R" : y, = 0} and define a norm @ on V by

w(y) = (mgx yi) — (ml,in yi).

It is observed in [35] and in Proposition 1.7 on p. 22 of [36] that (Sy., d) is isometric to (V, ),
with the isometry given by ® if Sy = {x : x,, = 1}. Thus (Sy, d) has a Finsler structure or,

equivalently, the space of rays in K" with metric d has a Finsler structure. Wojtkowski [55]

has independently observed the existence of a Finsler structure on (Ko " d).

Section 3 of this paper is devoted to some applications. For reasons of length, we restrict
ourselves to the case of the part metric and ordinary differential equations in finite dimensional
Banach spaces. The first part of the section basically describes known results but, with an
eye to later applications, gives the results in greater generality than in the literature. If K is

a cone with nonempty interior in a finite dimensional Banach space X, B C B; C I% and
f : R x By — X is alocally Lipschitzian map, the remainder of the section is concerned
with

x'(6) = f(tx(®), x(t)=x0 € B, .7

which has a solution x(t) = x(¢; f, x0). Usually, it is assumed that (¢ + 1, u) = f(¢, u)
for all t € R, u € B;. Conditions are given which insure that x(¢; fg, xo) € B for all xy € B
and t > ty. For t > 1y, estimates are given for the Lipschitz constant with respect to the part
metric of the map U (¢, fp) : B — B given by

U (¢, to)(x0) = x(t; t, Xo0).

These results are applied to the special case that K = K", where relatively simple explicit
formulas are possible. Our theorems give generalizations, without monotonicity assumptions,
of results concerning cooperative systems of differential equations. As an example, we
consider variants of equations studied by Aronsson and Mellander [2] and Lajmanovich and
Yorke [31]. Even in the well-studied monotone case, our theorems sometimes provide new
information, especially in the absence of irreducibility assumptions.

1. Finsler structure and Lipschitz maps for the part metric. In this section we develop
some general ideas which we will need for later applications to differential equations and
iterated nonlinear maps.
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If V is areal vector and C is a subset of V, we shall call C a “cone” (with vertex at 0) if
(a) Cisconvex, (b) tC ={tx :x e C} Cc Cforallt > 0and (c) CN(—=C) = {0}). If C
satisfies (a) and (b) but not necessarily (c), we shall call C a wedge. In contrast to much of
the literature, we do not necessarily assume that V' is a Hausdorff topological vector space or
that C is closed in V. If V is a Hausdorff t. v. s. and C is a cone in V and C is closed, we shall
call C a “closed cone.” If C is a cone in a real vector space V, C induces a partial ordering
<conV by

x<cy ifandonlyif y —x € C. (1.1)

If C is obvious we write < instead of <¢. If x € C and y € V, we say that “x dominates y”
if there exist real numbers « and 8 with

ax <cy <c Bx. (1.2)
If, also, x # 0, we use Bushell’s notation[11] and define

M(y/x; C) =inf{B e R:y <¢ Bx}
m(y/x; C) = sup{e € R : ax <¢ y} (1.3)
o/x; C)=M(y/x; C) —m(y/x; C).

‘We make the convention that w (0/0; C) = 0. If C is obvious, we shall write M (y/x) instead of
M(y/x; C), etc. The quantity w (y/x; C) is called the “oscillation of y over x.” If V = C(S),
the space of continuous real-valued functions on a compact space S, and C is the cone of
nonnegative functions on S, then M (y/x; C) is the usual maximum of z(s) = y(s)x(s)™!
for s € S, m(y/x; C) is the minimum of z on S and w(y/x; C) is the usual oscillation of z,
namely, maxses z(s) — minges z(s). '

If x, y € C —{0} we shall say that “x is comparable to y in C*” and write x ~¢ y (orx ~ y
if there is no chance of confusion) if there exist positive reals « and § with

ax <y < Bx.

It is easy to see that ~¢ defines an equivalence relation on C — {0}. If u € C — {0} we shall
always define
Pw)={xeC:x~¢cu}. “(1.4)

P (u) is called the part of C equivalent to u. On P (1) x P(u), we can define two important
functions, the “part metric” or “Thompson’s metric” p and “Hilbert’s projective metric” d:

p(x,y; C) = log(max(M (y/x; C), (m(y/x; C))™1))

- (1.5)
d(x, y; C) = log(M (y/x; C)(m(y/x; C)H7M).
As usual, we shall write p(x, y) and d(x, y) when there is no danger of confusion. Itis useful
to note that
p(x,y) =log(inf(R > 1: R™'x <y < Rx}).

‘We make the convention that p(0, 0) = 0 and 4(0, 0) = 0.

The following lemma lists the basic properties of p and d; proofs (in slightly less general
settings) are given in [11] and [52] or can be supplied by the reader. See also Chapter I of
[36].
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Lemma 1.1. Let C be a cone in a real vector space V. If x, y and z are comparable elements
of C — {0} and X\ and . are positive reals, it follows that

d(x,y) =d(y,x),d(x,z) <d(x,y)+d(y,z)

and
d(x, wy) =d(x,y) and d(x,rx)=0.

Similarly, it is true that

px,y)=p(y,x) and p(x,z) <px,y)+pQ,2).

In our generality a technical difficulty arises: it may happen that p(x, y) = 0 for y # x
ord(x,y) = 0 for y # Ax, A > 0. Both phenomena occur if V = R? and C = {(0, 0)} U
{(x1, %2) € R? : x; > 0}. See [19] for further details. For simplicity we shall make further
restrictions on C to eliminate the possibilities described above.

If V is areal vector space and x, y € V, we shall always define

Vx,y)={ax+by:a,beR} (1.7)

so V (x, y) is a finite dimensional real vector space with dim(V (x, y)) < 2. Asis well-known
(see [44], Chapter 1), there is a unique topology on V (x, y) which makes V' (x, y) a Hausdorff
topological vector space, and we shall always assume that V (x, y) is given this topology.

Definition 1.1. Let C be a cone in a real vector space V. We shall say that C is “almost
Archimedean” if, for all x, y € V, the closure of C NV (x, y) in V (x, y) is a cone.

The concept of “almost Archimedean” was apparently introduced by E. E. Bonsall [10],
who used an ostensibly different definition.

Definition 1.2. (See [19]). Let C be a cone in a real vector space V. We shall say that C is
“almost Archimedean” if, whenever y and z are elements of V with —ey <¢ z <¢ &y for all
g > 0, it follows that z = 0.

It is not hard to prove that Definitions 1.1 and 1.2 are equivalent. We shall leave the
verification of this equivalence to the reader. The following lemma is the motivation for
introducing the definition of almost Archimedean.

Lemma 1.2. Let C be an almost Archimedean cone in a real vector space V. If x ~¢ y and
plx,y; C) =0, thenx = y; and ifx ~¢c yandd(x, y; C) = O, then there exists § > 0 with
y = Bx.

Proof. First, suppose that x ~¢c y andlet D = C N V (x, y) and D = the closure of D in
V(x,y),so D isacone. If p(x, y; C) = 0, we must have

inf(R>1:R'x <¢cy<¢cRx}=1.

Ifu,v € D, itis easy to check that u <p v if and only if u <¢ v. Thus we obtain that for all
R>1,
R™'x <p y <p Rx.

It follows that Rx — y € Dandy — R™'x € D for all R > 1, and taking limits we see that
x—y € Dandy—x e D. Since D is assumed a cone, y = x.
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Ifx ~¢c yandd(x, y; C) = 0, we have that m(y/x; C) = M(y/x; C). Itis easy to check
that m(y/x; D) = m(y/x; C) and M(y/x; C) = M(y/x; D) = B > 0. It follows that there
exist sequences (c,) and (8,) of positive reals with

X <p ¥ <p fpx and lim &, = lim f, = p.

Thus we have that y —a,x € D and B,x—y € D. Taking limits we conclude that Bx —y € D
and y — Bx € D, which implies (since D is a cone) that y = fx. O

If C is an almost Archimedean cone in a real vector space V and u € C — {0}, we define
aset V, by
Vi={y€eV:3x>0 with —au=<y<au} (1.8)

‘We define a norm | - |, on V, by
|yly =infle > 0: —au <y < au}. (1.9)

Definition 1.2 implies that if |y|, = 0, then y = 0; the verification that | - |, is a norm is left
to the reader. See [36], p. 14, for further references. If v ~¢ u, one can easily verify that
|- |y and | - |, are equivalent norms. (Recall that norms | - | and || - || on a vector space W
are “equivalent” if there exist positive constants A and B with Alw| < |Jw| < B|w| for all
w € W). We shall always consider V, a normed linear space with norm | - |,.

For V, as above, we define C, = C NV, and note that C,, is a cone in V, and the P (u)
(see equation (1.4)) is the interior of C,, in V,,. If D := C, and x, y € V,, one can also see
that x <p y if and only if x <¢ y and that |x|, < |y], if0 <¢ x <¢ y.

For the reader’s convenience we collect in the next proposition some results concerning the
connection between the topologies induces by p, d and the norm on a normed linear space.
The results given are refinements of those in Chapter I of [36] and are related to theorems in
[52], [11] and in Chapter 3 of [18].

Proposition 1.1. Let C be a cone in a normed linear space (V, | - ||). Assume that there
exists a constant A > 1 such that ||x|| < A|ly|l forallx,y € CwithO < x <y. Then C is
almost Archimedean. If u € C — {0} and P (u), V, and | - |, are defined by equations (1.4),
(1.8) and (1.9) respectively the topology induced on P (u) by the part metric p is the same as
the topology induced on P(u) by | - |,. Forallx,y € P (u) we have

lx — yll < Alexp(p(x, ¥)) — 1IllIx[l + ¥ l] and (1.10)
|x — ylu < [exp(p(x, y)) — 1llx]y + [¥]u]- (1.11)

Ify € P(u), then there existsr =r(y) > Osuchthat{z € V, : |z — y|, <r} C P(u) and
forall x € Vy, with |x — y|, <r we have

plx,y) < max(log(r_lx’_ylu), log(mH2=xle)), (1.12)

If there exists p = p(y) > Osuchthat{z € V, : |z — yll < p} C P(w), thenforallx € V,
with ||x — y|| < p we have

plx,y) < max(log(p_nﬁ_y"), log(”+"’;_y”)). (1.13)
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IFZ ={x € Pw) : ||x|| = 1} (respectively, S = {x € P(u) : |x|, = 1}) the topologies
induced on % (respectively, S) by the norm | - |, and by p are the same; and the topologies
induced on S by | - |4, p and Hilbert’s projective metric d are the same. Furthermore, for all
X,y € T we have

lx—y| <2Ax[exp(d(x, y))—1], where k :=min(m(x/y; C),m(y/x; C)) < 1. (1.14)
Forallx,y € S and for k as in equation (1.14) we have |
I = ¥lu < 2wcfexp(d(x, y)) — 1. (1.15)
Ify € P(w), r is defined as in equation (1.12), x € P(u) and |x — y|, < r, we have

+| - Iu
d(x,y) < log[ F5i=0x] (1.16)
If there exists p = p(y) > 0 as defined in equation (1.13), then for all x € P(u) with
llx — yll < p we have .
+x—

d(x,y) <log[E5224]. (1.17)
If the interior of C is nonempty in (V, || - ) and u € (c:‘ (so P(u) = E‘) then |- |, and || - || are
equivalent norms on 'V and give the same topology on C, X and S.

Proof. We use Definition 1.2 to prove that C is almost Archimedean. Suppose thaty,z € V
and —sy <z <egyforalle > 0,500 < z+ ey <2¢y forall ¢ > 0. It follows that

lz+eyl <2eAlyll and [z] <elyll+lz+eyll <A+ Dyl

Letting ¢ — 0%, we conclude that z = 0 and C is almost Archimedean. Lemmas 1.1 and 1.2
now imply that p gives a metric on P (1) and d a metric on S or .
The argument above also shows that for all z € V,,

lzll = A+ Dllull lzla-

It suffices to show that if |z], = 1, then |z| < (2A + 1)|«]. However, if |z], = 1, we find
that 0 < z 4 u < 2u, so

Izl < llull + llz +ull < 240l + Ju) = @A+ D]

If d, and d, are any two metrics defined on a set I' X I', they determine topologies on I".
These topologies are the same if and only if for every r > 0 and every x € T, there exists
o = o(r,x) > 0 so that B2(x) C B!(x) and BL(x) C B?(x), where Bix) = {y e
I’ : d;j(y,x) < s}. Using this characterization, the reader can verify that the statements in
Proposition 1.1 asserting that topologies given by various metrics are the same follow easily
from equation (1.10) — equation (1.17).

To prove equation (1.10) and (1.11), suppose that x, y € P (). If R = exp(p(x, y)) and
R; > R we know that

Rily<x<Ryy and 0<x—R{'y<(R —R)y.
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It follows from these inequalities and by letting Ry — R that

Ix = R7'yIl < AGR—R DIyl and  |x— Ry, < (R— Ryl

These arguments are symmetric in the roles of x and y, so we obtain by interchanging x and
y that

Iy = R7x < AR = RDlx|l and [y~ R7'xly < (R — R7Dlxla.
Adding these inequalities and using the triangle inequality yields (R™! + 1)|lx — y|| <
lx = Ryl + |R7x — yl| < AR — R7D(Ix[l + Iyl and (R™! + D]x — yl, < |x —
Ry, +IRx—y], < (R—R™Y (x|, +]|y]s). After dividing by R~ 41, these inequalities
give equation (1.10) and (1.11).
If y € P(u), we leave to the reader the easy verification that there exists 7(y) > 0 such
thatif x € V, and |x — y|, < r(y) =r, then x € P(u). It may also happen that there exists

p=p@)>0with{x € V, : |x — y|| < p} C P(u). Essentially the same argument used in
Remark 1.4, p. 16 in [36], shows that if |x — y| < r, then

r+1x—yl)7 <m@/x) and rr—lx—yl)T = M(/x) (1.18)
Similarly, if p = p(y) > 0 exists,
plo+lx—yD' <m@/x) and plp—Ilx—yID7 = M(y/x) (1.19)
These inequalities imply equation (1.12) and equation (1.13 ) and also yield equation (1.16)
and equation (1.17).
In order to prove equation (1.14) and equation (1.15), suppose either that x, y € X or that

x,y € S. We can assume thatx # y and define = m(y/x; C)and 8 = M (y/x; C), B > «.
It is easy to verify that

m(y/x) = (M(x/y)~" and M(y/x) = (m(x/y)) ™"

Thus, if & > 1, we must have that =1 = m(x,y) < 1. It follows that, possibly by

interchanging the roles of x and y, we can assume that
o =k =min(n(y/x), m(x/y)) < 1.

Select an increasing sequence o, < & with lim,— o, = o and adecreasing sequence 8, >
with lim,— o0 By = B. By definition of « and 8 we have that

0<y—oawx < (Bn—an)x.
If x, y € I, this implies that
1y — enxll < A(Br — a)lixll = Ac[ (B) — 1];
while if x, y € S we obtain

|y — onxly < (Bn — )l = o[ (&) — 1].
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Letting n approach oo we see that for x, y € ¥ we have
ly — x| < Ax[exp(d(x, y)) — 1];
while for x, y € S, we obtain
|y — x|, < «lexp(d(x, y)) — 1].
Note thatif x, y € ¥ we have
Iy —ax|l = Iyl — x| = (1 — o),

and if x, y € S we have
ly —ax|y = (1 —oa).

Thus, for x, y € ¥ we see that
ly—x|l < lly—ex||+llex—x| < [[y—ex|+(1—a) < 2|[y—ax| < 2Ak[exp(d(x, y))—1],

and a similar argument yields equation (1.15).

If u € C, we know that V, = V, and we have already seen that there exists B with
llzll < Blz|, forall z € V. Conversely, select p > 0 so that {x : ||x —u|| < p} C C. It
follows that for all z with ||z]| < 1,

z
+p(—) =0,
“ ol =
which implies that for ||z|| <1
Izl B4l
“Nu>z>—(—)u.
(> 2= (Ll

The latter inequality implies that for all z € V,

lzle < o7 zll. U

Remark 1.1. A major motivation for studying the part metric and Hilbert’s projective metric
is that, in the notation of Proposition 1.1, (S, d), its isometric image (¥, d), and (P (&), p) are
often complete metric spaces. Specifically, suppose that (V, || - ||) is a Banach space and C is
aclosed, normal conein V. (A cone C in anormed linear space V is “normal” if there exists a
constant A with ||x|| < A[/y| forallx,y € Cwith0 < x < y). Ifu € C —{0} and P (x) is as
in equation (1.4), A.C. Thompson [51] has proved that P (x) is a complete metric space with
respect to the part metric p. Other authors have proved thatif ¥ = {x € P(u) : || x| = 1}
and d denotes Hilbert’s projective metric, (%, d) is a complete metric space. Furthermore, if

Vi={x€eV:3a>0with —au <x<au} and |x|, =infla > 0: —au <x < au},
(Vu, | - |u) is a Banach space and C,, := C NV, is a closed, normal cone in (V,, || - ||.) with

nonempty interior P () in V,. Further details and references to the literature are given in
[36], pp. 12-18.
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To simplify our further work we make another definition.

Definition 1.3. If C is a cone in a real vector space V, we shall say that C is “Archimedean”
if CNV(x,y)isclosed in V(x, y) (see equation (1.7)) forallx,y € V.

It is easy to check that if C is an Archimedean cone, x € C — {0} dominates y € V, and
a=m(y/x; C)and 8 = M(y/x; C), then

ax <c y <c Bx.

For almost Archimedean cones this equation may fail.
‘We also need the idea of a “minimal geodesic.”

Definition 1.4. If (S, p) is a metric space, a map ¢ : [0, 1] — S will be called a minimal
geodesic (with respect to p) from xp = ¢(0) to x; = (1) if, whenever 0 < # <, < 1 we
have

p(p(t), p(t2)) = (t2 — 1) p (x0, X1). (1.20)

We shall say that (S, p) is “geodesically convex” if for all x, y € S, there exists a minimal
geodesic ¢ : [0, 1] — S with ¢(0) = x and p(1) = y.

If (E, d) and (F, p) are general metric spaces and f : D C E — F is a map, our main
interest is in finding conditions which insure that f is Lipschitz with Lipschitz constant c.
However, our next proposition and subsequent work will show that this question is closely
related to the existence of minimal geodesics, so we shall have to study minimal geodesics
for the part metric and Hilbert’s projective metric.

Proposition 1.2. Let (E, d) and (F, p) be metric spaces and suppose that f : D C E — F
is a continuous map. Suppose that D = |J,c4 Do, Where each Dy is a closed subset
of D, and suppose that f | Dy is a Lipschitz map with constant ¢ for all « € A (so
p(f@), f() < cd(u,v) forall u,v € Dy). Assume that x,y € D and that there exists
a minimal geodesic ¥ : [0, 1] — D with ¥ (0) = x and (1) = x. Assume also that there
existn < oo and Daj, I1<j<nwith{y@):0<t<l1}C U'-'=1 Duj. Then it follows that
p(f(x), F(3) < cd(x,y).

Proof. The proof is by induction on n. If n = 1, the result is obvious, so we assume n > 1
and suppose the proposition is true for all m < n.

Define J ={i : 1 <i <nandx € Dy} and t, = sup{s > 0 : ¥ (s) € Dy, for somei €
J}

Because each Dy, is closed, there exists k € J withx = ¢/(0) € Dy, and ¥ (t,) = x4« € Dy,.
Ift, = 1, we are done, because f | Dy, is Lipschitz with constant ¢. Thus we assume that
<1 IfJ,={i]ieJ, 1<i<n}weknow that

W to<s <1 | D

iely

For fixed s > t,, ¥(¢), s <t < 1, gives (after reparametrization) a minimal geodesic from
¥ (s) to ¥ (1) = y. Because |Ji| < n, the inductive hypothesis gives

p(fW(s)), F(3) < cd(¥(s), ) = (1 = s5)ed(x, y).

Taking the limit as s — #; gives

P, FO)) < (1 —t)ed(x, y).
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Because x, and x both lie in D,, we also obtain

p(f(xe), f(x)) < cd(xy, X) = ctyd(x, ¥).

The triangle inequality finally gives

p(f(x), fFO) <cdx,y). O

In practice it may happen that (E, d) is geodesically convex and that there exists a non-
expansive retraction r of E onto D (so d(r(u),r(v)) < d(u,v) for all u,v € E). If
¥ : [0,1] — E is a minimal geodesic then r o ¢ : [0, 1] — D is a minimal so (D, d)
is also geodesically convex.

In our next lemma, which refines Proposition 1.12 on p. 34 in [36], we give explicit
formulas for minimal geodesics with respect to the part metric in Archimedean cones. In
general, Lemma 1.3 implies that there are infinitely many minimal geodesics connecting xg
to x1 in P(u).

Lemma 1.3. Let C be an Archimedean cone in a real vector space V. If x and y are any
two comparable elements of C and « and B are positive reals with ¢ < m(y/x; C) and
B > M(y/x; C), define a function ¢(t; x,y, o, B) for0 <t < 1by

ﬂl__al ﬂd’—-olﬂ’
+ X, or B >«
Pt x,y,a, ) = { (ﬂ‘“ )+ ( pa ). ford (121
al'x, for B =«.
Then it follows that
ot x,y, 0, f) =0l —t;y,x, 7, a7, (122)
o'x <p(t;x,y,0,p) < p'x  and (1.23)
(BHI Dy <olt;x,y, 0 B) < (@ HTy. (1.24)
IFo<th<th<landti=sthandw =¢(; x,y,, B), then
o(s; x,w, a?, B2 = p(t; x, y, @, B) and (1.25)
P(‘P(tl, X, Y, ¢, :B>: (P(t2§ X, Y, K, IB)) S (t2 - tl) max(log(a_l)» IOg(ﬂ))’ (126)

where p denotes the part metric on C. If
(1) a =m@/x; C)anda™ > B > M(y/x; C) or
() B=M(y/x;C)and 7' <a <m(y/x; C),
thent — @(t; x, y, , B) is a minimal geodesic with respect to p from x to y.
Proof. We leave the case that « = B (so y = Bx) to the reader, and we assume that
a <m(y/x), B = M(y/x)and « < B. The same function ¢(¢; x, y, o, ) was considered

in Proposition 1.12 of [36], but under the assumption that o = m(y/x) and 8 = M (y/x).
However the same argument as in [36] shows that

d'x <pltx,y,a p) < px
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A simple calculation (left to the reader) also gives equation (1.22), and equation (1.22) and
equation (1.23) imply equation (1.24). Equations (1.23) and (1.24) and the definition of p
imply

plo(t; x, y, @, B), x) < t max(log(a™"), log(B))

. (1.27)
Pl x,y,a,B),y) < (1—1t)max(log(a™ "), log(B)).

It remains to prove equation (1.25). Notice that equation (1.23) implies that «2x < w < B"x,
so ¢(s; x, w, @, ) is defined. Another calculation (left to the reader) proves equation
(1.25). If we use equation (1.25) and equation (1.27) we find (for s and w as in the statement
of the Lemma)

ple(t; x,y, 0, B), (2 x, y, @, B)) = plo(s; x, w, &, f2), w)
< s max(log(a¢™™), log(8%)) (1.28)
— (t — 1) max(log(™), log(B)).

The final assumptions of the lemma imply

p(x, y) = max(log(cr™"), log(B)),

so equation (1.28) gives, for0 <t; <, <1,

p((p(t1: X, Y, &, .B)! ¢<t2; x, ¥, 0, ﬂ)) =< (tZ - tl)P("’ y) (129)

If we write p(t) = ¢(t; x, y, @, B) and if strict inequality holds in (1.29) for some #; < #,,
then we obtain

p(x,y) < plx, p(t) + ple), o(t)) + ple(t), ¥)
<tup@,y)+E—t)pkx,y)+ A -n)pk,y) = plx,y),

which gives a contradiction. Thus equality holds in equation (1.29) and ¢ — ¢ () is a minimal
geodesic.

Remark 1.2. If C is only almost Archimedean, one can give an analogue of Lemma 1.3
by working with maps ¢ which are “almost” minimal geodesics, namely ¢(; x, y, «, 8) for
appropriatex < m(y/x; C)and 8 > M (y/x; C). Thisleads to slight technical complications
which we have chosen to avoid. However, a version of Theorem 1.1 below can be given for
almost Archimedean cones.

‘We are now in a position to state our first theorem. Recall that if u € C — {0} and V,, and
P (u) are given by equation (1.8) and equation (1.4) respectively, then for any x € P (u) one
has anorm || - ||, on V, defined by

vy =inf{le > 0: —ax <v < ax} (1.30)

and any two such norms are equivalent. If ¢ : [0, 1] — V,, we shall say that ¢ is piecewise
C!l if it is piecewise C! with respect to the norm topology on Vj, given by | - |, (or any | - |,
x € P(u)).
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Theorem 1.1. Let C be an Archimedean cone in a real vector space V. Foru € C — {0}, let
P (u) be given by equation (1.4) and V, by equation (1.8), so V,, is a normed linear space with
respectto | - |, (equation (1.9)). Let C, = C NV, and let p denote the part metric (equation
(1.5)) on C. Let G C H be subsets of P (u) and assume that for any two points xy, x1 € G
there exists a piecewise C', minimal geodesic ¢ (with respect to p) with ¢(0) = xq, (1) = x;
and o(t) € H for 0 <t < 1. Let S denote the set of piecewise C' maps v : [0,1] — H.
Then for any xp, x1 € G,

p(xp,x1; C) = inf[fo1 W' Olynydt -y € S,9(0) =xp and Y (1) = xl]. (1.31)

Proof. If ¢ : [a,b] — P(u) is a C! map, one can check that t — [/ () |y is continuous
on [a, b]. Thus the integrals in equation (1.31) are defined. By assumption there exists
a piecewise C!, minimal geodesic ¢ : [0,1] — H with ¢(0) = xp and @(1) = x;. If
0 <s <t <1, weknow that

p(p(s), p(t)) = (t — ) p(x0, x1),

which implies that

@(s) exp(—@ — 5) p(x0, x1)) < @) < @(s) exp((t — 5) p(x0, x1)).

Subtracting ¢(s) from this equation, dividing by ¢ — s and letting ¢ approach s from above
gives
—p(xo, x)@(s) < ¢\.(s) < p(x0, x1)p(s), (1.32)

where ¢/, (s) denotes the right hand derivative of ¢ at s. By definition of | - |4(), equation
(1.32) implies that
04 (g < Plro, 1), 0<s <1 (1.33)

A similar argument shows that
oL ()lpes) < p(xo,x1), O0<s <1, (1.34)

where ¢’_(s) denotes the left hand derivative of ¢. Since ¢’(s) is assumed to exist except at
finitely many points in (0, 1) we conclude that

1 1
P(xo,x1)=_/0 P(Xo,xl)dSZ/O 19" () lp)ds,

which implies that p(xo, x1) is greater than or equal to the right hand side in equation (1.31).
Conversely, suppose that ¥ € S, ¥(0) = xo and ¥ (1) = x;. We can assume for

o

definiteness that 8 = M (x; /xo; C) > m(x1/Xo; C)~!. We know that P (u) = C, is an open
convex set in the normed linear space (Vy, | - |,,), that Bxo —x; € C, and that Bxg—x; & P ()
(otherwise, there would exist 8/ < B with f'xp — x; € C). Thus we are in the situation of
the Hahn-Banach theorem: there exists a continuous (with respect to | - |,) nonzero linear
functional f : V, — R and a number y with f(y) > y forall y € P(u) and f(Bxg — x1) <
y. Because C, is in the closure of P(u) in Vi, f(y) = y for all y € C,; in particular,
Bxo — x1 € Cy, and we must have f(Bxo — x1) = y. Because ty € P(u) if y € P(u) and
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t >0,y <tf(y)forallt > 0andy € P(u). This implies that y <0 and f(y) > O for all
y € P(u). Because (Bxo — x;) + ey € P(u) ife > 0and y € P(u), we conclude that

0< f((Bro—x1)+ey)=y+ef(y,

and it follows that y > 0 and hence that y = 0. Thus we see that f(y) > O forall y € C,
and Bf(x9) = f(x1). Because f is not the zero functional and f(y) > Ofory € C,, itis
easy to see that f(y) > Oforall y € P(u).

If y(t) := |¥'(®)]y), we have

—yOY @) <Y’ <yOY©).
Applying f to this equation and recalling that f (i (#)) > 0, we conclude that

fy'® _ .
) =

Integrating this inequality from O to 1 gives

d
77 loe(F () = ® = ¥’ Olyo-

1
log(f (x1)) — log(f (x0)) = log(B) < /0 W Olyd.

We chose log(8) = p(xo, x1), so this completes the proof of equation (1.31).

Remark 1.3. Our proof actually shows that if ¢ : [0, 1] — P(u) is any piecewise C! minimal
geodesic (with respect to p) from xg to x;, then

1
Pl 2% B = / 10 (D) lprdt.
0

Thus “inf” in equation (1.31) can be replaced by “min.”

It is useful, in the context of Theorem 1.1, to allow maps ¢ : [0, 1] — P(u) which are
only Lipschitz (with respect to | - |,,). In the general infinite dimensional setting this leads to
technical complications. For example, if V = C|[0, 1], C is the cone of nonnegative functions

on [0, 1], and ¢ : [0, 1] — C is defined by ¢(¢)(x) = exp(Jx — t]) for 0 < x < 1, one can
prove that ¢ is Lipschitz and a minimal geodesic with respect to the part metric but that ¢
is nowhere Fréchet differentiable. Thus, in our next theorem, we allow Lipschitz ¢, but we
restrict V to be finite dimensional. The main technical difficulty is to prove thatt — |¢’(£)|y()
is bounded and Lebesgue measurable.

o
Theorem 1.2. Let C be a closed cone with nonempty interior C in a finite dimensional Banach
o

space (V, || - |I). Let G C H be subsets of C and assume that for any two points xo, x; € G
there exists a minimal geodesic ¢ (with respect to the part metric p on C) with ¢(0) = xo,
@(1) = x1, and ¢(t) € H for 0 <t < 1. Let S denote the set of Lipschitz (with respect
to| - ) maps ¥ : [0,1] — H. Forany ¢ € S, Y'(t) is defined almost everywhere and
t = Y )|y is a bounded, Lebesgue measurable map. For any xo, x1 € G,

p(xo, x15 C) = inf{ [y [¥'(D)lywdt : ¥ € S, ¥(0) = xo, ¥(1) =x1}.
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Proof. Selectu € C. Itis well-known that any closed cone C in a finite dimensional Banach
space V is normal. Thus we know (see Remark 1.1) that | - |, and || - || are equivalent norms

on V = V,. By using Proposition 1.1 one can see that any map 6 : [0, 1] — E‘ which is
Lipschitz with respect to || - || is Lipschitz with respect to the part metric p and conversely.
Since a minimal geodesic ¢ : [0, 1] — H (with respect to p) is Lipschitz with respect to p,
it is also Lipschitz with respect to || - || and hence an element of S. Conversely, every element
of S is a Lipschitz map with respect to p.

Standard real variables implies that every Lipschitz map 6 : [0, 1] — (V, || - ||) is Fréchet
differentiable almost everywhere, t — 6'(¢) is Lebesgue measurable and [|6/(¢)|] is uniformly
bounded. Thus, if ¥ € S, t — ¥/(¢) is a bounded, Lebesgue measurable function.

It remains to prove that £ — [¢/'(t)|y( is a bounded, Lebesgue measurable map. We
prove a slightly more general fact: If v, : [0, 1] — V is a bounded, Lebesgue measurable

map and ¥ : [0, 1] — C is a continuous map, we claim that ¢ — |11 (£)]y,) is a bounded,
Lebesgue measurable map. To prove this, first recall the well-known fact that there exists a
countable family f;, i > 1 of continuous linear functionals such that || f;|| = 1, forallz € V,
and z € C if and only if f;(z) > O for all i. The proof is an application of the Hahn-Banach

theorem. If x € C and v € V, the reader can verify that

lfz(v)l)
fi@) 7

lvlx = S'-}P(
L

(Note that necessarily f;(x) > 0 for all x € E‘, or we would have f; = 0). The set

{¥2(2) : 0 <t < 1} is a compact subset of C, so a simple compactness argument implies that
there exists r > 0 with

B.(Yo(®) == {z : |z — ¥a(®) <r} c C

for 0 <t < 1. We know that f; (¥, (t) + v) > 0 for all v with ||v|| < r, and since || f;|| = 1,
we must have

fia () = 1
fori > 1,0 <t < 1. By assumption, there exists A so || (#)|| < A almost everywhere, so

(1 ()] < A ae.

Basic measure theory also implies that ¢ — f;(y(2)) and t — f;(¥»(t))~! are Lebesgue
measurable, so t — f;(¥1(2)) fi (Y2(#)) ! is Lebesgue measurable and

AR _ A
@b =2 Chig ) =

gives a Lebesgue measurable function bounded by é.

If ¢ : [0, 1] — H is aminimal geodesic (with respect to p) with ¢(0) = xo and (1) = x1,
the same argument used in the first part of the proof of Theorem 1.1 shows that

9" ()] p(sy < p(xo, X1)
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for all s such that ¢’(s) exists. This proves that

1
p(o, x1; C) = f 10/ .
0

If ¢ € S, essentially the same argument used in Theorem 1.1 shows that

1
p(xo,x1; C) < /O W (5)lyeyds,

which completes the proof.

Remark 1.4. In Theorem 1.1 we actually work in the normed linear space V,, and C NV, is
a normal, Archimedean cone in V,, with nonempty interior P (x). Thus, in Theorem 1.1, we

o
might as well assume that C is a normal, Archimedean cone with nonempty interior C in a

normed linear space V and u € C, which is the framework of Theorem 1.2.

Remark 1.5. We have not formally defined “Finsler structure.” The set P (x) is an open
subset of the normed linear space (V,, || - [|,) and can be considered a manifold modeled on
V.. At each point x € P (u), the tangent space to P (u) at x is V,,, but we equip the tangent
space with the norm | - |, (equation (1.30), which depends continuously on x in a natural
sense. This gives a Finsler structure on P (x). If ¢ : [a, b] — P(u) is a C! map, the length
of the curve ¢ with respect to the Finsler structure is, by definition,

b
1) = / 10 ()] dt.

Define 1 to be the set of C! maps ¢ : [0, 1] — P (x) and define a function g on P (u) X P (u)
by
g (x0, x1) = inf{l(p) : ¢ € S1, 9(0) = x0 and p(1) = x1}.
It is easy to show that ¢ is a metric on P (u), and it follows from Lemma 1.3 and Theorem
1.1 (with H = P (u)) that
p(xo, x1; C) = q(x0, x1)

for all xg, x; € P(u).

For applications of Theorem 1.1, it is useful to choose H D G as small as possible. The
following Corollary illustrates this point.

Corollary 1.1. Let C be an Archimedean cone in a real vector space V. Foru € C — {0},
let (Vy, | - |u) be the normed linear space given by equation (1.8) and let P (u) be given by
equation (1.4), so P (u) is the interior of C NV, in V,,. Assume that G and H are subsets of
P(u) with G C H and that G and H satisfy one of the following conditions:
(a) G U {0} is convex.
(b) There are positive numbers a < bandv € P(u) suchthatG ={x € C:av <x <
bv}and H 2 {x € C : kav < x < bv}, where

k:=2(va/b+/bja)”".

(¢) M is a compact Hausdorff space and (M, p) is a measure space, V. = C(M), the
space of continuous, real-valued functions on M, or V. = LY(M, 1), 1 < g < oo,
and C is the cone of nonnegative functions in V. Forallx,y € G and s € [0, 1],
x175yS € G for 0 < s < 1 (where (x' 7 y*)(m) := (x(m))'~* (y(m))*).
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Define T to be the set of lipschitz maps ¥ : (0,11 — (V,| - |.) such that ¥ (¢t) € H for
0 <t <1, anddefine S C T tobethesetof Y € T suchthat is piecewise C . If p denotes
the part metric on C, then for all xq, x; € G,

p(o, x1; €) = min{fj [W/(lydt : ¥ € S,9(0) =x0 and (1) = x).

If, in addition, V is finite dimensional, then
p(xo, x1; C) = min{ [y [¥/(®)lyedt : ¥ € T, ¥(0) =x0 and ¥ (1) =x}.

Proof. Corollary 1.1 follows directly from Theorems 1.1 and 1.2 and Remark 1.3 if we can
prove that whenever x, y € G, there exists a C! minimal geodesic ¢ € S with ¢(0) = x and
p(1) =y
Case(a). Suppose that G C P (), GU{0O}isconvex and x, y € G. We can assume x 3 y,
and we define
B = max(M(y/x; C), (m(y/x; C))™").

We note that B > 1 (B # 1 because x 5 y). If we define & = B!, Lemma 1.3 implies that
(in the notation of equation (1.21)).

(£

1—t _ a—(1—1)
e+ (e

p—p"

gives a C! minimal geodesic (with respect to p) from x to y. The coefficients of x and y in
equation (1.35) are nonnegative and not both zero for 0 < ¢ < 1, and we assume that G U {0}
is convex. Thus, to prove that ¢(¢) € G for 0 <t < 1, it suffices to prove that, for0 < ¢ < 1,

t __ pg—t 1=t _ pg—(1-1t)
(/; - 5_1 )+ (8 3 _ﬁ_l ) =gt <1. (1.36)

o@®) =9t x,y, 7, 8) = (1.35)

A calculation gives
(B —B7)E' @) = Nog(AIB' — B[ — (B'8')7") = L) ().

Clearly, I := log(B) > Oand I3(t) > 0for 0 <t < 1. Itis also clear that L,(¢) < O for
0<t< % and I, (¢) > 0O for % <t < 1. It follows that g is strictly decreasing on [0, %] and
strictly increasing on [%, 1]. Since g(0) = g(1) = 1, we have proved equation (1.36) and
have also shown that :

. 2
Jin g1) =g(3) = (W) <1 (1.37)

Case(b). G = {x : av < x < bv}. If x, y € G and ¢(¢) is given by equation (1.35), we
know that ¢(¢) is a minimal geodesic. For 0 <t < 1 and g(¢) as in equation (1.36) we have

ag(t)v < p(t) < bg®)v,
so equation (1.36) and (1.37) imply

2(y/B+VB ) av < p(t) < bu. (138)
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On the other hand we have

a a b b
(H)x = (G)ev) =y = (>)@) = ()x,
which implies that 8 < \/g . Using this estimate for S in equation (1.38) and defining k as in

case (b), we see that
kav < () < bv,

sop()e Hfor0 <t <1.
Case(c). If V is as in Case(c) and x, y € P(u), the reader can directly verify that, for
0<s=1,
P(s) = x'7"y"

gives a C! minimal geodesic from x to y and, by assumption, ¢(s) € G for0 < s < 1.
Compare Proposition 1.8, p. 24, in [36]. Thus we are in the situation of Theorem 1.1. O

Definition 1.5. If G and V are as Case (c) of Corollary 1.1, we shall say that “G is logarith-
mically convex.”

An important example of Definition 1.5 is when M = {1,2,... ,n},V = C(M) =

andC =K":={xeR":x; >0forl <i <n}. ThenG C E‘ is logarithmically convex
if, whenever x,y € G, x'*y* € G for0 < s < 1, where z = x'~*y* is the vector with
i = xl sy;;

Corollary 1.1 shows that, in cases (a) and (c), the set G is geodesically convex in (P (), p)

and that a C! minimal geodesic can be chosen.

If Cy and C; are cones, G C C, and f : G — C, is a map, we wish to compute the
Lipschitz constant of f with respect to the part metrics p; and p; on Cy and C; respectively.
Recall that f is “order-preserving on G” if f(x) <¢, f(y) forallx,y € G withx <¢, y; f
is “order-reversing on G” if f(x) >¢, f(y) wheneverx,y € G and x <¢, y. Results related
to the following Proposition can be found in [42] and Chapters 2 and 3 of [36].

Proposition 1.3. Let C;, i = 1,2, be a normal Archimedean cone with nonempty interior
ina normed linear space (V,, Il - 1;) and let p, denote the part metric on C;. Assume that

G C C andthat f : G — C2 andg : G — C2 are maps. (a) Assume that there exists ¢ > 0
such that forall x,y € G

p2(f(x), f(¥)) < cpi(x,y) and p)(g(x),g(y)) < cpi(x, y). (1.39)
If h(x) := f(x) + g(x), it follows that for all x, y € G.
pa(h(x), h(y)) < cpi(x, y). (1.40)

If strict inequality, always holds in at least one of the inequalities in (1.39) wheneverx, y € G
and x # y, it follows that forall x,y € G withx # y

p2(h(x), h(y)) < cpi(x,y)

M®)IftG C Gfor0 <t <1,y > 0, and f is order-preserving (respectively, order-reversing)
and f(tx) > t¥ f(x) (respectively, f(tx) <t~ f(x)) whenever 0 <t < 1 and x € G, then
forallx,y e G

p2(f(x), f(V) < ypi(x, y). (1.41)
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Proof. If x,y € G and x # y and p;(x, y) =log(R), R > 1, then
R1x < yand R_Iy <x.
If f satisfies the conditions in case (b) and we use ¢ = R, this implies that

RV f(x) < fO) SR f(x),

which gives equation (1.41).
If f and g are as in case (a), we have

R f(x) = f() = R°f(x) and R™°g(x) < g(y) < R°g(x), (1.42)

which immediately gives equation (1.40). If, for example,

p2(g(x), () < cp1(x, y),
we must have, for some ¢ < ¢,

R™g(x) < g(y) < R*g(x).
Adding inequalities gives

RTf(x) + R™%g(x) = h(y) < R°f(x) + R g(x). (1.43)
Because f(x) and g(x) are comparable, there exists ¢, with ¢; < ¢z < ¢ and
(R®— R*) f(x) < (R® — R™)g(x) and (R™? — R7) f(x) < (R™* — R™*)g(x).

For this choice of ¢, one obtains from equation (1.42) that

R™*h(x) < h(y) < R®h(x) and pa(h(x), h(3)) < copi(x,y). O

If C is a cone in a vector space V, V is a lattice (with respect to the partial ordering from
C)if, forallx,y e V,{z € V:z>xandz > y} = U(x, y) is nonempty and there exists
t eUx,y)with¢ <zforallz € U(x, y). Obviously, ¢ is unique, and we write { = x V y.
The existence of x Vv y implies that there exists {y = x Ay with &, € L(x,y) ={z:z <
xandz < y}and & > zforallz € L(x, y) and & = —[(—x) V (—y)].

Proposition 1.4. Let C;, V; and p; be as in Proposition 1.3 and assume that Vo is a lattzce
with respecr to the partial ordering from Cy. Assume that G C C1 andthat f : G — Cz and

g:G— Cz satisfy equation 1.39). (a) Ifh : G — C2 is defined by h(x) = f(x) Vv g(x)
or h(x) = f(x) A g(x), then h satisfies equation (1.40). (b) IfV =R and C, = {y €
R":y; > 0for1 <i <n}, let f;(x) and g;(x), 1 <i < n, denote the components of f(x)
and g(x) respectively. Let e = (g1, &2, ... , &) be a given vector with &; = %1 for each i,
1 <i<n,andforx € G define h;(x) = fi(x) vV gi(x) ife; = 1 and hi(x) = fi(x) A gi(x)
ife; = —1. Then, h(x) = (h1(x), ha (%), ... , hn(x)) satisfies equation (1.40).

Proof. If x, y € G and log R = p;(x, ¥), equation (1.39) gives equation (1.42), from which
we obtain

RT(f(x)Vgx) = FO) Ve < RE(f(x) v gx)),
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and similarly for f(x) A g(x). This immediately gives equation (1.40).
To prove case (b), we work coordinatewise and use the same argument; details are left to
the reader. O

The process of taking the max or min of two functions does not preserve continuous
differentiability, but does preserve a local Lipschitz property. Also, many examples of interest
in applications arise by taking the max or min of a collection of functions. See, for example,
work in [4], [41], where a function obtained by taking the maximum of certain affine linear
maps in R" is discussed at length.

One motivation for proving Theorems 1.1 and 1.2 and Corollary 1.1 is to determine the

Lipschitz constant (with respect to p; and pp) of amap f : G C 5’1 — Coz. To explain this
we need another definition.

Definition 1.6. Let C;, i = 1,2, be a normal Archimedean cone with nonempty interior in a
normed linear space V;. Let H be a subset of C; and assume that Hj is an open neighborhood
‘of Hin C; and that f : H; C C; — Cyisamap. If x € H and f is Frechet differentiable at
x, we define ¢(x) by

c(x) =inf{A > 0: If’(x)(v)lf(x) < Alv|x forall v € Vi}, (1.44)

where | - | and | - [f(x) are norms on V; and V; respectively and are given by equation (1.9).
Obviously, c(x) is just the norm of the linear map f'(x) : (Vi, |- [x) = (Va, | - |re))-
Corollary 1.2. Let C;, i = 1,2, be a normal, Archimedean cone with nonempty interior in

a normed linear space V;. Let G and H be subsets of Cc')l with G C H and assume that for
any points x, y € G there exists a piecewise C' minimal geodesic ¢ (with respect to p;) with
00) =x, (1) =y and p(t) € H for 0 <t < 1. (This condition will be satisfied if G and

H are as in Corollary 1.1). Let Hy be an open neighborhood of H, H; C Cy, and suppose
that f : Hy — C, is continuously Fréchet differentiable on H; and that

¢o = supfc(x) : x € H} < 00,

where c(x) is given by equation (1.44). If p; denotes the part metric on C;, we have, for all
x,y€aG,
p2(f(x), fF(3) < cop1(x, ¥). (1.45)

Ifc(x) < co except for countably many x € H, then strict inequality holds in equation (1.45)
for x #£ y.

Proof. Given x, y € G, there exists a piecewise C! minimal geodesic ¢ : [0, 1] — H (with
respect to p;) with (0) = x and (1) = y. It follows that f(¢(2)) gives a piecewise C! map

from f(x)to f(y) with f(¢(?)) € Cyfor 0 <t < 1. Using Theorem 1.1 and equation (1.44)
we see that

1 d 1
pa(f @), FO)) < /0 () £ @) syt < /0 c@®)¢ Dlpdt < copr(x, ¥)-
If ¢(z) < co except for countable many z € H and if x 5 y, this calculation also shows that

p2(f(x), F() < cop1(x, }’)~ t
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Remark 1.6. Let notation be as in Corollary 1.2 andlet S = {(*72) : t € R—{0},u, v € H}.
For each x € H, define

&(x) =inf{A > 0 : | f'(x) (V)]s < Alv]x forallv € S} and & = sup{c(x) : x € H}.

Since ¢'(2) lies in the closure of S whenever ¢ : [0, 1] — H is a piecewise C! map, the proof
of Corollary 1.2 actually shows that for all x, y € G,

p2(f(x), F(3)) = Copr(x, y).

It frequently happens that, in the notation of Corollary 1.2, ¢ is the best possible Lipschitz
constant for the map f.
Specifically, we have

Corollary 1.3. Let C; and V; be as in Corollary 1.2. Assume that G is an open subset of Cy,

and that f : G — Cy. If f is Fréchet differentiable at x € G and c(x) is defined by equation
(1.44), then

p(f), fx); &) N (1.46)

:0< ,x;C) <eg
PO, x; C) PO, G

IF kg = inf{k : p(f(u), f(v); C2) < kp(u,v; Cy) forallu,v € G}, then

c(x) = 81_'15& (sup{

ko = sup{c(&) : &€ € G and f is Fréchet differentiable at £}.

If for allu,v € G, there exists a piecewise C Y minimal geodesic ¢ (with respect to the part
metric) with 9(0) = u, (1) = vand ¢(t) € Gfor 0 <t <1, and if f is continuously
Fréchet differentiable on G, then

ko = sup{c(x) : x € G}.

Proof. Suppose that f is Fréchet differentiable at a given pointx € G andlet S ={y € V; :
|yl = 1}. If || - ||; is the given norm on V;, recall that || - [|; is equivalent to | - |, and | - |2 is
equivalent to | - | (). Thus, by definition of Fréchet differentiability we have forallv € S,

Flx+tv) = Fx)+tf (x)(v)+R(tv) and tgr&(sup{t_llR(tv)lf(x) v esSH=0. (147
By definition of ¢(x) we have

c(x) = sup{max(M (f'(x)v/f (x)), —m(f' (x)v/f(x) :v e S} (1.48)

If v € S, we have that
max(M (v/x), —m(v/x)) = 1.

Since we also know that
M((x+tv)/x) =14+tM(/x) and m((x +tv)/x) = 14+ tm(v/x)
we conclude thatfor0 <t < 1

p(x + tv, x) = max(log(1 4+ tM (v/x)), —log(l +tm(v/x))) =t + R (tv), (1.49)
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where lim,_, o+ (sup{t ! |R; (tv)] : v € S}) = 0.
A similar argument can be used to estimate p(f(x 4+tv), f(x)) fort > Osmalland v € S.
By using equation (1.47) we see that forv € Sand0 < ¢ < 1

M(f(x +10)/f(x) = M((fx) 4+t (f ()v + 17 RE))/S (%))
=1+tM((f'@)v+ 17 R@v))/f (x))
= 14+ tM(f'(x)v/f (x)) + Ra(tv),

where lim,_, o+ (sup{t "' | Ry (tv)| : v € S}) = 0. A similar argument shows that

m(f (x4 tv)/f(x)) = 14+ tm(f'(x)v/f (x)) + Ra(tv),
where lim,_, o+ (sup{t !|R3 (tv)| : v € S}) = 0. It follows that
p(f(x +tv), f(x)) = max(log(1 + tM(f'(x)v/f (x)) + Ra(tv)),

— log(1 + tm(f'(x)v/f (x)) + Rs(tv))) (1.50)
= tmax(M (f'(x)v/f (x)), —m(f'()v/f (x)) + Ra(tv),

where lim,_, o+ (sup{t 1| R4(tv)| : v € S}) = 0. If we use equations (1.48), (1.49) and (1.50),

we find that
p(fx), fO))
p(x,y)

On the other hand, given any & > 0, there exists v = v, € S with

c(x) = lim (sup{ :0< plx,y) =t}. (1.51)
c(x) — & < max(M(f'(x)v/f (x)), —m(f' (x)v/f (x))) < c(x).
For this choice of v, equations (1.49) and (1.50) imply that

i ZLEEED T oo (£ 60/ 060, —m(7 0/ £ = o) — 5

and this implies that equality holds in equation (1.51).
Equation (1.46) immediately implies that

ko > sup{c(§) : £ € G and f is Fréchet differentiable at £}.
If G is geodesically convex as described and f is C! on G, Corollary 1.2 implies that
ko < sup{c(x) : x € G}, so we have equality. [
As we have already remarked, it is important to give a version of Corollary 1.2 for the case
that f is locally Lipschitzian.

Corollary 1.4. Let C;, i = 1,2, V;, G and H be as in Corollary 1.2. Let H} C (:31 be an

open neighborhood of H and suppose that f : Hy — Cy is locally Lipschitzian. Assume that
there exists co > 0 for which the following condition is satisfied: For every piecewise C' map
¥ : [0, 1] — H; and every h € C3 — {0} there exists a sequence (a;) C V1, dependent on h
and , such that lim;_, o a; = 0 and

I%Mﬂ¢®+@m( 1
(P @) +a)) Y Olye

Timys o0 (ess sup{

) ¥ (8) #0}) < co. (1.52)
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Then it follows that for allx,y € G

p(fx), f(»); C2) < cop(x, y; Cr).

Proof. Take points x,y € G, x 7% y, and let ¢ : [0, 1] — H be a piecewise C! minimal
geodesic (with respect to the part metric) with ¢(0) = x and ¢(1) = y. Define 8 =
exp(p(f(x), f(»); C2)) = 1, s0

BT () < FO) < BF(x).

We know that either (1) Bf(x) — f(y) € 3C3 or (2) £(y) — B~'f(x) € 3C,. The Hahn-
Banach theorem implies that there exists & € C5 — {0} with A(8f (x) — F(3)) = O (if case

(1) holds) or A(f(y) — B~ f(x)) = 0 (case(2)). By using Proposition 1.1 and the definition
of minimal geodesic one can see that ¢’(t) # 0 wherever ¢'(¢) is deﬁned By assumption,
there exists a sequence a; — 0 with

|Lh(f (@@ + a))] 1
h(Fe®) +a)) o' Olptyta

(Recall that there exists g; — 0% with [v]y¢y4q; < (14-67) 0]y and [v]eqy < (1+sJ)|vl¢(,)+aj
forall 7,0 < ¢ < 1, and all v € Vj. Thus we can replace the term [/ (t)]y¢ in equation

(1.52) by |9 (O)ly(1y+4))-
By definition of ¢ we have

Timj_, o ( ess sup{ 0<t=<1})=<co. (1.53)

1 1
PG, y; C1) = f /Ol = lim / 1 Olp(rsay .
0 J=*+ Jo

Given ¢ > 0, equation (1.53) implies that for all j sufficiently large and almost all ¢ we have

d
|E; log(h(f (@) +a)))| < (co+ )¢’ O)lp@)+a;-
Integrating this inequality, we find

og(AFO )y

R(f(x +a])) / — log(h(f (p(t) + a;)))dt|

= /0 Izi;log(h(f(fp(t)+aj)))|dt (1.54)

1
< (co+8) /0 10 (8) sy -

Taking the limit as j approaches oo in equation (1.54) gives p(f(x), f(y); C2) =log(B8) =
|log(Z—EfLE%)| < (co + &)p(x, y; C), and since ¢ > 0 was arbitrary, we have the desired
estimate.

Remark 1.7. An examination of the proof of Corollary 1.4 shows that it would actually suffice
to know that equation (1.52) is satisfied for all 1 € I", where I' is some subset of C5 — {0}
which is dense in CJ in the weak * topology on V5.

If Vi and V, are finite dimensional, so that f is Fréchet differentiable almost everywhere
on Hji, Corollary 1.4 takes a much simpler form.
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Corollary 1.5. LetC;,i =1,2,V;, G and H be as in Corollary 1.2 and assume that Vi and

V, are finite dimensional. Let H; C C1 be an open neighborhood of H and f . H; — C2
a locally Lipschitzian map (so f is Fréchet differentiable almost everywhere and c(x) as in
equation (1.44) is defined for almost all x). Define co by

¢o = ess sup{c(x) : x € Hy} (1.55)
and assume that ¢y < 00. Then it follows that for all x,y € G,

Pa(F(x), F(); C2) < cop1(x, ¥; Ch). (1.56)

Proof. It suffices to verify equation (1.52). Let N C H; be a set of measure zero such that
f'(x) exists forall x € H;\N and ¢(x) < co. Let : [0, 1] — Hj be apiecewise C! map and
selecte > Osothaty(t)+b e HiforO<t<landforallbe B;:={yeV:|yli <&}
The set N x [0, 1] has measure zero in Vi X R. The map (a, t) € V1 X [0, 1] = (a— ¥ (#), 1)
is locally Lipschitz and thus takes sets of measure zero to sets of measure zero. Therefore,
E={b-—v@),t):beN,0<t < 1} has measure zero, so

Ei={(a,t):a€ B;,t €[0,1),a+v¥(¢) eN}CE

has measure zero. It follows from Fubini’s theorem that for almost alla € Bg, a+ ¥ (t) € N
for almostall # € [0, 1]. Thus there exists a sequence a; € B; witha; — Oand a;+¢ () ¢ N
for almost all #. By using the chain rule and the definition of ¢y we see that for almost all ¢

—cof (W @) + @)Y’ Olypeyra, < @) + a)(W'®) < cof Wt + DY Olyoy+a-

If h e C3 — {0} we see that for almost all ¢

\h(f' (@ +a) @' )] = ]( )h(f(llf(t) +a))| < coh(f W +aDIY Oy

from which one easily derives equation (1.52).

Remark 1.8. In Corollary 1.4 or 1.5 we could consider a decreasing sequence of open
neighborhoods Hy, j > 1 of H and define c by equation (1.52) or (1.55) for H = H;. If
we define cp = limj0 co, equation (1.56) remains true.

Remark 1.9. Suppose that C;, i = 1,2, V;, G and H are as in Corollary 1.2, that H; C C;
is an open neighborhood of H and that f : H; — C, is alocally Lipschitzian map. Suppose
that ¥ > 0O and that f is order-preserving (respectively, order-reversing) on H, and f(tx) >
t¥ f(x) (respectively, f(tx) <t77 f(x)) whenever 0 <t < 1,x € H; and tx € H;. One can
prove (details are left to the reader) that equation (1.52) is satisfied with a; = 0 for all j and
y = co. Thus Corollary 1.4 implies that forall x, y € G

p(f(x), f(3); Ca) < yp(x, y; Cr),

and we obtain a refinement of Proposition 1.2, case (b).

In order to apply Corollary 1.2, one must estimate ¢(x). For the case of the standard cone
K" ={x eR":x; > 0,1 <i <n}, this evaluation is easy.
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Corollary 1.6. Let C; = K" C R" and C, = K™ C R™. Assume that G C H C 5’1 and
that for any two points x, y € G there exists a piecewise C' minimal geodesic ¢ (with respect
to the part metric on Cp) wzth 9(0) = x, go(l) =yand p(@t) € H for0 <t < 1. (See

Corollary 1.1). Let H; C C1 be an open neighborhood of H and f : H; — Cz a locally
Lipschitzian map with coordinate component maps f;, 1 <i <m. Ifx € H, f is Fréchet
differentiable at x, and c(x) is defined by equation (1.44), then

max (fi(x)7! Z| <x>|x, = c(x). (1.57)

Ifesssup{c(x) : x € Hi} = ¢y, then, forallx,y € G

p(f(x), f(3); C2) < cop(x,y; Cr). (1.58)

If f is C' on H, equation (1.58) remains valid if co in equation (1.58) is replaced by
¢ = sup{c(x) : x € H}; and if c(x) < Ty except for countably many x € H, then for all
x,y € Gwithx £y

p(f(x), f(); C2) < Cop(x,y; Cr).

Proof. By virtue of our previous results, it suffices to prove equation (1.57). Assume that
x € Hi, and f is Fréchet differential at x and define y (x) by

o
y () = max <f,<x>>-12| ””( ).

Ifv e R* and |v], <1, wehave |v;| <x;forl < j <nand

oL
|Zi<x> | _ZI Lol < v, 1<i<m (159)

Equation (1.59) implies that
IF' @)W < v (),

so c(x) < y(x). Conversely, select k, 1 < k < m, so that
o
ZI( ) @b = @50,

Define v € R" by v; = g;x;, where &; = sgn(—ng’;(x)). Then we have that |v|, = 1 and

n

3
Z(a—ﬁ@)xf =y (x) fr(x).

=1 oM
‘We conclude that

c(x) = [F/ ) W)re = ¥ (),
which completes the proof. O

Corollary 1.6 generalizes Theorem 4.1 in [29].
In general the problem of estimating c(x) is nontrivial. However, there is one class of
examples which can be reduced to the situation of Corollary 1.6.
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Lemma 1.4. Let V be an n dimensional Banach space. Let h;, 1 < i < n, be continuous
linear functionals on V and assume that the functionals are linearly independent. If C =
{x e V:ihi(x) = 0forl <i <n}, Cisa closed cone with nonempty interior in V. If
L:V — R" is defined by L(x) (h1(x), ha(x), -+, hy(x)), L is one-one and onto and

L(C) K" Forallx,y e Cwe have

p(Lx, Ly; k") = p(x,y; C) and d(Lx, Ly; K") =d(x, y; C).

Proof. If L is not onto, then by taking a nonzero vector a in the orthogonal complement of
the range of L, we get forall z € V

> aihi(z) = 0.
i=1

This implies that ) ;_; a;h; = 0, which contradicts linear independence. It follows that L is
onto, and since dim(V) = dim(R"), L is necessarily one-one. By definition, C = L~1(K™),
where L~ is one-one, continuous and linear, so C is easily seen to be a closed cone. Because
L and L are open maps, we have

L(C) C K" and LK™ C C,

which implies that L.(C) = K"
Applying case (b) of Proposition 1.2 implies that for all x, y € C

p(Lx,Ly; K") < p(x,y; C) and p(L™'(Lx), L™}(Ly); C) < p(Lx, Ly; K™,

which implies equality. The argument for the projective metric is the same. [

Corollary 1.7. Let V; be a Banach space of dimension n and Vo a Banach space of dimension
m. Let g; - Vi = R,1 < i < n, be n linearly independent, linear functionals and let
hi : Vo = R, 1 < j < m, be m linearly independent, linear functionals. Let Ci =
(xeVi:gx)=0forl <i<nland Co, ={y € Vo :h() >=0,1=<j<m}
and define Ly : Vi = R and Ly : Vo = R™ by L1(x) = (g1(x), g2(x), ..., gn(x)) and
Ly(y) = (hl(y) hg(y) . m(y)) Then Ly and L, are one- one and onto, C; and Cy are
cones, and L1(C1) = K" and Lg(Cg) = K”‘ If G is a subset ofC1 and f : G — CZ amap,
we have
p(fx), f(y); C2) =yp(x,y; C) fordl x,y € G

if and only if
p(Laf L', Lyf LT v Ky) < yp(u, v; K™) forall u,v € Li(G).

Proof. This follows easily from Lemma 1.4 and is left to the reader. [
Corollary 1.7 reduces a more general situation to the case of Corollary 1.6.
2. Finsler structure and Lipschitz maps for Hilbert’s projective metric. In this section

we shall present analogues for Hilbert’s projective metric of our previous results for the part
metric. We begin with some convenient definitions.
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Definition 2.1. A subset S of a vector space V satisfies “condition R” (“R” for “radial”) if,
whenever x € S, it follows that Ax & S for A > 0 and A #£ 1. If S| and S, are subsets of
V which satisfy condition R, we say that S; and S, are “radially isomorphic” if, for each
x € Sy, there exists A, > 0 with A,x € S and for each y € S5, there exists x, > 0 with
Wyy € S1. The one-one, onto map x — A,x of S onto Sy is called the “radial isomorphism.”

Now suppose that C is an Archimedean cone in areal vector space V and thatu € C —{0}.
If S1 and S, are subsets of P (x) and each satisfies condition R and if d; denotes the restriction
of Hilbert’s projective metric d to S; x S;, then Lemmas 1.1 and 1.2 imply that (S;, d;) is a
metric space. If S; and S, are radially isomorphic by a radial isomorphism & : S| — S,
then @ is an isometry of (S, dy) onto (S, dy).

‘We wish to describe a Finsler structure for (S;, d;), at least when S; is radially isomorphic
to a convex set. Recall that by working in (V,, | - |,) we may as well assume initially that C

is a normal, Archimedean cone in a normed linear space (V, || - ||) and thatu € C. If x € C
and y € V, we abuse notation and write

wx(y; C) == w(y/x; C), 2.1

where w(y/x; C) is as in equation (1.3). We leave to the reader the verification that w, is a
continuous seminorm on V- and that w, (y; C) = 0 if and only if y = Ax for some A € R. If
C is obvious, we shall write w, (y) instead of w, (y; C).

Our next theorem gives the promised Finsler structure.

Theorem 2.1. Let C be a normal, Archimedean cone with nonempty interior in a normed
linear space (V, | - |). Let G C C be a convex set and assume that G C H C C. Let T

denote the set of piecewise C' maps ¢ : [0, 1] — E’ such that ¢(t) € H for0 <t < 1. For
any points x, y € G we have (see equation (2.1))

d(x,y; C) = min{ [y wpe(@'(0)dt : 9 € T, 0(0) =x and p(1) =y).  (22)

Proof. To prove that the right hand side of equation (2.2) is less than or equal to the left hand
side, consider p(t) = (1 — )x 4 ty. (Note that ¢ € X because G is convex). If we define
a=m(y/x; C)and B = M(y/x; C), the reader can verify (see p. 26 in [36]) that

m (@' (£)/o(t); C) = (@—D)[1+t(@—1]"" and M(¢'(t)/0(t); C) = (B—1)[1+t(B.—1)] 7.
It follows that .

1 1
/0 pty (@' (1))t = fo (B — DL +£(8 — D] — (@ — DI+ (e — DY
— log(B/a) = d(x, y; C).

2.3)

Conversely, suppose that Y € ¥, ¥/(0) = x and ¥(1) = y. For convenience we assume that
Y is C!; the argument for the piecewise C! case requires only minor changes. The reader
can verify that y (¢) := m@/(¢)/¥(@); C) and 8§(t) := M ' () /¥ (¢); C) give continuous
functions of £,0 <t < 1. Because Sx —y € dC and y — ax € 3C, an application of the
Hahn-Banach theorem as in the proof of Theorem 1.1 shows that there exist continuous linear

functionals Ay and hy on V with h;(y) > Oforally € C,i = 1,2, hi(fx — y) = 0 and
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ha(y — ax) = 0. Let & denote any continuous linear functional which is positive on C. We
know that

yOY @ <90 <8OV,

which implies that
h@'®) d
y(@) < ) Elog(h(x/f(t)) <4é@®), O0=r=<1l.
Integrating this inequality gives
! h(y) !
/0 y(B)dt < log(%) < /O 8()dt.

Taking h = h; or hy we conclude that

1

1
log(B) 5/0 §(t)dt and —log(oz)g—[o y(t)dt.

It follows that

1 1
og(2) = dx, y; 0) < /O [8(t) — y (6))dt = /0 oy @' @)t O

(04

Remark 2.1 Wojtkowski [55] has observed that (K", d) can be given a “Finsler structure”
as in Theorem 2.1. (In this case, the “Finsler structure” amounts to a continuously varying

seminorm wy, X € K0 ™). However, the argument in [55] depends on special features of K".
In fact define @ : K" — R" by

P (x) :=1log(x) —logxy, logx,, ... ,logx,),
so ® is C*°, H and onto. Define a seminorm g on R" by

q(») = Maxy; —rniiny,'-

It is observed in Proposition 1.7, p. 22, in [36] that for all x, y € Ig n
d(x,y; K") = q(@(x) — 2(y)).

Thus ® is an “isometry” of (K", d) onto (R", g). The obvious Finsler structure on (R”*, g)
induces one on (K", d) by using ®; and for C = K™, this is precisely the Finsler structure in
Theorem 2. If S={x € K" . x, = 1} and W = {y € R" : y,, = 0}, (S, d) is a mefric space
the restriction of ¢ to W is anorm, and ® : (S, d) — (W, g) gives an ordinary isometry; see
Proposition 1.7 in [36].

As in the case of Theorem 1.2, it is useful to allow maps ¥ : [0, 1] — C which are only
Lipschitz, and this poses no difficulties if dim(V) < co. The proof of the following theorem
is very similar to that of Theorem 1.2 and is left to the reader.
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Theorem 2.2. Let C be a closed cone with nonempty interior in a finite dzmenszonal Banach
space (V, || - ). Let G C C bea convex set and assume that G C H C C Let X denote

the set of Lipschitz maps ¢ : [0, 1] — C with p(t) e Hfor0 <t <1 Ifp e %, pis
Fréchet differentiable almost everywhere, t — ¢'(t) is essentially bounded and measurable
and t — wy)(¢'(t)) is essentially bounded and measurable. For any points x,y € G we
have

d(x,y; C) = min{ fy wp (@' ()dt 1 ¢ € T, p(0) = x and p(1) = y}.

If C and V are as in Theorem %.1 we know that there exist continuous linear functionals
h : V — R which are positive on C. As usual, we define C* to be the set of continuous linear
functionals which are nonnegative on C (so h € C* — {0} implies A(x) > O for all x € E‘).
For h € C* — {0} we define
‘ ={xeC:h(x)=1)}, 2.4)
and we note that Sy, satisfies condition R and thatif 1, hy € C*—{0}, Sy, and Sy, are radially
isomorphic.

As in the case of the part metric, we want to compute the Lipschitz constant of a map f
with respect to Hilbert’s projective metric. As a first step we have
Theorem 2.3. Let C;, i = 1,2, bea normal Archimedean cone with nonempty interior in a
normed linear space (V;, || - ;). Suppose that h € C1* — {0}, Sy, is given by equation (2.4),

and G C Sy, is open in the relative topology on Sy. Assume that f : G — Cy is Fréchet
differentiable at x € G and define

Ax) =inf{A > 0 : wpe (F () (V) < Awx(v) for all v € Vy with h(v) = 0} 2.5)

and

d(f ), fFx)

o0 0<d(y,x)<ey€SH). (2.6)

ho(x) = lim (sup

Then it is true that A(x) = A(x).
Proof. Let ¥ = {v € Vi : h(v) = 0,w,(v) = 1}. If v € %, define B8 = M(v/x) and
a=m(v/x),s0 8 —a =1and

h(v)
h(x ))

It follows thatfor0 <t < landv € X, M((x +tv)/x) =1 +tB, m((x +tv)/x) = 1+t
and

d(x +tv, x; Cp) =log(l +1B) —log(l + ta) = £(B — ) + R(tv) =t + R(tv),
tlir& (sup{t"'R(tv) : v € T})) = 0.

a <

0<8.

@.7)

For convenience, write Ay, = A, (x) and A = A(x). If v € ¥ and we write

y =m((f'))/f(x)) and & =M((f'(x)v)/f(x)),

the definition of A implies that 0 < § — y < A. By definition of the Fréchet derivative
(recalling that | - |¢(y) is equivalent to || - ||2) we have forv € ¥ and 0 <t < 1

for ) =@+ PO + R,  lim Gl Rty v € B =0. 28)
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It follows from equation (2.8) that

M(f(x+1t)/f(x)) =1+18+ Ra(tv), m(f(x+1tv)/f(x)) =14ty + Rs(tv),
t1_i>%1+ (sup{t'R;j(tv) ;v €T =0, j=2,3. (2.9)

‘We conclude from equation (2.9)

)= tog(LEBF Rty
d(f (e +1v), f(x); Co) = log(1 + 1y + R3(tv)) IO R, (2.10)

lim (sup{t ' R4(tv) : v € T})) = 0.
t—0t

It follows easily from equation (2.7) and equation (2.10) that given any & > O there exists
n > Osuch thatforallv e T and0 <t <,

d(f(x+tv), () _

dG T,  =rte

and this implies that A, < A. On the other hand, given any & > 0, there exists v = v, € T
with M(f'(x)v/f(x)) =68, m(f'(x)v/f(x)) =y and § — ¥y > A — &. For this choice of v,
equations (2.7) and (2.10) imply

d(f G+ 1v), £ _

—y>r—e 2.11
>0+ d(x +tv, x) V= ¢ @11

Since ¢ > 0 is arbitrary, we conclude from equation (2.11) that A, > A.

‘With the aid of Theorem 2.3 we can describe precisely the Lipschitz constant (with respect
to the projective metric) of amap f : G C S — 8’2.
Theorem 2.4. Let C;, i = 1,2, be a normal Archimedean cone with nonempty interior in a
normed linear space (V;, || - ||;). For h € Cy* — {0}, let Sy, be given by equation ( 2.4) and
let G C E’, be a convex subset of Sy and T’ = {u — v : u,v € G}. Assume that HOC Sk

is an open neighborhood of G (in the relative topology on Sy) and that f : H — Cy is a
continuously Fréchet differentiable map. For x € H define A(x) by

A(x) =1nf{d > 0 : s (f/(x) (V) < Awx(v) for allv € T'}. 2.12)

If we define Ao and kg by

Xo = sup{A(x) : x € G}

ko = inf{k > 0: d(f(x), f()) < kd(x,y) forall x, y € G}, @2.13)

then kg < Ag. If the relative interior of G in Sy, is nonempty, then Ao = ko. If A(x) < Ag
except for countably many x € G, thenforallx,y € G withx % y,

d(f(x), F()) < rod(x, y). (2.14)
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Proof. Suppose thatx,y € G, x 3% y, define ¢p(¢) = (1 —t)x +ty, 0 <t < 1, and note that
Y(t) = f(p@®)) is a C! map from £(x) to £(y) in Cy. Theorem 2.1 implies that

1

.
d(f(x),f(y))S/o wf(;o(,))(f'(go(t))(y—x))dt5/0 M)y (y — x)dt. (2.15)

If we recall that L(p(¢)) < Ao and use equation (2.3) we find that

1
AF), FON) < Ao /0 Opi (v — XVt = hod(x, ¥), 2.16)

so kg < Ao. IfA(z) < Ag except for countably many z and x # y, we find that wy) (y —x) > 0
for 0 <t < 1 and A(p()) < Ao except for countably many ¢, so equation (2.15) implies
equation (2.14).

If G has nonempty relative interior G in Sy, then U otT - {fveV:h@ =0},s0if
A(x) is defined by equation (2.12) we have

A(x) =inf{A > 0 0pay (F'(x)v) < Awy(v) for all v € V; with ~(v) = 0}.

It is well known that (1 — t)x +ty € G wheneverx € G,y € Gand 0 <t < 1, so (o? is
certainly dense in G. Also, by using Proposition 1.1, one can see that x — A(x) is continuous
on G, so we conclude that

Ao := sup{rA(x) : x € G} ='sup{)»(x) X € &}.

Similarly, using Proposition 1.1, we see that
=inflk > 0:d(f(x), f(y)) <kd(x,y) forallx,y € Co#}.

Thus, for purposes of proving that 1o < ko, we may as well assume that G = G. However,
using the notation of Theorem 2.3, we have

X0 = sup(A(x) : x € G} = sup{ha(x) : x € G} < ko,

which completes the proof. [

If V is a vector space and x, y € V — {0} we say that “x and y lie on the same linear ray”
if there exists s > 0 with y = sx. If V| and V; are vector spaces and U C Vi, we say that
f : U — V,is “ray-preserving” if whenever x, y € U — {0} and x and y lie on the same
linear ray, then f(x) and f(y) are nonzero and f(x) and f(y) lie on the same linear ray.

Corollary 2.1. Suppose that C;, i = 1,2, is a normal, Archzmedean cone with nonempty
interior in a normed linear space (V;, || - H ) and that U C C1 is a convex set with U #* 0
andtU C U forallt > 0. Let f : U — C2 be a C! map which is ray preserving. For each
x € U define A(x) and Ay by

A(x) = inf{c > 0 : w5 (f (®)v) < cox(v) forallv € Vi}, Xo = sup{A(x) : x € U).



1680 ROGER D. NUSSBAUM
Define ko by
ko = inflc > 0: d(f(x), f(7); Ca) < cd(x, y; C1) forallx,y € U}.

Then it follows that Ay = ky.

Proof. Selectr € C1*—{0}anddefine G = {x € U : h(x) = 1}. If kg is defined by equation
(2.13), we obviously have ky < ko. On the other hand, if x,y € U, there exist s, > 0
with sx, ty € G; and the ray-preserving property of f gives positive numbers ¢ and T with
f(sx) =of(x)and f(tx) = tf(x). Thus we find that

d(f®x), f) =d(f(sx), f(ty)) < kod(sx, ty) = kod (x, y),

o] ]Eo < k and iéo = kp.
By definition of ray-preserving, for s > 0 and x € U, there exists a positive real g(s, x)
with
fsx) = g(s, x) f(x).
We leave to the reader the exercise of proving that g is continuous on its domain. If x € U
we have that

. 8 +t,x)—1
= hm(——-—————
t—0 t

)F(x) =g'(L, x)fx),

(feNE) = }E%[f(x + txt) _ f(x)]

where g’ (¢, x) denotes the derivative of ¢+ — g(¢, x). (The fact that f/(¢x) exists implies that
g'(¢, x) exists.) Let A(x) be defined by equation (2.5)forx € U. Ifu € Vy and x € U, we
can write

h(u)

T e

so h(v) = 0. Using the properties of w, and wyx) and writing T = g’(1, x), we obtain

u=v-+sx, s

wre) (F' ()W) = 050 (F' ®)v + 5/ (x)x) = 0500 (F (v + T5F (X))
= W) (f' (X)) < A(x)wz (v) = A(x)wx ().
This calculation shows that A (x) < A(x). The opposite inequality is obvious, so A(x) = A(x)
forx e U.

We claim that X(sx) = A(x) for s > 0 and x € U. Assuming this fact for the moment and
using Theorem 2.4 we see that

= sup{A(x) : x € G} = ko = ko.

To prove that A(sx) = X(x), we need an expression for f/(sx)(s > 0, x € U) in terms of
f'(x) and derivatives of g. For v € V; we have

f(S(x+tv))—f(SX)]
t
[f(X+tl;) —f(X)] " [g(s,x-l-tl;) —g(s,X)]

F/(sx)@) = s lim|

— 11
= s~ lim{g(s, x)

fl+t)}
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It follows from this equation that

[[g(s, x +tv) — g(s, x)

Flex)w) =57 g (s, x) f' ()W) + 571 lim ;

1f &+ oy},
Because g is continuous and f is differentiable at x we conclude that

P f(x+ 1) — f(x)

}i_l}(l)[g(s,x + tv) — g(s, x)][ ; ] =0 and
}E%[g(s, x+ tvt) — g(s, x)]f(x )= tn—r)%[g(s, x + l‘l:) —g(s, x)]f(x)

c= (s, x,v) f(x).
It follows that

Fsx) (@) = 57 g (s, x) f' X)) + s ps, %, 0) f (%),

where ¢(s, x, v) = lim,_, o[ £8XHV=£E0 ]

we see thatforv e V,x € U and s > 0,

and the limit exists. Using this formula for f/(sx)

Wsxy (F (52)0) = 5 wpey (F/(x)v) and wge (V) = s, (),
which implies that A(sx) = A(x). O

Corollary 2.2. Let C; (i = 1,2), V; and U C Cj be -as in Corollary 2.1. Assume that

L : Vi — V, is a bounded linear map and that L(U) C 52. Define numbers N(L; U) and
k(L,U) by

N(L; U) =inf{c > 0: w(Ly/Lx; C3) < cw(y/x; C1) forallx,y € U}
k(L; U) =inf{c > 0:d(Ly, Ly; C) <cd(y,x; Cy) forallx,y € U}.
Then N(L; U) = k(L; U).

Proof. Because L is bounded and linear, we know that if f(x) = L(x) for x € U, then
f'(x)(w) = L) forx € U, v € V. The reader can verify with the aid of Proposition 1.1

that N(L; U) = N(L; U) and k(L; U) = k(L; (}), so we may as well assume U is open. If
we define A(x) (for x € U) by

A(x) =inf{c > 0: w(Ly/Lx) < co(y/x) forall y € U},

then one can easily verify that X(x) = A(x), where ;\(x) is as in Corollary 2.1. If Xy and ko
are as in Corollary 2.1, it follows that

Xo =sup{A(x) :x € U} = N(L; U) =ko = k(L; U),
which completes the proof. [

Remark 2.2 If U # Cy, the fact that k(L; U) = N(L; U) is new. However, if U = C,
one usually writes k(L) = k(L; U) and N(L) = N(L; U), and it has long been known that
N (L) = k(L). In fact, if one defines A(L) by

A(L) = sup{d(Lx, Ly; Cy) : x,y € C1},
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beautiful classical results assert that
N(L) =k(L) = tanh((%)A(L)), 2.17)

where tanh(oo) = 1. Descriptions of these and related results and references to the literature
are given in [36], pp. 42-45. An elementary, self-contained approach to equation (2.17) is
given in [19] where it is shown that equation (2.17) is valid if V; is areal vector space, C; C V;
is a cone which need not be almost Archimedean or have an interior, and L : V; — V,isa
linear map with L(Cy) C Ca.

Remark 2.3 In [19] the problem of evaluating k(L) = N(L) for a general positive linear
operator L is reduced to the case that C; = C, = K? C R? and L is given by the matrix

o (1—a) 1
<(1—(¥) o ), ':—Z-S(X<1

More generally, for o > %, define a linear map f : R? — R2 by f(x1, x2) = (ox + (1 —
@)xz, (1 — @)x1 + axy). For 0 < 8 < 1, define

G,;={(—12--i—1f,%-t):|t|<8}CK2 and U; = {sx :x € Gs,s > 0}

and note that
fG+ti—nD=G+ct,i—ct), c=20—1,

so f(Us) C K*if0 <86 <%and0<csd <L Ifx'=(@EG+¢3—1fort| <3and
v = (1, —1), Theorem 2.4 and Corollary 2.2 imply that
k(f; Us) = N(f; Us) = sup{wyeen (f (x")v) (@ ()7 : |2] < 8}
= sup{c(l — 4t¥)(1 — 4c*?) 71 : |t] < 8).

It follows thatfor 0 <8 < f and 0 < ¢6 < %, c: =20 — 1,

¢:=2a—1, ifI<a=<l

N(f; Us) = k(f; Us) = { c(l —48%)(1 —4c28*)~1,  ifa> 1.

In the case that § = % and % < « < 1, one can check that ¢ = tanh(%fA(f))

As in the case of the part metric, it is useful to have versions of our theorems in which f is
only assumed locally lipschitzian. For simplicity we restrict attention to the case that V; and
V, are finite dimensional.

Theorem 2.5. Let C;, i = 1,2, Vi, h, Sy and G be as in the statement of Theorem 2.4.
Assume that dim(V;) = n < oo, dim(V,) = m < oo, that C; is closed, and that Co}, the
relative interior of G in Sy, is nonempty. Let f : G — Coz be locally lipschitzian, so f
is Fréchet differentiable as a map from G to Coz almost everywhere with respect to (n — 1)
dimensional Lebesgue measure on Sy. For x € (o}' such that f is Fréchet differentiable at x,
define

A(x) =1inf{c > 0 : wre (f/ (X)(v)) < cwx W) for allv € Vy with h(v) = 0},

lo = ess sup{A(x) : x € g;}.



FINSLER STRUCTURES 1683
If we define ky by
ko =1inf{k > 0: d(f(y), f(x)) <kd(y,x)forall y,x € G},
then Ao = ko.

Proof. By using Proposition 1.1 and recalling that G C Col, one can see that

ko = inflk > 0: d(F(3), F(x)) < kd(y, x) for all y, x € G}

Theorem 2.3 implies that (for A«(x) as in equation (2.6))
ko > sup{A«(x) : x € (o?} > Ap.

By definition, there exists a set N C G of (n — 1)-dimensional measure zero such that

f'(z) existsforz € G\N and A(z) < Ao. Ifx,y € G and x # y,weknow thatx —y € C; or
y —x € Cp and Cj is closed, so the Hahn-Banach theorem implies that there exists Ay € ct

with 1 (x) # h1(3).
Select r > 0 and define

T, ={§ € Sp: 1§ — x|l <r and Ay (§) = h1(x)}

so T, is a ball of radius r in an (n — 2)-dimensional affine linear subspace W; C V; and
T, C G for r small. For (§,1) € T, x [0, 1), we define

O, 1) = (1— 0% +1y.

Itis an easy exercise (left to the reader) to prove that @ is one-one and C* and that the Fréchet
derivative of ® (as a map from an open subset of W; X R to Sy,) is one-one for all (§,¢) € T, x
[0, 1). It follows by the change of variables formula that {(¢,¢) € T, x [0, 1) : (£, 1) € N}
has measure zero. Fubini’s theorem implies that for almost all £ € T, (&, t) ¢ N for almost
all t € [0, 1]. It follows that there exists §; — x, £; € T}, and f is Fréchet differentiable at
P (&, 1) and A(P(£;, 1)) < Ao for almost all . As in equation (2.15) and (2.16), this gives

d(f &)y F()) = 2od (&, ).

Taking the limit as j — oo implies that d(f (x), f(¥)) < Aod(x, y). This shows that kg < Ag
and completes the proof. O

The usefulness of Theorem 2.4 depends on'estimating A(x) in equation (2.12). In general
this seems a difficult problem, but in the special case C; = K", V; = R", one can give an
explicit formula. We begin with a simple lemma whose proof is left to the reader.

Lemma 2.1. Let (V, | - ||) be anormed linear space, and for ¢ € V* —{0} define Vy = {y :
Y (y) = 0}. Ifx is a fixed element of V with (x) # 0, define Ly, : V — V by

Y0,

o) (2.18)

Ly =y—(
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Then Ly is a continuous linear projection onto Vy, so Ly (V) C Vy and Ly (y) =y for all
y € Vy. If0 € V* — {0}, 0(x) # 0 and

90y

Ly(y) =y — (9(x) x

then LyLg = Ly and LgLy = Lg, so Lg | Vy is a one-one bounded linear map of Vy, onto
Vo, with inverse Ly | V. If C is anormal Archimedean cone with nonempty interior in V and

x € C then wx(y) := w(y/x; C) gives a seminormon V. If0, ¥ € C* — {0}, the restriction
of wy to Vy (respectively, Vy) gives a norm on Vg (respectively, Vi) which is equivalent to
the restriction of | - |x or || - || to Vy (respectively, V). The map Lg | Vy is an isometry of
Yy, wyx) onto (Vg, wy),

Remark 2.4. Proposition 1.1 implies that | - |, and || - || are equivalent norms on V, so in
proving Lemma 2.1 it suffices to show that the restrictions of w, and |- |, to Vj, give equivalent
norm. However, it is easy to check that for all u € Vp,

]y < () < 2ulx.

Remark 2.5. If E(x; ) denotes the set of extreme points of {y € Vy : w.(y) < 1}, the fact
that Ly | Vy is a linear isometry onto Vy implies that E (x; 6) = Lg(E(x; ¥)).
Before continuing, it is convenient to introduce some further notation. For positive integers
n we define
I, ={ieN:1<i<n). (2.19)

IfJ C I, and J # @, we define P; : R* — R" by

Xj, iijJ

2.20
0, ifjéJ. (220)

Pix)=y, yj= {

If J C I,, J' will denote the complement of J in I,,.

Proposition 2.1. Let C := K" C R" := V and assume that x is a given point in E‘ Suppose
that € C* — {0} and define Vy = {y € V : () = 0}, wx(y) = w(y/x; C) and
Bx;¥)={y e Vy 1w (y) <1} If J C Iy and J # @, define

7 _ ¥ (Prx)
A= —1/’ &) and 221
x7 = Pr(x) — Ax = Ly (Py(x)), (2.22)

where Pj is given by equation (2.20). If E (x; V) denotes the set of extreme points of B(x; ),
we have
E(x;y)={x7:JCl,,J#3 and J # I,}. (2.23)

Proof. Defined € C* — {0} by 8(y) = y, forally e R*,;so Vy = {y e R" : y, = 0}. We
shall first determine E(x; ). For any y € V, we have

M(y/x) = max (&) > (y—") =0 and m(y/x) = min (&) (y—") =0.

1<i<n‘X; Xp 1<izn x; Xp

IA
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‘We know that w, | Vp is a norm, so all extreme points y of B(x; 0) satisfy w,(y) = 1. Thus,
if y is an extreme point of B(x; ) and r = M(y/x) and s = m(y/x), we know that r > 0,
s<0O0andr—s=1,500=<r <lands=r— 1. Wedefine subsets Jy, J, and Js of I, by
Nh={:(F)=r} Jz={j:(&)=r—1}andf3={j:r——1<&<r}.

j j Xj
Our remarks above show that J; and J, are nonempty subsets of I,,. If J3 contains an element
k # n, select & > 0 and define points y and § in Vp by y; = 3; = y; fori # kandy, = y,+¢
and ¥ = yx — &, If & is chosen sufficiently small, we have w,(J) = 1 and w;(F) = 1, so
y, 9 € B(x; 6). However, we also have that

y=30F+9),

which contradicts the assumption that y is an extreme point of B(x; 8). Thus J3 is empty or
J3 = {n}

We nextclaim thatr = Qorr = 1. Ifnot,s00 < r < landn € Js, selecte > 0 and define
yeVoandy € Vobyy; =y; =J; forj € /5,5, = (r +&)x; for j € Ji, ;= (s + &)x;
for j € Ja, §; = (r — &)x; for j € J; and §; = (s — &)x; for j € Jo. For ¢ > 0 sufficiently
small we have

O<rxe<l

and
MQ@/x)=r+e m@/x)=s+e, M@P/x)=r—¢ m@/x)=s—c¢.
It follows that, for & > 0 small, y, § € B(x; 8) and
y=@F+79).

This contradicts the assumption that y is an extreme point of B(x; 8). Thus we see thatr = 0
orr = 1 and thatn & J3, so J3 is empty.

It follows from the above remarks thatif y € E(x; 0), then y = Pyx or y = —Pyx, where
J C I,,J is nonempty and n ¢ J. Conversely, we claim that every such point £P,x is an
extreme point of B(x; 6). For suppose that Pyx = %(7 + ) fory, § € B(x; 6). We know
that if y € B(x; 0) then y; < x; for all i. In particular y; < x; and §; < x; for j € J, and
since we assume that

Xj = %@J+§J) for j € J,

we must have that y; = $; = x; for j € J. However, we also know that w;(y) < 1 and
wx(9) < 1, so we must have that j; > 0 and $; > 0 for all j. We have

0=1@;+9) forj¢&lJ,

soy; =3 =0forj¢J,and Pyx =7 = 3. This shows that P,x is an extreme point of
B(x; 0), which implies that — P, x is also an extreme point.

It is convenient to describe the set of extreme point of B(x; 8) in a more symmetric way.
‘We claim that

E(x;0) ={P;x — (eéf;;‘))x : J is a proper, nonempty subset of I,}. (2.24)
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IfJisa nonempfy subset of I,, and n ¢ J, we find that

6 (Pyx)
P;x = Pyx — .
JX JX ( 9<x) )x
If J is a proper subset of I, and n € J, then 6(P;x) = 0(x) and
o(p
Prx — ( ( ’x))x — Pyx —x = —Ppn(x).

6(x)

If we note that n & J’, we see that the right hand side of equation (2.24) is pfecisely {£Pyx :
J C I, J nonempty , n & J}, which we have already seen equals E (x; ).
In the notation of Lemma 2.1,

E(x;0) = {Lg(Pyx) : J is a proper, nonempty subset of I,,}.
If ¢ € C* — {0} and if we use Lemma 2.1 and Remark 2.5 we see that

E(x; ) ={LyLe(Pyx)): J C L, J #0,J # I}
={Ly(Prx):J CL,J#8,J#1L). O

With the aid of Proposition 2.1 we can give a useful formula for A(x) in the case that
= K"
Corollary 2.1. Suppose that C; = K" C R”; and for v € Cf — {0}, define Sy = {y €

Ci : ¥ (y) = 1}. Let Cy be a normal, Archimedean cone with nonempty interior in a normed

linear space V,. Assume that x € Sy, H is an open neighborhood of x and f : H — 52 is
a map which is Fréchet differentiable at x. Define A(x) by

Ax) =1inf{d > 0 wpe) (f/ (X)v) < Aw, () for all v € R" with ¥ (v) = 0}.
Ifx’ is defined by equation (2.22), then
A(x) = max{ws ((f(x) (x7); Cy) : J a nonempty, proper subset of I,}. (2.25)

IfVo =R", Cy = K™ and f;(y), 1 <i <m, denotes componenti of f(y), then

7 (f () (&7); C2) = max {(1— N ) FEPrx) = M () F ) (B2

f()

P
e ))fk<x>< 1x>}(226)

f( x)
) ) (Prx) 4+ 47 (

1
_ _J
el ey

where A’ is given by equation (2.21). If, in addition, we have either () f'(x)(x) < yf(x)
and cij == (fi(x))_1 i (x) >0forl<i<m,1=<j=<nor®) fl(x)(x)>—yf(x)and

—ciy = (fi(x) 1L (x) <Oforl<i<m 1<j<n,then

AMx) <y —min O e+ eiixg), 2.27)

]GJ jeJ!
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Where the minimum in equation (2.27) is taken over J C I,, J # @, J # I, and integers
Lkwithl <i,k<m.

Proof. Inthenotation of Proposition 2.1, the extreme points of B(x; ) are the points x’, J C
Iy, J # @and J # I,. Since the Krein-Milman theorem implies that every element of B(x; )
is a convex combination of extreme points, equation (2.25) follows easily. Equation (2.26)
follows from equation (2.25) and from the formula for wsy(y; C2) when C, = K™. If we
substitute x — Py x for Pyx and x — Pyx for Ppx in equation (2.26), we obtain

wpe (f' X ET); C) = max [(1 = M) AT @E) + A fi) T ) ()

— HET P = £ P
(2.28)

If condition (a) holds, we obtain from equation (2.28)

wrey (F )T C) <y — rrll}cn(z ckixj + Z cijx;)

jeJ jel

which gives equation (2.27). If condition (b) holds, a similar argument gives

wf(x)(f/(x)(xj); C)) <y —IIZI}CH(Z CkjXj + ZCinj),

jeJ’ jeJ
which again gives equation (2.27). O

Remark 2.6. If condition (a) or condition (b) in Corollary 2.1 is satisfied and C denotes the
m X n matrix (c;;), one can see from equation (2.27) that if CC* has all positive entries, then
Alx) < y.

3. Applications to ordinary differential equations. In this section we shall describe
some applications of our previous results to ordinary differential equations in finite dimen-
sional Banach spaces. The idea is first to show that a map T" associated with translation along
trajectories of an ordinary differential equation is nonexpansive (or even contractive) with
respect to the part metric p and then to use some powerful general results concerning nonex-
pansive maps. We adopt the view that it is the nonexpansivity of T, rather than concavity or
monotonicity of T', which is essential. Similar results hold for the projective metric, but we
restrict attention to the part metric.

We begin by recalling some refinements of results from the literature. The following
theorems are closely related to work of M. Ackoglu and U. Krengel [1], Shih-Kung Lo [32],
D. Weller [53], P. Martus [34], R. Sine [49], R. Lyons and this author [33], and this author
[38,39,40,41]. The reader is referred to [33] and [39] for a more detailed discussion.

Theorem 3.1 [See [32], [33], [34], [38], [49] ]. Let ||x|c denote the sup norm on R,
Ixllo = Supj<j<n |xil. Let D be a compact subset of R" and f : D — D a map which is
nonexpansive with respect to the sup norm, so || £ (x) — f (M lleo < X —ylleoforallx,y € D.
For every x € D, there exists a finite integer p = p(x) and £ = £(x) € D with fP(§) =&
and limy_,co F¥(x) = £. The integer p(x) satisfies p(x) < 2"n!; and if | < n < 3, then
plx) <2M

The following conjecture has been made by Nussbaum in [38, p. 525] and by Lyons and
Nussbaum [33, p. 191].
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Conjecture [The 2" Conjecture]. Let D be a compact subset of R" and f : D — D a map
which is nonexpansive with respect to the sup norm || - ||eo. If€ € D and f?(§) = & for some
minimal positive integer p, then 1 < p <2".

The 2" Conjecture has been proved by Lo [32] and Lyons and Nussbaum [33] forn = 1,2
and by Lyons and Nussbaum for » = 3. An old result of Aronszajn and Panitchpakdi [3,54]
asserts that if f : D — R” is nonexpansive with respect to the sup norm, then there exists an
extension F : R — R”" which is nonexpansive with respect to the sup norm. Thus the map
f in the conjecture can be considered as defined on R”". It is easy to show (see [33], [38])
that for every p, 1 < p < 2", there is an f as in the Conjecture which has a periodic point
of (minimal) period p. In some unpublished work this author has shown that such an f can
even be taken to be piecewise linear.

A norm | - || on a finite dimensional Banach space X is called “polyhedral” if {x € X :
llx]l < 1} is a polyhedron. Equivalently, a norm is polyhedral if there exist continuous linear
functionals ¢; : X — R, 1 <i < m, with

lx]| = max{|g;(x)| : 1 <i <m}. 3.1
A closed cone K in a finite dimensional Banach space Y is called “polyhedral” if there exist
continuous linear functionals ¥; : ¥ — R, 1 <i < m, with
={xeY: : Yi(x) >0forl <i <m}. (3.2)
If || - || is a polyhedral norm given by equation (3.1), then

L(x) = (p1(x), p2(x), ... , Pm(x)) (3.3)

gives a linear isometric imbedding of (X, | - ||) into (R™, || - |le0)- If K is a polyhedral cone
given by equation (3.2) and X 5 @, the map

W (x) = (log(¥1(x)), log(¥a(x)), - .. , 10g(¥m (x))) 34

gives an isometry of (I% , p) into (R™, || - leo). See [38], pages 524 and 530. In particular, if
K"={x eR":x; >0for 1 <i <n}, the map

W K" - R, W(x) = (log(x;), log(xa), - . , log(xn)), (3.5)

is an isometry of (K", p) onto (R*, || - [lco)-
By using these isometries and Theorem 3.1 one immediately obtains

Theorem 3.2. Let (X, || - ||) be a finite dimensional Banach space with a polyhedral norm
given by equation (3.1) and let K be a closed, polyhedral cone given by equation (3.2).
Assume either (a) D is a compact, nonempty subset of Xand f: D — D is a nonexpansive

map with respect to the polyhedral norm || - || or (b) K #@,DC K is compact and nonempty

and f : D — D is a nonexpansive map with respect to the part metric p on K Then for every
x € D there exists a finite integer j(x) = j and & = E(x) € D with limy—co f¥ (x) = & and
fI(&) = &. The integer j satisfies 1 < j <m!2™; and if | <m <3, then j <2™.

Theorem 3.2 applies in particular to the /;-norm on R”; and indeed the first results of
this type were obtained by Ackoglu and Krengel [1] for the /;-norm. Further results for the
[1-norm case have been obtained by Scheutzow [45] and Nussbaum [39,40].
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If (C, p) is a complete metric space and T' : C — C, recall that w(x; T) = w(x), the
omega limit set of x under T, is given by

w(x; T) = Miz1cl(Ujs T (x)), (3.6)

where cI(A) denotes the closure of a set A. IF T is nonexpansive with respect to p and
o (x; T) is nonempty, it is known (see [38] for references) that T'|w (x; T) is an isometry of
w(x; T) onto w(x; T) and that w(y; T) = w(x; T) forall y € w(x; T). (Note that w(x; T)
is nonempty if y (x; T) := cl(szlTj (x)) is compact).

Now suppose that X is a closed, normal cone in a Banach space X, that u € K — {0} and
that P (u) is given by equation (3.4), so the part metric p is defined on P () and (P (u), p)
is a complete metric space. Suppose that B C P (u) is closed in the part metric topology. If
T : B — P(u)is a map, we shall say that “T" has the fixed point property on B” if, whenever
C C B is closed, bounded and convex (in the norm topology) and T(C) C C, then T has a
fixed point in C. If T' is norm-continuous and compact on every such set C C B, then T has
the fixed point property on B.

If C C P(u) and R = sup{p(x,y) : x,y € C} < 00, we can associate a set Co C by

C= Nrec Vr(x), where Vr(x) :={y € P(v) : p(y,x) < R}. 3.7

Our next theorem follows by the same argument used to prove Theorem 4.1 or Theorem
4.3 in Chapter 4 of [36].

Theorem 3.3 (Compare Theorem 4.1 and Theorem 4.3 in [36]). Let K be a closed, normal
cone in a Banach space X, and for u € K — {0} let P(u) be given by equation (3.4) and
let p denote the part metric on P(u). Suppose that B C P (u) is closed with respect to the
part metric and that T : B — P(u) is nonexpansive with respect to p and has the fixed
point property on B. Suppose that C C B is nonempty and closed and bounded in the norm
topology and that T (C) = C. If (a) C C B, where C is given by equation (3.7) or (b) B is
convex and T(B) C B, then T has a fixed point in CnB.

Proof. Lemma 4.2 in [36] implies that Vg (x) is closed and convex in the norm topology and
the normality of K implies that Vg (x) is norm bounded. It follows that in case (a) or case (b),
CNB D Cisclosed and bounded in the norm topology and convex. The same argument used
in Theorem 4.1 of [36] shows that T(C N B) c € N B, so the fixed point property implies
that T has a fixed pointin C N B. O

For the remainder of this section we shall deal with the situation that X is aoclosed normal
cone with nonempty interior in a normed linear space (X, | - ||) and that A C K. Proposition

1.1 implies that the norm topology and the part metric topology on IO{ are the same. We shall
write cl(A) to denote the closure of A in (X, || - ||), and we shall write p — c/(A) to denote

the closure of Ain (K p). Equlvalently, — cl(A) is the closure of A in the relative norm
topology on K Thus ifA={x¢€ K" lxll < 1), el(A) = {x € K" : |[x]] < 1} and
P—cl(A)={x€K" - Ih=1)

In our next result recall that every closed, finite dimensional cone is normal.
Corollary 3.1. Let K be a closed cone with nonempty interior in a finite dlmenszonal Banach

space (X, || - I). Assume that B C K is closed in the relative topology on K and B is convex.
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Let T : B — B be a map which is nonexpansive with respect to the part metric p. Suppose
that there exists xo € B such that cl(Ujx1 T/ (xp)) is a compact subset of B. Then T has a
fixed point in B and for every x € B, cl (szle (x)) is a compact subset of B.

Proof. The assumption that y (xp; T) = cl(U jlej (x0)) is compact implies that w (xp; T) =
C is compact and nonempty. Our previous remarks imply that T(C) = C and T|C is an
isometry, so Theorem 3.3 implies that T has a fixed point £ € B. If x € B and p(x, £) < R,
then p(T7/x, &) < Rforall j > 1,80 Uj»1 T/ (x) C Vr(§). Since Vg (£) is a compact subset

of IO( and T(B) C B, we conclude that

AU T/ () C Ve NB. O

Remark 3.1. If, in the framework of Corollary 3.1, B is not convex but 7" has a fixed point &
in B, then the same argument still shows that y (x; T') is a compact subset of B forall x € B.

Our next theorem is a generalization of Theorem 4.4 in [36]; see also Theorem 4.2 in [36].
The proof is essentially the same and is omitted here.

Theorem 3.4 (Compare Theorem 4.4 in [36]). Let K be a closed cone with nonempty interior
in a finite dimensional Banach space X. Assume that B C K is convex and closed in the

relative topology on K. Suppose that T : B — B is nonexpansive with respect to the part
metric p and that T has no fixed point in B. Given any compact sets C C B and D C B,
there exists an integer N = N(C, D) such that TY (D) N C is empty for all j > N.

Roughly speaking, Theorem 3.4 asserts that for any x € B, T/ (x) approaches cl(B) — B
Theorem 3.4 treats the case that T has no fixed points. Our next theorem describes the
structure of the fixed point set of T'. The following result is essentially a very special case of

Theorem 4.7 in [36], although B is taken to be 1°( in Theorem 4.7. The reader is referred to
Theorem 4.7 on p. 128 in [36] for a proof.

Theorem 3.5 (Compare Theorem 4.7 in [36]). Let K be a closed cone with nonempty mtertor

in a finite dimensional Banach space X. Let B C K be closed in the relative topology on K
and assume that B is convex. Let T : B — B be a map which is nonexpansive with respect
to the part metric p and has a nonempty fixed point set S. Then there exists a retraction
r: B — S of B onto S such that r is nonexpansive with respect to p.

The following Theorem generalizes Theorem 3.2 in [29] and summarizes some of the
preceding theorems in a form convenient for our applications. The proof follows immediately
from the previous theorems.

Theorem 3.6 (Compare Theorem 3.2 in [29]). Let K be a closed cone with nonempty interior
in a finite dimensional Banach space X. Let B C K be convex and closed in the relative

topology on I°< and assume that T : B — B is nonexpansive with respect to the part metric p.
Then either (a) T has a fixed point in B or (b) T does not have a fixed point in B. If case (a)
holds and S = {x € B : T/(x) = x}, then there exists a retraction r; of B onto S; such that
rj is nonexpansive with respect to p. If, in addition, K is a polyhedral cone given by m linear
functionals (see equation (3.2)), then for every x € B there exists a minimal integer v = v(x)
and &€ = E(x) € B with limgeo | T% (x) — £]| = 0. The integer v satisfies 1 < v < 2™m!
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and 1 <v <2"ifm = 1,2 or 3. If case (b) holds and C and D are any compact subsets of
B, then there exists N = N(C, D) such that /(D) N C is emptyforall j > N.

In the framework of Theorem 3.6, one is interested in conditions which insure either that
T/ has at most one fixed point in B for all j > 1 or (a stronger condition) that there exists
xo € cl(B) with limg—, 0 | T*(x) —x0|| = Oforall x € B. The following Proposition provides
answers which are satisfactory for many applications.

Proposition 3.1. Let K be a closed, normal cone with nonempty interior in a normed linear

space X. Le B C K be a connected set which is closed in the relative topology on 1% and
suppose that T : B — B is nonexpansive with respect to the part metric p. Assume either (a)
p(Tx,Ty) < p(x,y) forallx,y € B with x # y or (b) there exists xo € cl(B) (so possibly
xo € 3K) and anorm open neighborhood W of xo such that limy_s oo || T* (x) —xo|| = Ofor all
x € WN B. Incase (a), T/ has at most one fixed point in B for all j > 1, and if TY (x) = x,
then T (x) = x. In case (b), limg_c0 || T¥(x) — xo|| = O for all x € B.

Proof. In case (a), we obtain that p(T/(x), T/y) < p(x,y) forall x % y, x, y € B. This
clearly implies that 7/ has at most one fixed point in B for every j. If T/ (x) = x for some
x € B, then T/(Tx) = Tx, so Tx = x. In case (b), we apply Lemma 2.3 on p. 66 of [36].
In the notation of Lemma 2.3 in [36], the metric o comes from the norm on X and the metric
p from the part metric p. Proposition 1.1 implies that o and p give the same topology on
B and that equation (2.46) on p. 67 in [36] is satisfied. Lemma 2.3 in [36] now implies that
limg o0 | T*(x) — X0l = 0.

Remark 3.2. The isometry ¥ : (K", p) — (R",| - |leo) of equation (3.5) shows that
T : B — B is nonexpansive with respect to p iff WTW™! : U(B) — W(B) is nonexpansive
with respectto | - ||o- This observation, together with the results of Section 1 (e.g., Proposition
1.2) provides a convenient way of generating examples. Thus L : R* — R2, L(xy, x3) =
(—x9, —x1) is nonexpansive with respect to || - || and has periodic points of period 1, 2 and

4, Thus T : K2 — K2, T(y1, yo) = (yz_l, yl“l) is nonexpansive with respect to p and has
periodic points of period 1, 2, and 4.

The fixed point set of a nonexpansive map f : (R*, || - [lc) = R, || - loo) can be
quite complicated and far from convex. For example, define f : R? — R? by f(x) =

(f1(x), fa(x)) and

fitx) = { e if |x;| < |xi41]  (where x3 := x1)

sgn (xp)|xipa| i ] > [xigal.

The reader can verify that f is nonexpansive with respect to the sup norm and that f is
a retraction onto S = {(x1, x2) : |x1| = |xo|}. It follows that \I/ Lrg . K2 — K2

nonexpansive with respect to p and has fixed point set 7' = {(yek 2 IY1I =Y 0Ty =Yy; .

If we strengthen the hypotheses of Theorem 3.6, we obtain a result which generalizes
Theorem 3.3 in [29]. The proof is similar to that of Theorem 3.3 in [29] and is left to the
reader.

Theorem 3.7 (Compare Theorem 3.3 in [29]). Letnotation and assumptions be as in Theorem
3.6. In addition assume that T extends continuously (in the norm topology) to cl(B) and that
T (cI(B) —{0}) C B. Then the following trichotomy holds: (i) limz_ e || T*(x)|| = co for all



1692 ROGER D. NUSSBAUM

x € cl(B) — {0} or (ii) limg_yo0 | T*(x)|| = Ofor all x € cl(B) or (iii) T has a fixed pomt in
B and all the conclusions of case (a) of Theorem 3.6 are satisfied.

Before moving on to applications we need to recall one more result. If (M, d) is a metric-
space and T'(¢) : M — M is acollection of maps defined for ¢ > 0, we shall say that T'(¢) is a
nonlinear, strongly continuous semigroups if 7'(¢t +s) = T ()T (s) forallt,s > 0, T(0) = I,
the identity map, and t — T'(¢)x is continuous for all x € M. We shall say that the semigroup
is nonexpansive if

d(T()x, Tt)y) <d(x,y) forall x,y e Mand¢t > 0.

Theorem 3.8 (Theorem 4 in [38)). Let (M, d) be a complete metric space and let T (¢) :
M — M, t > 0 be a nonexpansive, nonlinear, strongly continuous semigroup. For xg € M,
assume that C := cl({T (t)xg : t > 0}) is compact and that (C, d) is isometric to a subset of
@®™, || - lloo)- Then there exists z = z(xo) € C such that lims— o0 T () (x0) = z.

Remark 3.3. If M is a closed subset of a finite dimensional Banach space X and the metric d
on M comes from a polyhedral norm on X, then we know that (M, d) is isometric to a subset
of (R, || - |leo) for some n, so (C, d) is isometric to a subset of (R, || - ||co) for any C C M.
Similarly, if K is a closed, polyhedral cone with nonempty interior in a finite dimensional

Banach space X and M is arelatively closed subset of K and p denotes the part metric on M,
then (M, p) is isometric to a subset of (R", || - ||co) for some n. Thus Theorem 3.8 applies to
these situations.

‘We wish to apply the previous theorems to study

x'(t) = £t x(1)), x(1o) = Xo.

We shall always assume at least the following about f:
H3.1 X is a closed cone with nonempty interior in a finite dimensional Banach space X,

B and By are open subsets of K with B C By and f : R x B; — X is a continuous map
which is locally lipschitzian in the x-variable. For each compact set D C B, there exists a
compact set D1 C B with the following property: for every pair of points x, y € D there

exists a piecewise C! minimal geodesic (with respect to the part metric p) ¢ : [0, 1] — I%
with 9(0) = x, ¢(1) = y and p(#) € Dy for 0 <t < 1. For each xy € B and f > O, there
exists a solution x(t) = x(t; #o, xo) of

x'(t) = f(t,x(®), x(t) =x0 (3.8

which is defined for all ¢ > #q and satisfies x(z; £, xo) € B for all ¢t > 1.

By “locally lipschitzian in the x-variable” we mean that for each #p € R and xy € B, there
exists § > 0, ¢ > 0 and an open neighborhood U of xg such that (¢, -) | U is a lipschitz map
with lipschitz constant ¢ for |t — | < 6.

Given B C K, the results of Section 1 (see Corollary 1.1) suggest how to choose B; so
as to satisfy H3.1. The key assumption in H3.1 is that x(¢; fp, xo) € B for all # > #; and all
Xxo € B and #g > 0. We shall discuss later simple conditions which guarantee this.

Assuming H3.1, for each #o > 0 and ¢ > #, we define U (t, tp) : B — B by

U, 1) (ro) = x(t; to, X0)- (3.9)
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To apply our previous results we need to evaluate the Lipschitz constant of U (¢, tp) with
respect to the part metric p, but first we need some preliminary definitions and observations.

IfteR EeB,A>0,E4+Af(, &) € K and x — f(t, x) is Fréchet differentiable at
& with Fréchet derivative f'(¢, £), define

B(t, A E) =infA > 0: [u+ AF(t, E)W)lesareey < Ml forallv € X}, (3.10)

where |- |, is the norm on X given by equation (1.9). Thus ¢(z, A, £) is the norm of the linear
map I + Af'®, &) (X, ]-1e) > (X, |- le+ar.e)- Define c(t, A, §) by

o(t, A, §) = lim (ess sup(3(t, A,3) : [y — £l <1,y € K. (3.11)

If D, is a compact subset of By (B asinH3.1),t e R, A > 0and & + Af(t, &) € I% for all
& € Dy, we define c(¢, A, Dy) by

c(t, A, Dy) = sup{c(t, A, &) : & € Dy} (3.12)

We must show that c(t, A, D;) < oo. To prove this, let Dy C Bj be a compact set with
D, C Dz and {§ + Af(t, £) : £ € Dy} asubset of K It suffices to prove that

ess sup{c(t, A, &) : £ € Dy} < 00,

where the essential sup is taken over & such that x — f (¢, x) is Fréchet differentiable at £.
Recall that K is normal, so || - || and | - | are equivalent norms on X for any x € K. As noted

in Section 1, for any £ € K, there exists r > 0 and M > 1 such that
M le < Jvlx < Mvlg

for all v € X and all x with ||x — &|| < r. Using these facts, a simple compactness argument
shows that there exists M > 1 with

MY < vl < M| (3.13)

forallv € X andevery x € D, U {y+ Af(t,y) : y € Dy}. Because f is locally lipschitzian
a simple argument shows that there exists M; > 0 such that || f'(¢, x)|| < M; forall x € D,
such that y — f (¢, y) is Fréchet differentiable at x. If we combine these facts we obtain for
x € Dyandv e X

[v 4+ AF(t, X)) xrarex < [Vlstarex +MA[F X))

) 3 ) (3.14)
=< lv|x+Af(r.x)+M MlAlle SM |v|x+M MIA]UIx,

which proves that c(¢, A, D) is finite.
However, we obtain more from equation (3.14). Select M3 so

sup{|| f(tx)|| : x € Dy} = M.
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Select p > O such that {y : ||ly — x| < p} C IO{ forall x € M,. If 0 < AM, < p, a simple
argument as in Proposition 1.1 proves that for all x € D,

[Vletaren < (1 — AMap ) ul,. (3.15)
It follows from (3.14) and (3.15) that for 0 < AM, < p
c(t,A,D;) < (1 — AMyp™ )™+ M2M{A. (3.16)
Using equation (3.16) we see that

lim sup(c(z, A, D1) — DA™ == k(¢, D1) < +o0. (3.17)
A—0t .

A similar argument, which we leave to the reader, shows that k(¢, D;) > —co.
If D; is a compact subset of B, we shall need to know that # — c¢(¢, A, D1) and ¢t —
k(t, D) are Lebesgue measurable (assuming that A > O and {x +Af (¢, x) : x € D1} C By).

For & > 0 define N.(D1) ={y € K : ||y — x|| < & for some x € D;}. By using Corollaries
1.3 and 1.5 from Section 1, one can see that

C(t, A’ Dl) = 81_1>1'1(;1+(SUP{P()’ + Af<ta y)) z+ Af(t) Z))(P(}’y Z))_I ty,Z € Na(Dl):
0<p@,2) <eh. (3.18)

For fixed ¢ > 0 and A > Olet ; — 0% and define

®; (1) =sup{p(y + Af(t,y), z+ AF(t, )P, 2) " :y,z € Ne(D1), nj < p(¥,2) < ¢},
O@) =sup{p(y + Af(t, ), 2+ AF (£, 2) (P, 2) 7" :y,z € Ne(D1),0 < p(»,2) < &}

Assuming that c/(N;(D1)) C B; and n; < &, one can see that ©; is continuous and ®(z) =
im0 ®;(z) for all ¢, so @(¢) is Lebesgue measurable. It follows from (3.18) that ¢t —
c(t, A, Dy) is Lebesgue measurable. If § > 0 and A;, 1 < j < oo, is a dense set of positive
reals in (0, 8), one can verify that

sup [c(t, A, D) — 1JA™! =sup[e(t, A;, D) — 1]1ATY, (3.19)
0<A<s j=1

sothe lefthand side of (3.19) is measurable and k (¢, D) is the limit of a sequence of measurable
functions and hence measurable.

Theorem 3.9. Assume that hypothesis H3.1 holds and let notation be as in H3.1. Let Dy be
compact subset of B, and define U (t, ty) by equation (3.9) and for 0 < ty <t < t; define D
by

D = {x(t; to, x0) : X0 € Do, fo <t <t} = {U(¢,1)(x0) : X0 € Do, to <t < t1}.

Since D is acompact subset of B, let D1 be the corresponding compact subset of B1 guaranteed
o

by H3.1. Select 8 > 0 so small that & + Af(¢,&) € K for0 < A <68, £ € Dyandtyg <
t <t;+ 8. If (for 0 < A < o) c(t, A, Dy) is defined by equation (3.12) (or, equivalently,
equation (3.18)) and k(t, Dy) is defined by equation (3.17), then t — c(t, A, D1) and
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t — k(t, Dy) are bounded and Lebesgue measurable for ty < t < t;. For any points
&, no € Dy and for ty <t < t; we have J

1
p(U(t, t)bo, U(t, to)mo) < CXP(/I k(s, D1)ds) p(€o, no), (3:20)

where p denotes the part metric.

Proof. We have already shown that t — c(¢, A, D;) and ¢t — k(¢, D;) are Lebesgue mea-
surable and an examination of the argument shows that the bounds on c(¢, A, D;) can be
chosen independent of ¢ with #p <t < #; and of A with0 < A < .

Select &y, no € Do and for notational convenience write x(t) = x(¢; to, &) and y(z) =
x(t; tg, no). We define ® () by

O@) =px®),y®), th<t=<t.

Our first claim is that t — @(¢) is locally lipschitz, so that ®(¢) is differentiable almost
everywhere. The triangle inequality for the part metric implies that

1©@) —O@)| < p(x(®), x(s)) + pOy®), y(5))-

If My is chosen so that || f(t, E)|| < My forty <t < t;, and & € Dy, we obtain from the
differential equation (3.8) that

x(@) — x|l < Mi|t —s| and |[y(®) =yl < M|t —s]. (321

If we use equation (3.21) and equation (1.13) in Proposition 1.13, we find that there exists
n > 0and M > 0 so that for all ¢, s € [to, 1] with |t — 5| < 1 we have

px (@), x(s)) < Mx(®) — x(s)|| and p(y(®), y(s)) = Mlly(®) — y(&)I. (322)

A simple argument using equation (3.21) and (3.22) now shows that there exists a constant
M, (depending on 1, M and M) with

p(x(t), x(s)) < Malt —s| and p(y(t), y(s)) < M|t —s|forallt,s € [f, 1], (3.23)

and this proves that ¢ — ©(¢) is locally Lipschitz.

We next fix t, ty < t < t;, such that ®’'(¢) exists and seek to estimate ®’(¢). For notational
convenience, write £ = x(t), n = y(#), g(A) = £+ Af(t, &) and h(A) =n+ Af(t, n). In
this terminology, we know that there exist functions R;(A) and Rp(A) with

x(t+ A) =x(0) + Af (8, (1) + Ry (A) = g(A) + Ry (A), (3.24)
Y+ A) = y(@) + AFE Y(E) + Ra(A) = h(A) + Ry(A), (3.25)
lim A7 R;(A)]| = 0. (3.26)

By using Proposition 1.1 and equation (3.26) we find that

 P((A) + Ro(A), h(A)) _ P((A) + Ri(A), g(A) _

1
250 A A

0 and lim 0. 3.27)
A—0
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By using the triangle inequality for p and equation (3.27) we obtain

W) = 1

oy PEQ)AA) —pGE.m)
0+ A

By applying Corollary 1.5 and Remark 1.8 to the map z — z+ Af (¢, z), z € D, we find that

p(g(A),h(A)) = pE+ ASE E),n+ AfFE 1) <c(t, A, D)p(§, n)-
‘We conclude that

[et, A, D) —1]p(. m) |

@'(t) < limaso+ X

=k, D)O). (3.28)

If we define i (¢) by
!
Y(t) = exp(/ k(s, D)ds)® (),

fo
¥ (¢) is locally Lipschitzian, and equation (3.28) implies that ¥(#) < 0 almost everywhere.
It follows that ¥ () < ¥ (ty) for fp <t < t1, and equation (3.20) is satisfied. [

In order to apply Theorem 3.9, one needs precise estimates for k(z, D). In this case that
K = K" C R, Corollary 1.6 gives a formula for ¢(z, A, &), which yields a formula for
k(t, D1).

Theorem 3.10. Assume that hypothesis H3.1 is satisfied and that, in the notation of H3.1,
X=R'and K =K"={xeR":x; >0,1 <i <n}. Let Dy, D and D1 be as defined in
Theorem 3.1. Let E, denote the set of § € By such that x — f(t, x) is Fréchet differentiable
at &, let f;(t, &) denote the ith coordinate of f(t, ), and for & € E; define g;(t, &) by

afi af;
&t ) =& i(t O+ | 3’; @55 — £t (3.29)
J# R

Then, for k(t, D1) given by equation (3.17), we have

k(t, D1) = Iirg ( sup (ess sup{g;(t, &) : &£ € E; N N (D1}, (3.30)
0% 1<i<n

where N.(Dy) is the e-neighborhood of Dy, in the norm topology. Equation (3 20) is satisfied
if k(t, D1) is defined by (3.29) and (3.30).

Proof. We leave to the reader the verification that (in the general framework of H3.1 and for
A small)

c(t,A, Dy) = 1irgl+(ess sup{c(t, A, &) : £ € E; N Ne(D1)}). 3.31)

Select g9 > 0 so that cI/(N.(Dy)) is a compact subset of By for ¢ = gy and select Ag > 0 so
that {x + Af(t, x) : x € cl(Ng(D1))} is a compact subset of By for0 < A < Ap and

Al f’(r x)| <1, forx € Ngy(D1) and 0 < A < Ao. " (3.32)
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If we apply Corollary 1.6 and equation (1.57) to the map z — z + Af(t, z) for z € N(D;),
we find (because of equation (3.32))

c(t, A, Dy) = 1Tim ( sup (ess sup{h(, A, §) : § € Ne(D1) N Ef})),

1<izn

where h;(t, A, &) =& + A"a']i(t, §)& + AZI%

oF; 245, © 5l

It follows that 0 < A < Ag we have

A7 e(t, A, D) — 1] = lim  sup (ess sup(m;(t, A, §) : & € Ne(D1) N E,))),

1<i<n
af; i
where mi(t, &, 6) = (6 Af, ) [ (e % + Sl )l — it ).
i i 0%

We leave it to the reader to obtain equation (3.29) and equation (3.30) by taking the lim sup
as A— 0, O

If H3.1 is satisfied and k(¢, D) is defined by equation (3.17), we define k(z) by
k(t) = sup{k(z, Dy) : Dy is a compact subset of B;}. (3.33)

A priori, it may happen that k(t) = co for some ¢; but k£(¢) is the supremum of a countable
family of Lebesgue measurable functions k(t, DY), n > 1, so k(t) is measurable. In the
special case that K = K",

k(t) = sup (ess sup{g;(t, &) : £ € E, N By}, (3.34)

1<i<n
where g;(t, &) is defined by equation (3.29).
With this terminology, we can state our next theorem.

Theorem 3.11. Assume that hypothesis H3.1 is satisfied. Assume that there is a number
M < oo with

t
f k(s)ds <M forallt > tp, (3.35)

fo
where k(t) is defined by equation (3.33). (1) Ifthere exists &y € B such that tlim [l (2; to, Eo) |
—>00
=0, then tlim |x(t; to, E)|| = OforalléE € B. (2)Ifthere exists &y € Bwithtlim [l ;5 1, &) |
—00 —>0
= 00, then 11_1)1'120 lx(t; 20, E)|| = oo for all & € B. (3) If there exists & € B such that
cl({x(t; to, &) : t = o)) = y (&) is a compact subset ofIOC, then cl({x(t; ty, &) : t > to}) :=
y (&) is a compact subset of K for all§ € B.
Proof. In case 1, 2, or 3, equation (3.20) and equation (3.35) imply that if £ € B (so
p(, &) < oo) there exists a positive constant My, independent of ¢, with
M 'x(t; 10, §0) < x(t 10, €) < Mix(t; 1o, &) (336)

If we recall that K is normal, we obtain from (3.36) that there is a constant A with

ATIMT X to, §0) | < [1x 5 10, )| < AM1[1x(2; to, §o) (337
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for all ¢, and this inequality completes the proof in case 1 or case 2. In case 3, equation (3.37)
implies that y (§) is closed and bounded and hence (because X is finite dimensional) compact.

It remains to show that y (§) C I% .Ifn € y (&), there exists t; > fp with
lim ||x(t; %, §) —nll = 0.
Jj—o0

By using the compactness of y (&), we can assume by taking a subsequence that there exists
o

no € ¥ (§0) C K with
jl_iff}o llx (t; 25, §0) — Mol = 0.

It follows from equation (3.37) that

AT'MT o < n < AMing.

Recall that if C is any closed cone in a Hausdorff topological vector space and if y € E‘
and z € C, then (3)(y +2) € C. If we apply this remark to y = 247 M 'no € K and
z=2n—y € K,weseethatn € Iof; and it follows that y (§) C IO{ O

For simplicity we shall henceforth usually restrict ourselves to the case X = R" and
K = K™, the standard cone in R"; but the reader will easily verify that our results hold in a
much greater generality.

Itremains to give explicit conditions which insure that H3.1 is satisfied. Here, some caution
is necessary. In [37] it is observed that it may be desirable to build up the function f (¢, x)

1
in equation (3.8) from functions like ®,(¢, x) = (Y j_; 0:(1)x])" or Og (¢, x) = I} x;" o,

where 0;(#) > Oand ) ;_; 0;(t) = 1. If r is any real, the map x — @, (¢, x) is C*® on K" and
extends continuously to K", butif 0 < r < 1, the extended map is not locally Lipschitzian
on K”". Itis usually assumed (see, for example, [50]) that (in the notation of H3.1) f(t, x)
extends to a continuous function on ¢/(B) and that x — f (¢, x) is locally Lipschitzian, but
for certain examples neither of these conditions is satisfied.

‘We need to give conditions which insure that H3.1 is satisfied. We state below in hypotheses
H3.2, H3.3 and H3.4 assumptions which are not meant to be definitive but to give examples
where H3.1 or stronger assumptions are satisfied.

H3.2. Let ¢;, 1 <i <n, be positive reals and let B C K? " be defined by

B={xeK":0<x;<c¢forl<i<n}, so
(3.38)

p—clB)={xeK": 1l<x <¢forl<i<n}

Assume that f : R*(p — cl(B)) — R" is locally lipschitzian and bounded on norm-bounded
subsets of R x (p — cI(B)). If x € p — cl(B) and x; = ¢; for some i, then for all ¢ € R,

fi(t,x) < 0.

If£ ecl(BYN(@K")andfp € Randif§; =O0for j € J and & > O for j & J, then there
exists § > 0,C > 0andi € J such thatif |t — | < § and ||x — &] < & and x € B, then

x fit, x) > —C. (3.39)
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‘We shall also need a stronger version of H3.2.
H3.3. Letc;, 1 <i <n,and B be as in H3.2. Assume that f : R x (cI(B)) = R is
locally lipschitzian. If x € ¢/(B) and x; = ¢; for some i, then for all ¢ € R,

fi(t,x) <0.

Ifé& ecl(B)YN(dK"), & #0,and th € Randif §; =Ofor j € J and & > O for j ¢ J, then
there exists i € J with f;(t, £) > 0. 4

Remark 3.4. It is convenient in H3.2 and H3.3 sometimes to allow the possibility that
¢; = +ooforsomei. If ¢; = oo, weremove the assumption in H3.2 and H3.3 that f; (¢, x) < 0
if x € ¢l(B) and x; = ¢;.

It may happen in the framework of H3.2 that f is not bounded on R x (p — cI(B)) but
that a condition even stronger than H3.1 is satisfied. We shall see that this follows from the
next hypothesis.

H3.4. Let¢;, 1 <i <n,and B be as in H3.2 and assume that f : R x (p — cl(B)) = R”
is locally lipschitzian. Given ¢ > 0, define G, by

Gs={xelof":xj28for15j5n}. (3.40)

If x € p—cl(B) and x; = ¢; for some i, then for all t € R, fi(f, x) < 0. There exists gg > 0
such thatif 0 < ¢ < gy and x € G, N B and x; = ¢ for some i, then f; (¢, x) > 0 for all ¢
If H3.2 or H3.4 holds, one can extend f to a map which is locally lipschitzian in the x-

variable and defined on R x K™; and if H3.3 holds, one can extend f to a map which is locally
lipschitzian in the x-variable bounded and defined on R x R". We shall always assume such
an extension is to be made, so it makes sense to discuss the initial value problem equation

(3.8) forty € Rand xg € K?” if H3.2 or H3.4 holds and for #y € R and xp € R” if H3.3 holds.

Lemma 3.1. Assume that H3.2 holds. If ty € R and xy € p — cl(B) and if x(¢; ty, Xo)
denotes the solution of the corresponding initial value problem given by equation (3.8) then
x(t; to, xo) is defined for all t > ty and x(¢; to, Xo) € B for allt > to. If H3.3 holds and
t, € Rand xg € cl(B) — {0}, then x(t; ty, xo) is defined for all t > ty and x(t; ty, x0) € B for
allt > ty. If xg = 0, x(t; ty, 0) is defined for all t > ty and there exists t, ty < t; < 00, With
x(t;1,0) =0forty <t <ty andx(t; t,0) € B fort > t1.

Proof. Assume first that H3.2 holds. If xo € p — cl(B) and 7;, the ith coordinate of xg,
equals ¢;, then f;(fo, X0) < 0. It follows that there exists § > O with x(t; fo, x0) € B for
fo < t < fy+ 8. Thus we may as well assume from the beginning that xo € B. Define T by

T = supf{t > 1o : x(s; tp, x0) € Bforty <s <t}.

Because we assume that f is bounded on R x B, the standard existence and uniqueness theory
for ordinary differential equations implies that if T’ < oo, there exists £ € cl(B), & € B, with

lim [lx(t; to, x0) — &I| = 0.
t—>T
If& € 0K™, let J = {j : & = 0}. Hypothesis 3.2 implies that there existi € J, § > 0 and
C > 0 so that equation (3.39) is satisfied for all (¢, x) with T —8 <t < T and ||x — &[] < &

and x € B. Select0 < 6; < § sothatfor T —8; <t < T we have

lx(t; to, x0) — &I} < 6.
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If we take t — &; <t < T and use equation (3.39) we obtain

) [ e ‘o ~
sl = oy Gy = o, ez

Since the left hand side of this inequality approaches —oo as t — T, we obtain a contra-
diction; and it follows that £ & dK". On the other hand, once we know that & & dK", so
& € p — cl(B), the same argument given at the start of the proof shows that & # ¢; for
1 <i < n. Thus we conclude that £ € B, which is impossible.

Next assume that H3.3 holds. A simple continuity argument shows that f;(¢, x) > 0 for
all t and for x € cl(B) N{£ : & = 0}. The reader can verify that the previously mentioned
extension of f can be chosen so that f;(¢, x) > 0 for all ¢ and for x € {£ : & = 0}. Standard
results now imply that if n = xy € ¢I(B) N (dK™) and n # 0, then x(¢; 1y, n) € K™ for all
t >t If J = {j : n; = 0}, H3.3 implies that there exists i € J with f;(f, n) > 0, so
(writing x (t) = x(¢; tp, n)) there exists § > 0 with x;(#) > 0 forfp < ¢t < tgp + 8. We claim

that x(¢) € K™ for tp < t < tp + 8. If not, there exists 7, fp < T < fp + 8, with x(t) € K",
x(t) #% 0. But then the same argument as before shows that there exists p, 1 < p < n,
with f,(z, x(t)) > 0, However, this implies that x,(#) < O for # < 7 and T — ¢ small, a
contradiction. A simpler argument, which we leave to the reader, shows that, by decreasing
8, we can also assume that x; () < ¢; fortyg <t < tg+dand 1 <i < n. It follows that
x(t) € Bforty <t < ty+ 6, so our previous result for hypothesis H3.2 implies that x(¢) € B
fort > to. If n = 0 and x(2; 1y, 0) € cl(B) — {0} for some t, > to, then the remarks above
show that x(¢; #p, 0) € B for all ¢ > t,. The final statement in Lemma 3.1 follows easily from
this fact.

Remark 3.5. Hypothesis 3.3 is a generalization of boundary conditions which have been
used, for example, in [50]. To see this, recall that an n X n matrix A = (g;;) with a;; > 0 for

i # j,is called “irreducible” if all entries of ¢4 are positive. Suppose that B C Ig " and that
f : R x cl(B) is continuous and that £ € c/(B) N (3K™), £, # 0, and #, € R. Assume that
there exists an irreducible matrix A with

fto, &) = A&, (3.41)

for & viewed as a column vector. (The existence of such an A follows easily from the
assumptions made in [50]). If & = O for j € J and & > O for j & J, then there exists i € J
with f;(to, &) > 0. If not, we obtain from equation (3.41) that for all i € J,

0> filto,£) = Y ayky =Y ayé). (342)

j=1 jer

Since a;; > 0 foralli # j and & > O for j & J, we obtain from equation (3.42) thata;; =0
foralli € J, j € J. IR} = {x e R" : x; = 0for j € J} we conclude that A(R";) C R,
which contradicts the assumption that A is irreducible.

With these preliminaries we can give some further applications to differential equation.

The following theorem is an easy consequence of our previous results, and the proof is left to
the reader.
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Theorem 3.12. Assume that hypothesis H3.1 is satisfied and that, in the notation of H3.1,
X=R'and K = K" and f(t+ 1,&) = f(t,&) forall (t,£) € R X By. Assume that f
extends to a continuous map which is defined and locally lipschitzian in the x-variable on

R x By, where By C K" is an open neighborhood of p — cl(B1). (Note that these conditions
are satisfied if H3.2 is satisfied). Let k(t) be defined by

k() = sup (ess sup{g;(t, xi) : £ € E; N By}),

1<i=zn

where g;(t, £) is given by equation (3.29) and E, denotes the set of ¢ € By wherex — f(t, x)
is Fréchet differentiable. If D1 is any compact subset of By, letk(t, D1) be defined by equation
(3.29) and equation (3.30). Assume that k(t) is bounded above and that

1 .
/ k@)dt < 0. (3.43)
0

Foreachty e Rand & € p — cl(B), let x(t; to, &) := U(t, to) (§) denote the solution of the
initial value problem equation (3.8). Then for eacht > ty, the map & — U (¢, %) (€) € B is
defined and is Lipschitzian with respect to the part metric p. Thus & — U (t, to)(§) extends
to a Lipschitzian map with respect to p on p — cl(B), and for € € p — cl(B) x(t; ty, §) =
U (¢, to)(€) is defined for allt > tyand x(t; ty, £) € p—cl(B). IfT : p—cl(B) = p—cl(B)
is defined by

T =U1,0(&) =x(1;0,8), (344

then T is nonexpansive with respect to the part metric p. If T/ () = & for some & € p—cl(B),
then the corresponding solution x(t; 0, &) of equation (3.8) is periodic and x(¢t + j; 0, &) =
x(t; 0, &) for all t. If there exists & € p — cl(B) such that cl{x(t; 0, &) : t > 0} := y (&)
is a compact subset of p — cl(B), then cl{x(t; 0, &) : t > 0} := y (§) is a compact subset of
p —cl(B) for all & € p — cl(B); and if, in addition, B is convex, then T has a fixed point
in p — cl(B). If there exists & € p — cl(B) such that cl{x(t; 0, &) : t > O} is a compact
subset of p — cl(B), then for every & € p — cl(B), there exists an integer v(§) = v and
n € p — cl(B) with

m |T7&) =0l =0 and T"(n) = 1.

J—>0o0
Theintegerv satisfies1 <v <2'nland1 <v <2"ifl <n <3. Ifx ={§€ B :T(§) =&}
and if T is nonempty and B is convex, then there exists a retraction r of p — cl(B) onto &

such that r is nonexpansive with respect to the part metric p.
If, for every compact set Dy C By, it is also true that

1
/ k(t, Dy)dt <0, (345)
0
then T has at most one fixed point in B; and if T has a fixed point & € B, then
lim | T7(§) — &oll =0 forall & & p — cl(B).
j—oo

Ifthere does not exist & € p — cl(B) such that y (§y) is a compact subset of p — cl(B) and
if C and D are any compact subsets of p — cl(B), then there exists an integer N = N(C, D)
with TY(D) N C = @ for j > N. If there exists & € p — cl(B) with limj_sco | T/ (£0)|| = O



1702 ROGER D. NUSSBAUM

(respectively, limj_, T4 (£0)|| = 00), then for all € € p — cl(B), limj o0 [T/ ()] = 0
(respectively, lim;_, o0 1T (&)| = o).

Ifthe stronger hypothesis H3.3 is satisfied (rather than H3.1), then T extends continuously
to cl(B); and if T has no fixed point in B and ¢; < oo for 1 < i < n, it follows that
limj_y o0 |77 (€)|| = O for all & € cl(B).

Our previous results leave gaps as to how to verify H3.1, so it may be useful to mention
another criterion.

Proposition3.2. Let K be aclosed cone withnonempty interior in afinite dimensional Banach
space X and let B and By be open subsets of K which satisfy the minimal geodesic condition

of H3.1. Let By C K be an open neighborhood of (p — cl(B)) U By. Let f : R X By —» X
be continuous and locally lipschitzian in the x-variable; and, if k(t) is defined by equation

(3.33), assume that k(t) is bounded above on bounded subsets of R. Forallt € Rand§ € IO{ ,
let x(t; T, £) denote the solution of equation (3.8); and for every Tt € Rand & € p — cl(B)
with & € B, assume that there exists § > Owithx(t; t,§) € Bfort —8 <t < . Assume
that there exists &y € (p — cl(B)) and ty € R such that x(¢; ty, &) is defined for all t > ty
and x(t; ty, &) € p — cl(B) for allt > ty. Then, for every & € B, x(t; ty, &) is defined for
allt >ty and x(t; t9, E) € B forallt > 1.

Proof. Given & € B, define T(§) = T by T = sup{t > fy : x(s; tp, &) is defined and
x(s; tg, £) € B forfy <s < t}. It suffices to assume that T < co and obtain a contradiction.
Forty <t < T, the same argument used in Theorem 3.9 still applies and shows that equation
(3.20) is valid. A simple limiting argument extends equation (3.20) to points in p — cI(B),
sofortg <t <T

px(ts o, £), x(t: fo, £0)) < exp( f K(s)ds) p €, ).

It follows that there is a constant M such that
p(x(t; t0,6), x(t; t0,60)) <M, th<t<T.

Since {x(t; 19, &) : to < t < T} is a compact subset of p — cl/(B), we conclude (using
Proposition 1.1) that {x(¢; #, &) : tp < t < T} is contained in a compact subset of I% It
follows from equation (3.8) that x'(z; o, £) is uniformly bounded on [#p, T'), so there exists
n € p — cl(B) with

lim |[lx(#; %, §) —nll =0.

t—=T

If n € B, we contradict the definition of T', so n ¢ B. However, x(t; f, §) = x(¢; T, n) for
to <t < T and by assumption there exists § > O with x(¢; T,n) € Bfor T —8 <t < T,
which contradicts the fact that x(¢; 70, §) € Bfortg <t < T.

Remark 3.6. The key point in Theorem 3.12 is to verify that T' is nonexpansive with respect
to p, but T may be nonexpansive even if equation (3.43) is not satisfied. For example,

¥1(®) = y1(#)(cos@2m1)) log(y1(2)), ¥5(t) = y2(2)(sin(272)) log(y2(2))

gives a differential equation on K2, and every point in K2 gives an initial value with a
corresponding periodic solution of period 1. However k() = max(cos(2rt), sin(27t)) and



FINSLER STRUCTURES 1703

equation (3.43) is not satisfied. Nevertheless, it is sometimes possible, after a change of
variables, to apply Theorem 3.12. For example, suppose «;(t) is periodic of period 1, for

1 <i <n,and fo o;(t)dt = 0. Define B;(t) = exp( fo a;(s)ds) and for glven real numbers

a; and functions A; (¢, w), 1 <i < n, consider the differential equation on K n
yi = yila; log(y:) + o (£) 1og yi + B; (1) hi (¢, Bi1(£) ™ log Yii1), (3.46)

where y,4+1 = y1. If one makes a change of variables S; log(z;) = log(y;), one obtains for
1<i<n
z; = zi[a; log z; + h: (¢, log z;41)]- 3.47)

If one computes k() for equation (3.47), one obtains

oh; (t w)l

):

and it is easy to give examples where equation (3.43) is satisfied for this k(¢) but not for the
k(t) one obtains from equation (3.46).

In the autonomous case, when f(#, x) is independent of ¢, one obtains directly from
Theorem 3.8, Theorem 3.12 and Proposition 3.2 a much stronger form of Theorem 3.12. The
following theorem, whose proof is left to the reader, generalizes results in Section 2 of [38].

k(t) = max (a; + sup|
1<i<n weR

Theorem 3.13 (Compare [38], Section2). Let K be a closed, polyhedral cone with nonempty
interior in a finite dimensional Banach space X. Let B and By be open subsets of K and

suppose that B and B satisfy the minimal geodesic condition in hypothesis H3.1. Let B, C I%
be an open neighborhood of (p—cl(B))U By and f : By — X alocally lipschitzian map. Let
k(t) = c (independent of t) be defined by equation (3.17) and equation (3.33). If X = R*,
K =K"and E = {£ € By : x > f(x) is Fréchet differentiable at £}, then

¢ = max (ess sup{x;” x,a—f’(x) +Zx]| (x)l — f;(x)) : x € EN By}).

1<i<n i
For every £ € By let x(t; &) denote the solution of

x'(t) = f(x@®), x(0)=¢.

For every £ € p — cl(B) with & & B, assume that there exists § > O with x(¢t; &) & B for
—8 <t < 0. Ifc < oo and if there exists & € p — cl(B) such that x(t; &) is defined for
t > 0and x(t; &) € p— cl(B) for allt = 0, then for every & € B, x(¢t;£) € B for all
t > 0. Ifc < oo and if there exists & € p — cl(B) such that x(t; &) € p — cl(B) for all
t > 0andlim,_, o0 |x(2; &0) || = O (respectively, limy—, o ||x (t; &0)|| = 00), thenforall & € B,
x(t; &) € Bforallt > 0andlimy_, ||x(t; £)]| = O (respectively, lim;_, « ||x(; &) || = 00).
If ¢ < 0 and if there exists & € p — cl(B) with f(§o) = O, then for every § € p — cl(B),
x(t; §) € p — cl(B) for t > 0 and there exists n =n(§) € p — cl(B) with f(n) = 0and

Jin [lx(#; &) —nll = 0.

The map & — n(§) is nonexpansive with respect to the part metric and is a retraction of
p—cl(B)onto{n € p—cl(B) : f(n) = 0} := X. Ifk(t, D1) = c(D1) is defined
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by equation (3.17) for compact subsets D1 of By and if c(D1) < 0 for every compact set
D C By, then the equation f (&) = 0 has at most one solution in B.

Remark 3.7. If (f(x) = g(x) — Ax where A > 0 and g : B, — K is nonexpansive with
respect to the part metric, one can easily check that ¢ < 0 for ¢ as in Theorem 3.13. (See the
argument on p. 536 in [38]). Using this observation and examples like that in Remark 3.2 or
pp- 131-132 in [36] or p. 538 in [38], one can easily construct examples where the set T in
Theorem 3.13 is complicated and far from convex.

As an example of the use of Theorem 3.12, we consider a variant of an equation studied
by Aronsson and Mellander [2]:

Yi(t) = —(®)yi + (i — y,>Zﬂu<r>yJ+a,<r)y + 07 =T Y By )y
j=1 =1 (3.48)

=filt,y), 1<i=<n.

Theorem 3.14. Assume that ¢;, 1 < i < n, are positive reals and that o; (t), &; (t), Bi;(t),
and B;;(t), 1 <1, j < n, are nonnegative, continuous functions which are periodic of period
1. Assume thatforallt andfor 1 <i <n, o;(t) > 0, &;(¢) > 0 and

—a;(t)c; + & ()t < 0. (3.49)

Let B={y e K” O<yi<ciforl <i <n}. ForE € Bandty € R, let y(t; ty, §) denote
the solution of equation (3.48). Then, for everyn € B and ty € R, y(t;t,n) € B for.all
t > tg and cl({y(t; to, ) : t > ty}) is a compact subset of B. If T : B — B is defined by

TE)=y(;0,m),

then T has a unique fixed point ny € B; and if n € B, then limg_yo0 [|T*(n) — noll = 0. In
particular, equation (3.48) has a unique periodic solution y(t; 0, ng) = yo(t) of period one
whose orbit lies in B.

Proof. For ¢ > 0, define G, = {y € B : y; > efor1 <i < n}. Because &;(¢) > 0, it is
clear from equation (3.48) that there exists g such thatif § € Band §; = ¢,0 < & < g, then
fi(t,y) > e for all t. Also, equation (3.49) implies thatif & € p — cI(B) and & = ¢; for
some i, then f; (¢, y) < O for all ¢. It follows that if & € cl(G,) for some ¢ with 0 < & < &g,
then y(¢; 7%, &) € G, for all t > #;. This implies that if £ € p — cl(B), then y(¢; %, &) € B
for all ¢ > fg.

A calculation gives

af; “ - _ _
yi(g%) =—a;([O)y: — i X;ﬂij ®)y; — @@y =yt E:Iﬂu (t)y]
J= J-—.

+ (e — y) B @)y — 7 = 7 Bu )y
For j # i and y € B we obtain

of, | Lo .
] f|—|<c, B O — Ot — D@y

< (e — y)Biy )i + 07 — ¢ DB ©)y;
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It follows thatif y € p — cI(B), then

af; af;
! [yz—af. &N+ )’jl—af )| — £t ] (3.50)
Yi Ji Yi

=1

< =207 = VBuy2 = 2a 0y = ) B0y — ¥ Y Byt <o.
j=1

It follows from equation (3.50) that
k() < max [-28;()c; ] <0,

soT : p—cl(B) — p— cl(B) is a strict contradiction with respect to p, and the contraction
mapping principle implies the theorem. [

It is interesting to note that if one does not assume that (8;;(¢)) is irreducible, then our
results provide new information even for the original equations studied in [2] and [31]. Thus
considerfor 1 <i <n

Yi(t) = —eu(®)y: + (i — y) Y, B ()35 (1) (3.51)
j=1

Theorem 3.15. Assume that c;, 1'<i < n, are positive constants, and that o; (t), 1 <i <n,
are positive continuous functions which are periodic of period one. Assume that f;;(t), 1 <1,
J < n, are nonnegative, continuous periodic functions of period one and that

> By >0 forl <i<nandallt. (3.52)
j=1

Let B={ye K":0<y <c¢;,1 <i<n}andforn eR"let y(t) = y(t; n) denote the
solution of equation (3.51) with y(0) = n. Forn € cl(B), y(t; n) is defined for allt > 0 and
y(t;n) € cl(B) forallt > 0; andifn e B, y(t;n) € Bforallt > 0. If T : cI(B) — cl(B)
is defined by T (n) = y(1; n), then T is norm-continuous, T |B is nonexpansive with respect
to the part metric p, and T|D is a contraction mapping with respect to p for any compact
set D C B. The map T has at most one fixed point ng € B, and if T(ny) = ng for
some ng € B, then limy_,o |T*(n) — noll = O for all n € B. If there exists g € B with
limg— oo [ T¥(M0) || = 0, then limyo0 |T*(n)|| = O for alln € p — cl(B). If the spectral
radius ) of T'(0) satisfies > > 1 and if 1 is not an eigenvalue of T'(0) or if there exists v € Ko n
with Tv = Av, then T has a nonzero fixed point in cl(B).

For reasons of length, we omit the proof of Theorem 3.15. However, we note that the
Perron-Frobenius theorem implies that there exists v € K® — {0} with T7(0)(v) = Av and

o
that v € K™ if T/(0) is irreducible. We also remark that, in the generality, of Theorem 3.15,
it is easy to construct examples where T may have several distinct nonzero fixed points in
cl(B) and hence several distinct periodic solutions.
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