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1. Introduction

Since the past two decades, a marked increase is taking 

place in research works and engineering applications of 

lignocellulosic fibers obtained from both naturally occurring 
and cultivated plants. In less than 20 years, more than one 
thousand scientific papers have been published on the 
characteristics and properties of hundreds of different fibers 
and distinct sub-species. These figures are certainly increasing 
owing not only to the potential of plants with promising 
fibers but also to the possibility of replacing synthetic fibers 
in terms of environmental, economical, societal and technical 

advantages1. One should not be surprised by this remarkable 
potential if it is accepted that only wood encompasses around 
10,000 distinct species. In principle, for each lignocellulosic 

species of plant, fibers with distinct properties from different 
parts, such as leaves, stem, fruits, and even roots could be 
extracted for engineering purposes1.

Today, one of the motivations for investigating lignocellulosic 
fibers is the possible substitution for synthetic fiber in polymer 
composites. Indeed, since the beginning in World War II, 
synthetic fiber composites have successfully been applied 
in many areas of our modern civilization from medical 
devices to aerospace components. Today, in particular, the 
energy, pollution, cost and health problems of the glass fiber 

are motivating its replacement by lignocellulosic fibers2-4. 

Several review articles have discussed the advantages and 

drawbacks of the most important lignocellulosic fibers 
and related polymer composites5-17. Furthermore, specific 
publications were dedicated to already existing applications 
of lignocellulosic fiber composites in industrial sectors, 
from construction panels and doors18 to automobile parts 
manufacturing19-21.

Among the less known lignocellulosic fibers that were not 
included in the aforementioned review articles, the fique fiber, 
Figure 1, deserves special attention for its relevant properties. 

The fique plant (Furcraea andina), illustrated in Figure 1a, is 

native of Colombia and its production has expanded to Ecuador, 
Costa Rica, Antilles and Brazil22. Fibers extracted from the stiff 
leaves of the fique bush, Figure 1b, are also known in some 

regions of Colombia as cabuya. The extraction is performed by 
mechanical technique and, for polymer composite reinforcement, 
the fique fiber may be used untreated or chemically treated 
according to the type of matrix employed23. As indicated by 
Gañan and Mondragon22, the fique fibers are relatively lighter, 
0.87 g/cm3, and can withstand temperatures up to 220°C. They 
reported tensile strength of 237 ± 51 MPa, elastic modulus 

of 8.01 ± 1.47 GPa and total elongation of 6.02 ± 0.69%. A 

diameter dispersion of the untreated fique fiber was shown 
by Gañan and Mondragon22 to extend from 0.06 to 0.26 mm. 
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However, no correlation was indicated by the authors to exist 
between the mechanical properties and the diameter.

Investigation on changes in mechanical properties as a 

function of lignocellulosic fiber diameter has been reported 
since more than four decades24-30. Earlier international research 
groups investigated coir24, banana25, sisal26, pineapple27, 

palmyrah and talipot28 fibers. In these earlier works no 
correlation was proposed for the variation of mechanical 

properties with fiber diameter. More recently29-36 it was 

found for several lignocellulosic fibers that both tensile 
strength and elastic modulus decrease as the fiber diameter 
increases. In particular, Biagiotti et al.31 were the first to 
indicate a mathematical expression using the Griffith model:

τ or E = A + B/d (1)

where d is the fiber diameter, τ is the tensile strength, E the 
elastic modulus, A and B distinct constants for the different 

properties and fibers.
In a previous overview1 by the research group of the 

present work, it was also reported an inverse correlation 

between the diameter (d) and the tensile strength of several well 
known lignocellulosic fibers. Additionally, inverse diameter 
correlations were also recently found for the density37-42 and 

the elastic modulus37,40,43-45. Using the Weibull analysis in 
all these properties – strength (σ), density (ρ) and elastic 
modulus (E) – a simple hyperbolic type of mathematical 
adjustment was always obtained, similar to Equation 1.

In the particular case of the fique fiber, a more recent 
publication46 indicated that an inverse hyperbolic correlation 
also exists between the tensile strength and the diameter. 
From this inverse correlation, mathematical hyperbolic 
equations for both the Weibull characteristic strength, θ, 
and the average strength, σ , were found as:

θ = 19.5/d + 13.8 (2)

17.1 / d 15.2σ = +  (3)

In order to complement the data associated with the 

mechanical properties, the objective of the present work 

was to evaluate the fique fiber tensile elastic modulus 
dependence with corresponding diameter using the Weibull 
statistical analysis.

2. Experimental Procedure

The basic material used in this work was the fiber extracted 
from the leaf of fique plant (Furcraea andina). A bundle of 
fique fibers was supplied by one of the co-authors, Henry 
Colorado, who obtained it from a producer in Colombia. 
The fibers were extracted by retting followed by scrapping 
from leaves collected in 2014. The as-supplied fique fibers 
were cleaned and dried in a stove at 60°C for 24 hours. 

From 100 fibers randomly selected from the bundle, each 
corresponding equivalent diameter was directly measured 
in a model 6C Nikon profile projector. The equivalent 
diameter was obtained, following procedures indicated 
in several works1,24-28, as an average between the larger 
and smaller (90° rotation) cross section dimensions at 

five locations along the fiber’s length. By considering the 
fiber with irregular cross-section (distinct dimensions in 
90° rotation), the average measurements were associated 

with the fiber equivalent diameter. Taking into account the 
distribution of diameters, from the smallest to the largest, 
seven conventional intervals divided the range.

The histogram in Figure 2 displays the frequency of 
equivalent diameter distribution for the seven conventional 
intervals established in the present work. The fique fiber 
diameters varied from 0.09 to 0.30 mm with a mean proportional 

value of 18.12 mm. For each interval of equivalent diameter 
in Figure 2, 20 fibers were selected. All fibers with 10 cm 
of length were individually tensile tested at a temperature 
of 25 ± 2°C in a model 5582 universal Instron machine 

operating under a strain rate of 2 x 10–4 s–1. Especial tensile 
grips were used to avoid both slippage and damage of the 
fiber. The values obtained for the elastic modulus, associated 
with the slope of the initial part of the stress-strain curve, 

were interpreted by means of the Weibull statistics using 
the computer program Weibull Analysis.

Figure 1. The fique (Furcraea andina): (a) cultivated plants and (b) extracted fiber drying in open air. Source: authors.
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The Weibull statistical analysis is based on a cumulative 
distribution function:

F(x) = 1– exp [–(x/θ)β] (4)

where θ and β are mathematically known as the shape and 
scale parameters. Equation 4 can be conveniently modified 
into a linear expression by double application of logarithm:

( )1
ln ln ln x ln

1 F(x)

 
= β − β θ − 

 (5)

In the present case of fique fiber elastic modulus dependence 
with diameter, β is the slope, Equation 5, and indicated as the 

Weibull modulus, while θ is the characteristic elastic modulus. 
Using the 20 experimental strength data for each interval in 

Figure 2, associated with an average equivalent diameter, the 
computer program constructed the linear graph of Equation 
5 and calculated the Weibull parameters.

The microstructural aspects of the fique fiber with different 
diameters and the corresponding rupture characteristics were 

examined by scanning electron microscopy (SEM) in a model 
SSX-550 Shimadzu microscope. The SEM fiber samples were 
gold sputtered and observed with secondary electrons at 15 kV.

3. Results and Discussion

Figure 3 depicts typical load versus elongation curves of 
fique fibers for each of the seven equivalent diameter intervals 
in Figure 2. Based on the maximum load (L), the tensile 

strength (σ
m
) was determined for each fiber as

σ
m
 = 4L/πd2 (6)

where d is the equivalent diameter in Figure 2.

Using the stress-strain slope in the initial elastic regimen, 

the elastic modulus (E) was calculated for each tensile tested 
fique fiber. The average value of Ē was statistically determined 
by means of the Weibull method for the 20 fibers associated with 
each of the seven diameter intervals shown in the histogram 

of Figure 2. The Weibull Analysis program provided the 

probability graphs of Equation 5 for the values of Ē that are 
shown in Figure 4 for all diameter intervals. Here it should 

be noted that all plots in Figure 4 are unimodal, i.e. with just 

one single straight line fitting the points at each interval. This 
indicates similar stiffness behavior of fibers within the same 
diameter interval.

In addition, the Weibull program also provided the 
corresponding characteristic elastic modulus (θ), the Weibull 
modulus (β) and the precision adjustment (R2) parameters. 

The values of these parameters as well as the mean elastic 
modulus (E

m
) and associated statistical deviations, based on 

the Weibull distribution, are presented in Table 1.

The variation of the characteristic elastic modulus with 
the average fiber diameter for each one of its intervals is 
shown in Figure 5. In this figure, there is a clear tendency for 
the θ parameter to vary inversely with the average fique fiber 
diameter. This indicates that the thinner the fiber the higher 
tends to be the characteristic elastic modulus. Furthermore, 
the corresponding values of β and R2, shown in Table 1, 

statistically support the inverse correlation between θ and 
the equivalent diameter d (mm). By means of a mathematic 
correlation, a hyperbolic type of equation is proposed to fit 
the data in Figure 5.

θ (GPa)= 19.5∕d + 13.8 (7)

In order to analyze the physical meaning of Equation 7, 

the Weibull mean elastic modulus, E
m
, evaluated in this 

work for the fique fibers was plotted as a function of the 

Figure 2. Histogram of the frequency of equivalent fique fiber diameter 
for the seven conventionally established intervals. Source: authors.

Figure 3. Typical load versus elongation curves of tensile tested 
fique fibers for each equivalent diameter interval. Source: authors.
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Figure 4. Weibull graphs of the elastic modulus reliability function for each equivalent diameter interval. Source: authors.

Table 1. Weibull parameters for the average elastic modulus of fique fibers associated with different diameter intervals.

Diameter interval  

(mm)

Weibull Modulus, 

β

Characteristic 

Elastic Modulus,  

θ (GPa)

Precision 

Adjustment R2

Average Elastic 

Modulus

(GPa)

Statistical 

Deviation

0.09 – 0.12 3.137 5.659 0.9676 5.06 1.768

0.12 – 0.15 3.303 4.191 0.9026 3.76 1.253

0.15 – 0.18 3.705 3.123 0.9082 2.82 0.847

0.18 – 0.21 4.064 2.667 0.9151 2.42 0.669

0.21 – 0.24 3.369 2.78 0.9244 2.50 0.818

0.24 – 0.27 4.935 2.32 0.9126 2.13 0.493

0.27 – 0.30 3.15 2.22 0.9183 1.99 0.692

diameter in Figure 6. In this figure, an apparent hyperbolic 
inverse correlation also exists between E

m
 and d within the 

error bars (statistical deviations) and investigated limits. 
In spite of a higher dispersion in the error bars, a tendency for 
hyperbolic inverse correlation also exists between E

m
 and d.

E
m
 (GPa) = 17.1/d + 15.2 (8)

Based on the similarity between Equation 7 and 8 it is 

suggested that, as in other lignocellulosic fibers34-37,40,43-45, a 

hyperbolic type of mathematical equation is a simple and 
reliable statistical correlation between the elastic modulus 
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and the diameter of fique fibers. In practice, this indicates 
that thinner fique fibers are stiffer than thicker ones. A reason 
for the stiffness inverse correlation with diameter may be 
attributes to both microstructural aspects and random rupture 
of microfibrils.

Figure 7 reveals by SEM micrographs the aspects of 
fique fibers, both thinner and thicker. As shown in Figure 7a, 

the thinner fique fiber with d= 0.10 mm possesses a more 
homogenous microstructure, in which microfibrils rupture 
occurs simultaneously, arrow in Figure 7b. On the other 

hand, the thicker fiber, with d= 0.20 mm in Figure 7c has 

more flaws and voids (arrows) associated with a non-uniform 
rupture of microfibrils, as indicated by arrow in Figure 7d. 

Apparently, the more homogenous thinner fiber has fewer 
points for crack nucleation with more close packed microfibrils. 
This contributes to fiber cross-section and surface with less 
defects and voids and, consequently, a more resisting area 
associated with higher elastic modulus. Another reason for 

the inverse correlation could be the random distribution 
of greater number of microfibrils in the thicker fique fiber, 
Figure 7c and d. The statistical chance is that, with more 
fibers, one microfibril in the thicker fiber will be weaker than 
those in the thinner fiber. Rupture will then start earlier in 
the thicker fiber, resulting in lower stiffness.

Figure 7. SEM micrographs for: (a) and (b) thinner fiber as well 
as (c) and (d) thicker fiber. Source: authors.

Figure 5. Variation of the Weibull characteristic elastic modulus 
with the mean equivalent diameter for each interval in Figure 3. 

Source: authors.

Figure 6. Variation of the Weibull average elastic modulus with the 
mean equivalent diameter for each interval in Figure 3. Source: authors.
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4. Conclusions

• A Weibull statistical analysis of the elastic modulus of 
fique fibers found an inverse correlation with the fiber 
corresponding equivalent diameter. This correlation 
of the type E=A + B/d, also obtained for many other 
fibers, indicates a very close hyperbolic mathematical 
fit for both the Weibull characteristic elastic modulus 
(θ) and the mean elastic modulus (E

m
), as found by 

several international research groups since 2004.

• SEM micrographs revealed evidences that thicker 
fique fibers possess more flaws and voids than the 
thinner ones. This heterogeneous behavior associated 

with defects results in comparatively lower stiffness 
for the thicker fibers.

• Statistically, the greater number of microfibrils of the 
thicker fiber might also be expected to cause earlier 
rupture of the weaker microfibril, due to its random 
chance of belonging to the thicker fiber. This contributed 
to a higher stiffness of the thinner fiber as well.
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