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FIR Digital Filter  Design  Techniques  Using 
Weighted  Chebyshev  Approximation 

Znvired Paper 

Abstmef-This p w  discusses l3le wious oppror~hes to designing 
FIR digital flten using the  theory of weighted Chebyaitev appxhna- 
tion. The diffemnt design techniques are explained and canpared on 
the basis of their capabilities and limitations. The relnt ionahips be- 
tween mte prtpmetas are briefly discussed for the use of low-pas 
fila Extensions of the theoy to the problems of magnitude and 
complex approximation are rlso induded, as are some recent rearlts on 
the design of two-dimensiod FIR filters by tnusfomation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H 

I. INTRODUCTION 

N THE PAST  few years,  powerful  computer  optimization 

algorithms have  been  developed to solve the design problem 
for  finiteduration impulse  response (FIR) digital filters. 

It is the purpose of this paper to review these  techniques  in 
the light of Chebyshev  approximation  theory  and to describe 
some of the  extensions of this  theory. 
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FIR digital filters possess certain desirable properties which 
make them  attractive  for digital signal processing applications. 
Among  these  are the ability to have exactly  linear phase and 

the absence of stability  problems  in  nonrecursive  realizations. 

While long  sequences  are  sometimes necessary to achieve sharp 

cutoff  filters, use of the fast  Fourier  transform  (FFT) can 

make the realization of such  filters  computationally  competi- 
tive even with  sharp  cutoff  infiniteduration  impulse  response 
(IIR) elliptic filters. 

The process of designing and realizing a digital filter to meet 
some desired specifications  consists of  five  basic steps. 

1) Choose  a design technique  and  convert  the desired speci- 
fications into a precise mathematical  formulation in order to 
approximate  the ideal filter  shape. 

2) Solve the  approximation  problem to determine  the  filter 
coefficients which  minimize a  performance  measure. 

3) Choose  a  specific structure  in which the  filter will be 
realized  and quantize  the  resulting  filter  coefficients to a  fixed 

word length. 
4) Quantize the digital filter variables, i.e., the  input,  out- 

put, and  intermediate variable word  lengths. 
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5 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVerify by  simulation that  the resulting design meets given 

performance  specifications. 
The  results of step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) generally lead to revisions in steps l ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2) ,  3), or  4) in order to meet  specifications. 
Although it would  be  desirable to be able to perform  steps 

2)-4)  simultaneously, i.e., to be  able to solve the  approxima- 
tion  problem  for  arbitrary  structures,  with  arbitrary  word 

lengths,  it is not likely that  such  a design procedure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be 

available in  the foreseeable future. Thus for  the  time being we 

must be  content to solve each of these  problems  independently. 
It is quite easy to overlook the  importance of step  1)  both 

in the  choice of design methods and in the ways that  the de- 

sired specifications  are  converted for  input to the different 
design methods.  For  example,  some design algorithms  specify 
the  cutoff  frequencies  and minimize  passband and/or  stopband 

deviation whereas other algorithms  specify  the passband and 
stopband  deviations  and  obtain the  cutoff  frequencies  only 

after  performing step  2). Algorithms of both  types will  be 

described later  in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis paper. 

This paper will  be devoted exclusively to a discussion of 

optimal  techniques  for solving the  approximation  problem 

of step 2). The word “optimal” will denote weighted 

Chebyshev  approximation of a desired frequency  response  by 

an  FIR digital filter.  The  presentation will concentrate  on 

linear phase filters where the design techniques  are highly de- 

veloped  because the  approximation  problem is real. We will zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
also discuss the  interrelationships  between the various  design 

parameters for several filter  types.  Such  relationships are help- 

ful  in  performing step l ) ,  where  the designer must specify 

parameters  such as the filter  length,  cutoff  frequencies,  and 

passband ripple or  stopband  attenuation.  Often these  parame- 

ters  are  only  implicit in  the desired specifications. 

Several extensions of the Chebyshev approximation  tech- 

niques  will  also be discussed.  These include  approximation of 

the magnitude  response  without regard to the phase,  and  two- 
dimensional approximation. Before  discussing specific design 

methods we  review  various alternative  solutions to the  FIR 
filter  approximation  problem. 

11. HISTORY OF THE FIR FILTER 
APPROXIMATION PROBLEM 

One of the eariiest attempts at  deriving the coefficients of 
an FIR digital filter  in  order to approximate  an  ideal desired 
frequency  response was the  method of windowing in which 

the desired frequency  response is expanded in a  Fourier series 
and  truncated to the desired filter  length [ 11 -[7]. The  result- 
ing  filter minimizes the  leastsquares  error  between  the desired 
response  and the filter  response. However, the Chebyshev 

error  (the  maximum  absolute value of  the  error)  from this ap- 
proach is rather  large,  due to  the Gibbs phenomenon which 

occurs at discontinuities of the desired frequency  response. 
Instead of simply  truncating  the  infinite  Fourier series, the 

technique of windowing seeks to reduce the Gibbs phenom- 
enon by  multiplying the coefficients of the  Fourier series by a 

smooth time-limited window.  Among the  more popular win- 

dows  are the Kaiser window [2] ,  the Hamming window [ 31, 

the hanning  window [31,  and  the  DolphChebyshev window 

[41-[71. One  of the  attributes of windowing is that it is an 
analytical  technique,  whereas,  most other  FIR design tech- 
niques  are  iterative in  nature. 

A second  FIR design technique [8] -[ 141 (the frequency 

sampling method) was  originally proposed by  Gold and  Jordan 

idea  behind  this  method is that one can approximate  a  speci- 

fied  frequency  response by  fixing most of its  discrete  Fourier 

transform  (DFT)  coefficients  (the  frequency  samples)  and 
leaving  unspecified those  DFT  coefficients which lie in transi- 

tion  bands. An optimization  algorithm is  used to choose 
values for  the unspecified coefficients so as to minimize a 
weighted approximation  error over the  frequency range of 
interest.  The  problem can be  shown to be a  linear  program- 
ming problem  with very  few independent variables, but a large 
number of constraints. 

Herrmann [ 161  was the first to develop  a  method for design- 

ing optimal  (in  a  Chebyshev  sense)  FIR  filters. By assuming 
that  the  frequency  response of the  optimal low-pass filter was 

equiripple in  both  the passband and  the  stopband,  and  by 
fixing  the  number of ripples  in  each  band,  Herrmann was able 

to write  down  a set of nonlinear  equations which completely 

described the  filter. He then  proceeded to solve these  equa- 

tions  directly, using an iterative  descent  method.  The  length 

of filters designed in  this  manner was limited to  about  40. 

Hofstetter et al. [ 191,  [20] removed the restriction on 

length  in Herrmann’s approach  by developing  an algorithm 

which  was “reminiscent of the  Remez exchange algorithm”  in 

order to solve the nonlinear  equations. In  view  of later results, 

it is possible to show that  the filters of Herrmann  and  Hof- 

stetter are  a  restricted  subset of optimal min-max filters, the 

so-called extraripple  or maximal ripple  filters. One drawback 

of the  approach of both Herrmann  and  Hofstetter et al. is that 

it is not possible to specify u priori the  locations of the pass- 

band and  stopband  cutoff  frequencies. 

Parks  and  McClellan [ 2 1 I formulated  the lowpass approxi- 

mation of the desired response on  two disjoint  intervals, the 
passband and  the  stopband  with  a  transition band left  un- 

specified. Necessary and  sufficient  conditions for  the best 

Chebyshev  approximation were obtained  from  the classical 

alternation  theorem,  and  the Remez exchange  algorithm was 
demonstrated to be an effective tool  for  the  computation of 
these  optimal  filters.  Subsequently,  this  formulation was ex- 
tended to include al l  types of linear phase FIR  filters [ 3 1  ] . 

Rabiner [22],  [23] showed that linear programming offered 

an  alternative  method for  computing  the best Chebyshev a p  
proximation.  Although  linear programming is very flexible 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be used to approximate  a wide  variety of desired 
filter  shapes, it is comparatively slow and  hence,  the  length 

of  the filters it can design is limited. 
This paper will describe the last four design methods. Each 

of these  methods  yields  optimal  filters  and  the  theory of 
Chebyshev  approximation provides the underlying  mathemat- 

ical explanation of this behavior.  In all  cases the filter is 

restricted to have linear phase so that  the  approximation  prob- 

lem will be  real. In the next  section,  the  linear phase condi- 

tion  for  FIR  filters is reviewed and  the  characteristics of the 

various types of FIR  filters  are  derived. 

111. CHARACTERISTICS OF FIR FILTERS 

Let {h (n) }  be  a causal finite  duration  sequence  defined  over 

The z transform of {h (n ) }  is 

WITH LINEAR PHASE 

theintervalOQnGN- 1. 

H(z)  = h(n)  2-” = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(0)  + h(1)  2-1 + * + h ( N -  1) z-(iV-l) 
N- l  

n = o  

[ 101  and further developed by  Rabiner et al .  [ 1 11. The basic (1) 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ff P 

Case 1 -N odd, N - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
Symmetric  impulse  response 2 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Case 2 -N even, N -  1 - 

Symmetric  impulse  response 2 
0 

Case 3-N odd, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN-1 n 

Antisymmetric  impulse  response 2 2 
Case 4 -N even, N -  1 n 

2 

- - 

- 
Antisymmetric  impulse  response 2 

- 

and the  Fourier  transform of {h (n ) }  is 

H(eiw) = h(n) e- jwn.  (2) 
N- 1 

n = o  

We define  a  linear phase filter as one whose frequency re- 

H ( e i w )  = ~ ( ~ i w )  ei(P-aw) (3) 

where G(eiw ) is real valued.  Notice that G(eiw), is not  the 

magnitude of the  frequency response,’  since G ( e J W )  can be 
negative. Also, (3) only requires the  filter to  have a  constant 

group  delay. 

It can be  shown  that  the  only  solutions  for a and P are 

a = ( N -  1)/2andP=Oor/3=n/2.   WhenP=Otheimpulsere- 

sponse is symmetric, i.e., h(n)  = h(N - 1 - n) n = 0, 1 , .  . * , 
N - 1, and  when 0 = n/2  the impulse response is antisymmetric, 

i.e., h ( n )  = -h(N - 1 - n), n = 0, 1,  * * * , N - 1. The class  of 

linear phase FIR filters can  be  divided into four cases accord- 

ing to whether N is odd  or even and  whether 0 = 0 or  n/2. 

Table I lists  these four cases as we will refer to  them  through- 

out this  paper. It should  be  noted that when N is even (i.e., 

cases 2  and 4) the  filter  group  delay a = (N - 1)/2 is not an 
integer  number of samples. Thus  for N = 10, a = 43  samples 
delay. This extra “half sample”  delay is of importance  in 
some  applications, but in  most cases it has  little  effect on  the 
overall  processing. . 

The function G ( e I W )  of (3) may be expressed in  terms of 
the impulse  response  coefficients for each of the  four cases 

of a  linear phase filter.  Such  formulas  are derived now  for 
later use in describing  various techniques  for designing FIR 

filters to match prescribed frequency  response  characteristics. 

sponse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be  written  in  the form 

Case 1: N odd,  symmetric impulse  response 

M 
G(e iW)  = a(n )  cos (on) (4 ) 

n = o  

where M = (N - 1)/2, a ( 0 )  = h ( M )  and a(n )  = 2h(M - n )  for 
n = 1 , 2 , * * . , M .  

Case 2: N even,  symmetric  impulse  response 

M 
G(eiW) = b(n) cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ o ( n  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3)] (5) 

n= 1 

whereM=N/2andb(n)=-2h(M-n)forn=l;..,M. 

The terms which are used t o  refer to frequency are w and f, with 

changeably. 
w = 2nf. Throughout this paper the terms w ,  and f, are used inter- 

hln) ,+ 

h in1 

ANTISYYYETRICM 

REspaysE 
IMPULSE 

CASE 3 

N OD0 

h ln )  

CASE 2 

l g c l  k 2lr 

CASE 4 

N E V E N  

Fig. 1. The  four cases o f   h e a r  phase  FIR filters. 

Case 3: N odd,  antisymmetric impulse  response 

M 
G(eiW) = c (n )  sin (on) ( 6 )  

n = l  

whereM=(N-  1 ) / 2 a n d c ( n ) = 2 h ( M - n ) f o r n = l , 2 , - - * , M  
and h ( M )  = 0. 

Case 4: N even, antisymmetric  impulse  response 

M 
G(e iw)  = d ( n )  sin [w(n - 3)] (7) 

n = l  

where M = N/2 and d(n )  = 2h(M - n) for n = 1, * * , M. 
Fig. 1  presents  a  comprehensive  summary of the results of 

this  section.  Shown  in  this figure are  typical impulse  response 
sequences h(n) ,  the resulting  shifted  sequence (u(n) through 

d(n ) ,  depending on  the case) and  typical  frequency  response 

functions G(e iw) ,  for each of the  four cases of linear phase 
FIR  filter. 

IV. CHEBYSHEV APPROXIMATION 

The  formulation  of  the  linear phase FIR design problem as 
a  Chebyshev  approximation  problem provides a set of condi- 

tions  (the  alternation  theorem) which completely  characterize 

the  optimal  filter.  The  alternation  theorem is the basis of the 

Remez exchange  algorithm which is a very efficient  method 

for calculating the  optimal  filter coefficients.  Furthermore, 

this  characterization  has shown that  other  methods yield  a re- 

stricted class of optimal  filters.  In  this  section we will show 

how  the  linear phase FIR design problem can be  formulated 

as a  Chebyshev  approximation  problem  and  in succeeding 

sections it will become clear that this  formulation is the key 
to understanding the various  FIR design procedures. 

The  linear phase FIR design problem is an approximation 
problem in  the sense that  one is trying to match  some ideal 
amplitude  response  with  the  function C(e iw) .  For  each of 
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TABLE I1 TABLE I11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(eiw) Q(eiw) P(e jw) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Case 1 -N odd, (N- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA)/ 2 
Symmetric  impulse 0 a(n) cos (wn) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase 1 1 5 u(n)  cos (u t )  
response n= 0 n=o 

Case 2-N even, Nl2 
Symmetric  impulse 0 b(n )  c o s  [w(n - 1/21] case 2 cos (w/2)  b(n) cos (wn) 
response n=1 n-o 

M-1 

Case 3 -N odd, (N-1)/2 
Antisymmetric  impulse 1 c(n) sin (wn) 
response n=1 

Case 3 sin ( w )  
~ 

n=o 
Case 4-N even. NI2 

Antisymmetric  impulse 1 C d(n) sin [w(n - 1/21] 
response n= 1 

the  four cases the  function G ( e j w )  is a  linear  comoination  error of approximation E ( e i w )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis, by  definition, 
of a  different  set of basis functions.  It is convenient to reduce 
all cases to a  common  one  with cosine basis functions. 

shown that  the  frequency response of the  four cases of linear can be  rewritten as 
phase filters could  be written  in  the  form 

E(eiW) = W(eiW)   [D(e iW)  - G ( e i W ) ] .  (1 2) 

In the Previous  Section on linear phase FIR fiiterS, it was By writing G ( e i W )  as a product ofP(ejw) and Q(e iw) ,   &e lw)  

E(e iw)  = W(eiw)   [D(e iW)  - f i e i W )   Q ( e j " ) ] .  (13) 

Since Q(e iw)  is a  fixed function of frequency, it zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be  fac- 
H(e iw)   =e- jw [ (N-1) /21   e i (7 /2 )L   G(e iw) .  (8) 

Values for L and the  form  for G(e iw)  are given in Table I1 for  tored  out of (1 3), giving 
each of the  four cases of linear  phase. 

Using  simple trigonometric  identities,  each of the  expres- 

sions for G ( e i w )  in Table I1 can  be written as a  product of a 
E(e iW)  = W(eiw)   Q(e iw)  - P(eiW) . (14) I 

fixed function of o (call this Q ( e J w ) ) ,  and a  term  which is a 
sum of  cosines (call this P ( e i w ) ) .  n u s  the expressions for 
G ( e i w )  in Table I1 become 13 11 as follows. 

Equation  (14) is valid ezerywhere ezcept possibly at w = 0 
and/or o = n. Defining W(e jw)  and D ( e i W )  as 

. .  

Case I :  @(e iW)  = W(eiW)  Q(eiW) (15) 

No change.  and 

Case 2: A D ( e i W )  

M 
D ( e i w )  = - 

b(n) cos [ o ( n  - 1/2)1 = cos (6.42) b(n) cos (wn). (9) 
M-1 

n=1  n=O the  error  function may be  written as 

Case 3: E ( e j w )  = @ ( e i w )   [ i j ( e i u )  - ~ ( e i w ) ] .  (17) 

c(n) sin (an) = sin (a) Z(n )  COS (on). (10) finding the  set of coefficients (a(n),  b(n), &I, or 4n) )  to 
n= 1 n = o  minimize the maximum  absolute value of E ( e i w )  over the  fre- 

quency  bands  in  which  the  approximation is being performed. 
Case 4: Using the  notation II E(eiw)ll to denote this minimum d u e  

M M - 1  The  Chebyshev  approximation problem_  may now  be gated as 

The coefficients &I), Z(n), and Z(n) in (9H11)  are  simply 
related to b(n),  c(n),  and d(n )  of Table I1 as shown @ [31].  

Table I11 shows  a  summary of the  functions Q ( e J * )  and 

P ( e J W )  for each of the  four cases  of linear phase filters. 

For Cases 2-4, Q(eiw)  is constrained to be zero at  either 
o = 0 or w = n, or  both. 

To  formulate  the  optimal  linear phase FIR  filter design 
problem as a  Chebyshev  approximation  problem, it is neces- 
sary to define D ( e i W ) ,  the desired (real)  frequency  response 
of the filter,  and W(e iW) ,  a weighting function  on  the  approxi- 
mation  error which enables the designer to choose the relative 
size of the  error in different  frequency  bands.  The weighted 

(i.e., the L,-norm of E ( e i w ) ) ,  the Chebyshev approximation 
problem may be stated mathematically as 

IIE(eiw)II = min [max IE(eiW)I] (18) 
{coefficients} w E A 

where A represents the disjoint  union of all the  frequency 
bands of interest. 

A well-known property of this class of Chebyshev  approxi- 
mation  problems may be used to obtain  a  characterization of 

the  solution to (18). This is the so-called alternation  theorem 
which may  be stated as follows [4 1 1 . 

Theorem: If ? ( e J w )  is a  linear  combination of r cosine func- 
tions (i.e., P ( e J w )  = CLi;=b a(n) c y  (an)) then a necessary 

and  sufficient  condition that P ( e J W )  be  the  unique,  best 
yeighted Chebyshev  approximation to a  continuous  function 
D ( e i W )  on A ,  a  compact  subset of [0, n] , is that  the weighted 
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error function E ( e i w )  exhibit  at least r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 extremal  fre- 

quencies in A ,  i.e.,  there  must  exist r + 1 points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwi in! such 

that w1 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 2  < * * * < w, < and  such that E ( e J w i )  = 
- E ( e i w i + l ) , i =  1,2; . . , r ,andIE(eiwi)I= max IE(e iw) l .  

w E A  
The preceding alternation  theorem is extremely  powerful  in 

that  it expresses a necessary and  sufficient  set of conditions  for 

obtaining  the  optimal Chebyshev  solution. A number of 

techniques have been devised for  obtaining  this  optimal solu- 
tion, depending on  the  interpretation of this  theorem. 

It is worth  noting  that  the  alternation  theorem  depends very 

strongly on  the fact that  the basis functions  satisfy  the Haar 
condition [ 411.  When one  attempts to  do constrained  Che- 

byshev approximation  or  two-dimensional  approximation,  it 

turns  out  that  the basis functions do  not satisfy the Haar con- 

dition.  Thus,  a  characterization of the  optimal  solution in the 

form of an  alternation  theorem is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno longer  possible.  Before 

discussing any specific algorithm for designing optimal  filters, 

the  next  section presents an  important result on  the maximum 

number of extrema of a  linear phase FIR filter. 

Constraint  on  the  Number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Extrema of the  Frequency 
Response of a  Linear  Phase  Filter 

The  alternation  theorem  states  that for  the  optimal linear 

phase FIR  filter,  the  error  function  has at least r + 1  extrema 

where r is the  number of cosine  functions being  used in the 
approxirpation.  Since  for  many cases of intefest  the  extrema 

of C ( e J w )  are also the  extrema of E(e lW) ,  (i.e.., both 
dW(e iw) /do  and d D ( e i w ) / d o  will be zero when d G ( e J W ) / d w  
is zero),  it is ipportant  to know  the maximum  number of 
extrema of C ( e l W ) .  By adding to this  number  the  number of 

extrema of E ( e @ )  which  are not  extrema of C ( e J W )  the  total 

maximum  number of extrema of E(eiw ) can  be found. 
By differentiating C(el") with  respect to w ,  it can  be  shown 

that N e ,  the  number of extrema of C ( e J W ) ,  obeys 

Ne < (N + 1)/2 case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Ne < N / 2  case 2 

Ne G (N - 1)/2 case 3 

N e  Q N / 2  case 4. (19) 

Equation  (19) only  constrains the  number of extrema of 

G(el").  It is ieadily seen that if the  approximation problem is 

being  solved  over a  union of disjoint  frequency  bands,  the 

error  function can obtain  an  extremum  at each band edge, 

whereas these  points will generally not be  extrema of G(e lw)  
[21].  The  exception to  this rule is when the band edges are at 

either w = 0 or w = IT where G(e IW)  will often have  an extre- 
mum.  Thus,  for  example,  the  error  function  for Case 1 low- 

pass filter (a two-band  approximation  problem) can  have a 

maximum of ( N  + 5)/2  extrema, i.e., ( N  + 1)/2  extrema of 
G(e iw)  and  2  extra  extrema for  the passband and  stopband 

edges. The  error  function  for  a Case 1  bandpass  filter (a 

three-band  approximation  problem) can  have a  maximum of 
(N + 9)/2  extrema, i.e., (N + 1)/2  extrema of C ( e I W )  and  4 
extra  extrema  for  the passband and  stopband edges. 

Foreknowledge of the maximum  number of extrema of 

E(eIW)  is important because  it  relates to the exact  ways in 
which design techniques have been devised to design optimal 
fiters.  For example, two of the  optimal design techniques  are 
only  capable of designing optimal  filters  with the maximum 
possible number of extrema.  These design techniques  are of 

limited  utility  in that  the  alternation  theorem  shows  that,  in 

general,  filters  with the maximum  number of extrema  in  their 

error  functions  are special  cases of the  theorem,  and hence  are 

only  a  subset of the larger class of optimal  filters. In the fol- 

lowing sections  a discussion of the various  optimal  filter design 

algorithms is given. Both  for  historical  reasons, and  for de- 

velopment  purposes, we describe f i i t   t he  two  algorithms which 
only  are  capable of designing optimal  filters  with the maximum 

possible number of extrema  in  their  error  functions.  Then  a 

discussion is given of a  Remez type algorithm  and finally a 

linear  programming method  for designing any optimal,  linear 

phase, FIR filter. 

V. MAXIMAL RIPPLE FIR FILTERS 
In  the preceding section,.it was shown  that  the  number of 

frequencies  at  which G(eIW)  could  attain  an  extremum is 

strictly  a  function of the case of linear phase fi ter under inves- 

tigation.  At  each  extremum, the value of C(e'") zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis predeter- 

mined by a  combination of the weighting function W(eiw), the 

desired frequency  response D ( e J W ) ,  and the  quantity 6 which 
represents the peak  error of approximation. By distributing 

the frequencies at which G(e iw)  attained an extremal value 

among  the different  frequency  bands over which  a desired 
response was being  approximated,  and  by  requiring  the result- 

ing filter to have the maximum  number of extremal  frequen- 
cies, a  unique  optimal  filter  can  be  obtained. Since these 
fiters have the maximum  number of alternations, or ripples, 

in  their  error of approximation curve, they have been called 
maximal  ripple fiters.  For  the case of lowpass filters  these 

maximal  ripple  filters have  also been called extraripple fiters 

[21] because only  a single extra ripple above the minimum 

number  required  for  optimality is present. 
The  manner  in  which  a  set of nonlinear  equations is ob- 

tained for describing the  maximal ripple  filter is as follows.  At 

each of  the Ne unknown  extremal  frequencies, ,!?(elW) attains 
the maximum value  of *6, and E(e jW) ,  or  equivalently, C(e iw)  
has zero derivative. Thus 2 Ne equations of the  form 

- [ c ( e j W ) l  
d 

d w  
= 0 ,  i=1 ,2 ; . . ,Ne  

w ' W i  

for i = 1,  2, * , N e  are  obtained.  These  equations  represent  a 
set of 2 Ne nonlinear  equations in 2 Ne unknowns (Ne impulse 

response coefficients,  and Ne frequencies  at  which G(eiw)  ob- 
tains  the  extremal value). The  set of 2 Ne equations  may  be 

solved iteratively using a  nonlinear  optimization  procedure 

such as the well-known  Fletcher-Powell algorithm. 

Two  facts  should  be  noted  about  this procedure.  First the 

quantity 6 (i.e., the peak  error) is a  fixed quantity  and is not 
m i e i z e d  by  the  optimization scheme. Thus  the shape of 

C ( e l w )  is postulated a priori, and  only the frequencies at 

which G ( e J W )  attains  the  extremal values are  unknown. Sec- 

ond,  the design procedure  has no way of specifying  band edges 
for the different  frequency  bands of the fiiter. Thus  the  opti- 

mization  algorithm  does not  work  on given frequency  bands, 
but instead is free to select exactly  where  the  bands will lie. 

This lack  of control over frequency  band edges diminishes the 
utility of this  and  the  next algorithm to be discussed. 

To illustrate  a  specific set of equations  for  optimization we 
consider the design of a case 1 low-pass fi ter with N = 15, a 
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Fig. 2. The  frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAresponse of a  maximal  ripple  low-pass fiter. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
peak ripple of 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2 , a weighting function defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W(ejw)  = { 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16 1, w in  the passband 

1, w in  the stopband 

and a desired response of 

D(e iw)  = I 1, w in the passband 

0, w in the  stopband. 

Fig. 2 illustrates G(eiw)  for  this example. The  extremal fre- 

quencies are the set w = 0, wl, w 2 ,   w 3 ,  wq, os, 0 6 ,  and 

w7 = n. At w = 0 and w = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, G ( e j w )  has zero derivative, 
independent of the impulse response coefficients  for  a case 1 

design. For  this example, the Ne = 8 extremal frequencies are 

divided so that N p  = 3  occur in  the passband, and N,  = 5 occur 

in the  stopband. Thus for  this set of conditions, the following 

equations are  obtained: 

Function Constraints 

G(eio) = 1 + a 1  

G(e'"') = 1 - 6, 

G(e iW2)  = 1 + S 1  

G ( e i w 3 )  = -62 

G(eiw6 ) = +S2 

G(ei") = - 6 2  . 

Derivative Constraints 

- G(eiw ) 
dw 

- G(eiw) 
d 

do 

- G(eiW) 
d 

dw 

- G(eiw)  
d 

dw 

d - G(eiw) 
dw 

- G(eiw)  
d 

dw 

= O  
w=w2 

= O  
w=w3 

= O  
w=w4 

= O  
w=w s 

= 0. 
w=ws 

Once  this set of equations has been solved for  the unknown 

frequencies and the impulse-response coefficients, the passband 

and stopband edga may be solved. for by searching for the 
frequency  beyond  where G(eJw)  exactly equals 1 -, SI  
(passband edge), and the frequency  before 03 where G ( e J W )  
exactly equals +S2 (stopband edge). 

The preceding optimization procedure has been used by 
Herrmann [ 161 to design low-pass and bandpass filters  for 
values of N up to  about 61. The  next section discusses an- 
other technique for designing maximal ripple  filters where 
much larger filters can be designed efficiently. 

- INITIAL VALUES 
OF f 

VALUES OF f 
0 - SECOND SET OF 

I 
I 
I 

- INITIAL LAGRANGE 
POLYNOMINAL 

SECOND LAGRANGE 
POLYNOMIAL 

--- 

f 

0 0.5 

Fig. 3. Polynomial  interpolation  iterative solution for maximal ripple 
low-pass  filter. 

Polynomial  Interpolation  Solution for Maximal Ripple 
FIR Filters 

A  second, more efficient, method has been  proposed for 

designing maximal ripple filters. This algorithm is basically an 
iterative  technique for producing  a  polynomial (G(e iw))  that 

has extrema of desired values. The algorithm begins by making 

an F t i a l  estimate of the frequencies at which the  extrema in 
G ( e J w )  will occur,  and then uses the well-known Lagrange 

interpolation formula to obtain a  polynomial that alternatingly 

goes through  the maximum allowable ripple values at these 
frequencies. It has been experimentally found  that  the initial 

guess  of extremal  frequencies  does not affect the  ultimate con- 

vergence  of the algorithm, but instead  affects the  number of 

iterations required to achieve the desired result. 

Rather  than consider the general fiiter design problem, it is 

instructive to consider the design of a case 1 low-pass filter  as 

an example of how the algorithm works. Fig. 3  shows the 
frequency response of a low-pass filter  with 'N = 11,  peak 

ripple 6 = a 2 ,  weighting function W(eiw) ,  and desired fre- 
quency response D(eIW),  as defined in  the preceding section. 

The  number of extremal frequencies Ne is 6 for this  example, 
and they are divided into N p  = 3 passband extrema, and N, = 3 

stopband extrema. The filled dots along the frequency  axis of 
Fig..3 show the initial guess as to  the extremal  frequencies of 

G(eIW). The solid line shows the initial Lagrange polynomial 
obtained  by choosing polynomial  coefficients so that  the 
values of the polynomial at  the guessed set of frequencies are 
identical to  the assigned extreme values. As seen in Fig. 3, the 

polynomial associated with the initial guess does not have 
extrema  that achieve the maximum allowable errors, but  rather 
it has extrema  that exceed  these values. The  next stage of  the 
algorithm is to locate  the frequencies at which the  extrema  of 
the first Lagrange interpolation occur. These frequencies are 
used as an  updated improved guess of the frequencies for 
which the  extrema of the filter response will achieve the de- 
sired ripple values. This second set of frequencies is indicated 
by the  open  dots  in Fig. 3. The algorithm uses these new 
frequencies to construct  another Lagrange polynomial  (shown 

by  the  dotted line in Fig. 3) that achieves the desired values at 
these frequencies. At zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis point  the iterative nature of the 
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Fig. 4. The  frequency  response of a  maximal ripple bandpass filter. 

algorithm has emerged. By locating the  extrema of the new 

polynomial, another  iteration of the algorithm is begun. This 

algorithm is quite similar to  the well-known Remez multiple 

exchange algorithm of Chebyshev approximation  theory. 

Two typical maximal ripple  filters designed by  Hofstetter 

eta l .  [ 191, [201  usingthisalgorithm are shown in Figs. 4  and 5 .  
Figure 4 shows the log magnitude response of a case 1 bandpass 
fiiter  with N = 41, (i.e., Ne = 21)  with 6 extrema of G(eIW)  in 

each stopband, and 9 extrema in the passband. The peak ripple 
in the  stopbands is 62 = 0.00001 (or - 100 dB), whereas the 

peak ripple in the passband is 0.005. Fig. 5 shows the log 
magnitude response. of a case 1 low-pass filter  with N = 251 I::: 

1 coso ,  

~ 

cos 200 * * * cos [ ( r  - 1) oO] 

and  with 33 extrema of G ( e J W )  in the passband and 94 

extrema in the  stopband.  The peak ripple in the passband is 
S = 0.01 and the peak ripple in  the  stopband is 6 2  = 0.00004 
(or -88 dB). 

Although this improved algorithm has essentially eliminated 

the difficulty of designing fiiters with large values of N ,  the 
inherent problem stiu remains that  the fiiter  band edge fre- 
quencies cannot  be specified a priori, i.e., they must be calcu- 

lated from  the final solution. Furthermore,  both techniques 
are only capable of designing maximal  ripple filters, which, as 

discussed earlier, are a subclass of the class of optimal fiiters. 
In  the  next sections design techniques are presented which are 
capable of designing any optimal filter. 

60 1 

0 \ 1 

-140 - 
I 

-160 , I ,  I I I 1  I 1  1 1  I 1  I I ' I ' I  I I 

0 0.050 0.100 0.150 0.200 0.250 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO M 0  0350 0 . w  0.450 0.500 
WRUALIZED FREWENCY 

Fig. 5. The frequency response of a  maximal ripple low-pass filter. 

VI. REME2 EXCHANGE ALGORITHM DESIGN  OF 
OFTIMAL FIR FILTERS 

As shown earlier, the  optimal linear phase FIR filter design 

problem is a Chebyshev approximation problem where the ap- 

proximating function P(e iw)  in (17) is a sum of r independent 

cosine functions. The  alternation  theorem gave a set of neces- 

sary. and  sufficient conditions  on  the weighted error function 

,??(eJW) (see (17)) such that  the  solution was the unique best 
approximation to  the desired frequency response &eJW). The 

Remez exchange algorithm is  an algorithm which solves the 
Chebyshev approximation  problem by searching for  the ex- 
tremal  frequencies of the best approximation.  This is accom- 
plished as follows. At the beginning of each iteration  one has 
a  set of r + 1 extremal  frequencies ( f d k ) .  Equation  (20) gives 

the  set of equations which must be solved for  the generalized 

polynomial  approximating function P(eJW) whose weighted 

error function has magnitude 6 with alternating signs on  the 

set { W k )  

Q(e'wk)[8(e'wk) - p(eiwk)l = (- 1) 6, k = 0, I ,  * * - , r (20) 

where P(eiw ) is of the form 

k 

P(e iW)  = a(n)  cos (on). 
'-1 

n=O 

Equation  (20) can be rewritten in matrix form as  shown in 

(2 1 ). n e  invertibility of this matrix is guaranteed by the Haar 
condition  on  the basis functions. 

a(r -  1) 

Since direct  solution of (21) is both difficult,  and slow, it is 
more efficient t o  calculate S analytically as 

aoB(eiw0) + a B(ejW1 ) + . * * + a,B(eiwr) 
6 =  

ao/fS(e'wo) - a l / f S ( e i w l )  + * * + (- 1)'a,/fS(eiw') (22) 

where 

i# k 
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INITIAL GUESS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF 

r t 1 EXTREMAL FREOUENCIFS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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i 
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Fig. 6. Flow chart of the  Remez  exchange  algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
After calculating 6, the Lagrange interpolation  formula  in  the 

barycentric  form2 is used to  interpolate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(e lW)  on  the r points 

uo, ul, * * , to  the values 

where 

i f  k 

Note  that P(eiw)  will also interpolate to D(ejWr)  - [(- 1)'s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
@(eJwr)] since i.t satisfies (20) .  The  next  step in the process is 
to evaluate ,!?(elW) on a  dense  set of the  frequency axis. If 

IE(eiw)l Q 6 for all frequencies in  the dense set,  then  the 
optimal  approximation  has  been  found. If 1 E(eiw)l > 6 for 

some  frequencies in  the dense  set, then a new set of r + 1 fre- 
quencies  must  be  chosen as candidates  for the extremal fre- 
quencies. The new points are chosen  as the peaks of the result- 

ing error  curve,  thereby  forcing 6 to increase and  ultimately 
converge to its  upper  bound  which  corresponds to  the solution 

to  the problem. In the event that  there  are  more  than r + 1 

extrema  in !(eiw) at  any  iteration,  the r + 1  frequencies at 

which IE(el") 1 is largest are  retained  as the guessed set of 
extremal  frequencies for  the  next  iteration. Fig. 6 summarizes 
the exchange  algorithm  in  a  block diagram form. 

The  filter  impulse response  is obtained  by  evaluating P(&) 
at N equally  spaced  frequencies  and using the  DFT to  get  the 

sequence (a(n)} ,  from which the impulse  response coefficients 

may  be derived. Depending on which  case linear phase filter is 
derived, a  unique  formula can be  written  for  obtaining h ( n )  
from a(n). 

A general purpose computer program  has been  written to 

implement  this  algorithm  and has found widespread  use in 
filter design applications [ 341. 

VI I .  LINEAR PROGRAMMING DESIGN OF OPTIMAL 
FIR FILTERS 

The  optimal linear phase FIR fiiter is the  one  for which the 
maximum  error E(e iw)  is minimized over al l  a. Letting 6 
represent the maximum  error,  a  set of linear  inequalities can  be 

written to  describe  this  minimax  problem, i.e., 

-6 Q @(ejwi)  [&eiwi) - P(eiWi) ]  Q 6 ,  Oi E F ( 2 8 )  

where F is a dense  grid of frequencies  in the  bands over  which 

the  approximation is being made.  Equation ( 2 8 )  can  formally 

be  written  as  a  linear  program, Le., 

m =O 

minimize 6. 
Linear  programming  techniques can be used to solve the 

preceding set of equations [221,  [ 231. However, since  linear 
programming is basically a single exchange method,  it is signifi- 
cantly slower than  the Remez method, and  hence is avoided 

for  this class of problems.  In  a  later  section, however, it will 

be  shown  how  when  time  response  constraints  are  added to the 

design problem,  linear  programming is perhaps the only  simple 

method of solving the problem. 

VII I .  CHARACTERISTICS OF OmIMAL CASE 1 
LOW-PASS FILTERS 

For a low-pass filter the  optimal design problem  consists of 
specifying the filter  length N ,  the passband cutoff  frequency 

F p ,  the  stopband  cutoff  frequency F,, and the ripple  ratio 
K = 61/62 which describes the desired  weighting function 

w(ejw ) as 

where 6 is the passband ripple,  and 62 is the  stopband ripple. 
Fig. 7 shows the frequency response of a Case 1 low-pass filter. 
The  auxiliary  parameter Lv; is  defined as 

A F = F s -  Fp (30) 

and serves as a  measure of the width of the  transition  band of 
the fiiter. 

It was shown earlier that  the  error curve for  the  optimal low- 
pass filter  could have either r + 1 or r + 2 extrema  where 

r = (N + 1)/2 for case 1,  and r = N / 2  for case 2 .  It is important 
to understand  the  nature of the  optimum lowpass filter to see 

'See R. W. Hamming, Numerical Methods  forScienlists and Engineers, 
under  what  conditions  the  number of ripple  extrema  attains 

1st ed. New York: McGmw-Hill, for a discussion of the barycentric the maximum value. It has  been found  experimentally  that  a 
form. reasonably  straightforward  and  informative way of summariz- 
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Fig. 7. Frequency response and error curve of  optimal  low-pass  filter. 
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Fig. 8. The curve of transition  width versus passband cutoff  frequency 
for  optimal low-pass filters. 

ing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe behavior of the  optimum filter is to plot the transition 

width of the fiiter (AF)  versus passband cutoff  frequency F p ,  
for fixed values of N ,  6 1,  and a 2 .  Fig. 8 shows such a  plot for 

c a s e l d a t a f o r N = l l , 6 i  = 6 2  =0.1.  Asseeninthisfigurethe 
curve of AF versus Fp has an  oscillatory behavior, alternating 

between  sharp  minima,  and  flat-topped maxima. The local 

minima of the curves (labelled ER 1 to ERS) have been found 

to be the maximal  ripple  (extraripple)  fiiters for  the particular 
choice of N ,  6 1 ,  and S 2 .  (Recall that extraripple  fiiters have 
(N + 5)/2  equal  amplitude  extrema  in their  error curves.) 
There are  exactly ( N -  1)/2 of these  extraripple  filters.  In be- 
tween the  extraripple solutions, it has been found  that  there 
are two  types of optimum Titers-scaled extraripple filters and 

equiripple  filters  with exactly (N + 3)/2 equal  amplitude ex- 
trema in  their  error curves. 

The scaled extraripple  filters  (shown in Fig. 8 by  the heavy 
lines on  the curve) have the  property  that  their error curves 
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Fig. 9. The curves of  transition width versus passband cutoff  frequency 
for several values o f  low-pass filter parameters. 

have (N + 3)/2  equal  amplitude  extrema, as well as one smaller 

amplitude  extremum which is either  at f =  0 o r f =  0.5. These 
filters can be derived from their neighboring extraripple  filter 

by a simple scaling procedure 125 I ,  [261. 
The  optimum filters  between scaled extraripple  solutions 

have exactly (N + 3)/2  equal amplitude extrema  in  their error 

curves. No simple linear scaling procedure has been found to 

account for  their presence. 

However, an extraripple  fiiter of length N - 2 has (N + 3)/2 

equal  amplitude extrema  in its error curves and thus  it is an 

optimal length N filter (with  the highest order coefficient 

zero). This point is evident in Fig. 9  which  shows the curves of 
transition width versus passband cutoff  frequency for N = 9  and 
11, with 6 1  ' 6 2  =0.1 as well as f o r N =  19 and21  with61 = 
0.001  and = 0.0001. The curves touch  at  the local minima 

of the N = 9 curve at  the  top and  at the local minima of the 
N = 19 curve at  the  bottom. 

Fig. 10 presents  a  summary of the types of optimal  filters 
which may be  obtained  by varying the filter cutoff frequencies. 
The first filter  shown is an extraripple  solution  with N = 25, 

6 1  = 6 2  = 0.05. Below it  are two different scaled solutions 

where the frequency response is 0 at f =  0.5 for  the first  filter 
and then  0.03  at f =  0.5 for  the second case. The last filter in 
the first column  represents the maximum possible scaling, i.e., 
the frequency response is 0.05 at f = 0.5 with (N + 3)/2 equal 
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Fig. 10. Summary of the  types  of  optimal low-pass  fdters. 

amplitude extrema in the error curve. In the second column, 
the first filter is a  point  approximately midway between  extra- 
ripple solutions. The  next  two filters  represent scaled extra- 
ripple  solutions where the error at f =  0 is not of the same 
value as the  other error extrema.  For  the first of these  filters 

the error is about -0.005 at f =  0, whereas for the second it is 
about 0.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 at f = 0. The last filter in  the second column 
corresponds to  the  next extraripple  solution. 

Ix. RELATIONS BETWEEN OPTIMAL LOW-PASS 
FILTER  PARAMETERS 

A  great  deal has been learned about  the relationships be- 
tween the parameters of optimal low-pass filters. In  this sec- 
tion we summarize  some of the key results. 

A. Chebyshev  Solutions [27] 
An analytical solution to  the  optimal filter design problem 

exists for  the case of extraripple designs with either one pass- 
band, or one  stopband ripple. Since these cases are either very 
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Fig. 11. A  comparison  of  the curves of  transition  width versus passband 
cutoff  frequency for low-pass  fdters with  even and odd values of N. 

wide-band, or very narrow-band designs, they are not generally 

of much interest,  except  for  the insights they provide into 
analytical  relations  between the various filter  parameters. 

8. Symmetry  Relations [27] 
A symmetry exists in the design parameters in  the following 

sense. If H(eiw)  is the frequency response of optimal low- 

pass filter  with  parameters N, F p ,  F,, S 1, and S2,  then 
G(ejw)  = 1 - H(ei **)) is the frequency response of another 

optimal low-pass filter with parameters N, FL = 0.5 - F,,  Fi = 
0.5 - F p ,  S’, = S 2 ,  Si = S 1 .  This symmetry  explains the be- 

havior of the curve of AF versus Fp of Fig. 8 since, in this case, 

S 1  = S 2  ; therefore, any filter  with  parameter Fp has a sym- 

metrical  partner with parameter 0.5 - F,. 

C. Case 2 Low-Pass Filters-N Even 1291 
An interesting design relation exists when comparing case 1 

and case 2 low-pass filters. Fig. 11 shows a  plot of AF versus 
Fp f o r S 1 = S 2 = 0 . 1   a n d N = 9 , 1 0 , a n d l l .   N o t i c e t h a t f o r  

certain values of F p ,  the  transition width is smaller for N = 10 
designs than  for N = 9; whereas for  other values of F p ,  the 

transition width is smaller for N = 9 designs than  for N = 10. 
Thus monotonicity of transition width as a function of N is 
not preserved across both even and  odd values but instead 

holds only for comparing either N odd designs, or N even 

designs. 

D. Design Formulas [27], [30] 

Although  exact  analytical  relations do  not exist between the 
5 low-pass filter  parameters,  a  set of approximate relations 

can be given which  is valid to within  some reasonable bounds. 

Kaiser has proposed the particularly simple formula 

for predicting the filter  length N from the ripple  specifications 
and the band edge frequencies. A  somewhat more accurate 
formula  due to Herrmann et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. [ 271 is 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [0.005309 (log10 6 1)' + 0.071 14 (loglo 6 1)  

- 0.47611 loglo 6 2  - [0.00266 (loglo 6 1)' 

+ 0.5941 loglo 61 + 0.42781 (33) 

and 

f(61,62) = 11.012 + 0.51244  (loglo 61 - loglo 62). (34) 

Such design formulas have proved exceedingly useful for 
getting  a good estimate of the required fi ter length. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x. EXAMPLES OF OPTIMAL FILTERS 
Fig. 12 illustrates  some  typical optimal filters  which have 

been designed using the iterative approximation  method of 
Section VI, and the program implementation of McClellan et 
al. These examples are meant to illustrate the power of the 
design method in approximating  a wide range of filter  types. 
Fig. 12(a) shows  an N = 25 low-pass filter; Fig. 12(b) shows an 
N = 32 bandpass filter  with equal sidelobe levels; Fig. 12(c) 
shows an N = 50 bandpass filter with unequal sidelobe levels; 
Fig. 12(d) shows an N = 31 bandstop  filter; Fig. 12(e) shows 
an N = 55  multiband fi ter with  3 stopbands and  2 passbands; 
Fig. 12(f) shows an N = 32 equiripple relative error  differentia- 
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tor; Fig. 12(g) shows an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 20 Hilbert transformer; and Fig. 

12(h) shows an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = 128 bandpass filter  with  arbitrary weight- 

ing near the edges  of the stopbands. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADESIGN OF FILTERS WITH TIME AND 

FREQUENCY  DOMAIN CONSTRAINTS 
We have discussed the design of digital filters which approxi- 

mate characteristics of a specified frequency response only. 

Quite often one would like to impose  simultaneous  restrictions 
on  both  the time and frequency response of the filter. For ex- 

ample, in the design of lowpass filters, one would often like to 

limit the  step response overshoot or ripple; at  the same time 

maintaining  some reasonable control over the frequency re- 

sponse of the filter. Since the  step response is a linear func- 

tion of the impulse response coefficients,  a linear program is 

capable of setting up  constraints of the  type discussed above. 

By way of example, we consider the design  of a case 1 low- 
pass filter  with the following specifications. 

Passband: 

I - s1  < H * ( e i w ) Q  1 + 6 1 .  (35) 

Stopband: 

-62 <H*(e iw)  Q 6 2 .  (36) 

Step  Response: . 

- 6 3  G d n )  < a 3  (37) 

where g(n)  is the  step response of the filter,  and is def i ed  as 

n 

m=O 

Clearly g(n)  is a linear combination of the impulse response 

coefficients; hence (33)-(35) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be solved using linear pro- 

gramming techniques on  the deltas. For example, one could 

fix any  one or two of the parameters 61, 62, or 6 3  and mini- 
mize the other(s). Alternatively one could set 6 1 = a16, 
s2  = a26, and 6 = a36 where al , a2, and a3 are  constants, 
and  simultaneously minimize all three parameters by minimiz- 

Another application is in  the design of  interpolation  filters 

[ 281 where  some of the impulse response coefficients  must be 

constrained to be zero. In this case the Alternation  Theorem 

no longer applies because the basis functions of the approxi- 
mation do  not satisfy the Haar condition.  Thus, the Remez 

exchange algorithm cannot be used to calculate the best ap- 
proximation. But since linear programming does not depend 

on  the Haar condition  for  its convergence, it can and has been 

applied to this problem. 

g(n) = h ( 4 .  (38) 

ing 6 .  

XI. FILTERS WITH OITIMUM MAGNITUDE 
AND MINIMUM PHASE 

There may be applications where the linear phase character- 
istic may not be necessary and one is only  interested in  the 
shortest possible filter  length for a given magnitude response. 
In  such cases a natural question is: how much can the  fiter 
length be reduced for a given Fp, F,, 6 1, and 6 2 by dropping 
the requirement for linear phase? Since half  of the filter  coef- 
ficients are constrained by the  symmetry required for linear 
phase as  shown in Fig. 1, one might at  first guess that by d r o p  
ping the linear phase requirement the required filter length 
might be cut  in half. This is generally not  the case. In fact  the 
length reduction to  be expected  depends very much on  the 
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Fig. 13. The procedure for  obtaining the optimal  magnitude  low-pass 
filter  from  an  optimal linear phase design. 
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Fig. 14. Ratio of N', the  length of the optimum  magnitude  fdter, to N, 
the  length of the optimum linear phase fdter, with identical low-pass 
parameters. 

type of filter under consideration  as will be described in this 

section. 

First,  let us  define  what we mean by an optimum magnitude 
approximation. For a given desired magnitude D ( e l W )  and 
weight function W e ] " ) ,  the  optimum m a g n i ~ d e  approxima- 
tion is the  fiter which minimizes 

max w ( e i w )  ID(eiw) - IH(eiW)II 
WES1 

where S2 is the union of  the. frequency  bands of interest. 
For  the case where D ( e j W )  is piecewise constant over the 

frequency  bands of interest (e.g., a low-pass or bandpass fil- 
ter), a  procedure suggested by Herrmann  and Schussler [ 171 
will yield the  optimum magnitude  filter. Briefly, this proce- 
dure  works as follows for  the lowpass case. A weighted 
Chebyshev approximation problem is solved for a linear com- 

bination of N cosines by using the Remez algorithm described 
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Fig. 1 5 .  The magnitude and  group  delay responses for a narrow-band and a wide-band optimum 
magnitude  filter. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

earlier to design a  length 2N- 1  linear phase filter  (see Fig. 

13(a)).  The  response G(eiW) is then scaled (by adhdition  of the 

constant S to  the  frequency response) to give a G(eJW) which 

is positive  with  double  zeros  in the  stopband as shown  in Fig. 

13(b).  The  resulting  order 2N- 2  mirror image polynomial is 
factored  retaining  one  each of the  double  zeros  on  the  unit 

circle  and all zeros  inside  the  unit circle. Finally,  the  filter is 

scaled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that  in  the passband the  fiiter response approximates 

one as shown  in Fig. 13(c).  The  resulting  length N filter is the 

optimum  magnitude  approximation  and is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso a  minimum 
phase transfer  function [ 171. 

To see how much  the  filter  length  can be reduced  from the 
linear phase design, while retaining  the same magnitude  char- 
acteristics, the design formula  (30) can be used to calculate 

d / N ,  the  ratio  of  lengths  for  optimum  squared  magnitude  and 
linear phase filters. 

Fig .  14 shows  how  this  calculated  improvement  depends on 
the  other  fiter  parameters. Since (30) does not  apply to 

either very narrow  or very wide-band fiiters,  a  separate  analysis 
is required.  In  fact  it  can be shown that  for very narrow-band 

fiiters where all zeros  are  on the unit circle  of the z plane the 

optimum  squared  magnitude  fiiter is a linear  phase  filter  and 

N'/N = 1. For  the  other  extreme of very wide-band filters  one 

should  expect N'IN = 112. 

The  actual  realization of these  optimum  magnitude  fiiters 

will be less efficient  (in  terms of the  number of multiplications 

per  sample in  a  direct  form  realization)  than  a  linear phase 
filter  with  similar  performance. This is due  to  the  fact  that  the 

symmetry of the linear  phase  impulse  response will allow a  2 

to  1  reduction  in  the  number  of  multiplies  and  this will offset 
the 10- or  20-percent  reduction  in  length of the  optimum 

magnitude  filters.  In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcases where one is interested in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAminimiz- 
ing the  required  number of delays, optimum  magnitude  filters 

become  more  attractive. 
The phase characteristics of the  optimum  magnitude  filters 

also depend very much  on  the  filter  bandwidth. As the band- 
width is increased  from the very nanow-band  optimum magni- 
tude  filter  with  linear phase (constant  group  delay),  the  group 

delay  characteristic  deteriorates  until  for very wide band fil- 

ters  the  group delay is reminiscent of that  for  an  elliptic  filter 
with  a  sharp peak near the band edge. To  illustrate  this  point, 

Fig. 15  shows  examples of the  magnitude  and  group  delay 

response  for a narrow-band  and a wide-band low-pass fiiter. 
While this  section has focused on low-pass filters for sim- 

plicity,  the  procedure  for designing optimum magnitude  filters 
can also be applied to  the general  bandpass  filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase with 

several pass and stop bands. The improvement to be  expected 

by dropping  the  linear phase requirement is very small for 

filters  with  narrow  passbands  but  much larger for  filters  with 

narrow  stopbands. 
A further generalization of the design of linear  phase  filters 

would allow the  simultaneous  approximation of both magni- 

tude  and phase. Such  filters  could fiind applications as phase 
equalizers. However, af this  time  extensions of the Chebyshev 

theory to this case have met  with  little success [351. One 

promising algorithm  which has been used for  the design of 

filters  with  both  magnitude and phase specifications is the 

Lawson algarithm  [#I.. 

&HI. THE TWO-DIMENSIONAL FIR 
APPROXIMATION  PROBLEM 

The  approximation  problem  for  two-dimensional  FIR  digital 

filters is a  much  more  difficult  problem  than  the  correspond- 
ing one-dimensional design problem.  Some of the  one- 

dimensional  filter design techniques have been  extended to 

two dimensions [371,  [381,  but  for  other  techniques such a 

generalization  appears  unlikely.  In  particular,  the  iterative 
design methods based on  the .Remez exchange  algorithm have 

not  been  extended to the  two-dimensional case, and so at  this 
time  there is no  efficient  procedure available in two dimen- 

sions  for designing optimal  Chebyshev filters.3 

There  are  two  reasons why the  optimal  algorithm based on 
the  alternation  theorem  cannot be extended to  two dimen- 

carried out by Kamp and Thiran [41] ,  and Hersey and Mersereau [42]. 
'Recently,  work  on exchange algorithm in two dimensions  has been 
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sions. First, it is impossible for  any set of functions defined 

on a twodimensional domain to satisfy the Haar condition. 

Thus, the  alternation theorem applies in a weaker form. 

Secondly,  there is no possibility of ordering the extremal 

frequencies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas in  the one-dimensional case, where increasing 

ordering guarantees that  the  error changes sign from  one  point 

t o  the next. Even if the  method could be extended,  the size of 

the problem is a handicap. For example, the design of an 

optimum 3 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 3 1 FIR linear phase filter involves optimization 
over 16 X 16 = 256 parameters. 

Since linear programming does not depend on  the Haar con- 
dition,  it can be applied to the two-dimensional approximation 

problem. While convergence of the linear program is guaran- 
teed,  the size of the problem (proportional t o N 2 )  and the in- 
efficiency of the linear programming technique  has  limited 
this technique to  the design  of low-order fiters, e.g., 9 X 9 is 
the largest reported  in Hu and  Rabiner [ 381 . 

The suboptimal  techniques of windowing and frequency 

sampling have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso been extended to two dimensions and are 
capable of designing higher order filters. 

In view of the  computational difficulties of linear program- 
ming and the lack of theory  for an exchange algorithm,  two- 
dimensional approximation techniques have concentrated on 

suboptimal  techniques.  Included in the class of suboptimal 
methods are the windowing technique, the frequency sampling 

technique and an  approach based on transformations  of o n e  

dimensional fiiters. This transformation technique in some 

cases may yield an optimal filter.  In  this  section we outline 
the basic idea for  the  transformation method of design. 

A two-dimensional digital filter  with impulse response ma- 

trix ( h ( k , p ) ) , k = O , l , . . . , N l -   l ; p = O , l ; * * , N 2 -  l has 

a  frequency response defined by  the two-dimensional Fourier 

transform 

(39) 

If the impulse response is constrained to  be symmetric, 

h(N1 - m -  l , p ) = h ( m , p ) ,   m = 0 ,   l , * * . , n l  =(N1 - 1)/2 

h(k,N2- m -  1 ) = h ( k , m ) ,   m = 0 , 1 , . * - , n 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=(Nz- 1)/2 

(40) 

then  the frequency response can be rewritten as 

where 

S$ce exp [-j(nl w1 + n2wz) l  has magnitude one, l&eiwl, 
elw,)I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the magnitude of the frequency response. The  fold- 
ing frequency along each axis is n, so the magnitude response 
is completely specified on  thesquare (0, n]  X [0, n]  . 

Recall the type-1 onedimensional f i ter  where G(etw) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan 
be written in the form 

(43 ) 

0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'48. 

0 0.1 0.2 0.3 0.4 f 5 

Ff 

Fig. 16. Contours of  the mapping in frequency  from one to two 
dimensions. 

where M = (N- 1)/2, b(0)  = hQ, and b(n) = 2h(M- n), n = 
1,2,  * * , M. The magnitude of  the frequency response is 
IG(eiw)l. 

If the change of variables 

COS o = A  COS ~1 + B COS 02 + C COS 01 COS ~2 + D (44) 

is made in G(eiW) then a function of the  form &eiw,, eiwa) 
results. Thus  the  onedimension9 response G(eiw) is mapped 
to a two-dimensional response H(eiW1,  eiw'). Given a f i e d  

value of w E [0, nl there corresponds  a curve in the (01, wz) 
plane, and along this curve the transformed two-dimensional 

frequency response is a constant  equal to the value of the one- 
dimensional frequency response at w. As w varies, a family of 

contours is generated which completely describes the trans- 

formed two-dimensional frequency response. For  the choice 
of parameters A = B = C = -D = 3, the  contours are  shown in 

Fig. 16.  Thus a low-pass filter will  be mapped by  this particu- 
lar change of variables to a low-pass circularly symmetric two- 
dimensional  filter. 

An important  feature of this new method is that it is not 

limited to  the design of small filters. With a larger filter it is 
possible to  obtain smaller deviations and/or a  sharper cutoff. 

Fig. 17 shows the magnitude of  the frequency response for a 
31 X 3  1 circularly symmetric lowpass filter with a transition 
region of width 0.1 On. The design time  for  this  fiiter was a p  

proximately 5 s on an IBM 370/155  computer. 
In addition,  it can be shown that  the filter of  Fig. 17 is an 

optimal filter, if one is willing to accept the approximately 
circular contours  shown  in Fig. 16. 

The possibilities for new desigu algorithms for two- 

dimensional  filters are still wide open  but  for  the present, sub- 
optimal techniques  are the  only ways to get large filters. 

XIV. SUMMARY 
The mathematical theory of Chebyshev approximation has 

been used as the unifying theme  in  the presentation of recent 
design algorithms for  FIR digital filters. Special emphasis was 

placed on  the linear phase design problem  where the  methods 
are highly developed due to  the direct  applicability of the 
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Fig. 17.  Frequency  response  of  a  31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 31  low-pass  filter. 

Chebyshev theory. In the more general cases of magnitude 

approximation and twodimensional  approximation,  it was zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
shown that special techniques can be used to obtain optimal 

low-pass or bandpass  filters. 

Within the realm of Chebyshev approximation of FIR digital 
filters several research problems  remain. These include the 

simultaneous approximation of magnitude and phase, general 

two-dimensional approximation, and the  optimization of the 
filter response under  the constraint of finite wordlength 

coefficients. 
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Two-Dimensional Digital Filtering 

AQtmct-The problems of d e i p i q  md implementing L S I  systems 
for the proceming of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 9  digital data, such as images or geophone mays, 
are reviewed md discussed. This discussion encomprsses both FIR and 
IIR digital fdters md with respect to the latter, the issues of stability 
&sting and fdter  stabilization are also considered. Techniques are also 
presented whereby wch fdtering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be accomplished using either 1 or 
2-D L S I  systems. 

I. INTRODUCTION 

UR  OBJECTIVE in this  paper is to review the  mathe- 
matical  framework  underlying the two-dimensional (2-0) 

digital  filtering  problem and to explore available tech- 

niques for  the design and  implementation of 2-0 linear shift- 

invariant (LSI) digital filters. In the course of this  discussion, 

the  many similarities to and  differences  from the one- 

dimensional (1-D) digital filtering  problem will hopefully 

become  apparent.  Restricting  our  attention to studying LSI 
systems allows us to use the  powerful  techniques  of  Fourier 
analysis which have  proved their value in  numerous  problems 

of practical  interest  in both 1 and  2 dimensions. 

Other papers in  this  special issue [ 11 4 3 1  have touched 

upon the need for 2-D digital  filters  within the larger context 

of 2-0 digital signal processing. Such  filters  are  central to  

many image and  array processing applications-such as X-ray 
enhancement, image deblurring, scene analysis, weather  pre- 

dictions, seismic analysis, and the processing of radar  and 

sonar  arrays, to name  just  a  few.  The discussions in this 
paper, while applicable to any of these  problems, will not 
be  specifically directed  toward  any  one of them. 

1-D LSI systems  represent  a  special case  of two and higher 

dimensional  systems.  Therefore,  many 2-0 concepts will look 

vaguely familiar.  For  this  reason,  those 2-0 results  which 

are  straightfonvard  extensions of 1 -D results will be  presented 

without  extensive discussions. On the  other  hand,  there  are 

many  properties of 1-D LSI systems  which  cannot  be easily 
generalized, which is why 2-D digital signal processing remains 
a challenging  and interesting field of study. These  difficulties 

are  almost always related to the  fact  that  there is no funda- 

mental  theorem of  algebra for  polynomials  in two  independent 
variables [4 ] .  The  reader will recall that it is this  theorem 

.which allows us to factor  a 1-D polynomial of degree n into 
a  product of n polynomial  factors of first  degree, thereby 

allowing us to find the  roots of polynomials, to check the 

stability of a  filter by finding the locations of the poles of 

its  system function, and to realize digital filters as cascade 

or parallel structures [ 5 ] . 
Because there are many  operations  which  are  more easily 

performed using 1-D mathematics,  it is perhaps  worthwhile 

to use 1-D filters to perform 2-D tasks. Interestingly  this 
can  be done, and some  techniques will be presented  later in 
this  paper. While the  ultimate value of such  an  approach 

remains to be established, it is the  authors’ belief that this 

approach will prove to be quite useful both conceptually as 
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