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Abstract—The advances in convex optimization techniques have
offered new formulations of design with improved control over the
performance of FIR filters. By using lifting techniques, the design
of a length-L FIR filter can be formulated as a convex semidefinite
program (SDP) in terms of an L X L matrix that must be rank-1.
Although this formulation provides means for introducing highly
flexible design constraints on the magnitude and phase responses
of the filter, convex solvers implementing interior point methods
almost never provide a rank-1 solution matrix. To obtain a rank-1
solution, we propose a novel Directed Iterative Rank Refinement
(DIRR) algorithm, where at each iteration a matrix is obtained by
solving a convex optimization problem. The semidefinite cost func-
tion of that convex optimization problem favors a solution matrix
whose dominant singular vector is on a direction determined in the
previous iterations. Analytically it is shown that the DIRR itera-
tions provide monotonic improvement, and the global optimum is
a fixed point of the iterations. Over a set of design examples it is il-
lustrated that the DIRR requires only a few iterations to converge
to an approximately rank-1 solution matrix. The effectiveness of
the proposed method and its flexibility are also demonstrated for
the cases where in addition to the magnitude constraints, the con-
straints on the phase and group delay of filter are placed on the
designed filter.

Index Terms—Finite impulse response (FIR) filter design,
spectral mask, convex optimization, semidefinite programming,
semidefinite relaxation, iterative rank refinement.

I. INTRODUCTION

IGITAL FINITE IMPULSE RESPONSE (FIR) filters

have always been one of the prominent building blocks in
digital signal processing because of their assured stability and
efficient implementations based on the Fast Fourier Transform
(FFT) [1]-[3]. A diverse class of FIR filter design techniques
have been proposed in the literature including the Parks-
McClellan algorithm [2], [4], optimization based techniques
like METEOR [5] and peak-constrained least squares (PCLS)
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[6], [7], and Chebyshev approximation based methods [8]—[11].
Typically, techniques that are based on optimization are slower,
but capable of obtaining optimal solutions that satisfy a set of
design constraints.

With the development of the convex solvers implementing
fast interior point methods, new, optimization based FIR filter
design approaches based on convex modelling have emerged
[12]-[24]. In [12] and [14], the non-linear phase FIR filter de-
sign problem is modeled as a linear program (LP), where the
variables of optimization are the deterministic autocorrelation
sequence of the filter coefficients which are obtained by ap-
plying spectral factorization to the solution of the constructed
LP. This framework is extended to linear phase FIR filter design
by using discrete cosine transform (DCT) instead of discrete
Fourier transform (DFT) in [12]. However, since the LP formu-
lation operates on the autocorrelation sequence of the filter coef-
ficients, the incorporation of additional constraints on the phase
response of the filter is not possible. A second order cone pro-
gramming (SOCP) formulation of FIR filter design that is based
on the weighted least-squares approach is proposed in [15]. Al-
though this technique can constrain the deviation from a proto-
type group delay response, its convergence is highly dependent
on the initial choice of the prototype filter because of the non-
convexity of the constructed SOCP. In [17], another constrained
least-squares based design that can implement the phase and
group delay error constraints, is presented. Since the constructed
optimization problem is a semi-infinite positive-definite formu-
lation, the optimization problem is solved using the Goldfarb-
Idnani algorithm. Though the underlying Goldfarb-Idnani algo-
rithm converges in a few iterations, the obtained solutions do
not possess optimality. In addition, the convexity of the pro-
posed formulation depends on the positive-definiteness of a con-
structed Hessian matrix. In [18], a more general, non-convex
filter design problem is cast as a convex problem and solved
using a Goldfarb-Idnani based algorithm. The constructed iter-
ative optimization problem does not require any phase response
specifications. However, the optimality of the original L,-con-
strained error minimization problem is not guaranteed.

A semidefinite programming based FIR filter design tech-
nique, which makes use of spectral mask constraints, is proposed
in [23]. Since the semidefinite program (SDP) is constructed
using linear matrix inequalities (LMI), convex spectral mask
constraints such as magnitude mask constraints, can be imple-
mented efficiently without using frequency sampling. However,
the phase and group delay constraints cannot be implemented
in LMIs since quadratic representations of these constraints
typically possess indefinite constraint matrices. A more general
formulation, in which the objective and the quadratic constraints
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forman SDP, is proposedin [24]. Inthis formulation, the variables
of optimization are restricted to form a rank-1, positive semidef-
inite (PSD) matrix. However, the convex solvers implementing
interior point methods almost never provide rank-1 solution
matrices for SDPs [24]. A commonly used approach to obtain the
filter coefficients is to decompose the rank-1 approximation of the
solution matrix to obtain the filter coefficients. Unfortunately, this
generates a filter, which typically violates the design constraints.

Inthis work, we propose ahighly flexible FIR filter design tech-
nique that is based on semidefinite programming. First, we con-
struct a non-convex quadratically constrained quadratic program
(QCQP), where both constraints on the magnitude and phase re-
sponses of the filter can be incorporated. Then, by relaxing the
constructed QCQP, a convex SDP is obtained and its global op-
timum is found by utilizing a convex solver, such as YALMIP
[25], SeDuMi [26] or SDPT3 [27]. To establish convergence to
a rank-1 solution matrix, we propose the novel Directed Itera-
tive Rank Refinement (DIRR) algorithm, in which the energy of
the singular value corresponding to a particular singular vector
canbeincreased at each iteration. For improved convergence, the
energy of the singular value associated with the closest singular
vector to the singular vector chosen in the previous iteration is in-
creased with respect to the total energy in the remaining singular
values. As it will be detailed in Section-3, the DIRR iterations
provide monotonic improvement. Since the cost is bounded from
below, convergence of its iterations are guaranteed. However, the
iterations may converge to a local minimum. If however, the iter-
ations are started with the global optimum solution, the iterations
will not move away from this solution, i.e., the global optimum
is fixed point of iterations. Finally, if there is no local minimum
other than the global minimum, the iterations will converge to the
global minimum. The effectiveness of the proposed method and
its flexibility are also demonstrated on cases where in addition
to the magnitude constraints, the constraints on the phase and
group delay of the filter are placed on the designed filter.

The outline of the presentation is as follows; in Section 2, the
preliminaries on convex-optimization-based FIR filter design
are given. In Section 3, the proposed DIRR technique is intro-
duced and its convergence properties are investigated. Design
examples for various filter specifications and the comparisons
with the results obtained by using alternative approaches are
provided in Section 4. Finally, the concluding remarks are given
in Section 5. Throughout the paper, bold lower case and bold
capital letters represent vectors and matrices; (- ) and (- )7 are
hermitian and transpose operations; Re( - ) and Im( - ) denote the
real and the imaginary parts of their arguments, respectively.

II. BRIEF REVIEW OF OPTIMIZATION BASED FIR FILTER
DESIGN

An FIR filter of length L is typically characterized by either
its impulse response %,,0 < n < L — 1, or its frequency
response

L-1
H(w) =Y hne 7" Vw € [-7,7]. (1)
n=0

In optimization based FIR filter design, the filter coefficients are
typically obtained by imposing a set of desired constraints on the
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Fig. 1. A typical set of mask constraints on the magnitude response of an FIR
filter. M, (w) and M;{w) = 1/1.1 are the upper and lower masks with transi-
tion band w, = 0.16 < w < 0.20 = wj, respectively. M, (w) = 1.1 in the
pass band and M, (w) = 0.0001 in the stop band.

frequency response of the filter as in the following feasibility
problem:
findh, eR,0<n<L-1
st [H(w)|* < My(w),Yw € (0,7,
[H{(w)|* 2 My(w), Y € [0,wp), 2)

where, as shown in Fig. 1, w, is the largest frequency in the
passband, M, (w) and M;(w) are the upper and lower mask con-
straints on the magnitude response, respectively. The feasibility
problem given in (2) can be expressed in vector form as:

find h € RY
s.t. hT A(w)h < M, (w),Vw € [0, 7],
hT A(w)h > M (w),Yw € [0,w,). 3)
Here, h = [hg,h1,...,hr 1]T and A(w) = v(w)vH (W),
where v(w) = [1,e/*, ..., e/ DT Since w is defined in

an interval, this feasibility problem has uncountably many con-
straints. In practice, by using a dense enough frequency domain
sampling, a quadratic feasibility problem with finite number of
constraints can be obtained as:

find h e RY
st.hTAyh <ap, 0<k<K,,
h"Ayh >0, 0<k<K, 4)

where Ay, = v(wp)v(wp)?, ar, = My (wi) and by, = My(wy).
For a uniform frequency spacing of w/K, where K is the
number of the frequency samples, the resulting numbers of the
upper and lower frequency mask constraints are K,, = K and
K; = [Kw,/x].Here, [-] indicates the smallest integer that is
greater than its argument. A rule of thumb for selecting K is K
2 15L [2]. However, as investigated in [28]-[30], judiciously
chosen set of non-uniformly spaced frequency samples provides
acceptable designs requiring fewer number of constraints.

In addition to the spectral mask constraints, minimization
of the stop band energy can be achieved as in the following
formulation:

min h”A,h
heRE
st.hTAth<a, 0<k<K,,
h'Ah > b, 0<k<K,. (5)

Here A; = f;s W(w)A(w)dw, where W(w) > 0 is a
weighting function providing further flexibility and control on
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the design. The optimization problem in (5) has a quadratic
cost and a set of quadratic constraints, hence it is a QCQP [31].

In general, the filter coefficients obtained as a solution to (5)
has non-linear phase response [12], [23], [32]. Filters with linear
phase responses can also be obtained by constraining filter co-
efficients to be symmetric in (5). For instance, to obtain a real,
type-1 FIR filter, the following constraints should be incorpo-
rated to (5) [2]:

ho=h1n 0<n<(L—1)/2 ©)
These constraints can be equivalently expressed as:

h = II9, 7
where, 8 = [hg, by, ..., h(L,l)/g}T is the vector of reduced

filter coefficients, and IT = [I7, I7]7 with I is the identity ma-
trix of size (L +1)/2 x (L+1)/2 and I is the flipping matrix of
size (L—1)/2x (L+1)/2 composed of zeros except for the en-
tries of (2’ ﬂ — 1) 1 < i < L-1 that are equal to 1. Hence,
the optlmlzatlon problem stated i 1n (5) for designing type-1 FIR
filters of odd length L takes the following form:

min  §7TITA,TI0
PcR(L+1)/2
st 0TITALIIO < ap, 0< k< K,,
O"TITALIIO > by, 0<k<K,. (8)

Quadratic inequality constraints of the form x’ Wx > y
with a PSD matrix W do not define convex sets [33]. Note
that TIT A, II is a PSD matrix for 0 < &k < K,. Hence, the
constructed QCQPs with quadratic lower mask constraints are
not convex as well. Therefore, efficient convex solvers cannot
be used directly to obtain their solutions. In the next section, by
using semidefinite formulation techniques, the QCQP stated in
this section will be convexified. In addition, constraints on the
phase and group delay will be incorporated to the design problem.

III. PROPOSED FIR FILTER DESIGN BY SEMIDEFINITE
PROGRAMMING

In the QCQP formulation of FIR filter design given in (5), the
filter coefficients are chosen to minimize the stop band energy
subject to the magnitude constraints. Since the quadratic con-
straints h” Ayh > by, define non-convex sets, the resulting opti-
mization problem is also non-convex. However, it can be relaxed
to a convex optimization problem by using the lifting technique
given in [24]. For this purpose, first (5) is equivalently expressed
as:

min Tr(A,hh7T)
heRr”™
s.t. Tr(Azhh?) < a;,0 < k < Ky,
Tr(Azhh?) > 6,0 <k < K, )
where Tr(-) is the trace operator. By lifting the problem into
matrix space [24], [34], H = hh” can be defined as the vari-
able of the optimization with the introduction of two additional
constraints on its positive definiteness and rank:
min  Tr(A;H)
HCRLXL
s.t. T]."(AkH) S ak,O S k S I&’u,

Tr(AH) > b, 0 <k < K,
H >0,

rank(H) = 1, (10)
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which is an SDP in R“*Z . Although the lifted formulation in
(10) has L(L + 1)/2 unknowns compared to the L unknowns
in (5), its constraints have become linear in terms of the en-
tries of H. Note that, the third and fourth constraints in (10)
guarantee that the matrix H has a real valued decomposition
H = hh7 [24].

Since the optimization problems given in (5) and (10) are
equivalent, if there exist an optimal solution h* for (5), then
H* = h*h*” is an optimal solution to (10). Conversely, if H* is
the optimal solution of (10), it can be factored as H* = h*h*”
where h* is an optimal solution to (5). However, due to the
rank-1 constraints on H, (10) is still a non-convex optimization
problem. By removing the rank-1 constraint, (10) can be relaxed
to obtain a convex SDP as in [24], [33], [35]:

min  Tr(A;H)
s.t. TI‘(Ak )S SkSKu,
Tr(AyH) > by, 0 < k < K,
H > 0. (11

The relaxed SDP in (11) can be solved by utilizing the SDP
solvers such as SeDuMi [26] or SDPT3 [27]. However, the
global optimizer H* of (11) can significantly deviate from a
rank-1 matrix. Therefore, the optimal filter coefficients that can
be approximated as:

= +/ofu], (12)
where o7 is the largest singular value of the H* and u7 is the
corresponding singular vector, typically provides a poor approx-
imation to the actual h*, and violates the constraints in (5). Even
though there exist low rank matrix factorization techniques for
SDPs [3], [36]-[38], these techniques cannot be used to ob-
tain a rank-1 solution matrix for SDPs under a high number of
affine constraints as in (10). Although not detailed here, the high
number of affine constraints as in (10) create significant chal-
lenges for the randomization based approaches as well [39]. To
overcome this difficulty, we propose a novel iterative algorithm,
where the cost function of the constructed SDP is updated at
each iteration to enforce the iterations towards a rank-1 solution
matrix. The proposed algorithm makes use of the singular value
decomposition (SVD) of the obtained matrix H* at iteration ¢ to
formulate an updated SDP to be solved in the next iteration. Let
H* be a feasible point of the following feasibility problem:

find H' € RYF

s.t. Tr(A HY) < ax, 0 < k < Ky,
Tr(AHY) > b, 0 < k < K,
H > 0. (13)

Since H? is a PSD and symmetric matrix, its singular value de-
composition is in the following form:

L
H =U'SU" =Y ofujul’. (14)
=1
Here, Ut = [uﬁ, u, ..., u’L] where u}', 1 <[ < L are the sin-

gular vectors and ¥ = diag ([a{, R ai] ) , where ai > >
o > 0 are the ordered singular values of H?. Since the energy
of H is upper bounded by the upper mask constraints M, (w),
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maximizing the energy of H**1 along the /th singular vector uz
of H? in the next iteration will be a bounded objective. The maxi-
mization of the energy of H*+! along the direction of uz can be
added to (13) as a cost function in the updated SDP form as:

min —Tr (u’ uzTH”l)
HitlcREXL
st Tr(ALH™) <a, 0<k<K,,
Tr(AH™) > b, 0<k <K,

H' > 0. (15)

If in the iterations, the preferred direction is chosen as the dom-

inant singular vector of the previous iteration, i.e., £ = 1, the
following facts can be proven for the iterations in (15)

Proposition 1: The cost J*(H?) = —Tr (ul Y(ui™) H’)
of the updated constructed SDP that is given in (15) monotoni-
cally decreases at each iteration:

Ji-‘rl(Hi-‘rl) < JZ(HZ), (16)
where H? and H**! are the optimal solutions obtained in itera-
tions ¢ and ¢ + 1, respectively.

Proof: Since the feasible set of the optimization problem
remains the same for all iterations,

always holds. As given in (14), H! has the following singular
value decomposition:

L
=3 ofuiu)”
<> ot > 0and ||ulH2 = 1,VI. Hence,
= ~Tr (uf (u}) " H)
= — (u’il)THiui

_ )
= —0;.

(18)

with ot > of > -

Ji+l(

(19)
Similarly, the cost function evaluated at H? at iteration i can be
written as:
T (uf  (ui )" )
=— (ulfl) Hiu! !

> min —v H'v
HVHQ 1

J'(H)

= —of = JU(H),

(20)
with equality if and only if H? = H’~!. Hence,
JHHHY) < JHH). @1
Then, together with (17), the claim in (16) follows. O
Next, we define a non-convex optimization problem whose
minimum provides a lower bound to the cost function of (15).
Proposition 2: The cost function of (15) is lower bounded

by the global optimum value of the following non-convex opti-
mization problem:

min  — Tr(H)
HeRLXL
s.t. TT(AkH) S (257 0 S k S K‘u,
Tr(AkH) Z bk, 0 S k S Kl,

H > 0,

rank(H) = 1. (22)
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Proof: Consider the relaxed convex version of (22) given
by:

min  — Tr(H)
He[RLXL
st. Tr(AH) < ap, 0<k<K,,
Tr(AH) > b 0<k<K,,
H > 0, (23)

where the non-convex rank(H) = 1 constraint in (22) is re-
moved. Let H* be the optimal solution of (23), which is not
necessarily rank-1, with its corresponding cost —Tr(H*) =
— Zle ar,wherea},© =1,2,..., L are the singular values of
H*. Note that —Tr(H*) < —Tr(H') < —0i = JITI(H!) <
J¢(H!) always holds because of (20) and the equivalence of the
feasible sets of (15) and (23). Then, because of the coexistence
of rank-1 and higher rank solutions, which is shown in Section
4.1.1.3 of [35], there exists a rank-1 solution matrix with exactly
the same cost —Tr(H*) = —Tr(H*), where H* is the optimal
solution matrix of (22). Hence, the cost function of (15) is lower
bounded by the global optimum value of (22):
—Tr(H*) < J'(H), Vi. (24)
The coexistence of rank-1 and higher rank solutions can be vi-
sualized in the following way. Since H* is PSD and symmetric,
H* can uniquely be transformed to an autocorrelation sequence
r* as:
min(L, L+k)
Py = >
m=max(1,1+k)
for —L+1<k<L-1,

H*(m — k,m),

(25)

where T} denotes the kth entry of the vector r* [35]. Then,
the filter coefficients X* can be obtained by decomposing r*
via spectral factorization [35]. Hence, a rank-1 matrix * (%*)7
yields the same objective value —Tr(H*). O

Next, we prove that the optimal solution of (22) is a fixed
point of the iterations in (15).

Proposition 3: H*, the optimal solution to (22), can be de-
composed as:

H* =47 (a})7 af, (26)

where &7
(15).
Proof: The coexistence property dictates that, if a high rank
solution exists in the feasible set of (23), then a rank-1 solution
also exists in the same feasible set [35]. Since the feasible sets
of (23) and (15) are identical, H*, which possesses the largest
singular value &7 in the feasible set, is also a candidate solu-
tion for (15). Hence, if H*, the optimal solution of (22), can be
reached by the proposed DIRR formulation at iteration ¢, then
the optimization problem at the (i 4 1)th iteration becomes:

G
s.t. Tr(A HT) < ay,0 < k < Ky,
Tr(AxH™) > 0,0 < k < K),

Hi+1 t 0’

> 0 and ||ii}||2 = 1, is a fixed point of iterations in

27
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where H* = g7ar(a})” as H* is rank-1. Because of (17),
(19) and (24), the cost function of (27) can be lower and upper
bounded as:

—o7 < T (aj(a) "H) < JUNEY = —of, (28)
which is attained only for the choice of H™!' = H* = H'.
Hence, if H* is the optimal solution to (22), then it is a fixed
point of the proposed iterations in (15). ]

As Proposition 1 suggests, the cost function of (1T5) mono-
tonically decreases and the gap p between — (uifl) Hiulf1

) PN N R iy .
and min {— (ui™')" Hiuj 1} is strictly positive, that is p =

2
Sic (ot —of) (i) wg)” > 0if (uf ug) # 0 for
ot > ot and k € [2, L]. On the other hand, if the gap is zero,
then the singular vectors of solutions at the current and previous
iterations are the same and the inner product <uifl, ui) =0,
for ¢f > o& and k € [2, L]. This implies the convergence of
the iterations to a local minimum that can be identified by com-
puting the following ratio:

L
R =oi/ (Z af) ,
1=1

and comparing it with a threshold p, that is typically chosen as
p=1-10"*.1f p is exceeded by R’, then an almost rank-1 so-
lution is obtained by the DIRR and the iterations are terminated.
On the other hand, if R' < p, then £ is incremented by one and
the DIRR iterations that are given in Algorithm 1 and Algorithm
2 are continued. Note that, even if £ takes an arbitrary value in
[1, L], the iterations might still converge to a local minima. In
cases, at which a rank-1 solution could not be found, various
ad-hoc procedures such as constraining a set of singular values
oy corresponding to the singular vectors u; forl; <[ <], bya
user defined upper limit ¥ or minimizing the negative energy in
multiple directions simultaneously rather than minimizing the

cost only on the £th direction, can also be applied at the expense
of computational complexity.

29

Algorithm 1: The DIRR algorithm:

1: ui=0ui=0" « 0.

2: Solve (30), (31), (40), (54)'.

3: if Optimization problem is feasible then
4:  Apply SVD to H=1,

5: if Rj_, > pin (29) then

6:  Optimization is successful: H! « H*=!,
7:  else

8: j < L

9:  whilej < L and R;ﬁfl < p do
10: Apply Algorithm 2 with £ = j.
11: j—Jj+1
12: end while
13:  end if

14:  Apply SVD to H?, and find its singular values.
15: h =ul /o]
16: end if

1(30), (31), (40) and (54) are solved for Design 1, 2; Design 3, Design 4
and Design 5, respectively.
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Algorithm 2

i+ LR=' « R} |.
while R* < p and i < Ny, do
i+ 1+ L
Solve (30), (31), (40), (54)!.
Apply SVD to H.
Find R’ using (29) and update A(R?).
end while
: R: + R H' + H".

S A A S

A. Design With Magnitude Response Constraints

To achieve a minimum stop band energy with a rank-1 solu-
tion matrix, at each iteration the following SDP is solved:

et (008 i) )
s.t. Tr(ALH™) < gy,
Tr(ALH™Y) > by,

Hit! >0,

0<k<K,,
OSkSKh
(30)

where 0 < A < 1 is the parameter controlling the trade-off
between the rank of the obtained solution matrix and the stop
band energy of the filter. In design examples, A is chosen as a
function of R' given in (29) for improved convergence. Since
obtaining a rank-1 solution is the priority in the solution of (30),
A(R?) is chosen to be a monotonic decreasing function of R!
such as A(R?) = 1 — (R%)®, where « is a non-negative real
number that is determined by the user. For &« > 1, the DIRR
for (30) tends to converge to a rank-1 solution faster. On the
other hand, for & ~ 1 the corresponding DIRR for (30) tends
to converge to a rank-1 solution slower, but with significantly
suppressed stop band energy. Choosing the appropriate values
for « will be investigated in the next section over a set of design
examples.

The total stop band energy minimization objective of the SDP
given in (30) can be changed to peak stop band ripple minimiza-
tion to obtain the classical low-pass FIR filter design problem
[14] by replacing the semidefinite term Tr(A ,H"1) with a
variable 62 and by constraining the energy corresponding to
each frequency in the stop band by §2. Here, 6 denotes the
squared maximum stop band power allowed. The obtained SDP
is given as:

(25— T (g B)

min
Hi+1cRILXL §2¢R

; . (€2))

where K, = [Kw;/n]. Since the objective and the newly in-
troduced constraints are convex, (31) is still an iterative convex
SDP problem. Hence, (31) can be solved by using the DIRR by
choosing (31) at steps 2 and 4 in Algorithm 1 and Algorithm 2,
respectively.
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B. Design With Magnitude and Phase Response Constraints

Due to their constant group delay properties, the linear phase
filters are commonly used in practice. However, linear phase re-
sponse requires the filter coefficients to have a certain symmetry,
resulting in reduced degrees of freedom in the corresponding de-
sign. Therefore, longer filters are used to satisfy the magnitude
constraints. Hence, there is a tradeoff between the magnitude
response and the phase response linearity of the filter. To op-
erate at a desired point in this tradeoff, additional constraints on
the phase response can be introduced on the constructed opti-
mization problem. An exchange based method is proposed in [7]
for handling these type of constraints. However, since the con-
structed problem is non-convex, substantial effort is required for
the convergence of the algorithm. An approach based on least
squares and SDP is proposed in [40], where a desired filter re-
sponse is used as a template. Unlike these approaches, here, the
spectral mask constraints on the phase response of the filter are
imposed in the proposed convex formulation.

Consider the following constraints on the phase response
®(w) = £H(w) of the filter:

[®(wr)] < @p(wr), 1 <k < K, (32)

where wy, € [0,7/2] for 1 < k < K. These constraints can be
related to the real and imaginary components of H (wy) as

—P,(w )<tan (%) < @y, (wy).

Since tan(w) is a monotonically increasing function and con-
tinuous in the interval w € [0, 7/2], (33) can be equivalently
written as:

(33)

Im(H (wg))
Re(H (wg))
Then, the squared magnitudes yields the following inequality:
(wr))” Blwr) <0,

)}. The following vectors help sim-

— tan(®,(wg)) < < tan(®,(w)). (34)

T (H (wy))|? — |Re(H (35)

where B(wy,) = tan?(®,, (wy
plifying the notation:

,—sin((L - Dwe)]". (36)
cos((L — Dwg)]” (37)

c(wg)e(wy)?, and

s(wg) = [1, — sin(wg), . . .

c(wg) =

Also let S(wy) = s(wg)s(wi)?, Clwy) =
express the phase constraints as:

[1, cos(wg), .-,

Tr(P,H) < 0,

where Pi, = S(wy) — 3(wi)C(ws), and H = hh™'. The cor-
responding convex SDP, which includes the constraints on both
the magnitude and the phase responses of the filter can be ex-
pressed as:

1<k<K,, (38)

min  Tr(A;H)
HeRLXL
st. Tr(AH) < ap, 0<k<K,,
Te(AH) > by, 0<k< K,
Te(PH) <0, 1<k<K,,

(39)
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In order to use the DIRR technique, (39) can be rewritten in the
form of (30) as:

min  Tr (((1 — M)A, - Aubul ) H"+1)
HitlcRLXL

s.t. Tr (A H) <q4,0 <k < K,,
Tr (A H™M) > 0,0 < k < K,
Tr (P,H™) <0,1 <k < K,
H =0 (40)

C. Design With Magnitude Response and Group Delay
Constraints

Similar to the incorporation of phase constraints, group delay
constraints can also be imposed on the filter design. The fol-
lowing group delay mask constraints can be imposed in the op-
timization:

Gi{wy) < Glwg) < Gulwy),0 <k <K,

(41)

where Gj(wy) and G, (wy,) are the lower and the upper group
delay constraints on the group delay G(wy,) defined as:

d®(w)
G = - 42
(w) o (42)
By using the following derivative identity for tan ()
dtan~! f(w) _ 1 df (w) 7 (43)
dw 1+ f2(w) dw
the group delay can be written as:
SIG-)
G(wk) 1 N m2(H{wy)) dw (44)
RPQ(H(%)) w=wp,
Now, by using (36) and (37) we obtain:
s(w)Th
1 d (c(w)Th>
G =— 45
We) =~ o T 45)
T eoTh ®
le(wr)Th| W=wy,

By using the closed form expressions of the related involved
derivatives, we obtain:

T.
Glwn) = (s (wk)Th) &(wr)Th — (c(wr)Th)” §(wy)Th
K h” A (w;)h
_ hT (Skég - Ckgg) h 46
- hTAkh ? ( )
where ¢(w) and §(w) are defined as:
&(wy) = [0, —sinwy, ..., —(L — 1)sin(L — Vwy]?,
(47)
§(wg) = [0, —coswy, - .., — (L — 1) cos(L — D)wy]”,
(48)
which leads to the following form:
Tr(DH
) = DD (49)

TI‘(AkH) ’
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where Dy, = 8,7 — ¢;57 and H = hh”. Using this compact
expression, the group delay constraints in (41) can be expressed
as:

TT(AkH)Gl(wk) S Tr(DkH) S Tr(AkH)Gu(wk),

(50)
for 0 < k < K. Finally (50) can be separated into two sets of
constraints as:

Tr(L;H) <0,
Tr(UxH) > 0,

(D
(52)

0 <k <Ky,
0<k<K,,

where L}; = Gl(wk)Ak - Dk and Uk = Gu(wk)Ak - Dk.
The corresponding convex SDP can be expressed as:

min  Tr(A,H)
HeRLXEL
s.t. Tr(AH) < a;,0 < k < K,,
Te(ARH) > b, 0 < k < K,
Tr(LyH) < 0,0 < k < K,,,
Te(ULH) > 0,0 < &k < K,
H >0 (53)

Though (53) is a relaxed convex SDP, it does not guarantee a
rank-1 solution matrix H. By combining the formulations (30)
and (53), an iterative formulation that can produce low-rank so-
lution matrices for the group delay constrained FIR filter design
is obtained as:

. _  \qgiggil i+1
peemin, Tr (((1 MA, — Auyuy )H )
st Tr(ARH™) < ap,0 <k < K,,
Tr(AH™) > b,,0< k < K,
Tr(LyH™) < 0,0 <k < K,
Tr(UH™) > 0,0 < k < K,
HL > 0. (54)
On this final form, the proposed iterative technique can be used.
Note that, the development that led to (54) enabled the exact im-
plementation of the group delay constraints under the desired
optimization framework. An alternative technique, where the
least squares error from a desired group delay response is ex-
pressed in terms of the LMI constraints under an SDP frame-
work, is presented in [41]. However, since the corresponding
LMI matrix is not guaranteed to be PSD, the use of an approx-
imation of the LMI matrix might become necessary. Then, the
constructed optimization problem will be using the approximate
implementation of the original group delay constraints. Hence,
unlike the existing least squares based techniques, which ob-
tain approximations to the desired group delay responses, the
proposed technique is capable of designing FIR filters with the
incorporation of the actual group delay mask constraints.

IV. DESIGN EXAMPLES

In this section, a set of illustrative FIR filter designs are pre-
sented by using the proposed DIRR technique. The obtained re-
sults are compared with the results of alternative design tech-
niques where available. Note that, in the presented examples,
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Fig. 2. Magnitude response of the FIR filter of length L = 38 obtained in
Design 1 by using the DIRR technique. The magnitude response satisfies the
constraints of Design 1 with a stop band energy of —42.9 dB.
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Fig. 3. As a function of o defined after (30) and number of DIRR iterations,
the corresponding stop band energy of the designed filter. The appropriate value
of « that determines the design parameter A in Alg. 2 can be identified using
this plot. The largest value of — log, () for the smallest total number of the
DIRR iterations provides robust designs.
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Fig. 4. The singular values of H* obtained at the 3rd DIRR iteration for the
feasibility problem given in Design 1.

the semidefinite programming solver, SDPT3, of the convex op-
timization tool CVX [27], [42] is used to obtain solutions to the
relaxed SDP at its best resolution option.

Design 1: For the lower and upper magnitude response mask
constraints, M;(w) and M, (w) shown in Fig. 2, design a filter
of length L = 38.

Since Design I is a feasibility problem, the optimization
problem in (30) is solved by using the DIRR technique with the
choice of £ = 1 and A = 1, which is the @ = oo case (the left-
most point indicated by asterisk) in Fig. 3. The corresponding
singular values of the obtained solution matrix are shown in
Fig. 4. Since the first singular value significantly dominates
the rest, the obtained solution matrix H is practically rank-1.
As observed in Fig. 2, the magnitude response of the designed
filter satisfies all the spectral mask constraints.
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Fig. 5. Magnitude response of the FIR filter of length 38 obtained in Design 2
by using the DIRR technique. The magnitude response satisfies the constraints
of Design 2 with a stop band energy of —60.0 dB.
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Fig. 6. The singular values of H? at the 3rd DIRR iteration in Design 2.

Design 2: For the lower and upper magnitude response mask
constraints, M;(w) and M, (w) shown in Fig. 5, design a filter
of length I = 38 with the minimum stop band energy.

In this design, the optimization problem given in (30) is
solved by using the DIRR with ¢ = 1 and A = 1 — (R?)® for
a = 0.005, where R’ is defined in (29). The exponent o on
R’ can be chosen even smaller to increase the emphasis on
the goal of stop band energy minimization. However, with this
choice of A, the proposed DIRR technique is able to converge
in only 3 iterations, with a stop band energy of —60.0 dB. As
shown in Fig. 5, the magnitude response of the designed filter
satisfies all the spectral mask constraints. As seen from Fig. 6,
the obtained solution matrix at the 3rd iteration is rank-1 for all
practical purposes.

For comparison purposes, we also provide the design by the
autocorrelation based design technique in [12]. Since there is
no phase constraints, the autocorrelation based design technique
provides the global optimal for this design. The magnitude re-
sponse of the resulting filter coefficients provided by this tech-
nique is shown in Fig. 7 with a stop band energy of —60.0 dB.
Note that, the proposed DIRR technique provides a filter with
almost identical performance with the global optimal filter pro-
vided by the autocorrelation based design technique.

Design 3: For the lower and upper magnitude response mask
constraints, M;(w) and M, (w),0 < w < w, shown in Fig. 8,
design a filter of length L = 38 with the minimum peak stop
band ripple.

In this design, the optimization problem given in (31)
is solved by using the DIRR technique with £ = 1 and
A =1-— (R for « = 1075, The proposed DIRR tech-
nique converged in 24 iterations, with a stop band energy of
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Fig. 7. Magnitude response of the FIR filter of length 38 obtained in Design
2 by the autocorrelation based LP technique in [12]. The magnitude response
satisfies the constraints of Design 2 with a stop band energy of —60.0 dB.

- M () |

Magnitude (dB)
]
W
o
T

. .
-02 -0.1 0 0.1 0.2 0.3 0.4 0.5
o (Normalized Frequency)

Fig. 8. Magnitude response of the FIR filter of length 38 obtained in Design
3 using the DIRR technique. The total stop band energy is —52.5 dB and the
peak stop band ripple is §2 = —49.5 dB.
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Fig. 9. The singular values of H? at the 24th DIRR iteration in Design 3.

—52.5 dB. As shown in Fig. 9, the ratio of the first singular
value to the sum of all singular values is R = 0.99992 at
iteration ¢ = 24, indicating that the obtained solution matrix is
practically a rank-1 matrix. As shown in Fig. 8, the designed
filter satisfies the constraints with a peak stop band ripple of
4?2 = —49.5 dB. Since there are no constraints on the phase
response of the filter in this design, the autocorrelation based
LP technique [12] provides the global optimal design shown
in Fig. 10 with a stop band energy of —52.6 dB and peak stop
band ripple of §2 = —49.6 dB. Note that the DIRR technique
provides almost identical performance.

Design 4: For the magnitude and phase response constraints,
My(w), M, (w) shown in Fig. 11 and ®,(w) shown in Fig. 12,
respectively, design the lowest order filter with the minimum
stop band energy.

Constraints on the phase and group delay responses normally
cannot be implemented exactly in techniques that utilize convex
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Fig. 10. Magnitude response of the FIR filter of length 38 obtained in Design
3 using the autocorrelation based LP technique. The total stop band energy is
—52.6 dB and the peak stop band ripple is §> = —49.6 dB.

—— H©)

- Mu(m)dB [

—_— = - -1

Magnitude (dB)

1
1
1
1
1
1
1

0.2 0 0.2

| |
-0.1 0 0.1 0.2 0.3 0.4 0.5
 (Normalized Frequency)

Fig. 11. Magnitude response of the FIR filter of length 35 obtained in Design
4 using the DIRR technique. The magnitude response satisfies the constraints
of Design 4 with a stop band energy of —48.8 dB.
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Fig. 12. Phase response of the FIR filter of length 35 obtained in Design 4 using
the DIRR technique. The upper and the lower phase mask constraints that are
satisfied by the designed filter are given as ®,(w) = 4|w| + 4 x 107° for
[w] < 0.16.

optimization such as the autocorrelation based LP technique that
have provided the optimal results in the previous design exam-
ples. Even though minimax type of optimization formulations
can implement such constraints, they do not provide freedom
for the user to choose the stop band energy minimization as an
objective [6],[7], [15]. However, since the proposed DIRR tech-
nique is capable of exactly incorporating these constraints in the
SDP form, the phase and the group delay constraints can be han-
dled together with the energy minimization objectives.

In order to obtain the FIR filter with the lowest order satis-
fying the given constraints, (40) can be solved for a range of
filter orders. In this design, the DIRR technique with parameters
A =1- (R for a = 1 is used to obtain the solution which is
on the direction of the 2nd singular vector of H! at the 3rd itera-
tion with R? = 0.99991. The corresponding singular values are
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Fig. 13. Singular values of H” at the 3rd DIRR iteration in Design 4.
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Fig. 14. Magnitude response of the FIR filter of length 38 obtained in Design
5 by using the DIRR technique. The magnitude response satisfies constraints of
Design 5 with a stop band energy of —56.3 dB.
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Fig. 15. Group delay of the FIR filter of length 38 obtained in Design 5 by
using the DIRR technique. The group delay of the designed filter satisfies the
constraints of Design 5, which are G,,(w) = —Gi{w) = 0.108 for |w| <
0.16.

shown in Fig. 13. The resulting filter order is found to be 35. As
shown in Figs. 11 and 12, all the constraints on the magnitude
and phase responses are satisfied by the designed filter which
has a stop band energy of —48.8 dB. The LP based linear phase
filter design technique proposed in [12] required a filter order of
39 to meet the constraints of this design.

Design 5: For the magnitude constraints, AM;(w) and M, (w)
shown in Fig. 14, and the group delay mask constraints G (wy,)
and G, (wg) shown in Fig. 15, find the filter of the lowest order
with the minimum stop band energy.

In this design, the optimization problem in (54) is solved by
using the DIRR technique with A = 1 — (R?)® for a = 1. The
proposed DIRR technique has converged to a solution in 4 itera-
tions on the direction of the 6th singular vector with the singular
value ratio of 1. The resulting filter order is found to be 38. The
magnitude and group delay responses of the designed filter are
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Fig. 16. Singular values of H* at the 4th DIRR iteration in Design 5.

TABLE 1
THE COMPARISON OF MINIMUM FILTER ORDERS FOR DIFFERENT DIRR
FORMULATIONS, OPTIMAL NONLINEAR AND LINEAR PHASE FORMULATIONS
GIVEN IN [12]. 1t w), = 0.16,w, = 0.20; 2: w, = 0.16,w, = 0.24; 3:
wp =0.16,w, =0.22; 4w, = 0.16,w; = 0.19; 5: w, = 0.10,w, = 0.14

[12] Nonlin. | (30) | (40) in (3 in | [12] Lin. | (40) Lin.
Phase Fig. 12 | Fig. 15 Phase Phase
1 32 32 35 38 39 39
2 17 17 19 17 20 20
3 23 23 25 23 27 27
4 33 a3 39 33 40 40
5 11 41 45 41 a0 a0

shown in Figs. 14 and 15, respectively. The stop band energy is
—56.3 dB. As observed, all the constraints on the magnitude and
group delay responses of the filter are satisfied. The resulting
singular values, shown in Fig. 16, demonstrate the dominance
of the first singular value over the rest.

Finally, in Table I, we have compared the order of the fil-
ters designed by the proposed formulations in (30), (40) and
(54) with the linear and non-linear phase response filter design
methods in [12]. In the comparisons, we have used the spectral
mask constraints given in Fig. 1 for various values of pass band
and stop band corner frequencies (w, and w,). The phase con-
straints in Fig. 12 and group delay constraints in Fig. 15 have
been used for the designs by (40) and (54), respectively. We
have also provided a linear phase response design using (40) by
simply setting &, (w) = 0 V|w| < w,. For the linear and non-
linear phase filter design cases, the results suggest that DIRR
achieves the same filter order provided by the optimal method
given in [12]. Moreover, DIRR formulations in (40) and (54)
provide lower filter order solutions compared to the optimal
linear phase response filter design method in [12], which is the
main advantage of DIRR over the existing mask constrained
techniques.

V. CONCLUSION

Recent advances in the optimization techniques have pro-
vided an opportunity to incorporate the phase and group delay
constraints in the optimization based formulation of the filter
design problem. However, the straightforward formulation of
such designs results in non-convex optimization problems in
terms of the impulse response h. By using the lifting techniques,
where the variable of optimization is mapped to a rank-1 ma-
trix H = hh?', the non-convex problem can be converted to a
convex problem on H if we ignore the rank-1 constraint on H
[24],[33], [35]. However, the relaxation of the rank-1 constraint
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results in significant degradation on the obtained results. To al-
leviate this issue of the relaxed convex formulation, here, an
iterative optimization technique is proposed. In the DIRR tech-
nique, a sequence of convex optimization problems are solved
to minimize an adaptively chosen cost function which steers the
solution matrix towards a rank-1 solution. It is proven that the
global optimal solution to the filter design problem is a fixed
point of the proposed iterations. The design performance of the
proposed DIRR technique is extensively illustrated over design
cases under a variety of constraints. The obtained results and
comparisons have shown that the proposed DIRR technique
provides robust designs which are significantly better than the
alternative design techniques under the phase and group delay
constraints.

REFERENCES

[1] T. Davidson, “Enriching the art of FIR filter design via convex opti-
mization,” IEEE Signal Process. Mag., vol. 27,no. 3, pp. 89—101, May
2010.

[2] J. McClellan and T. Parks, “A unified approach to the design of op-
timum FIR linear-phase digital filters,” IEEE Trans. Circuit Theory,
vol. CT-20, no. 6, pp. 697701, Nov. 1973.

[3] K. Kose and A. E. Cetin, “Low-pass filtering of irregularly sampled
signals using a set theoretic framework [lecture notes),” IEEE Signal
Process. Mag., vol. 28, no. 4, pp. 117-121, Jul. 2011.

[4] J. McClellan and T. Parks, “A personal history of the Parks-McClellan
algorithm,” IEEFE Signal Process. Mag., vol. 22, no. 2, pp. 82-86, Mar.
2005.

[5] K. Steiglitz, T. Parks, and J. Kaiser, “METEOR: A constraint-based
FIR filter design program,” IEEE Trans. Signal Process., vol. 40, no.
8, pp. 1901-1909, Aug. 1992.

[6] J. Adams, “FIR digital filters with least-squares stopbands subject to
peak-gain constraints,” /EEE Trans. Circuits Syst., vol. 38, no. 4, pp.
376-388, Apr. 1991.

[7] J. Adams and J. Sullivan, “Peak-constrained least-squares optimiza-
tion,” IEEE Trans. Signal Process., vol. 46, no. 2, pp. 306-321, Feb.
1998.

[8] T. Parks and J. McClellan, “Chebyshev approximation for nonrecur-
sive digital filters with linear phase,” IEEE Trans. Circuit Theory, vol.
19, no. 2, pp. 189-194, Mar. 1972.

[9] G. Oetken, “A new approach for the design of digital interpolating fil-
ters,” IEEE Trans. Acoust., Speech, Signal Process., vol. 27, no. 6, pp.
637-643, Dec. 1979.

[10] X. Lai and R. Zhao, “On Chebyshev design of linear-phase FIR filters
with frequency inequality constraints,” IEEE Trans. Circuits Syst. 11,
Exp. Briefs, vol. 53, no. 2, pp. 120-124, Feb. 2006.

[11] R.Zhao and X. Lai, “Chebyshev design of linear-phase FIR filters with
linear equality constraints,” /EEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 54, no. 6, pp. 494—498, Jun. 2007.

[12] S.-P. Wu, S. Boyd, and L. Vandenberghe, “FIR filter design via
semidefinite programming and spectral factorization,” in Proc. 35th
IEEE Conf. Decision Contr., 1996, vol. 1, pp. 271-276, vol. 1.

[13] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications
of second-order cone programming,” Linear Algebra Appl., vol. 284,
no. 13, pp. 193-228, Nov. 1998.

[14] S.P.Wu, S. Boyd, and L. Vandenberghe, “FIR filter design via spectral
factorization and convex optimization,” in Applied and Computational
Control, Signals and Circuits, B. N. Datta, Ed. Boston, MA, USA:
Birkhauser, 1999, vol. 1, pp. 215-242.

[15] Z. Lin and Y. Liu, “Design of arbitrary complex coefficient WLS FIR
filters with group delay constraints,” IEEE Trans. Signal Process., vol.
57, no. 8, pp. 3274-3279, Aug. 2009.

[16] T.Baran,D. Wei, and A. Oppenheim, “Linear programming algorithms
for sparse filter design,” IEEE Trans. Signal Process., vol. 58,no. 3, pp.
1605-1617, Mar. 2010.

[17] X. Lai, “Optimal design of nonlinear-phase FIR filters with pre-
scribed phase error,” IEEE Trans. Signal Process., vol. 57, no. 9, pp.
3399-3410, Sep. 2009.

[18] X. Lai and Z. Lin, “Optimal design of constrained FIR filters without
phase response specifications,” IEEE Trans. Signal Process., vol. 62,
no. 17, pp. 4532-4546, Sep. 2014.



[19] I Dotlic and R. Kohno, “Design of the family of orthogonal and spec-
trally efficient UWB waveforms,” IEEE J. Sel. Topics Signal Process.,
vol. 1, no. 1, pp. 21-30, Jun. 2007.

[20] X. Wu, Z. Tian, T. Davidson, and G. Giannakis, “Optimal waveform
design for UWB radios,” IEEE Trans. Signal Process., vol. 54, no. 6,
pp. 2009-2021, Jun. 2006.

[21] Y. K. Alp, M. Dedeoglu, and O. Arikan, “Ultra-wideband orthogonal
pulse shape set design by using hermite-gaussian functions,” in Proc.
IEEE 20th Signal Process. Commun. Appl. Conf. (SIU), 2012, pp. 1-4.

[22] J. Mattingley and S. Boyd, “Real-time convex optimization in signal
processing,” [EEE Signal Process. Mag.,vol.27,no. 3, pp. 50-61, May
2010.

[23] T. Davidson, Z.-Q. Luo, and J. Sturm, “Linear matrix inequality for-
mulation of spectral mask constraints with applications to FIR filter
design,” IEEE Trans. Signal Process., vol. 50, no. 11, pp. 2702-2715,
Nov. 2002.

[24] Z.-Q. Luo, W.-K. Ma, A.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20-34, May 2010.

[25] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Proc. IEEE Int. Symp. Comput.-Aided Contr. Syst. De-
sign, Sept. 2004, pp. 284-289.

[26] J. F. Sturm, “Using sedumi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimiz. Methods Software, vol. 11-12, pp.
625-653, 1999.

[27] M. Grantand S. Boyd, “CVX: Matlab Software for Disciplined Convex
Programming, Version 2.0 Beta” Sep. 2012 [Online]. Available: http:/
/evxr.com/cvx

[28] J. Yen, “On nonuniform sampling of bandwidth-limited signals,” /RE
Trans. Circuit Theory, vol. 3, no. 4, pp. 251-257, Dec. 1956.

[29] A. Aldroubi and K. Grochenig, “Nonuniform sampling and reconstruc-
tion in shift-invariant spaces,” SIAM Rev., vol. 43, no. 4, pp. 585-620,
Apr. 2001.

[30] R. Vaughan, N. Scott, and D. White, “The theory of bandpass sam-
pling,” IEEE Trans. Signal Process., vol. 39, no. 9, pp. 1973-1984,
Sep. 1991.

[31] K. M. Anstreicher, “Semidefinite programming versus the reformula-
tion-linearization technique for nonconvex quadratically constrained
quadratic programming,” J. Global Optimiz., vol. 43, pp. 471-484,
20009.

[32] M. Lang and J. Bamberger, “Nonlinear phase FIR filter design ac-
cording to the L, norm with constraints for the complex error,” Signal
Process. vol. 38, no. 2, pp. 259268, 1994 [Online]. Available: http:/
/www.sciencedirect.com/science/article/pii/0165168494901457, [On-
line]. Available:

[33] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[34] K. Anstreicher and H. Wolkowicz, “On lagrangian relaxation of
quadratic matrix constraints,” SIAM J. Matrix Anal. Appl., vol. 22, no.
1, pp. 41-55, 2000.

[35] J. Dattorro, Convex Optimization & Euclidean Distance Geometry, J.
Dattorro, Ed. Palo Alto, CA, USA: Meboo Publishing, 2005, ch. 4.

[36] G. Pataki, “On the rank of extreme matrices in semidefinite programs
and the multiplicity of optimal eigenvalues,” Math. Operations Res.,
vol. 23, no. 2, pp. 339-358, May 1998.

[37] M. Fazel, “Matrix Rank Minimization With Applications,” Ph.D. dis-
sertation, Dept. Electr. Eng., Stanford Univ., Stanford, CA, USA, 2002.

[38] M. Fazel, H. Hindi, and S. P. Boyd, “A rank minimization heuristic
with application to minimum order system approximation,” in Proc.
IEEE Amer. Contr. Conf., 2001, vol. 6, pp. 4734-4739.

DEDEOGLU et al.: FIR FILTER DESIGN BY CONVEX OPTIMIZATION USING DIRECTED ITERATIVE RANK REFINEMENT ALGORITHM 2219

[39] A. M.-C. So, J. Zhang, and Y. Ye, “On approximating complex
quadratic optimization problems via semidefinite programming relax-
ations,” Math. Program., vol. 110, no. 1, pp. 93—110, Mar. 2007.

[40] W.S. Lu, “Design of nonlinear-phase FIR digital filters: A semidefinite
programming approach,” in Proc. 1999 IEEE Int. Symp. Circuits Syst.
(ISCAS'99), Jul. 1999, vol. 3, pp. 263-266, vol. 3.

[41] Z. Lin and Y. Liu, “FIR filter design with group delay constraint using
semidefinite programming,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS 2006), May 2006, pp. 2505-2508.

[42] M. Grantand S. Boyd, “Graph implementations for nonsmooth convex
programs,” in Recent Advances in Learning and Control, ser. Lecture
Notes in Control and Information Sciences, V. Blondel, S. Boyd, and H.
Kimura, Eds. Berlin, Germany: Springer-Verlag, 2008, pp. 95-110
[Online]. Available: http://stanford.edu/~boyd/graph_dcp.html

Mehmet Dedeoglu (S’13) received both B.Sc. and
M.Sc. degrees in electrical and electronics engi-
neering from Bilkent University, Ankara, Turkey in
2012 and 2014, respectively.

He is currently pursuing a Ph.D. degree in elec-
trical, computer and energy engineering at Arizona
State University, Tempe, AZ. His current research is
primarily focused on the study of device-to-device
communications, stochastic geometry and social
networks.

Yasar K. Alp was born in Konya, Turkey, in
1985. He received both B.Sc. and Ph.D. degrees in
electrical and electronics engineering from Bilkent
University, Ankara, Turkey in 2007 and 2014,
respectively.

He worked as a research scientist in Schlumberger
Cambridge Research between June-August 2009
and July—September 2010. He is presently working
as an algorithm design engineer in Radar, Elec-
tronic Warfare and Intelligence Systems division of
ASELSAN Inc. His current research interests are
time-frequency signal analysis, inverse problems and their applications on
array signal processing.

Orhan Arikan (M’91) was born in 1964, in Manisa,
Turkey. He received the B.Sc. degree in electrical and
electronics engineering from the Middle East Tech-
nical University, Ankara, Turkey, in 1986, and both
the M.S. and Ph.D. degrees in electrical and com-
puter engineering from the University of Illinois, Ur-
bana-Champaign, in 1988 and 1990, respectively.

Following his graduate studies, he worked for
three years as a Research Scientist at Schlum-
berger-Doll Research, Ridgefield, CT. He joined
Bilkent University in 1993, where he is presently
Professor of Electrical Engineering since 2006 and chair of the Electrical Engi-
neering Department since 2011. His current research interests are in statistical
signal processing, time-frequency analysis, and array signal processing.



