
Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111
http://asp.eurasipjournals.com/content/2013/1/111

RESEARCH Open Access

FIR filter optimization for video processing on
FPGAs
Martin Kumm1*, Diana Fanghänel1, Konrad Möller1, Peter Zipf1 and Uwe Meyer-Baese2

Abstract

Two-dimensional finite impulse response (FIR) filters are an important component in many image and video
processing systems. The processing of complex video applications in real time requires high computational power,
which can be provided using field programmable gate arrays (FPGAs) due to their inherent parallelism. The most
resource-intensive components in computing FIR filters are the multiplications of the folding operation. This work
proposes two optimization techniques for high-speed implementations of the required multiplications with the least
possible number of FPGA components. Both methods use integer linear programming formulations which can be
optimally solved by standard solvers. In the first method, a formulation for the pipelined multiple constant
multiplication problem is presented. In the second method, also multiplication structures based on look-up tables are
taken into account. Due to the low coefficient word size in video processing filters of typically 8 to 12 bits, an optimal
solution is found for most of the filters in the benchmark used. A complexity reduction of 8.5% for a Xilinx Virtex 6
FPGA could be achieved compared to state-of-the-art heuristics.

Introduction
Two-dimensional linear filters with finite impulse
response (FIR) are one of the most fundamental opera-
tions used in image and video processing. They are used,
e. g., in applications which contain contrast improve-
ment, denoising, sharpening, target matching, and
feature enhancement [1]. Compared to infinite impulse
response filters, FIR filters have a strict stability, and high-
throughput implementations are easily possible using
pipelining as no recursions are involved. However, they
are computationally expensive as many multiply accu-
mulate (MAC) operations are necessary for each pixel of
the resulting image. While this is very demanding for a
microprocessor or digital signal processor, the inherent
parallelism of field programmable gate arrays (FPGAs)
can be used to accelerate the FIR operation.
Modern FPGAs directly incorporate embedded multi-

pliers or DSP blocks which also include pre- and post-
adders for MAC operations. Xilinx’s DSP blocks (Xilinx
Inc., San Jose, CA, USA) of Virtex 5/6, Spartan 6, and the 7
series FPGAs provide 18×25-bit signedmultipliers. More
flexible are the variable precision DSP blocks of the latest

*Correspondence: kumm@uni-kassel.de
1Digital Technology Group, University of Kassel, Kassel 34121, Germany
Full list of author information is available at the end of the article

FPGAs of Altera, the Stratix V, Cyclone V, and Aria V
devices (Altera, San Jose, CA, USA). Each DSP block can
be configured as three independent 9 × 9-bit multipliers,
two independent 16 × 16-bit, 15 × 17-bit, or 14 × 18-bit
multipliers, or a single 18×36-bit or 27×27-bit multiplier.
However, embedded multipliers and DSP blocks are

limited resources even on modern low-cost FPGAs, and
they may have a higher power consumption compared to
constant multiplication using the carry-chain resources
[2]. Especially in image processing, embedded multipli-
ers are often underutilized because of the small word
lengths used. Typically, only 8 bits per color and 10 bits for
a luminance representation are used.
In most filter applications, the coefficients are fixed,

which can be used to reduce the complexity of the multi-
plication. Furthermore, partial results can be shared inside
a single multiplier or between multipliers of different
constants to reduce hardware resources. Different meth-
ods have been proposed over the years for such multiple
constant multiplications (MCM):

(a) MCM using additions, subtractions, and bit
shifts [3-33];

(b) MCM using look-up tables (LUTs) and adders
[34,35];

(c) Distributed arithmetic (DA) [36-42].

© 2013 Kumm et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 2 of 18
http://asp.eurasipjournals.com/content/2013/1/111

In method (a), constant multiplications are realized
using additions, subtractions, and bit shifts only. These
operations form a so-called adder graph, so this method
is called the adder graph MCM method in the following.
It was originally developed for software or VLSI appli-
cations [3] but also maps well to the fast carry chains
of FPGAs. In method (b), the input word is split into
smaller chunks that fit into the input word size of the
FPGA LUTs. These LUT results are shifted and added
afterward to form the multiplication result. LUTs and
adders are also used in method (c), but there the fold-
ing equation of the FIR filter is rearranged in such a
way that identical LUTs can be used. This is very ben-
eficial in sequential FIR implementations but costly in
parallel implementations. Because it was shown in the
recent years that multiplier blocks using add, subtract,
and shift operations (method a) consume considerable less
logic resources compared to parallel DA implementations
[5-7], the DA approach is not further considered. Due
to the relatively large routing delays compared to the
fast carry chain, a pipelined implementation of the adder
graph is necessary to obtain the maximum speed of the
FPGA [2,5-10]. It was shown by Faust et al. [35] that
the LUT-based approach (method b) is competitive to
the adder graph method. Thus, pipelined circuits using
the combination of methods (a) and (b) are investigated
in this paper.

Contribution of this work
The main contribution of this article is the description of
two novel optimization methods, one for the adder graph
MCM problem including pipelining (the pipelined MCM
problem [9]) and one for a combination of this method
with a pipelined realization of the LUT-based method
mentioned above. Eachmethod is formulated as a boolean
integer linear program (BILP, or 0-1 ILP) and then reduced
to a mixed integer linear program (MILP). Hence, if the
MILP solver finds a solution in reasonable time, an opti-
mal solution for the given cost model is found. To the
best of our knowledge, this is the first time an optimal
method for solving the pipelinedMCM (PMCM) problem
is proposed.
The complexity of the adder graph MCMmethod heav-

ily depends on the coefficient values, while the complexity
of the LUT-based approach mainly depends on the input
word size. Therefore, sometimes, one method or the other
delivers better results. For this, a combination of both
methods is proposed in this work by incorporating the
LUT-based multipliers in the integer linear programming
(ILP) formulation of the PMCM problem. Due to the low
coefficient word size of typically 8 to 12 bits in image pro-
cessing, a short convergence time of the ILP solver is very
likely, which makes the proposed optimization an ideal
candidate for image processing.

The remaining of this paper is organized as follows.
The related work is discussed in the next section, fol-
lowed by an introduction of the used FIR architectures
for image processing. Then, an ILP formulation for the
PMCM problem is described which is later extended for
additional LUT-based multiplication. Finally, results from
the optimizations and FPGA synthesis are presented and
discussed, followed by a conclusion.

Related work
MCM using additions, subtractions, and bit shifts
Different methods have been proposed over the years to
realize constant multiplication using additions, subtrac-
tions, and bit shifts only. Finding the optimal configura-
tion of these operations is known asMCMproblem, which
has been an active research topic for almost the last two
decades [3-33]. The objective is usually defined by mini-
mizing the number of adders and subtractors (shifts are
assumed to be free, as they can be implemented using
wires).
An example adder graph which realizes a multiplier

block with the constants of the set {44, 130, 172} is shown
in Figure 1a. Each node in the graph corresponds to an
adder or subtractor, indicated by ‘+’ or ‘−.’ The numeric
node value represents the realized multiple of the input,
i. e., node ‘1’ corresponds to the input of the MCM block.
To have a unique representation, all node values are
defined to be odd. They can be made even by a simple
bit shift as shown at the output. All edge weights repre-
sent left shifts, e. g., node ‘5’ is realized by left shifting the
input x by 2 bits and adding the unshifted input: 22x +
20x = 5x. Right shifts are represented by negative edge
weights.
The MCM problem is NP complete [4]. Hence, most

of the proposed algorithms are heuristics, and less work
was directed toward optimal solutions. Early work was
done by Bull and Horrocks [3] which was later extended
by Dempster and Macleod to the modified Bull and
Horrocks algorithm [14]. In the same work, the n-
dimensional reduced adder graph (RAG-n) algorithm was
proposed which was one of the leading heuristics for
years. Major improvements could be achieved by the work
of Voronenko and Püschel with their cumulative benefit
heuristic (Hcub) [4]. By spending a bit more algorithmic
complexity and evaluating adder graph topologies up to
a depth of three, they could reduce the required addi-
tions/subtractions by 20% on average compared to RAG-
n. A competing approach based on difference graphs was
proposed by Gustafsson [16]. It tends to be beneficial
compared to Hcub in case large coefficient sets and/or low
coefficient word lengths are used but may be worse in
other cases.
Many approaches use ILP formulations, for which opti-

mal solvers exist. However, the search space is often

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 3 of 18
http://asp.eurasipjournals.com/content/2013/1/111

1

+
65

0 6

-
3

2 0

+
11

3
+
5

0 2

130

1 0

-
43

4

44

2

0

172

2

(a)

1

+
65

0 6

-
3

2 0

+
5

0 2

1

0

65

0

+
11

0

-
43

4 0 3

44

2

172

2

130

1

(b)

1

1

0

-
3

2 0

+
5

0 2

+
11

3

+
65

0 6 0

-
43

4 0

44

2

172

2

130

1

(c)

1

-
7

3 0

+
9

0 3

-
11

0

+
43

0

+
65

3 1 2 0

44

2

172

2

130

1

(d)
Figure 1 Different multiplier block realizations of the coefficients {44,130,172}. (a) Adder graph obtained by Hcub AD min, (b) PAG using ASAP
pipelining, (c) PAG using optimal pipelining, and (d) optimal PAG.

significantly reduced due to the used number representa-
tion which leads to non-optimal results. Minimum signed
digit (MSD) number systems like canonic signed digit
(CSD) are often used as they have a reduced complex-
ity compared to the binary representation [18]. In MSD,
a number is coded using the digits {−1, 0, 1}, such that
the number of non-zero digits is minimal and, hence, the
number of partial products is reduced. A 0-1 ILP model
that uses subexpressions of length two in the CSD number
system (i. e., subexpressions with at most two non-zeros)
was used by Yurdakul and Dündar [19]. A 0-1 ILP model
which can be used for any number system was proposed
by Flores et al. [18]. Results for binary, CSD and MSD
were presented. This work was further extended by Aksoy
et al. with additional delay constraints [20], low-level area
models [21], and a heuristic variation [22].
So far, the discussed publications did not result in glob-

ally optimal solutions as they use the reduced search space
of a given number representation. Breadth-first search
[23] and depth-first search [17] algorithms were proposed
by Aksoy et al. to optimally solve the MCM problem in a
graph-based way. The depth-first search is able to solve
MCM instances in a reasonable time but cannot handle
different constraints or cost metrics. Another interesting
method to optimally solve the MCM problem was given
by Gustafsson who transferred the MCM problem to the
problem of finding a Steiner hypertree in a directed hyper-
graph [24]. He used an optimal 0-1 ILP formulation which
is very generic and can be flexibly adopted to different
cost metrics (at adder or logic level) and different con-
straints (adder depth and fan-out). The main drawback is
its computational complexity. Nevertheless, it can be used
for small MCM instances or to find lower bounds [25] by
relaxing the model to a continuous LP problem. A 0-1 ILP
formulation for optimally solving the special case of min-
imum depth adder graphs in a graph-based fashion was

recently proposed [26]. In this work, the search space of a
graph-based search is compared to the MSD search space
in terms of variables of the ILP. The graph-based search
needs three times more variables for 8-bit coefficients and
18 times more variables for 13-bit coefficients compared
to MSD.
In the recent time, more and more MCM algorithms

with different objectives were proposed. One objective is
minimizing the power of the adder graph by reducing or
minimizing the adder depth (AD) of each output, which
is defined as the number of adder stages needed to com-
pute a coefficient [26-29]. Limiting the maximum AD of
all outputs can be used to find adder graphs with low delay
[30]. If this delay is still too large, pipelining can be used
to speed up the circuit [5,8,9,31].
Pipelining plays a crucial role in high-performance

adder graph realizations on FPGAs as they have rela-
tively large routing delays compared to their fast carry
chains. However, the addition of pipeline registers may
significantly increase the complexity. An example of the
pipelined adder graph (PAG) of Figure 1a using an
as-soon-as-possible (ASAP) scheduling for placing the
pipeline registers is shown in Figure 1b. Here, each rectan-
gular node includes a pipeline register, i. e., nodes without
any ‘+’ or ‘−’ operator are pure registers. Many resources
can be saved by finding the optimal schedule of pipeline
registers for a given adder graph. Compared to the ASAP
schedule, 29% less pipelined operations and speedups of
about 300% were achieved on average using a slice over-
head of only 18% compared to the non-pipelined adder
graph [8]. The PAG using the optimal schedule of the
adder graph of Figure 1a is shown in Figure 1c. However,
directly considering pipelining during the adder graph
optimization can further reduce the resources as demon-
strated in Figure 1d. Heuristics for this kind of direct
optimization were proposed recently [7,9]. A reduction

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 4 of 18
http://asp.eurasipjournals.com/content/2013/1/111

of pipelined operations by 10% compared to the opti-
mal pipelined adder graphs [8] could be achieved by
the reduced pipelined adder graph (RPAG) algorithm
[9]. Slice reductions of 16% on average were reported
using the best result out of three algorithms (C1+, RSG
Improved and a genetic algorithm) [7].

MCM using look-up tables
A totally different method for single constant multiplica-
tion which uses the look-up tables of FPGAswas proposed
by Wirthlin [34]. The idea is to split the multiplication
into smaller chunks, e. g., 4 bits for FPGAs with four-
input LUTs, which can be directly realized using a single
stage of LUTs. These LUT results have to be shifted and
added to get the final product. Several techniques were
proposed to minimize the number of redundant LUTs
[34]. An extension of LUT-based multipliers to MCM
was presented by Faust et al. [35], where identical LUTs
are also shared between different constant multipliers. It
was shown that the maximal number of required LUTs is
far less than combinatorially possible. Their benchmark
results include a comparison with adder graph MCM,
which shows that their graph-based MinLD MCM algo-
rithm [29] sometimes uses less resources and sometimes
more resources than the LUT-based method for an input
word size of 8 bits on an FPGA with four-input LUTs. As
their method does not include pipelining, shorter delays
could be achieved using the LUT-based MCM.

Two-dimensional FIR filter architectures
An image of heightM and width N is usually represented
by an M × N matrix X. The matrix elements are written
in lower case in the following, i. e., xm,n denotes the lumi-
nance of a pixel at position (m, n). The two-dimensional
folding with the P × Q folding matrixH is defined as

ym,n =
P−1∑
p=0

Q−1∑
q=0

xm+p−u,n+q−v hp,q, (1)

where u = ⌊P
2
⌋
and v =

⌊
Q
2

⌋
denote the center of the

folding matrix H. Note that P and Q are often identical
(matrix X is square) and odd.
Architectures for computing this folding equation can

be classified by the computed output pixels per clock
cycle. A sequential realization may compute a single MAC
operation per clock cycle producing one output pixel
every PQ clock cycles, like this is done on conventional
microprocessors. As we are interested in accelerating
the filter operation, parallel realizations are considered
in the following. A direct implementation of the folding
equation for a 3× 3 folding matrix in a parallel way which
is able to compute one output pixel every clock cycle is
shown in Figure 2a. First, the input pixel stream is clocked

into a chain of registers and FIFO buffers to provide a
3 × 3 block of the image. Then, this block is processed in
parallel by a sum-of-products (SOP) operation according
to (1), i. e., each pixel of the block is multiplied by its cor-
responding element in the folding matrix and all products
are added to yield the final output pixel. An alternative
architecture can be obtained by transposing the struc-
ture of Figure 2a by reversing the directions of each edge,
replacing branches by adders and vice versa, and swap-
ping the input and output [43]. The resulting architecture
is shown in Figure 2b. The SOP block results in an MCM
block after transposition, i. e., now a single input has to
be multiplied by all elements of the folding matrix. Note
that the outputs of both architectures are invalid for the
boundary pixels of the input image. Thus, if the output
image has to have the same size as the input image, a
suitable boundary treatment (setting boundary pixels to
black/white, copying from neighbor pixels, etc.) has to be
implemented [43].
MCM blocks of Figure 2b can be obtained by one of the

algorithms discussed above. The SOP circuit of Figure 2a
can be either obtained by using LUTmultipliers and addi-
tional adders, or by transposing the adder graph which
was obtained by an adder graph MCM method. It is well
known that the adder cost for a single-input single-output
adder graph is equal to its transposed form [44]. More
general, Gustafsson et al. derived the cost of an adder
graph with Ni inputs and No outputs after transposition
for the generalized case of vector matrix multiplication
[32]:

NT
A = NA + No − Ni (2)

Here, NA and NT
A are the adder cost before and after

transposition, respectively. MCM is a special case of vec-
tor matrix multiplication with Ni = 1, so if NA,MCM
adders are needed for an optimal MCM adder graph
with N unique coefficients, NA,SOP = NA,MCM + N − 1
adders are needed for the corresponding optimal SOP.
Therefore, the eight additional adders shown in the trans-
posed form in Figure 2b are exactly the additional adders
needed to compute the SOP in Figure 2a. Hence, from
its complexity, there is no difference between the direct
or transposed form. If we take a look on pipelined imple-
mentations of MCM blocks, the situation becomes worse.
While transposing a pipelined MCM block still leads to a
valid pipeline, the pipeline registers may not any longer be
located in the critical path between the adders. Therefore,
we concentrate in the following on pipelined implementa-
tions of the MCM block, which can be directly incorpo-
rated in the transposed form, as shown in Figure 2b.
A totally different filter structure can be realized if the

folding matrix is separable, i. e., matrix H can be sepa-
rated in two vectors h1 and h2 with H = h1 · h2. Then,
the two-dimensional filter can be realized by cascading

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 5 of 18
http://asp.eurasipjournals.com/content/2013/1/111

(a) (b)

Figure 2 Architectures of a two-dimensional FIR filter. (a) Direct form using SOP, (b) transposed form using MCM.

two one-dimensional filters, one for processing the rows
and one for the columns. This reduces the PQ multipli-
cations to P + Q multiplications [43]. If the filter cannot
be separated, then there exist methods to decompose the
filter into a sum of separable filters using singular value
decomposition [45].
However, only a fraction (which is typically less than one

third) of the multipliers of the unseparated folding matrix
have to be realized due to symmetric, zero, or power-
of-two coefficients. Furthermore, in both MCM methods
discussed above, many resources can be saved when inter-
mediate computation results are shared between the con-
stant multipliers. This is only possible if all multipliers
have the same input which is not the case for separated fil-
ters. Therefore, we concentrate on the architecture shown
in Figure 2b as it is generic (any folding matrix can be
realized) and pipelined MCM blocks can be directly used.

Optimally solving the pipelinedMCM problem
Pipelined MCM problem formulation
In an adder graph, each node unequal one is generated by
a so called A-operation, introduced by Voronenko et al.
[4] (compare with Figure 1a)

Aq(u, v) = |2l1u + (−1)sg2l2v|2−r (3)

with configuration q = (l1, l2, r, sg), where l1, l2, r ∈ N0
are shift factors, the sign bit sg ∈ {0, 1} denotes whether
an addition or subtraction is performed and u and v are
positive, odd input arguments. A valid configuration q is
a combination of l1, l2, r, and sg such that the result is a
positive odd integer.
The greatest effort during MCM optimization is finding

the numerical values of non-output nodes, i. e., the values
of all u and v which are not in the coefficient set. Once
all these node values are found, it is easy to determine the
configuration q of the corresponding adder graph, e. g.,
using the optimal part of RAG-n [14] or Hcub [4]. Since the
same can be applied for PAG optimization, it is appropri-
ate to define a set Xs for each pipeline stage s, containing
the node values of the corresponding stage. The pipeline

sets for the PAG in Figure 1d are, e. g., X0 = {1}, X1 =
{7, 9}, and X2 = {11, 43, 65}. With this representation, we
can formally define the PMCM problem:

Definition 1 (Pipelined MCM problem). Given a set
of positive target constants T = {t1, . . . , tM} and the
number of pipeline stages S, find sets X1, . . . ,XS−1 ⊆
{1, 3, . . . , xmax} with minimal area cost such that for all
w ∈ Xs for s = 1, . . . , S there exists a validA-configuration
q such that w = Aq(u, v) with u, v ∈ Xs−1, X0 = {1} and
XS = {odd(t) | t ∈ T \ {0}}, where odd(t) is the absolute
value of t divided by 2 until it is odd.

The upper bound is usually chosen as xmax = 2bmax+1

[4], where bmax is equal to the maximum bit width of T.
The number of stages S has to be at least the largest min-
imal adder depth of the coefficients. The minimal AD of
an integer x can be directly computed using

ADmin(x) = �log2(nz(x))�, (4)

where nz(x) represents the minimal number of non-zero
digits of x in canonic signed digit (CSD) representation
[29]. As each additional pipeline stage introduces addi-
tional nodes in the PAG, it is very unlikely that there exists
a graph with higher S but less cost. Therefore, we define S
to be the minimum number of stages which is possible:

S := Smin = max
t∈T

ADmin(t) (5)

The area cost of pipeline sets X0...S depends on the tar-
get architecture, and it will be discussed in the following
sections.

FPGA cost of pipelined adder graphs
We use the area (i. e., the number of FPGA components)
as cost measure, since the maximum speed results from
the architecture and is given by the largest ripple carry
adder and the routing delay which is hard to predict. Dif-
ferent cost metrics are used for evaluating the size of an
FPGA circuit. Common metrics are counting the LUTs,
flip-flops, slices (Xilinx devices), or logic elements (Altera

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 6 of 18
http://asp.eurasipjournals.com/content/2013/1/111

devices). As different FPGA components are used in this
work, the smallest common piece of logic, consisting of
LUT(s), FF(s), and full adder logic, is counted and referred
to as basic logic element (BLE) in the following. Simplified
block schematics of BLEs of the Virtex 4 and Virtex 6/7
architectures are shown in Figure 3. On Virtex 4, each BLE
is half of an FPGA slice, and on Virtex 6/7, it is a quarter of
a slice. While the Virtex 4 BLE provides a four-input LUT,
a flip-flop and additional logic for building a full adder
(AND gate, XOR gate, and a multiplexer), the BLE from
the later generations provide a six-input LUT which can
be used as two five-input LUTs with shared inputs, two
flip-flops, and full adder logic (XOR gate andmultiplexer).
Each BLE can realize a single full adder including the

register for pipelining. Thus, for evaluating adder graphs,
the number of full adders, or pure registers can be
counted. A detailed cost model of common adder graphs
mapped to FPGAs was recently presented in [33]. This
model respects the replacement of full adders by simple
wires if the two shifted numbers do not overlap at every
bit position. However, for pipelined adders on FPGAs, full
adder and pipeline register are realized in a single BLE
resource. Hence, saving some full adders has no effect on
BLE resources as the pipeline register is needed in any
case. The number of BLEs of an A-operation is equal to
the output word size of the corresponding adder. If there
is no right shift (r = 0), the output word size is identical
to the sum of input word size and the word size needed to
represent node value w. If a right shift r > 0 is used, the
word size of the corresponding adder has r additional out-
put bits. Even if these additional output bits are ignored
after the right shift, they are needed to compute the carry-
in for higher order bits to yield a correct result. Hence, the
number of BLEs of eachA-operation in a pipelined adder
graph can be summarized to

(a) (b)
Figure 3 Simplified basic logic elements of Xilinx’s Virtex
families. (a) Virtex 4 BLE, (b) Virtex 6/7 BLE.

costA(u, v,w) = Bx + ⌈
log2(w)

⌉ + r, (6)

where Bx is the input word size and w = Aq(u, v).

ILP formulation for the pipelined adder graph problem
Before the ILP formulation for the PAG problem is
described, some variables and auxiliary sets are intro-
duced. There are two types of binary decision variables
used in the formulation:

asw =
{
1 if w is realized in pipeline stage s
0 otherwise

(7)

as(u,v,w) =
⎧⎨
⎩
1 ifA − operation w = Aq(u, v)

is computed in pipeline stage s
0 otherwise

(8)

Hence, there is one variable asw for each stage s and each
possible element w and one variable as(u,v,w) for each w and
each possible pair (u,v), from which w can be computed
with a singleA-operation.
To determine these combinations, we use the definition

of theA∗(u, v) set [4], which contains all elements that can
be computed from u and v using a singleA-operation:

A∗(u, v) := {Aq(u, v) | q valid configuration} (9)

For convenience, theA∗ set is also defined for a set X:

A∗(X) :=
⋃
u,v∈X

A∗(u, v) (10)

Note thatA∗({u, v}) is different fromA∗(u, v) as the first
one contains all combinations of u and v: A∗({u, v}) =
A∗(u,u) ∪ A∗(u, v) ∪ A∗(v, v). With this set, we can now
define the set As of all possible odd variables which may
be used at pipeline stage s. It can be recursively defined by

A0 = {1} (11)
As = A∗(As−1) . (12)

As not all elements ofAs are needed to compute the tar-
get coefficients, the set Ss ⊆ As is defined which contains
all single elements that may be used to compute the target
coefficients T in the last stage. Furthermore, with T s we
denote the set of (u, v,w) triplets for which w ∈ Ss can be
computed using u and v of the previous stage s − 1. Now,
the sets Ss and T s can be computed recursively, starting
from the last stage S, where SS is identical to the odd
target coefficients excluding zero:

SS := {odd(t) | t ∈ T \ {0}} (13)
T s−1 := {(u, v,w) :w=Aq(u, v),u, v ∈ As−1,u≤v,w ∈ Ss}

(14)
Ss−1 := {u, v : (u, v,w) ∈ T s−1}. (15)

Using these variables and auxiliary sets, we can define
the ILP formulation for the PAG problem as follows:

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 7 of 18
http://asp.eurasipjournals.com/content/2013/1/111

ILP Formulation 1 : Pipelined adder graph optimization

minimize
S∑

s=1

∑
(u,v,w)∈T s

costA(u, v,w) as(u,v,w)

subject to
(C1) aSw = 1 for all w ∈ SS

(C2) asw −
∑

∀(i,j,k)∈T s|k=w
as(i,j,k) ≤ 0 for all w ∈ Ss, s = 2 . . . S

(C3)
as(u,v,w) − as−1

u ≤ 0
as(u,v,w) − as−1

v ≤ 0

}
for all (u, v,w) ∈ T s, s = 2 . . . S

asw ∈ {0, 1}, as(u,v,w) ≥ 0

The subject is to minimize the BLE cost of all required
A-operations. Constraint (C1) simply forces that all tar-
get coefficients are realized in the last pipeline stage.
To realize an element asw, one of the possible A-
operations to compute w must be available, which is
constrained by (C2). The last constraint (C3) ensures
that an A-operation w = Aq(u, v) can only be real-
ized in stage s when u and v are both available in stage
s − 1.
In the formulation, we use the relaxed condition

as(u,v,w) ≥ 0 instead of requiring as(u,v,w) ∈ {0, 1} which
results in an MILP formulation. Using continuous vari-
ables as(u,v,w) instead of binary ones reduces the runtime
of the optimization substantially. This is possible since
we can construct a binary solution that is feasible and
minimal from the relaxed solution.

Proof. Assume an optimal solution of ILP Formulation
1 is given. Due to (C3), all variables as(u,v,w) satisfy the
condition

0 ≤ as(u,v,w) ≤ 1 , (16)

but in the optimum solution of ILP Formulation 1,
a variable asw = 1 can exist with several variables
as(u,v,w) > 0. Let us define a set T ′

w, which contains
all triplets (u, v,w) with as(u,v,w) > 0. Then, there exist
at least one triplet (u′, v′,w) ∈ T ′

w with the least cost
contribution:

(u′, v′,w) = arg min
(u,v,w)∈T ′

w
costA(u, v,w). (17)

Now, a feasible binary solution of the formulation can
be obtained by assigning new values âs

(u′,v′,w)
= 1 and

âs(u,v,w) = 0 for all (u, v,w) ∈ T ′
w \ {(u′, v′,w)}. Since

the contribution of the triplets in T ′
w to the objective

function is

∑
(u,v,w)∈T ′

w

costA(u, v,w)︸ ︷︷ ︸
≥costA(u′,v′,w)

as(u,v,w) (18)

≥ costA(u′, v′,w)
∑

(u,v,w)∈T ′
w

as(u,v,w)

︸ ︷︷ ︸
≥1 because of (C2)

≥ costA(u′, v′,w) (19)

=
∑

(u,v,w)∈T ′
w

costA(u, v,w) âs(u,v,w) (20)

and since the objective function isminimized, the new sol-
ution is also minimal and the objective values are equal. If
we do this construction for all variables asw = 1, we obtain
an optimum solution where all variables are binary.

ILP Formulation 1 is very generic and is extendable
into different directions. For optimizing MCM blocks on
application specific integrated circuits (ASICs), the cost
function in the objective can be easily divided into two
cost functions: one for pipelined adders (costA) and one
for pure registers (costR) as both require different ASIC
resources:

cost(u, v,w) =
{
costR(w) for w = u ∨ w = v
costA(u, v,w) otherwise

(21)

A modified cost function can also be used to influence
the number of adders within a pipeline stage. Instead of
placing pipeline registers after each stage of adders, they
could be placed behind multiple adder stages (e.g., every
second or third stage). This would reduce the register
resources for applications where a lower speed is sufficient
or a lower latency is required. For that, the cost function
for pure registers (as for ASICs) can be set to zero in
each stage in which no registers should be placed. In the
implementation, these registers are exchanged by wires.

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 8 of 18
http://asp.eurasipjournals.com/content/2013/1/111

Another extension of the ILP formulation would be the
support of dedicated shift registers which are provided by
the latest Xilinx FPGA architectures. These shift registers
are realized in a single FPGA LUT and provides up to 16
bits on Virtex 4 FPGAs (SRL16 primitive) and up to 32 bits
on Virtex 5/6, Spartan 6 and 7 series FPGAs (SRLC32E
primitive). In other words, up to 16 or 32 registers (plus
one additional register at the output) can be realized at
the same BLE cost like a single register. As long as S < 17
or S < 33, constraint (C3) in ILP Formulation 1 can be
replaced by:

(C3a)
as(u,v,w) − as−1

u ≤ 0
as(u,v,w) − as−1

v ≤ 0

}
for all (u, v,w) ∈ T s,
s = 2 . . . S,w = u,w = v

(22)

(C3b) as(u,v,w) −
s−1∑
s′=0

as′u

≤ 0 for all (u, v,w) ∈ T s, s = 2 . . . S,w = v ∨ w = u.
(23)

While (C3a) is nearly identical to (C3), (C3b) allows the
bypass of several stages using shift registers. Of course,
these values are not accessible for intermediate stages.

Multiple constant multiplication using LUT
multipliers
In this section, a LUT-based constant multiplier method
is introduced, which is used to extend ILP Formulation 1.

LUT-based constant multiplication
Consider a number x which is represented in two’s com-
plement format using Bx bits:

x = −2Bx−1xBx−1 +
Bx−2∑
b=0

2bxb (24)

If this number is multiplied by a constant cn with Bc bits,
the resulting Bc × Bx multiplication can be divided into
several smaller multiplications by rearranging the partial
sum terms:

cn · x︸ ︷︷ ︸
Bc×BxMult.

= cn

(Bx−2∑
b=0

2bxb − 2Bx−1xBx−1

)

= cn
L−1∑
b=0

2bxb + cn
2L−1∑
b=L

2bxb + . . .

+ cn

⎛
⎝ KL−2∑

b=(K−1)L
2bxb − 2KL−1xKL−1

⎞
⎠

= cn
L−1∑
b=0

2bxb
︸ ︷︷ ︸
Bc×LMult.

+2L cn
L−1∑
b=0

2bxb+L

︸ ︷︷ ︸
Bc×LMult.

+ . . .

+ 2(K−1)Lcn

(L−2∑
b=0

2bxb+(K−1)L − 2L−1xKL−1

)
︸ ︷︷ ︸

Bc×LMult.

(25)

Now, K =
⌈
Bx
L

⌉
multiplications of size Bc ×L are neces-

sary. In case that Bx is not divisible by L, the number x has
to be sign extended to B′

x = KL bits. The idea of Wirthlin
[34] was to realize each Bc × L multiplier using L-input
LUTs, where L has to be chosen to fit the FPGA LUT input
size. The resulting multiplier structure for an example of a
12 × 4 multiplier using four-input LUTs [34] is shown in
Figure 4.

Figure 4 A 12× 4-bit signedmultiplier using four-input LUTs [34].

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 9 of 18
http://asp.eurasipjournals.com/content/2013/1/111

LUTminimization techniques
Several methods were proposed byWirthlin to reduce the
hardware complexity of the circuit. In the following cases,
LUTs can be eliminated:

(a) Removal of constant LUTs, i. e., LUTs that are
always ‘0’ or ‘1’ can be replaced by a constant.

(b) Removal of LUTs which are identical to one of the
inputs, i. e., the output can be connected to the
corresponding input.

(c) Removal of redundant LUTs, i. e., LUTs with
identical content and identical inputs can be
shared.

In particular, the removal of redundant LUTs can be
used to reduce logic when multiple constants are involved
[35]. It was shown that it is very likely that identical LUTs
occur in MCM operations. For example, only 52 unique
LUTs are required to be able to compute all signed prod-
ucts with constants from 1 to 212 using four-input LUTs.
Compared to adder graphs with minimal adder depth,
the latency could be reduced by approximately 33% on
average for an input word size of 8 bits. However, even
for this small input word size, clock frequencies of about
100 MHz could be achieved which is far less than what is
possible on the used Virtex 4 FPGA. Hence, in our work,
pipelined realizations of LUT multipliers are investigated,
as shown in Figure 5. In the first pipeline stage, the LUT
content is looked up, and the results are shifted and added
according to (25) using a pipelined adder tree. Note that
some of the bit shifts can be moved toward the output

of the adder tree to reduce the word size in each stage
(not shown in Figure 5). No extra BLE has to be reserved
for pure registers as the flip-flops of BLEs using LUTs,
and full adders are used. But from the reduction methods,
only the removal of redundant LUTs can be used as these
can be shared together with the flip-flop, while the other
methods still require a BLE for a single flip-flop.

ILP formulation for the combined pipelined adder/LUT
graph optimization
ILP Formulation 1 of the PAG optimization is now
extended to include LUTmultipliers. Thus, the ILP solver
should decide whether a target coefficient is realized using
adders or using LUTs. Of course, if more than one LUT
multiplier is used, the sharing of identical LUTs should be
included in the costmodel. For that, the setLs

v,w is defined,
which contains all LUTs of stage s which are needed to
compute each bit of w from v and a new boolean decision
variable is introduced:

lsv,i =
⎧⎨
⎩
1 if LUT with input node v and LUT content i

is available in stage s
0 otherwise

(26)

If a LUT multiplier is inserted in the adder graph to
compute w from node v, the variable as(0,v,w) is set to one
(the case u = 0 does not exist in ILP Formulation 1).
The corresponding (0, v,w) triplets have to be added to
T s. Now, ILP Formulation 1 can be extended by two con-
straints (C4) and (C5) (the remaining constraints remain
nearly identical) and a modified objective function:

ILP Formulation 2 : Combined pipelined adder graph/LUT optimization

minimize
S∑

s=1

∑
(u,v,w)∈T s

⎛
⎝cost(u, v,w)as(u,v,w) +

∑
i∈Ls

v,w

costLUT lsv,i

⎞
⎠

with cost(u, v,w) =
{
costAT(u, v,w) for u = 0
costA(u, v,w) otherwise

subject to
(C1) aSw = 1 for all w ∈ SS

(C2) asw −
∑

∀(i,j,k)∈T s|k=w
as(i,j,k) ≤ 0 for allw ∈ Ss, s = 2 . . . S

(C3)
as(u,v,w) − as−1

u ≤ 0
as(u,v,w) − as−1

v ≤ 0

}
for all (u, v,w) ∈ T s, s = 2 . . . S with u = 0

(C4) as(0,v,w) − as−LD(w/v)
v ≤ 0 for all (u, v,w) ∈ T s, s = 2 . . . S

with wmod v = 0, s ≥ LD(w/v) and u = 0

(C5) as(0,v,w) − lsv,i ≤ 0 for all (u, v,w) ∈ T s, i ∈ Ls
v,w, s = 2 . . . S

with u = 0
asw ∈ {0, 1}, as(u,v,w) ≥ 0, lsv,i ∈ {0, 1}

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 10 of 18
http://asp.eurasipjournals.com/content/2013/1/111

Figure 5 Pipelined LUT-basedmultiplier.

Two cost functions were added, costLUT includes the
cost of a single LUT and costAT(u, v,w) corresponds to
the cost of the adder tree which is necessary to com-
pute the sum of the LUT outputs. The splitting of the
cost function is necessary to respect the reduced cost
for shared LUTs. For Virtex 4 or Virtex 6/7 using six-
input LUTs, each LUT consumes one BLE (costLUT =
1). For Virtex 6/7 using five-input LUTs, the LUT costs
can be approximated to costLUT = 1/2 as only one
half of a BLE is used for a single LUT. The adder
tree costs (costAT(u, v,w)) depend on v, w and the
LUT multiplier pipeline depth, which is defined by

the depth of the adder tree plus one for the LUT
registers:

LD(w/v) = log2 (�Bv/L�) + 1 (27)

The additional constraints (C4) and (C5) are defined to
incorporate LUT realizations during optimization. Con-
straint (C4) is similar to (C3): If a LUT multiplier is used
to compute w in stage s from v in stage s − LD(w/v),
the corresponding node v must be available in that stage.
Constraint (C5) ensures that the corresponding LUTs are
available in the correct pipeline stage to compute w from
v. In first experiments, we found only cases where LUT
multipliers directly compute target coefficients of the last
stage. Hence, we decided to reduce the search space by
evaluating the constraints (C4) and (C5) only for the target
constants of the last stage s = S.

Results
To evaluate the performance of the two ILP formula-
tions, a benchmark set of folding matrices was designed
using Matlab. The coefficients were computed using the
fspecial() function except from the lowpass and high-
pass filters. These were obtained by the Parks-McClellan
algorithm (remez() and ftrans2() functions). All real
coefficients were quantized to a word size of Bc. The com-
plete convolution matrices are given in Appendix 1; the
filter parameters are summarized in Table 1 with their
matrix size, word size, the required pipeline stages S using
PMCM, parameters for their design, and the Nuq unique
odd coefficients of their folding matrix.
The BILP solver of Matlab is slow compared to the

CPLEX optimizer from IBM [46] and does not provide
a solver for MILP problems. CPLEX provides a text file
interface with a comfortable human readable syntax (LP
file format [47]). Hence, Matlab was used to generate

Table 1 Parameters of the used benchmark filters

Filter Filter Bc Nuq S Parameter Unique odd coefficients

type size

Gaussian 3 × 3 8 3 2
σ = 0.5

3 21 159

Gaussian 5 × 5 12 4 3 1 23 343 1,267

Laplacian 3 × 3 8 3 2 α = 0.2 5 21 107

Unsharp 3 × 3 8 3 2
α = 0.2

3 11 69

Unsharp 3 × 3 12 3 3 43 171 1,109

Lowpass 5 × 5 8 5 2

fpass = 0.2,
fstop = 0.4

11 33 35 53 103

Lowpass 9 × 9 10 13 2 1 5 7 25 31 63 65 67 73 97 117 165 303

Lowpass 15 × 15 12 26 3 1 5 7 13 17 19 21 27 41 43 45 53 61 79 93 101

103 113 133 137 199 331 333 613 1,097 1,197

Highpass 5 × 5 8 5 2
fstop = 0,
fpass = 0.2

1 3 5 7 121

Highpass 9 × 9 10 6 2 1 3 5 7 11 125

Highpass 15 × 15 12 13 2 1 3 5 7 9 11 13 15 17 19 21 23 507

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 11 of 18
http://asp.eurasipjournals.com/content/2013/1/111

the MILP models as LP files, and CPLEX was used for
solving them. Then, Matlab was used to read in the solu-
tion file of CPLEX in XML format [47] for generating
synthesizable VHDL code. All MCM blocks were

optimized for an input word size Bx of 8, 10, and 12 bits.
The results are compared with the RPAG algorithm [9]
and the LUT MCM method of [35], which was applied to
the pipelined realization, as shown in Figure 5. The RPAG

Table 2 Optimization results in terms of the number of basic logic elements (BLE) for the previous methods RPAG [9]
using R iterations, a LUTMCM block [35] including pipelining and the proposedmethods for optimal pipelined adder
graphs using ILP Formulation 1 (Optimal PAG) and optimal pipelined adder/LUT graphs using ILP Formulation 2 (Optimal
PALG), including the coefficients realized by LUTs (LUT Coeffs)

No. of BLE

Filter Filter Bc Bx RPAG [9] RPAG [9] LUT Optimal Optimal LUT

type size (R = 1) (R = 50) MCM [35] PAG PALG Coeffs

Gaussian 3 × 3 8 8 63 58 56 58 56 All

Gaussian 5 × 5 12 8 125 125 77 111 77 All

Laplacian 3 × 3 8 8 79 61 54 61 54 All

Unsharp 3 × 3 8 8 56 56 51 56 51 All

Unsharp 3 × 3 12 8 112 107 64 91 64 All

Lowpass 5 × 5 8 8 98 98 91 98 91 All

Lowpass 9 × 9 10 8 235 221 192 221 192 All

Lowpass 15 × 15 12 8 480 475 371 ≤478 371 All

Highpass 5 × 5 8 8 74 74 69 74 69 All

Highpass 9 × 9 10 8 85 85 83 85 83 All

Highpass 15 × 15 12 8 186 186 170 186 170 All

Gaussian 3 × 3 8 10 73 68 71 68 68 None

Gaussian 5 × 5 12 10 145 143 98 129 98 All

Laplacian 3 × 3 8 10 93 71 69 71 68 All

Unsharp 3 × 3 8 10 66 66 66 66 66 None

Unsharp 3 × 3 12 10 130 123 80 105 80 All

Lowpass 5 × 5 8 10 114 114 118 114 112 33

Lowpass 9 × 9 10 10 271 255 276 255 254 117

Lowpass 15 × 15 12 10 550 543 546 ≤547 ≤545 None

Highpass 5 × 5 8 10 88 88 95 88 87 121

Highpass 9 × 9 10 10 101 101 115 101 101 None

Highpass 15 × 15 12 10 218 218 254 218 216 23

Gaussian 3 × 3 8 12 83 78 143 78 78 None

Gaussian 5 × 5 12 12 165 161 203 147 147 None

Laplacian 3 × 3 8 12 107 81 142 81 81 None

Unsharp 3 × 3 8 12 76 76 135 76 76 None

Unsharp 3 × 3 12 12 148 139 173 119 119 None

Lowpass 5 × 5 8 12 130 130 242 130 130 None

Lowpass 9 × 9 10 12 307 289 589 289 289 None

Lowpass 15 × 15 12 12 620 611 1203 ≤620 ≤620 None

Highpass 5 × 5 8 12 102 102 192 102 102 None

Highpass 9 × 9 10 12 117 117 232 117 117 None

Highpass 15 × 15 12 12 250 250 523 250 250 None

Average: 168.09 162.73 207.36 160.3 150.97

Improvement to RPAG (R = 50): – – −27.43% 1.49% 7.23%

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 12 of 18
http://asp.eurasipjournals.com/content/2013/1/111

algorithm is a greedy heuristic. As the best local choice in
a greedy algorithm does not necessarily lead to the best
global solution, it allows to randomly select one of the nth
best decisions. Then, the best result out of several runs
can be taken to improve the optimization. RPAG was con-
figured for a single run (R = 1, pure greedy), and R = 50
runs per MCM instance where the locally first or second
best decision was randomly selected. These results were
considered as state-of-the-art reference. The optimization
was performed for the Virtex 6/7 FPGA architecture, and
CPLEX was configured with a computation time limit of
8 hours.
The results are summarized in Table 2 for RPAG (R = 1

and R = 50) and the LUT MCM method which are com-
pared to the proposed pipelined adder graph (Optimal
PAG) and pipelined adder/LUT graph (Optimal PALG)
methods. An optimal solution could be found within the
time limit for all cases, except for the lowpass 15 × 15
instances. Here, the best obtained result is shown as upper
bound. All solutions are given as PAG in Appendix 2.
The coefficients which has to be replaced by LUT mul-
tipliers to obtain the PALG solution are given in the
last column of Table 2. Comparing RPAG with the opti-
mal PAG solution, it is apparent that RPAG (R = 50)
often finds an optimal solution (in 24 out of 32 cases).
For the three cases where the timeout of the ILP solver
occurred, RPAG finds slightly better solutions. Compar-
ing the pipelined LUT MCM method with RPAG and
optimal PAG, the LUT MCMmethod performs better for
low-input word sizes as expected. For Bx = 8, it is always
the best choice; for Bx = 10, it is sometimes the best;
and for Bx = 12, it is never the best choice. This is dif-
ferent to the combined PALG optimization which found
the best results in all cases where an optimal solution was
obtained. For Bx = 8, all instances were pure LUT MCM
realizations; for Bx = 10, there is a mixture of pure adder
graphs, pure LUT realizations, and combinations of both;

Table 3 Minimum,maximum, and average computation
times of the optimization algorithms for the benchmark
instances of Table 2

RPAG [9] RPAG [9] LUT only Optimal Optimal

(R = 1) (R = 50) PAG PALG

[s] [s] [s] [s] [s]

Minimum 0.01 4.06 0.11 0.15 0.1

Maximum 0.94 57.6 1.21 28,800 28,800

Average 0.15 11.16 0.31 3,538.58 2,129.79

while for Bx = 12, the adder graph realizations dom-
inate. An example is given in Figure 6. While the PAG
in Figure 6a needs two elements in the second pipeline
stage (1 and 7) to compute coefficient 121, this coefficient
is realized with a two-stage LUT multiplier in Figure 6b,
saving one element in stage two. An overall reduction
of 1.5% and 7.2% of BLEs compared to RPAG could
be achieved for the optimal PAG and PALG methods,
respectively.
The minimum, maximum, and average computation

times on an Intel Nehalem 2.93-GHz computer (Intel,
Santa Clara, CA, USA) for all used optimization algo-
rithms are given in Table 3. All heuristics take up to a
few seconds; the optimal methods are very fast for the
pipeline depth S = 2 cases in Table 1 but take hours for
the three matrices with S = 3 (up to the time limit of 8 h =
28,800 s for the lowpass 15 × 15 instances). However, the
optimization time is reasonable compared to the common
FPGA development effort.
To validate the optimization results, synthesis experi-

ments were performed for a Virtex 6 XC6VLX75T-2FF484
FPGA. For that, VHDL code generators were developed
in Matlab for all the examined architectures. The synthe-
sis was performed using Xilinx ISE v13.4. Unfortunately,
the BLE usage cannot be directly obtained by counting the

1

1

0

-
7

30

1

0

-
3

2

-
5

1

-
121

70 0

7

00

1

0

3

0

5

0

7

0

121

0

(a)

1

1

0

*
121

0

1

0

+
3

0 1

+
5

0 2

-
7

3 0

1

0

3

0

5

0

7

0

121

0

(b)

Figure 6 Example PAG/PALG of the highpass 5 × 5 instance with Bx=10 bits. (a) Optimal PAG, (b) optimal PALG.

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 13 of 18
http://asp.eurasipjournals.com/content/2013/1/111

FFs, LUTs, or slices reported by the tool, as a Virtex 6 may
use more than one FF per BLE, a LUTmay be unused, and
many slices may not be fully used but can be used for other
logic. Therefore, the resulting netlist after place&route
was converted to an XDL file, and the XDL-Parser from

the RapidSmith Project [48] was used to obtain the BLEs
directly from the netlist. All synthesis results are listed
in Table 4. It can be seen that in most cases the optimal
PALG solution leads to the best synthesis result. However,
there are some cases where the estimated cost model fails

Table 4 Synthesis results using the same benchmark instances as in Table 2 providing the actual BLEs as well as the
maximum clock frequency fmax on a Virtex 6 FPGA

Filter Filter Bc Bx RPAG [9] LUT Optimal Optimal

type size (R = 50) MCM [35] PAG PALG

BLE fmax BLE fmax BLE fmax BLE fmax

Gaussian 3 × 3 8 8 58 713.8 58 720.5 58 730.5 58 720.5

Gaussian 5 × 5 12 8 125 635.3 68 633.3 111 619.2 68 633.3

Laplacian 3 × 3 8 8 61 749.1 52 718.9 61 701.8 52 718.9

Unsharp 3 × 3 8 8 56 727.8 51 731.0 56 709.7 51 731.0

Unsharp 3 × 3 12 8 107 636.9 59 701.3 91 657.9 59 701.3

Lowpass 5 × 5 8 8 98 665.8 93 652.3 98 657.9 93 652.3

Lowpass 9 × 9 10 8 221 593.5 186 573.1 221 582.4 186 573.1

Lowpass 15 × 15 12 8 469 530.2 368 525.8 478 489.0 368 525.8

Highpass 5 × 5 8 8 74 605.3 67 726.2 74 711.7 67 726.2

Highpass 9 × 9 10 8 85 718.4 81 655.3 85 689.2 81 655.3

Highpass 15 × 15 12 8 184 613.9 166 630.5 183 598.4 166 630.5

Gaussian 3 × 3 8 10 64 713.3 70 776.4 68 745.7 64 666.7

Gaussian 5 × 5 12 10 139 653.6 82 690.6 129 637.8 82 690.6

Laplacian 3 × 3 8 10 71 682.6 59 745.2 71 656.6 59 745.2

Unsharp 3 × 3 8 10 66 729.9 60 769.8 66 712.3 66 712.3

Unsharp 3 × 3 12 10 118 682.1 69 690.1 103 605.3 69 690.1

Lowpass 5 × 5 8 10 110 640.6 106 627.0 114 646.8 111 647.3

Lowpass 9 × 9 10 10 255 557.4 225 574.4 251 602.1 252 528.3

Lowpass 15 × 15 12 10 539 526.0 443 414.8 546 514.7 529 470.8

Highpass 5 × 5 8 10 88 700.3 89 698.8 86 704.2 87 721.5

Highpass 9 × 9 10 10 97 616.5 91 644.8 97 677.5 97 677.5

Highpass 15 × 15 12 10 213 561.8 218 600.6 218 567.9 203 583.8

Gaussian 3 × 3 8 12 78 646.4 129 688.2 78 644.3 78 644.3

Gaussian 5 × 5 12 12 161 619.6 150 615.4 147 624.2 147 635.7

Laplacian 3 × 3 8 12 81 684.0 104 672.0 81 724.1 81 724.1

Unsharp 3 × 3 8 12 76 721.5 129 638.2 72 638.6 72 638.6

Unsharp 3 × 3 12 12 132 614.3 122 620.0 119 638.6 119 638.6

Lowpass 5 × 5 8 12 127 601.3 198 557.1 126 653.2 130 625.8

Lowpass 9 × 9 10 12 285 603.1 412 606.4 278 581.7 273 602.4

Lowpass 15 × 15 12 12 606 521.4 835 530.8 619 530.8 620 517.9

Highpass 5 × 5 8 12 102 669.8 145 647.7 94 714.3 94 714.3

Highpass 9 × 9 10 12 113 655.7 159 624.6 113 680.7 113 680.7

Highpass 15 × 15 12 12 238 591.4 388 593.5 239 539.7 250 590.7

Average 160.52 641.9 167.64 645.28 158.52 642.08 146.82 648.94

Improvement to RPAG (R = 50): – – −4.4% −0.5% 1.25% 0.03% 8.53% 1.09%

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 14 of 18
http://asp.eurasipjournals.com/content/2013/1/111

Table 5 Convolutionmatrices of the benchmark filters

Filter Convolution matrix

Gaussian 3 × 3, Bc = 8 bits

⎛
⎜⎜⎝

3 21 3

21 159 21

3 21 3

⎞
⎟⎟⎠

Gaussian 5 × 5, Bc = 12 bits

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0

0 46 343 46 0

1 343 2, 534 343 1

0 46 343 46 0

0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Laplacian 3 × 3, Bc = 8 bits

⎛
⎜⎜⎝

5 21 5

21 −107 21

5 21 5

⎞
⎟⎟⎠

Unsharp 3 × 3, Bc = 8 bits

⎛
⎜⎜⎝

−3 −11 −3

−11 69 −11

−3 −11 −3

⎞
⎟⎟⎠

Unsharp 3 × 3, Bc = 12 bits

⎛
⎜⎜⎝

−43 −171 −43

−171 1109 −171

−43 −171 −43

⎞
⎟⎟⎠

Lowpass 5 × 5, Bc = 8 bits

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

22 88 132 88 22

88 140 103 140 88

132 103 106 103 132

88 140 103 140 88

22 88 132 88 22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Lowpass 9 × 9, Bc = 10 bits

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −7 −25 −50 −62 −50 −25 −7 −1

−7 −25 −10 73 130 73 −10 −25 −7

−25 −10 117 165 126 165 117 −10 −25

−50 73 165 194 303 194 165 73 −50

−62 130 126 303 268 303 126 130 −62

−50 73 165 194 303 194 165 73 −50

−25 −10 117 165 126 165 117 −10 −25

−7 −25 −10 73 130 73 −10 −25 −7

−1 −7 −25 −50 −62 −50 −25 −7 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Lowpass 15 × 15, Bc = 12 bits

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 5 13 27 40 45 40 27 13 5 1 0 0

0 2 7 13 2 −41 −103 −133 −103 −41 2 13 7 2 0

1 7 10 −21 −93 −137 −101 −64 −101 −137 −93 −21 10 7 1

5 13 −21 −106 −122 −41 −17 −43 −17 −41 −122 −106 −21 13 5

13 2 −93 −122 −8 79 199 304 199 79 −8 −122 −93 2 13

27 −41 −137 −41 79 333 613 662 613 333 79 −41 −137 −41 27

40 −103 −101 −17 199 613 904 1, 097 904 613 199 −17 −101 −103 40

45 −133 −64 −43 304 662 1, 097 1, 197 1, 097 662 304 −43 −64 −133 45

40 −103 −101 −17 199 613 904 1, 097 904 613 199 −17 −101 −103 40

27 −41 −137 −41 79 333 613 662 613 333 79 −41 −137 −41 27

13 2 −93 −122 −8 79 199 304 199 79 −8 −122 −93 2 13

5 13 −21 −106 −122 −41 −17 −43 −17 −41 −122 −106 −21 13 5

1 7 10 −21 −93 −137 −101 −64 −101 −137 −93 −21 10 7 1

0 2 7 13 2 −41 −103 −133 −103 −41 2 13 7 2 0

0 0 1 5 13 27 40 45 40 27 13 5 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 15 of 18
http://asp.eurasipjournals.com/content/2013/1/111

Table 5 Convolutionmatrices of the benchmark filters Continued

Highpass 5 × 5, Bc = 8 bits

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 −7 −10 −7 −2

−7 −3 8 −3 −7

−10 8 121 8 −10

−7 −3 8 −3 −7

−2 −7 −10 −7 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Highpass 9 × 9, Bc = 10 bits

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 −6 −11 −14 −11 −6 −2 0

−2 −7 −10 −3 4 −3 −10 −7 −2

−6 −10 −1 −2 −11 −2 −1 −10 −6

−11 −3 −2 −11 −1 −11 −2 −3 −11

−14 4 −11 −1 500 −1 −11 4 −14

−11 −3 −2 −11 −1 −11 −2 −3 −11

−6 −10 −1 −2 −11 −2 −1 −10 −6

−2 −7 −10 −3 4 −3 −10 −7 −2

0 −2 −6 −11 −14 −11 −6 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Highpass 15 × 15, Bc = 12 bits

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 −3 −6 −8 −10 −8 −6 −3 −1 0 0 0

0 0 −2 −5 −8 −8 −5 −4 −5 −8 −8 −5 −2 0 0

0 −2 −6 −9 −8 −6 −10 −13 −10 −6 −8 −9 −6 −2 0

−1 −5 −9 −8 −8 −14 −14 −11 −14 −14 −8 −8 −9 −5 −1

−3 −8 −8 −8 −15 −15 −15 −19 −15 −15 −15 −8 −8 −8 −3

−6 −8 −6 −14 −15 −17 −21 −18 −21 −17 −15 −14 −6 −8 −6

−8 −5 −10 −14 −15 −21 −19 −23 −19 −21 −15 −14 −10 −5 −8

−10 −4 −13 −11 −19 −18 −23 2, 028 −23 −18 −19 −11 −13 −4 −10

−8 −5 −10 −14 −15 −21 −19 −23 −19 −21 −15 −14 −10 −5 −8

−6 −8 −6 −14 −15 −17 −21 −18 −21 −17 −15 −14 −6 −8 −6

−3 −8 −8 −8 −15 −15 −15 −19 −15 −15 −15 −8 −8 −8 −3

−1 −5 −9 −8 −8 −14 −14 −11 −14 −14 −8 −8 −9 −5 −1

0 −2 −6 −9 −8 −6 −10 −13 −10 −6 −8 −9 −6 −2 0

0 0 −2 −5 −8 −8 −5 −4 −5 −8 −8 −5 −2 0 0

0 0 0 −1 −3 −6 −8 −10 −8 −6 −3 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

to predict the synthesis. The following cases have been
identified by examining the netlists with the Xilinx’ FPGA
Editor:

1. A single Virtex 6 BLE is able to realize two flip-flops
(see Figure 3b), but sometimes, ISE uses one BLE to
realize a single register and sometimes to realize two
registers.

2. Sometimes, ISE maps a single flip-flop in a BLE that
is also used for a full adder.

Hence, an overestimate was done in the cost model with
the assumption that single flip-flops are mapped to a sin-
gle BLE. Due to the large shifts in the LUT multiplier
architecture (see Figure 5), the least significant bits in the
adder tree are pure flip-flops. Thus, it is more likely that
a LUT multiplier is overestimated and adders are used

instead. However, the synthesis results show that a BLE
reduction of 1.3% and 8.5% on average compared to RPAG
could be achieved for the optimal PAG and PALGmethod,
respectively. The speed of the different architectures is
very similar. In 75.8% and 78.8% of the cases for optimal
PAG and PALG, respectively, they were even faster than
the maximum clock frequency of the embedded DSP48E1
multiplier (which is 600 MHz).

Conclusion and outlook
Two ILP formulations to optimize the multiple constant
multiplication on FPGAs were presented and analyzed
using synthesis experiments. The first one is a formu-
lation of the PMCM problem, for which only heuristics
exist [7,9]. It was shown that better results are achiev-
able for the used low word size coefficients. For most

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 16 of 18
http://asp.eurasipjournals.com/content/2013/1/111

instances, the RPAG heuristic is also able to find an opti-
mal solution (in 24 out of 32 cases). The second ILP
formulation incorporates pipelined LUT-based multipli-
ers. It was shown that this combined method outperforms
the PMCM realization in particular for a low-input word
size of 8 to 10 bits.
The used ILP solver CPLEX was able to find an opti-

mal solution for most of the test instances within 8 h of

computation time. If not, the best feasible solution was
close to that of the RPAG heuristic. Synthesis experi-
ments were performed for the Xilinx Virtex 6 architec-
ture, showing that compact and fast multiple constant
multipliers are obtained. A resource reduction of 8.5%
was achieved compared to the state-of-the-art while
having approximately the same speed. Thus, the pro-
posed optimizations can be beneficially used for many

1

1

0

+
5

02

-
3

1

+
21

0

-
159

00 25

3

0

21

0

159

0

(a)

1

1

0

+
5

02

1

0

-
19

0

-
39

0 23

-
23

4

-
1

1

+
343

4

+
1267

000 0 5

1

0

23

0

343

0

1267

0

(b)

1

+
5

0 2

-
7

3 0

5

0

-
107

0

+
21

0 14

5

0

21

0

107

0

(c)

1

1

0

+
5

02

+
3

0 1

+
11

0

+
69

6 1 0

3

0

11

0

69

0

(d)

1

1

0

+
5

02

1

0

+
85

0 4

-
43

7

+
171

0

+
1109

100 10

43

0

171

0

1109

0

(e)

1

1

0

+
3

01

-
7

30

+
33

0 5

-
11

0

-
53

0

+
103

51

+
35

2 03 0

11

0

33

0

35

0

53

0

103

0

(f)

1

1

0

+
5

0 2

-
7

3 0

+
17

0 4

1

0

+
25

3

+
65

0 6

-
67

0

5

0

+
97

4

+
117

0

+
165

0 5

-
303

6

7

0

+
31

1

+
63

0 3

+
73

3 4 0 0 2 0 0 0

1

0

5

0

7

0

25

0

31

0

63

0

65

0

67

0

73

0

97

0

117

0

165

0

303

0

(g)

1

+
3

0 1

+
5

0 2

-
7

3 0

+
1

-3

+
51

4 0

+
83

0 -3

5

0

-
73

4 4 0

1

0

-
7

3 0

+
13

3

+
17

0 4

-
19

0

+
21

0

-
27

5

+
41

0

-
43

3

-
45

7

+
53

1

-
79

0

-
101

0

+
103

0

+
133

7

+
137

6

-
331

0

+
333

0

+
1097

10

5

0 0 2 2 0 3

+
61

1 4

+
93

2

+
113

3 0

-
199

0

-
1197

8 0 0 0 1 1 2

-
613

0 0 0 0 0 0 2 2 3 0

1

0

5

0

7

0

13

0

17

0

19

0

21

0

27

0

41

0

43

0

45

0

53

0

61

0

79

0

93

0

101

0

103

0

113

0

133

0

137

0

199

0

331

0

333

0

613

0

1097

0

1197

0

(h)

1

1

0

-
7

30

1

0

+
3

0 1

-
5

1

-
121

7 0

7

00

1

0

3

0

5

0

7

0

121

0

(i)

1

1

0

+
3

01

1

0

+
5

1

+
7

0

-
11

0

-
125

7

3

00 12 0

1

0

3

0

5

0

7

0

11

0

125

0

(j)

1

1

0

+
3

0 1

+
5

0 2

1

0

+
7

1

-
9

0

+
11

0

+
13

3

+
21

0

-
507

9

3

0

+
17

2

-
19

3

+
23

0

5

0 0 1 1 0

+
15

0 1 0 0 2 2 0

1

0

3

0

5

0

7

0

9

0

11

0

13

0

15

0

17

0

19

0

21

0

23

0

507

0

(k)
Figure 7 Pipelined adder graph solutions of the benchmark convolution matrices. (a) Gaussian 3×3 (Bc = 8 bits; Bx = 8, 10, 12 bits). (b)
Gaussian 5×5 (Bc = 12 bits; Bx = 8, 10, 12 bits). (c) Laplacian 3×3 (Bc = 8 bits; Bx = 8, 10, 12 bits). (d) Unsharp 3×3 (Bc = 8 bits; Bx = 8, 10, 12 bits). (e)
Unsharp 3×3 (Bc = 12 bits; Bx = 8, 10, 12 bits). (f) Lowpass 5×5 (Bc = 8 bits; Bx = 8, 10, 12 bits). (g) Lowpass 9×9 (Bc = 10 bits; Bx = 8, 10, 12 bits). (h)
Lowpass 15×15 (Bc = 12 bits; Bx = 8, 10, 12 bits). (i) Highpass 5×5 (Bc = 8 bits; Bx = 8, 10, 12 bits). (j) Highpass 9×9 (Bc = 10 bits; Bx = 8, 10, 12 bits). (k)
Highpass 15×15 (Bc = 12 bits; Bx = 8, 10, 12 bits).

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 17 of 18
http://asp.eurasipjournals.com/content/2013/1/111

real-time video processing applications which involve FIR
filters.
Future work could be extended into different direc-

tions. The examinations about themismatch between cost
model and synthesis results could be used to improve the
results. The slice flip-flops in adders which were not used
by synthesis could be utilized to implement pure regis-
ters. Furthermore, pure registers could be forced to use
all of the eight available slice flip-flops. In the ILP model,
this could be respected by reducing the cost for registers,
e. g., setting the cost function for one flip-flop to a half
BLE instead of a full BLE. The physical realization can
be done using low-level placement constraints. However,
this could reduce the performance as fixed placements
(even relative) may limit a timing driven place & route
optimization.
Another extension could be the optimization with adder

graphs containing ternary adders, i. e., adders with three
inputs. Modern FPGAs provide methods to implement
ternary adders with the same number of slices/ALMs
as needed for a two-input adder with equal output
word size but with a reduced speed due to a longer
critical path [49,50]. The ILP formulations could be
extended in that direction using quadruplets instead
of the (u, v,w) triplets which allows the modeling of
three inputs instead of the two inputs u and v. How-
ever, this would substantially increase the search space,
so one has to investigate if a solution can be found
in an acceptable runtime which is left open for future
research.

Appendices
Appendix 1. Convolution matrices of the benchmark filters
The convolution matrices which were used as bench-
mark are listed in Table 5. They were used to produce
the results, listed in Tables 2, 3, 4. Their properties are
summarized in Table 1.

Appendix 2. Adder graphs results of PMCM optimization
The pipelined adder graph solutions of the benchmark
convolution matrices of Table 5 are shown in Figure 7.
Only the realization of unique odd coefficients is shown;
their even representation can be realized by additional
left shifts. All solutions were optimal (obtained by opti-
mal PAG) except lowpass 15× 15, fromwhich the optimal
solution is unknown (obtained by RPAG).

Competing interests
The authors declare that they have no competing interests.

Author details
1Digital Technology Group, University of Kassel, Kassel 34121, Germany.
2Department of Electrical & Computer Engineering, Florida State University,
Tallahassee, FL 32310-6046, USA.

Received: 31 January 2013 Accepted: 30 April 2013
Published: 25 May 2013

References
1. A Bovik, The Essential Guide to Image Processing. (Academic Press,

Waltham, 2009)
2. M Kumm, P Zipf, in International Conference on Electronics, Circuits and

Systems (ICECS). Hybrid multiple constant multiplication for FPGAs
(IEEE Piscataway, 2012), pp. 556–559

3. DR Bull, DH Horrocks, Primitive operator digital filters. IEEE Proc. Circuits,
Devices Syst. 138(3), 401–412 (1991)

4. Y Voronenko, M Püschel, Multiplierless multiple constant multiplication.
ACM Trans. Algorithms (TALG). 3(2), 1–38 (2007)

5. U Meyer-Baese, J Chen, CH Chang, AG Dempster, in Asia Pacific Conference
onCircuits and Systems (APCCAS). A comparison of pipelined RAG-n and DA
FPGA-based multiplierless filters (IEEE Piscataway, 2006), pp. 1555–1558

6. S Mirzaei, R Kastner, A Hosangadi, Layout aware optimization of high
speed fixed coefficient FIR filters for FPGAs. Int. J Reconfigurable Comput.
3, 1–17 (2010)

7. U Meyer-Baese, G Botella, D Romero, M Kumm, in SPIE Defense
Security+Sensing, Volume 8401. Optimization of high speed pipelining in
FPGA-based FIR filter design using genetic algorithm (SPIE Baltimore,
2012), pp. 1–12

8. M Kumm, P Zipf, in International Conference on Field Programmable
Technology (ICFPT). High speed low complexity FPGA-based FIR filters
using pipelined adder graphs (IEEE Piscataway, 2011), pp. 1–4

9. M Kumm, M Faust, P Zipf, CH Chang, in International Symposiumon Circuits
and Systems (ISCAS). Pipelined adder graph optimization for high speed
multiple constant multiplication (IEEE Piscataway, 2012), pp. 49–52A

10. M Kumm, K Liebisch, P Zipf, in International Conference on Field
Programmable Logic and Applications (FPL). Reduced Complexity Single
and Multiple constant multiplication in Floating point precision
(IEEE Piscataway, 2012), pp. 255–261

11. R Hartley, Subexpression sharing in filters using canonic signed digit
multipliers. IEEE Trans. Circuits and Syst. II: Analog Digit. Signal Process.
43(10), 677–688 (1996)

12. S Mirzaei, A Hosangadi, R Kastner, in International Conference on Computer
Design (ICCD). FPGA implementation of high speed FIR filters using add
and shift method (IEEE Piscataway, 2006), pp. 308–313

13. M Imran, K Khursheed, M O’Nils, in International Conference on Signals and
Electronic Systems (ICSES). On the number representation in
sub-expression sharing (IEEE Piscataway, 2010), pp. 17–20

14. AG Dempster, MD Macleod, Constant integer multiplication using
minimum adders. IEE Proc. Circuits, Devices Syst. 141(5), 407–413 (1994)

15. AG Dempster, MD Macleod, Use of minimum-adder multiplier blocks in
FIR digital filters. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process.
42(9), 569–577 (1995)

16. O Gustafsson, in International Symposium on Circuits and Systems (ISCAS). A
difference based adder graph heuristic for multiple constant
multiplication problems (IEEE Piscataway, 2007), pp. 1097–1100

17. L Aksoy, E Günes, P Flores, Search algorithms for the multiple constant
multiplications problem: exact and approximate. Microprocessors and
Microsystems. 34(5), 151–162 (2010)

18. P Flores, J Monteiro, E Costa, in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). An exact algorithm for the maximal
sharing of partial terms in multiple constant multiplications
(IEEE Computer Society Washington, 2005), pp. 13–16

19. A Yurdakul, G Dündar, Multiplierless realization of linear DSP transforms
by using common two-term expressions. J. VLSI Signal Process. 22,
163–172 (1999)

20. L Aksoy, E Costa, P Flores, J Monteiro, in 43rd ACM/IEEE Design Automation
Conference (DAC). Optimization of area under a delay constraint in digital
filter synthesis using SAT-based integer linear programming
(IEEE Piscataway, 2006), pp. 669–674

21. L Aksoy, E Costa, P Flores, J Monteiro, in 44th ACM/IEEE Design Automation
Conference (DAC). Optimization of Area in Digital FIR Filters Using
Gate-Level Metrics (IEEE, 2007), pp. 420–423

22. L Aksoy, E da Costa, P Flores, J Monteiro, Exact and approximate
algorithms for the optimization of area and delay in multiple constant

Kumm et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:111 Page 18 of 18
http://asp.eurasipjournals.com/content/2013/1/111

multiplications. IEEE Trans. Computer-Aided Design Integrated Circuits
Syst. 27(6), 1013–1026 (2008)

23. L Aksoy, E Gunes, P Flores, in NORCHIP. An Exact Breadth-First Search
Algorithm for the Multiple Constant Multiplications Problem
(IEEE Piscataway, 2008), pp. 41–46

24. O Gustafsson, in 42nd Asilomar Conference on Signals, Systems and
Computers. Towards optimal multiple constant multiplication: a
hypergraph approach (IEEE Piscataway, 2008), pp. 1805–1809

25. O Gustafsson, Lower bounds for constant multiplication problems. IEEE
Trans. Circuits Syst. II: Express Briefs. 54(11), 974–978 (2007)

26. L Aksoy, E Costa, P Flores, J Monteiro, in Proceedings of the 21st Edition of
the Great Lakes Symposium on VLSI. Design of low-power multiple
constant multiplications using low-complexity minimum depth
operations (ACM New York, 2011), pp. 79–84

27. A Dempster, S Dimirsoy, I Kale, in International Symposium on Circuits and
Systems (ISCAS). Designing multiplier blocks with low logic depth
(IEEE Piscataway, 2002), pp. 773–776

28. K Johansson, Low Power, Low Power and Low Complexity Shift-and-Add
Based Computations. PhD thesis, Linköping University, Department of
Electrical Engineering, 2008

29. M Faust, CH Chang, in International Symposium on Circuits and Systems
(ISCAS). Minimal logic depth adder tree optimization for multiple constant
multiplication (IEEE Piscataway, 2010), pp. 457–460

30. HJ Kang, IC Park, FIR Filter Synthesis Algorithms for Minimizing the Delay
and the Number of Adders. IEEE Trans. Circuits Syst. II: Analog Digital
Signal Process. 48(8), 770–777 (2001)

31. L Aksoy, E Costa, P Flores, J Monteiro, in European Conference on Circuit
Theory and Design (ECCTD). Optimization of gate-level area in high
throughput multiple constant multiplications (IEEE Piscataway, 2011),
pp. 609–612

32. O Gustafsson, A Dempster, On the use of multiple constant multiplication in
polyphase FIR filters and filter banks (IEEE, Piscataway, 2004), pp. 53–56

33. L Aksoy, E Costa, P Flores, J Monteiro, Design of low-complexity digital finite
impulse response filters on FPGAs (IEEE, Piscataway, 2012), pp. 1197–1202

34. M Wirthlin, Constant coefficient multiplication using look-up tables. J.
VLSI Signal Process. 36, 7–15 (2004)

35. M Faust, CH Chang, in International Symposium on Circuits and Systems
(ISCAS). Bit-parallel multiple constant multiplication using look-up tables
on FPGA (IEEE Piscataway, 2011), pp. 657–660

36. A Crosisier, DJ Esteban, ME Levilio, V Riso, Digital filter for PCM encoded
signals. US Patent No. 3777130 (1973)

37. S Zohar, New hardware realizations of nonrecursive digital filters. IEEE
Trans. Comput. 22(4), 328–338 (1973)

38. A Peled, B Liu, A new hardware realization of digital filters. IEEE Trans.
Acoustics, Speech Signal Process. 22(6), 456–462 (1974)

39. SA White, Applications of distributed arithmetic to digital signal
processing: a tutorial review. IEEE ASSP Mag. 6(3), 4–19 (1989)

40. W Sen, T Bin, Z Jim, in International Conference on Communications,
Circuits and Systems (ICCCAS). Distributed arithmetic for FIR filter design on
FPGA (IEEE Piscataway, 2007), pp. 620–623

41. P Meher, S Chandrasekaran, A Amira, FPGA realization of FIR filters by
efficient and flexible systolization using distributed arithmetic. IEEE Trans.
Signal Process. 56(7), 3009–3017 (2008)

42. M Kumm, K Möller, P Zipf, in International Symposium on Circuits and
Systems (ISCAS). Reconfigurable FIR filter using distributed arithmetic on
FPGAs. (accepted for publication in 2013)

43. D Bailey, Design for Embedded Image Processing on FPGAs.
(Wiley-IEEE Press, New York, 2011)

44. A Willson, Desensitized half-band filters. IEEE Trans. Circuits and Syst I:
Regular Papers. 57, 152–167 (2010)

45. WS Lu, HP Wang, A Antoniou, Design of two-dimensional FIR digital filters
by using the singular-value decomposition. IEEE Trans. Circuits and Syst.
37, 35–4 (1990)

46. IBM Inc, IBM ILOG CPLEX Optimizer. http://www.ilog.com/products/cplex.
Accessed 16 April 2013

47. IBM Inc, IBM ILOG CPLEX V12.1 - File Formats Supported by CPLEX (2009)
48. C Lavin, M Padilla, J Lamprecht, P Lundrigan, B Nelson, B Hutchings, in

International Conference on Field Programmable Logic and Applications
(FPL). RapidSmith: do-it-yourself CAD tools for Xilinx FPGAs (IEEE, 2011),
pp. 349–355

49. JM Simkins, BD Philofsky, Structures and methods for implementing
ternary adders/subtractors in programmable logic devices. US Patent No
7274211, Xilinx Inc. (2006)

50. G Baeckler, M Langhammer, J Schleicher, R Yuan, Logic cell supporting
addition of three binary words. US Patent No 7565388, Altera Coop.
(2009)

doi:10.1186/1687-6180-2013-111
Cite this article as: Kumm et al.: FIR filter optimization for video processing
on FPGAs. EURASIP Journal on Advances in Signal Processing 2013 2013:111.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.ilog.com/products/cplex

	Abstract
	Introduction
	Contribution of this work

	Related work
	MCM using additions, subtractions, and bit shifts
	MCM using look-up tables

	Two-dimensional FIR filter architectures
	Optimally solving the pipelined MCM problem
	Pipelined MCM problem formulation
	FPGA cost of pipelined adder graphs
	ILP formulation for the pipelined adder graph problem

	Multiple constant multiplication using LUT multipliers
	LUT-based constant multiplication
	LUT minimization techniques
	ILP formulation for the combined pipelined adder/LUT graph optimization

	Results
	Conclusion and outlook
	Appendices
	Appendix 1
	Appendix 2

	Competing interests
	Author details
	References

