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FIRE AND INSECTS IN NORTHERN
AND BOREAL FOREST ECOSYSTEMS
OF NORTH AMERICA1

Deborah G. McCullough
Department of Entomology and Department of Forestry, Michigan State University,
243 Natural Science Building, East Lansing, Michigan 48824-1115;
e-mail: mccullod@msue.msu.edu

Richard A. Werner
USDA Forest Service, 308 Tanana Drive, Fairbanks, Alaska 99775-5500;
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Department of Forestry, Michigan State University, 126 Natural Resources Building,
East Lansing, Michigan 48824; e-mail: FORESTDN@aol.com
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ABSTRACT

Fire and insects are natural disturbance agents in many forest ecosystems, often
interacting to affect succession, nutrient cycling, and forest species composition.
We review literature pertaining to effects of fire-insect interactions on ecological
succession, use of prescribed fire for insect pest control, and effects of fire on insect
diversity from northern and boreal forests in North America. Fire suppression
policies implemented in the early 1900s have resulted in profound changes in
forest species composition and structure. Associated with these changes was an
increased vulnerability of forest stands to damage during outbreaks of defoliating
insects. Information about the roles that both fire and insects play in many northern
forests is needed to increase our understanding of the ecology of these systems
and to develop sound management policies.

1The US Government has the right to retain a nonexclusive, royalty-free license in and to any
copyright covering this paper.
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INTRODUCTION AND OVERVIEW

Forest conditions in northern and boreal forests of North America are dynamic,
continuously changing in response to disturbance within the limits set by cli-
matic, physiographic, and edaphic factors. Both fire and insects are critical
and intrinsic components of forest ecosystems, affecting species composition,
nutrient cycling, and numerous other ecological processes. Interactions of fire
and insects can delay or redirect forest succession and can have significant
consequences for forest productivity and biological diversity.

Fire can affect insects by killing them directly or by altering soil proper-
ties, overstory or understory vegetation, tree density, or other aspects of their
habitat (93, 97, 112). Many insects, particularly those that are associated with
boreal and northern ecosystems where fire is frequent, have evolved their own
strategies for surviving fire or recolonizing burned areas (29, 44, 112, 129).

Insect outbreaks can also dramatically affect the likelihood and severity of
forest fire. Feeding by bark beetles, defoliating Lepidoptera, and other groups
can alter the accumulation and distribution of fuels and vegetation. Insolation
at the soil surface may increase, affecting moisture levels of fuels such as dead
wood, fallen needles, or leaves and litter (97, 112). Tree mortality or dead tops
resulting from insect attack determine the availability of fuels on the soil surface
(e.g. dead wood and vegetation on the ground) and ladder fuels (i.e. vertically
distributed dead wood). These factors play a large role in determining the risk
of fire ignition, behavior, and intensity.

There is increasing recognition that fire suppression or control policies im-
plemented early in this century have substantially altered forest composition,
structure, and vulnerability to damaging insect pests (41, 53, 67, 134). As we
struggle with definitions of old-growth forests, forest health, and related issues,
it is imperative to realize that current forest conditions may differ substan-
tially from conditions prevalent before European settlement or fire suppression
(13, 27, 88, 91, 121). There is a need to evaluate associations between fire and
insects, how these disturbances interacted historically, and how changes that
have occurred in the past century have altered these interactions.

Interest in both reestablishing fire and using prescribed burning in many forest
ecosystems continues to grow. Use of fire to enhance wildlife habitat, prepare
sites for post-harvest planting, and accomplish other management objectives
is becoming more common in many areas of the United States and Canada
(20, 96, 157). Information on the response of insects to fire is needed to identify
where burning can be used appropriately for control of insect pests and to assess
impacts of fire on other guilds of insects and overall community diversity.

This review primarily addresses fire-insect interactions in boreal and north-
ern forest ecosystems of Canada, Alaska, and northern or high elevation regions
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of the continental United States. This restriction results from space limitations
and because most of our experience and expertise lies with northern or boreal
forest ecosystems. We recognize that fire-insect interactions also play signif-
icant roles in many other forest, prairie, and chaparral ecosystems that are not
addressed here.

Fire Behavior and Intensity
What are some of the different types or behaviors of fire that occur in forests?
Pyne et al (127) define wildfires as those ignited by lightning and other natural
causes or unintentionally by human actions. In contrast, prescribed natural fires
are allowed to burn in an approved area, although they are not ignited intention-
ally. Prescribed burning is the intentional ignition and knowledgeable applica-
tion of fire to a specific area to accomplish predetermined objectives (157).

Fires can also be distinguished by their behavior and intensity. Surface fires
burn through grass, shrubs, fallen limbs or logs, and needle and leaf litter on the
soil surface. Crown fires are invariably ignited by surface fires and burn through
the crowns of standing trees. Ground fires burn in subsurface organic fuels such
as duff layers under Arctic tundra or taiga or in organic soils of swamps and bogs.
Fire intensity (e.g. heat production per unit area) is largely determined by fuel
accumulation, distribution, and moisture content. Fuel includes wood such as
dead trees, logs, and slash (tree tops, branches, and other logging debris). Fine
fuels include dead needles, leaves, and litter. In areas with a high accumulation
of fuels, fires may burn hotter, move more slowly, and have more profound
ecological effects than in areas with low fuel accumulation. Distribution and
extent of fuels, wind, aspect (direction of slope orientation), topography, and
other factors interact and affect fire intensity and behavior, typically creating a
mosaic of post-fire conditions.

FIRE ECOLOGY Ecological effects of forest fires are highly variable, difficult to
predict, and influenced by fire behavior, vegetation type, topography, climate,
pre- and post-burn weather, and myriad other factors (82, 127, 157). Several
reviews of ecological effects of fire are available and provide information related
to specific factors or ecosystems (e.g. 5, 60, 62, 93, 127, 150, 157, 173).

Northern and Boreal Forest Ecosystems
Historically, fire was a major influence on the species composition, diversity,
and stability of many forest ecosystems in the northern United States and Canada
(61). Records of fire frequency and descriptions of fire intensity and size were
used to develop general classes of fire regimes for specific forest ecosystems
(30, 62, 127). Fire regimes ranged from areas with rare or absent fires (e.g.
coastal forests from the northwestern United States to Alaska) to regimes where
severe fires occurred relatively often (e.g. pine forests in the Lake States and
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many boreal forests). General characteristics of the ecosystems to which we
refer in this review are briefly summarized here.

CANADIAN BOREAL FOREST The Canadian boreal forest covers 300 million
hectares (ha) and runs in a continuous belt from Newfoundland north and west
to the Yukon Territory. These forests vary according to climate, landform, and
geology. Most forests have a history of repeated episodic disturbances from fire,
insects, wind, pathogens, and timber harvest. These sources of variability have
resulted in a complex and continually changing mosaic of forest conditions and
successional development (58). Major tree species include spruce (Piceaspp.),
pine (Pinusspp.), balsam fir (Abies balsamea), western larch (Larix decidua),
tamarack (Larix laricina), paper birch (Betula papyrifera), and quaking aspen
(Populus tremuloides).

ALASKAN TAIGA AND COASTAL FOREST In Alaska, much of the northern boreal
forest, also called taiga, is open slow-growing spruce interspersed with occa-
sional dense well-developed forest stands and treeless bogs. Taiga forest extends
from the Brooks Range southward to the coastal forests, east to the Canadian
border, and west to a maritime tree line near the Bering Sea. Roughly 43 million
ha of the total area of 139 million ha is forested (60, 69, 150, 151). Major tree
species include white spruce (Picea glauca), black spruce (Picea mariana),
tamarack, paper birch, quaking aspen, and balsam poplar (Populus balsam-
ifera) (153). An additional 5 million ha of forested land occur in coastal Alaska
(69). Major tree species are Sitka spruce (Picea sitchensis), western hemlock
(Tsuga heterophylla), black cottonwood (Populus trichocarpa), Alaska cedar
(Chamaecyparis nootkatensis), and lodgepole pine (Pinus contorta) (152).

FORESTS IN THE PACIFIC NORTHWEST, INLAND WEST, AND NORTHERN ROCKIES

An estimated 20 million ha in the Pacific Northwest and Rocky Mountains
region is forested (21). Dominant vegetation reflects climatic and weather dif-
ferences across the region. Major tree species include Douglas fir (Pseudotsuga
menziesii), grand fir (Abies grandis), white fir (Abies concolor), noble fir (Abies
procera), Engelman spruce (Picea engelmanii), western hemlock, ponderosa
pine (Pinus ponderosa), lodgepole pine, western juniper (Juniperus occiden-
talis), western larch, and black cottonwood (21, 42).

LAKE STATES AND NORTHEASTERN FORESTS This region includes forested land
in the Lake States of Minnesota, Wisconsin, and Michigan and extending
eastward to New England and Maine. Forested land ranges from lowlands,
lakes, and bogs to rolling hills in the Lake States and includes the northern
Appalachian Mountains in the eastern part of the region. A diverse array of
hardwood species are found in this region, including beech (Fagus grandifolia),
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paper birch, maples (Acerspp.), elms (Ulmusspp.), ash (Fraxinusspp.), oaks
(Quercusspp.), and quaking aspen. Conifers are also well represented and
include jack pine (Pinus banksiana), red pine (Pinus resinosa), eastern white
pine (Pinus strobus), eastern hemlock (Tsuga canadensis), black spruce, white
spruce, tamarack, balsam fir, white cedar (Thuja occidentalis), and eastern red
cedar (Juniperis virginiana) (43, 126).

USE OF FIRE FOR CONTROL OF INSECT PESTS

Fire has long been used in agricultural and range systems to directly reduce
populations of damaging insects or to alter habitat availability or quality, thereby
indirectly reducing pest insect populations. In 1971, Komarek (80) reviewed
many of these studies but noted the general lack of investigation regarding
controlled burning to regulate forest insects.

At least two factors appear to consistently contribute to the successful appli-
cation of fire for insect control in forest ecosystems. First, if fire is used to incin-
erate insects directly, the insects must be in a vulnerable stage and location at the
time of burning (16, 20, 38, 39, 110). Second, Miller (110) noted that fire was a
significant evolutionary or ecological force in most ecosystems where burning
for insect control was attempted. He also pointed out that burning must not result
in unacceptable damage to residual vegetation. Success of insect control efforts
is also affected by heat intensity, fire spread rate, and coverage, all of which
can be affected by prescribed burning techniques (110). Finally, appropriate
burning weather must occur during the insects’ vulnerable stage, a requirement
that could limit the usefulness of this management tool in some cases (22, 109).

Burning has perhaps been used most successfully to control cone or seed-in-
festing insects. Miller (109) evaluated prescribed burning in northern Minnesota
for control ofConopthorus resinosae, a cone-destroying insect that overwinters
on the ground inside fallen shoot tips. Burning caused high beetle mortality
and significantly reduced cone mortality fromC. resinosae.Prescribed burning
was a cost-effective control for a related species,Conopthorus coniperda,in a
white pine seed orchard (156). Burning was also identified as a means to reduce
damage by the acorn weevil (Conotrachelus posticatus) in red oak stands (174)
and to control seed-infesting insects in ponderosa pine stands (71).

Prescribed burning was expected to substantially reduce populations of pan-
dora moth (Coloradio pandora pandora), a native defoliator of ponderosa pine
that spends about 14 months as a pupa on the forest floor (108). However, ef-
forts to control pandora moth with prescribed burning met with limited success
in stands where litter distribution was patchy (138, 139). Pandora moth larvae
appeared to select pupation sites in open-canopy areas of stands, where fuel
loads were relatively low (108). Pupae were less common where there was a
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deep accumulation of litter, even though exposure to natural enemies or extreme
temperatures was presumably lower in these areas. Selection of pupation sites
in open areas may represent an adaptation to frequent low-intensity fire that
typified pre-European ponderosa pine forests (27, 108).

Pear thrips (Taeniothrips inconsequens) damage buds of sugar maple in north-
eastern states (78) and overwinter in the upper 5–10 cm of the forest floor. Emer-
gence of adults in spring is largely determined by soil temperature and must
coincide with bud burst of sugar maple trees in the area (79). Both spring and
fall burns reduced numbers of emerging thrips. Fall burns hastened adult emer-
gence the following spring, potentially disrupting phenological synchronicity
with maple bud burst (22). Reduced thrips populations following fire may have
resulted from direct incineration, elevated bacteria or fungal populations affect-
ing thrips, or fire-induced changes in soil moisture, temperature, or chemistry
(4, 22).

Brose & McCormick (22) noted, however, that the long-term consequences
of introducing fire into sugar maple forests were unknown. Large-scale wild-
fires in northern hardwood forests are rare, and these sugar maple–dominated
ecosystems were once described as “asbestos forests” (14, 19). Simmons et al
(140) used prescribed burning to successfully control maple leaf cutter (Para-
clemensia acerifoliella) and reported that there was no evidence of damage to
large sugar maple trees in the stand. Burning may be appropriate in a “sugar
bush” (stand of large trees managed for syrup production) situation where pro-
tection of mature trees is more important than survival of seedlings.

Burning has also been used successfully to reduce populations of potentially
damaging bark beetles (Coleoptera: Scolytidae) and wood-borers. In western
Canada, prescribed fire destroyed overwinteringDendroctonus rufipennisin
slash (e.g. branches, tops, and logging debris) and stumps following harvests
in spruce stands (137). Prescribed burning soon after harvest simultaneously
reduced wildfire hazard and controlled populations ofIps pini (141) andDen-
droctonus ponderosaein stands of ponderosa pine (136, 170) and lodgepole
pine (144). Mitchell & Martin (113) identified possible uses of fire to control
damage by several western bark beetle species. Dahl (28) reported that pre-
scribed fire killed larvae of the wood-boringMonochamusspp. (Coleoptera:
Cerambycidae) in lodgepole pine logs in Canada. McRae (105) suggested that
fire could be used to eliminate favorable winter habitat of various insect pests
in Canada.

FIRE, INSECTS, AND SUCCESSION

Although major disturbances such as fire or insect outbreaks may appear to
be independent events, they are often causally related. Spatial or temporal
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patterns resulting from disturbance may reflect synergism among disturbance
agents (54) that act within limits imposed by physical characteristics of the
landscape and ecological processes. Such interactions certainly occur in many
northern and boreal forest ecosystems. Accumulation of fuels following insect
outbreaks may determine extent and intensity of subsequent fire (145), or fire
may predispose trees to subsequent attack by insects. Aber & Melillo (1:252)
noted that disturbance by fire, insects, or other agents “is an intrinsic and nec-
essary part of the function of most terrestrial ecosystems—a mechanism for
reversing declining rates of nutrient cycling or relieving stand stagnation.”

Episodic outbreaks of major defoliators in forests in the Rocky Mountains
and Pacific Northwest may have served a similar and complementary role to
that of surface fires in directing succession (67, 169). Western spruce budworm
(Choristoneura occidentalis) and Douglas-fir tussock moth (Orygia pseudot-
sugata) feed on late successional Douglas fir and true firs, but not on seral
pine species. Historically, both low-intensity outbreaks of defoliators and
surface fires probably kept fuel accumulations low and prevented, or at least
delayed, catastrophic stand-replacing outbreaks or fire (148). Evidence sug-
gests that recent outbreaks of western spruce budworm and Douglas-fir bee-
tle (Dendroctonus pseudotsugae) in Colorado effectively slowed the rate that
Douglas fir replaced seral pines, taking a role analogous to that of frequent
surface fires (55).

A series of studies near Lake Duparquet, Quebec, evaluated effects of spruce
budworm (Choristoneura fumiferana) outbreaks on the dynamics and growth
of balsam fir stands (114). In regions where fire cycles exceeded 200 years,
spruce budworm outbreaks interrupted succession towards coniferous domi-
nance, shifting sites back to earlier seral mixed deciduous forests (17). Gaps
in the canopy of mature fir stands created by spruce budworm (123) resulted in
soil litter accumulation and nutrient contents similar to younger stands. These
gaps were associated with greater abundance of pioneer plant species and higher
diversity of understory vegetation (32).

Insect outbreaks that are followed by fire can also effectively disrupt or redi-
rect succession in forest systems. For example, interactions of mountain pine
beetle (D. ponderosae), lodgepole pine, and fire largely determine composition
of subsequent stands. Outbreaks of mountain pine beetle in senescing lodge-
pole pine stands result in large fuel buildups (146). Frequently, outbreaks are
followed by intense wildfire that opens serotinous lodgepole pine cones, elim-
inates overstory vegetation, and exposes mineral soil. This situation returns
the site to a vigorous young stand of lodgepole pine and ensures the continued
role of mountain pine beetle (11). However, when no fire occurs after an out-
break, lodgepole may be replaced by ponderosa pine at low elevation sites or
by Douglas fir at high elevation sites (4, 112).
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In a similar relationship, jack pine budworm (Choristoneura pinus pinus) and
fire are integral elements in the dynamics of boreal jack pine forest. Jack pine
stands generally sustain a jack pine budworm outbreak at roughly 6- to 10-year
intervals (155). In the absence of fire, seral shade-intolerant jack pine would
likely be replaced by more shade-tolerant species (118). However, budworm
defoliation typically results in dead dry needles cast off by larvae, some tree
mortality, and “top-killed” trees, especially in overmature stands (102, 118).
These conditions promote ground fires, which often become crown fires if jack
pine canopies are contiguous (118). Fire opens serotinous cones and exposes a
mineral seedbed, and a young, often dense, jack pine stand again occupies the
site.

Fires Predispose Trees to Insect Attack
Studies of forest dynamics have demonstrated the importance of fire, insect
outbreaks, and other disturbances such as windthrow in northern forest ecosys-
tems (8, 9, 37, 41, 63, 64, 75, 113, 132). Fire can predispose surviving trees to
attack by insects, particularly by phloem-boring bark beetles or wood-borers.

For example, western pine beetle (Dendroctonus brevicomis) preferentially
attacks old thick-barked ponderosa pine. But, because most old-growth pon-
derosa pine has been harvested, outbreaks ofD. brevicomisnow occur most
frequently after wildfire (113). Trees scorched or wounded by fire are weak-
ened and are less resistant to bark beetle attack. Beetle-caused tree mortality
was found to be positively related to the percentage of crown scorched during
a fire (95, 107). In many northern forest regions, wildfire has been followed
by outbreaks of bark beetle species such asD. ponderosae(8, 9, 37, 47–49,
51, 52, 113, 124, 132),D. pseudotsugae(10, 46, 55, 77),D. rufipennis(10, 132,
162), andIpsspp. (10, 52, 160).

Species of buprestid and cerambycid beetles and other wood-boring insects
frequently occupy recently burned roots and stems of conifers in western Canada
and Alaska. Charred and uncharred areas of conifers have reportedly been in-
fested with species ofMonochamus(25, 28, 35, 36, 50, 113, 125, 130, 133, 149,
162, 165) andMelanophila(10, 35, 36, 86, 125, 162, 165, 167, 168). Wood-bor-
ers such asMelanophilaspp. possess infrared receptors on their legs that enable
the insects to orient directly to radiant heat from a fire (33, 34). Evans (36) esti-
mated thatMelanophilabeetles could detect a glowing 20-ha fire at 5 km and a
blazing fire at even greater distances. Many cerambycids, such asMonochamus
beetles, are usually associated with trees that are injured, windthrown, or bro-
ken by snow and ice. However, severalMonochamusbeetles can orient to the
smoke plume emitted by fires. They may infest partially burned conifers im-
mediately after a fire, sometimes even while the burned trees are still smoking
(50, 125, 130, 133, 168). Other species of insects that inhabit fire-killed trees
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are horntails (Hymenoptera: Siricidae) (115), hardwood borers in northeastern
hardwood forests (143), and cone borers of the genusErnobius in cones of
burned black spruce (166).

Fire and Quality of Host Plants
In addition to altering the abundance and spatial-temporal continuity of pre-
ferred host species, fire can also affect nutrient cycling and availability (e.g.
4, 59, 94). These effects, in turn, may consequently determine the quality of
trees as hosts for plant-feeding insects (14, 135).

McCullough & Kulman (100) studied stands of young jack pine trees that
regenerated following wildfire and similarly aged trees on nearby sites that
regenerated after harvesting. Trees on the burned areas had lower foliar nitrogen
levels and produced fewer pollen cones than trees on the unburned sites. Pollen
cone production is associated with greater survival of early instars of jack pine
budworm (C. pinus pinus) larvae (119). Caging experiments demonstrated that
larval survival was related to foliar nitrogen concentration (100, 101). These
data suggest that even when species composition does not change, ecological
effects of fire may be long-lasting and affect susceptibility of stands to insect
damage. Jakubas et al (70) reported that insects and elk preferentially fed on
lodgepole pine trees with burned bark in Yellowstone National Park. They
attributed this preference to higher protein levels and lower concentrations of
phenolics, monoterpenes, and resin acids in the burned bark.

FIRE SUPPRESSION AND DYNAMICS OF
INSECT OUTBREAKS

Compelling evidence suggests that efforts to exclude or suppress fire in the
United States and areas of Canada, sometimes in combination with timber
harvesting, have altered the susceptibility of many forests to insect outbreaks
or damage. These changes resulted largely from a shift in fire management
policy that occurred around 1910 in the United States and much of Canada.
Forest managers were widely encouraged to suppress and control forest fires
where possible, and their enthusiastic efforts were remarkably successful (127).
This emphasis on forest fire suppression arose from a complex interaction of
social, political, and scientific issues around the turn of the century (127). Fire
suppression activities were well organized by the 1930s, and by mid-century,
nearly all wildfires of low and medium intensity were extinguished (2, 73).

By the mid-1980s, successful application of fire suppression policies had
dramatically altered fire regimes in many forested areas of the United States
and parts of Canada. For example, McCune (103), using tree-ring analysis,
concluded that fire frequency, size, type, and origin changed radically in western
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Montana. As a result of fire suppression activities, fire cycles increased from
55–70 years before 1911 to 7500 years after 1911. Data from Minnesota
showed similar drastic increases, with a pre-1910 fire cycle of ca 47 years
increasing to a fire cycle of 2000 years (60, 103). Lynham & Stocks (92)
reported that fire periodicity of 60–100 years occurred in the boreal forest of
east-central Canada before European settlement. Fire suppression since 1900
has increased the fire periodicity to 500–1000 years in this region. Blais (18)
also noted that immense areas in the boreal and transition zone of eastern
Canada burned annually up until 1920, when fire suppression policies were
instituted. Of course, in some northern forest sites there has been little change
in fire cycles because of naturally long fire intervals (131) or weather patterns
or inaccessible terrain that surmounted fire suppression efforts (14, 72).

Structure of forest stands has changed remarkably in many northern forests
where fire frequency has been drastically reduced. For example, in some pon-
derosa pine forests, average tree densities have increased from 9 trees per ha in
presettlement times to more than 300 trees per ha today (27). These changes
are also associated with increased canopy closure and more accumulation and
continuity of vertical and surface fuels (97). Species and landscape diversity
in Pacific Northwest forests have also decreased (3, 64, 98, 117). Increased
amounts of litter, coarse woody debris, and altered species composition were
associated with fire suppression in northwestern Minnesota (26).

These striking changes in fire regimes appear to have profoundly altered dy-
namics of important native forest defoliators such as western spruce budworm
(C. occidentalis). Major patterns emerge upon review of dendrochronology
studies conducted in several western states. Since fire suppression began in
1910, there has been a notable increase in abundance and spatial continuity of
tree species preferred by western spruce budworm such as Douglas fir, white
fir, and spruces (12, 54, 55, 103, 147). These species are more shade tolerant
than seral ponderosa pine, a non-host of the budworm that dominated these
areas when frequent surface fires occurred. Selective logging of pine likely ex-
acerbated this situation in some areas (55). Fire suppression has also increased
tree density, and stands are more likely to be multi-layered than even-aged.
Mortality of dispersing budworm larvae is lower in these stands, and young
or low-vigor trees typically sustain high defoliation and mortality during out-
breaks.

Associated with these changes in forest composition and structure are con-
sistent increases in synchronicity and duration of western spruce budworm
outbreaks (12, 24, 40, 54, 55, 103, 147, 148). Tree mortality and overall inten-
sity of outbreaks has also increased in this century. Swetnam et al (148) ob-
served that it was unlikely that tree mortality rates of 80%, recorded during the
most recent budworm outbreak, could have been sustained historically.
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Analysis of Douglas-fir tussock moth (O. pseudotsugata) outbreaks reveals
similar patterns. At high elevations, a dynamic tension exists between Douglas
fir/true firs and ponderosa pine. When fire regularly occurred, sites were likely
to be occupied by thrifty stands of ponderosa pine (56). After fire control was
initiated, seral ponderosa pine stands shifted to climax stands of shade-tolerant
Douglas fir and true firs, the favored hosts of tussock moth (113, 169, 172).
Williams (171) estimated that periodic prescribed burning in these sites would
have resulted in a 53% decreased risk of tussock moth outbreaks. Other studies
similarly reported that tussock moth outbreaks were more common and severe
in drier stands originally occupied by ponderosa pine than in sites with higher
moisture or nutrient levels that were historically dominated by spruce fir (112).

Fire suppression also appears to affect spruce budworm (C. fumiferana) dy-
namics in central and eastern Canada and the northeastern United States. Spruce
budworm is the primary defoliator of balsam fir and white spruce, and outbreaks
are viewed as periodic natural occurrences in this ecosystem (14, 18, 122). Since
fire suppression was initiated in 1920, spruce budworm outbreaks in eastern
Canada have occurred at shorter intervals, are more widespread, and result in
more mortality, especially of white spruce, than before 1920 (18, 104). This rise
in outbreak frequency, area, and intensity was attributed to several factors, in-
cluding selective logging of white pine and insecticide applications that perpet-
uated development of vulnerable fir or spruce-fir forests (18). At the same time,
fire suppression reduced abundance of pioneer species, such as aspen, birch,
jack pine, and black spruce, that previously formed a mosaic and interrupted
continuity of balsam fir–spruce stands. Blais (18) also noted that in northwest-
ern Ontario, where relatively little fire suppression or logging occurred during
this century, frequency of spruce budworm outbreaks had not changed.

Damage by other guilds of insects also has increased as a result of fire sup-
pression. Frequent fires in dry areas of the Pacific Northwest formerly pre-
vented invasion of fire-resistant ponderosa pine stands by thin-barked lodgepole
pine. Although mountain pine beetle (D. ponderosae) prefers lodgepole pine,
it will frequently attack ponderosa pine when it grows in mixed or adjacent
stands. Since fire suppression was implemented, mixed stands have become
more common and risk of ponderosa pine mortality from mountain pine beetle
has increased (112).

In western Oregon, fire exclusion, combined with logging practices, has
resulted in replacement of seral Douglas fir at low elevations by the more shade-
tolerant Pacific silver fir (Abies amabilis). This situation has led to increased
damage to fir by balsam woolly adelgid (Chermes piceae) (111, 112). Notably,
as early as 1958, Frost (45) advocated prescribed fire in balsam fir stands to alter
overstory composition as a means of indirectly reducing damage from balsam
woolly adelgid.
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FIRE AND INSECT DIVERSITY

Information on the effects of fire on abundance and diversity of insects in
northern forests is needed to formulate management strategies to sustain biodi-
versity and long-term productivity of these ecosystems (161). In many north-
ern and boreal forests, disturbances such as fire or insect outbreaks maintain
mosaics of forests varying in species composition, age class, and structure
(2, 15, 17, 27, 53, 57, 60, 74, 76, 116, 134, 153). Periodic disturbance was noted
as an essential factor in perpetuating long-term stability and species diversity
across landscapes (14, 61, 89).

Several studies have examined effects of fire on insect abundance and di-
versity of insect taxa or feeding guilds. Werner (159) examined diversity of
forest-dwelling arthropods in six vegetation types in interior Alaska. Four tax-
onomic classes representing 94 arthropod families were collected from herb,
shrub, and tree levels in undisturbed stands before a prescribed burn. Only
15% of these arthropods were present immediately after the fire. In Wisconsin,
abundance and diversity of insect feeding guilds were surveyed using pitfall
trapping and sweepnetting for two summers in young jack pine stands that
had regenerated after either wildfire or clearcut harvesting (99). In the burned
areas, jack pine regenerated densely, limiting understory vegetation diversity.
Predatory, sap-feeding, and foliage-feeding insects were more abundant on the
clearcut sites, while ants were more abundant on the burned sites.

Effects of fire on species diversity of bark beetle, wood-borer, and related
groups were evaluated in studies in Alaska. Species diversity of scolytids as-
sociated with white spruce stands were monitored in three sites with latitudes
ranging from 60◦37′ to 68◦15′. Fire cycles ranged from 100–200 years, and
20–27 species of scolytids were collected at each site (163). Both fire frequency
and scolytid species diversity were related to cumulative seasonal degree days
in the three areas. Another project evaluated long-term effects of fire in Alaskan
white spruce stands on species diversity of bark beetles and wood-boring bee-
tles; populations of scolytid, buprestid, and cerambycid beetles were monitored
at 1-, 5-, and 10-year intervals after burning and timber harvest on floodplain and
upland white spruce sites (162). Fire removed most of the host trees normally
inhabited by scolytid and cerambycid beetles. However, the scorched trees pro-
vided habitat for the buprestidsMelanophila accuminataandBuprestis nuttalli
the first year after burning. Partially burned spruce at the perimeter of severely
burned areas provided habitat for a diverse assemblage of beetles, including six
cerambycid species and eight scolytid species. Beetle populations and diversity
remained high for up to 5 years after the fire, then decreased as hardwood stands
replaced spruce in the burned areas (162).

Despite the potential importance of carabids as indicator species, preda-
tors, or saprophages (85, 120, 128), relatively few studies have evaluated the
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response of ground beetles (Coleoptera: Carabidae) to fire in northern forests.
Response of carabid beetles to fire or other disturbances may be determined
by plant species composition, vertical distribution of plants within communi-
ties, and habitat complexity (161, 164). Leibherr & Mahar (84) theorized that
carabid beetle abundance and diversity should be higher in more successionally
advanced and structurally diverse forest stands. However, if interspecific com-
petition determines the structure of carabid beetle assemblages (83, 87), then
beetle diversity should decrease in the absence of fire or other disturbance as
competitively superior species exclude inferior competitors (31, 142). Size of
the pool of potential colonists may also govern carabid response to fire or other
disturbance (66).

Results of studies examining fire effects on abundance of carabid beetles are
equivocal. Holliday (66) trapped lower numbers and fewer species of carabids
on burned sites compared to unburned sites in boreal black spruce and trembling
aspen stands in Manitoba. Reduced abundance of carabids following fire was
also recorded in Minnesota jack pine stands (4). In contrast, more coleopterans
were observed on burned plots sampled both 1 and 2 years after wildfire in
Alaskan black spruce stands than on unburned plots (16). Carabid abundance
was also significantly greater in plots burned biannually than in unburned plots
in mixed pine stands in Michigan (D Neumann, unpublished data).

Research conducted in northern and boreal forests suggests that fire has lit-
tle effect on carabid species diversity, but species composition may change.
Holliday (66) observed no difference in species evenness or richness between
burned and unburned spruce stands when carabids were sampled over a 10-year
period following wildfire. He attributed this lack of change in diversity to
rapid changes in plant taxonomic and spatial diversity. However, some carabid
species are attracted to fires in forests; for example, Evans (35) identified three
pyrophilous species belonging to the genusAgonumthat do so. Holliday (65)
observed two of these species,A. obsoletumandA. quadripunctatum, follow-
ing wildfire in boreal spruce stands and classified a third,Harpalus laticeps,as
pyrophilous after observing it exclusively on burned sites. Length of site occu-
pation by pyrophilous species varied from a few weeks to several years (65).

Spider communities were sampled in recently burned and undisturbed black
spruce bogs and jack pine ridges in Manitoba (74). Some pioneer spider species
traveled up to 30 m to colonize burned areas. Other species that required phy-
tophagous prey, high amounts of litter, abundant vegetation, or high humidity
were found only on undisturbed sites. Several species were eurytrophic and
apparently not affected by the disturbance. Koponen (81) listed spider species
found mainly in burned areas in Quebec; response of most species to disturbance
was similar to that observed in Manitoba (7).

Fire may also affect soil organisms involved in decomposition and nutrient
cycling, particularly those in the upper humus or litter layers not protected by
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insulating effects of soil (90, 113). High-intensity wildfires reduced popula-
tions of Collembola in pine stands in California (158) and in pine barrens in
New Jersey (23). Density of Acari and Collembola were reduced by logging
and further reduced by slash burning in stands dominated by cedar and hemlock
in British Columbia (154). However, neither logging nor burning caused total
mortality of any group, and populations were able to rapidly reinvade disturbed
areas. Lucarotti (90) identified changes in mite, Collembola, and other meso-
faunal groups after a controlled burn in a subarctic lichen woodland in Quebec.
Burning reduced the mite population by 50% and altered mite and collem-
bolan species composition; however, it did not reduce Collembola abundance.
Studies in other ecosystems have generally reported declines in Collembolan
abundance following fire, although duration of the population reduction varied
(7, 39, 68, 106). Species diversity may increase, however, in sites burned peri-
odically but not annually (106). Prescribed fire in Minnesota jack pine stands
caused an immediate reduction in soil microbial numbers and activity, followed
by a sharp increase after rain fell later in the year (6). In the third year after
burning, most microbial populations approached pre-burn levels.

SUMMARY

Fire and insects are intrinsic and often synergistic components of many northern
and boreal forest ecosystems in North America. Interactions of fire and insects
can delay or redirect succession, affect nutrient cycling, and alter species com-
position and diversity. Episodic outbreaks of defoliating species can affect
the likelihood of fire ignition, fire behavior and intensity, and resulting post-fire
species composition. In some cases, insect outbreaks can mirror or complement
ecological effects of fires. Fire can predispose trees to attack by bark beetles
or wood-boring insects, may influence abundance or species diversity of many
insect groups, and may affect quality of foliage for plant-feeding insects. In
some situations, prescribed burning can successfully control insect pests that
spend part of their life cycle in a vulnerable stage on the ground. Fire sup-
pression efforts initiated around the turn of the century have profoundly altered
species composition and structure of many northern forests. These changes
are associated with greater vulnerability of stands to damaging insect pests and
often dramatic increases in outbreak intensity and spatial-temporal synchronic-
ity. An increased understanding of the ecology of fire-insect interactions is
needed as we identify strategies to manage forest pests, enhance forest health,
and maintain biological diversity in northern forest ecosystems.

Visit the Annual Reviews home pageat
http://www.AnnualReviews.org.
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