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Abstract—This paper describes the application of two recently
developed metaheuristic algorithms known as fire fly algorithm (FFA)
and artificial bees colony (ABC) optimization for the design of linear
array of isotropic sources. We present two examples: one for broad side
arrays and the other for steerable linear arrays. Three instances are
presented under each category consisting of different numbers of array
elements and array pattern directions. The main objective of the work
is to compute the radiation pattern with minimum side lobe level (SLL)
for specified half power beam width (HPBW) and first null beam width
(FNBW). HPBW and FNBW of a uniformly excited antenna array
with similar size and main beam directions are chosen as the beam
width constraints in each case. Algorithms are applied to determine
the non-uniform excitation applied to each element. The effectiveness
of the proposed algorithms for optimization of antenna problems
is examined by all six sets of antenna configurations. Simulation
results obtained in each case using both the algorithms are compared
in a statistically significant way. Obtained results using fire fly
algorithm shows better performances than that of artificial bees colony
optimization technique provided that the same number of function
evaluations has been considered for both the algorithms.

1. INTRODUCTION

To meet the ever-expanding demand of wireless mobile communication,
different techniques are explored to maximize the spectral efficiency of
the mobile network. The performances of the broadcasting system can
be improved by controlling different radiation characteristics as pattern
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main beam width, minimum achievable side lobe level, directivity,
etc. However, there is a tradeoff among these parameters [1, 2].
Radiation patterns having minimal beam width and side lobe level
fulfill the high gain demand of the wireless communication systems
as well as reduce the inter-channel interferences. Furthermore the
use of steerable linear array improves mobile network capacity and
quality with better efficiency. A steerable linear array is an antenna
array, in which the phases of the signals arriving to the antenna
elements are controlled progressively, so that the direction of the
radiation pattern can be steered accordingly [3–5]. Patterns with
minimal beam width and side lobe level are steered toward intended
user direction in order to reduce the interferences from other users
and thereby provide better mobile coverage to the network. There
exist different stochastic techniques to solve these constrained multi-
objective antenna-designing problems [6]. Simulated annealing [7, 8],
genetic algorithm [9], ant colony optimization [10], particle swarm
optimization [11–13], invasive weed optimization [14], Taguchi’s
optimization method [15, 16], differential evolution [17–19] are some of
the well-known algorithms used to model and solve different antenna
design problems.

Numerous new algorithms, which are successfully used to solve
complex computational problems in real world, come out of this
growing interest in optimization algorithms.

In this paper, we applied two relatively new optimization
algorithms, namely, fire fly algorithm and artificial bees colony
algorithm [20–24] to design the linear array of isotropic sources.
Algorithms are used to approximate the element excitation in order to
minimize the side lobe level where HPBW and FNBW of the pattern
are kept within specified constraints. Two examples are considered:
in the first, pattern maxima are directed toward 90◦, and in the
second, patterns are steered to different scan angles from broadside.
Six numerical instantiations of the design problem have been used to
illustrate the application of the FFA and ABC. We incorporate an
adaptive strategy for tuning the algorithm parameter α with iterations
in FFA for enhancing the algorithm performances. Simulation results
obtained using both the algorithms are compared. Detailed analysis of
the optimal solutions obtained in each case reflects the superiority of
FFA over ABC.

2. PROBLEM FORMULATION

A linear array of N isotropic elements positioned along z-axis and
separated by a distance d is presented in Figure 1. The free space far
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Figure 1. Linear array of isotropic sources along z-axis.

field pattern in vertical plane can be expressed using Equation (1).

F (θ) =
N∑

n=1

In exp(j(n− 1)(kd cos θ + β)) (1)

where In is the element excitation; k = 2π/λ = wave number; d =
inter-element spacing = 0.5λ; λ = wave length; θ = polar angle
measured from z-axis; β is the progressive phase; and N is the total
number of elements in the array.

In broadside case, pattern maxima is directed toward θd = 90◦,
i.e., β = 0◦. However, in scanned array, pattern maxima is oriented at
an angle θd, so the progressive phase difference β between the elements
is −kd cos θd [25].

Normalized power pattern in dB can be expressed as follows.

P (θ) = 10 log10

[ |F (θ)|
|F (θ)|max

]2

= 20 log10

[ |F (θ)|
|F (θ)|max

]
(2)

The problem is to optimize the weights of the individual array elements
placed 0.5λ apart for the minimization of SLL while HPBW and
FNBW both are kept within some specified constraints. We consider
three arrays consisting 20, 26 and 30 elements. In the first example,
amplitude weight of individual element is controlled to generate
patterns in broadside. The phase of each element is kept at zero. In the
second example, individual amplitude weight is controlled for having
maxima at 30◦ for 20 elements array, 45◦ for 26 elements array, and
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60◦ for 30 elements array. Progressive phase differences between the
elements steer the beam toward the desired direction. Thus combining
all the objectives we formulate the cost function as

Cost =
{

max(SLL) if X <= Xu and Y <= Yu

104 otherwise (3)

where X and Y are the half power and first null beam width of the
pattern produced by the array considered for optimization. Xu and
Yu are the corresponding values obtained with the uniformly excited
array of similar size and same main beam direction.

3. OVERVIEW OF FIRE FLY ALGORITHM

A branch of nature inspired algorithms, which are known as swarm
intelligence, is focused on insect behavior in order to develop some
meta-heuristics, which can mimic insect’s problem solution abilities.
Ant colony optimization, particle swarm optimization, invasive weed
optimization etc. are some of the well-known algorithms that mimic
insect behavior in problem modeling and solution. Fire fly algorithm
is a relatively new member of swarm intelligence family [20, 21].

The presented technique is inspired by social behavior of fireflies
and the phenomenon of bioluminescent communication. Fireflies are
able to produce light due to the presence of photogenic organs situated
very close to their body surface. Bioluminescent signal is shown to
attract the attention of the partners as a part of their courtship rituals.
Brighter flies are capable of attracting more attention. This swarm
behavior is successfully employed in constrained optimization problem.
We take the analogy of firefly and perceive each possible solution of
the optimization problems as firefly. The intensity of the light signal
emitted from each fly determines its ability to explore an efficient new
solution.
I. Initialize Swarm: The algorithm uses swarm of N d dimensional
parameter vectors as a population for each generation. The initial
population xi (i = 1, 2, . . . , N) is chosen randomly within the specified
search space bounded by a maxima and minima ub and lb, respectively.

xi(t) = lb + (ub− lb)rand1i (1, d) (4)

rand1 (1, d) is an 1-by d vector with uniformly distributed random
numbers between 0 and 1.
II. Strategy for Searching New Swarms: Each parameter vector
xi is characterized by its attractiveness and the light intensity emitted
by itself. xi explores new population in its neighborhood within the
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specified search space. Attractiveness of xi is determined using a
monotonically decreasing function described by

β(t) = (β0 − βmin)e−γrj(t)
2
+ βmin (5)

where β0 is the maximum attractiveness (a predetermined constant); γ
is the absorption coefficient; and rj(t) is the distances between the i-th
and an arbitrarily chosen j-th parameter vector where j ∈ {1, 2, . . . , N}
and j 6= i. Light intensity Ii of any vector is proportional to the inverse
of the cost function value produced by it.

Ii(t) = 1/f(xi(t)) (6)
New solution is generated by the attractiveness of the swarm member
with higher intensity, i.e., i-th solution changes its position if there
exists any xj such that Ij > Ii where j ∈ {1, 2, . . . , N} and j 6= i. New
population is produced adding two weighted vectors, xi and xj , with
a random step size ui.

xi(t + 1) = (1− β)xi(t) + βxj(t) + ui (7)
If no brighter solution is found then FFA creates new solution
perturbing the best found solution by a random step size ui.

xi(t + 1) = xi(t) + ui (8)
where

ui = α(rand2i(1, d)− 0.5){abs(ub− lb)} (9)

Random step size ui has a lower and upper bounds and depends on the
algorithm parameter α. According to Equation (9) the absolute value
of the range of the dynamic search space adds an envelope to ui. It
prevents the step size exceeding the specified solution space. Here
rand2 (1, d) is an 1-by-d vector with uniformly distributed random
numbers between 0 and 1.

In standard fire fly algorithm the value of the control parameter α
is chosen as a real constant and α ∈ (0, 1). Here we use a modification
scheme for tuning the value of α in order to enhance the algorithm
performance. It is seen that α is used to perturb any solution from its
previous position. With the initial populations, we keep on exploring
new solutions with adequate population diversity. However, as the
algorithm approaches to its optima with iterations it is expected to
suffer lesser perturbation so that it may undergo a fine search within
a small neighborhood. Thus we need a balance between exploration
and exploitation to prevent premature convergence. This is achieved
by controlling the randomness of the solution vectors by tuning the
parameter α with iteration. Equation (10) presents a scheme that
ensures the nonlinear modification of α with iterations.

αi+1 = δ1/iαi (10)
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where δ = 5.6× 10−3 and i is the current iteration number.
Thus the algorithm makes use of synergic local searches. Each

member of the swarm takes into account the results obtained by other
swarm members as well as applies its own randomized move to explore
the problem space.
III. Selection: The new solution is compared with the present one
using greedy criterion. If the new solution yields lower fitness value
than the present one then it is selected for the next generation;
otherwise the older value is retained.

In this way, the steps are repeated until the maximum number of
iterations is reached, or a predefined optimization criterion satisfies.

4. OVERVIEW OF ARTIFICIAL BEES COLONY
ALGORITHM

Artificial Bee Colony (ABC) proposed by Karaboga et al. [22, 23] is
another swarm based metahuristic algorithm used to solve and model
different optimization problems [24].

ABC tries to model natural behavior of real honey bees in food
foraging [22]. The minimal model of forage selection that leads to
the emergence of collective intelligence of honey bee swarms consists
of two essential components: employed and unemployed foragers.
Employed bees are associated with a particular food source, which
they are currently exploiting. They carry the information about this
particular source and share this information with a certain probability
by waggle dance. Unemployed bees seek a food source to exploit.
There are two types of unemployed bees: scouts and onlookers. Scouts
search the environment for new food sources without any guidance.
Occasionally, the scouts discover rich, entirely unknown food sources.
On the other hand, onlookers observe the waggle dance and place
themselves accordingly on the food sources by using a probability based
selection process. As the nectar amount of a food source increases, the
probability value with which the food source is preferred by onlookers
increases. In the algorithm, the first half of the colony consists of
the employed bees, and the second half includes the onlookers. For
every food source, there is only one employed bee. Another issue that
is considered in the algorithm is that the employed bee whose food
source has been exhausted by the bees becomes a scout. In other
words, if a solution representing a food source is not improved by a
predetermined number of trials, then the food source is abandoned by
its employed bee, and the employed bee is converted to a scout. The
main steps of the algorithm are detailed below.
I. Initialization: ABC begins with a randomly initiated population of
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SN D dimensional real-valued parameter vectors. Each vector forms
a candidate solution to the multi-dimensional optimization problem.
We shall denote subsequent cycles in ABC by C = 0, 1, . . . , MCN .

Since the parameter vectors are likely to be changed over different
cycles, we may adopt the following notation for representing the i-th
vector of the population at the current generation:

xi,j = [xi,1, xi,2, . . . , xi,D]

The initial population should cover the entire search space as much as
possible by uniformly randomizing individuals within the search space
constrained by the prescribed minimum and maximum bounds

xj
i = xj

min + rand(0, 1)
(
xj

max − xj
min

)
(11)

where xj
min and xj

max are the lower and upper bound of the parameter
j and rand (0, 1) is a uniformly distributed random number between 0
and 1.
II. Exploiting New Solution: After initialization ABC exploits a
new vector vi,G, corresponding to each population member xi,G in the
current generation through Equation (12)

vij = xij + φij(xij − xkj) (12)

where k ∈ {1, 2, . . . , SN} and j ∈ {1, 2, . . . , D} are randomly chosen
indexes. Although k is determined randomly, it has to be different from
i. ϕi,j is a random number between −1 to 1. If the difference between
the parameters of the xi,j and xk,j decreases, the perturbation on the
position xi,j reduces. Thus, as the search approaches to the optimum
solution, the step length is adaptively reduced so that it may undergo
a fine search within a small neighborhood of the suspected optima. If
a parameter value produced by this operation exceeds its preset limit,
the parameter is reset to an acceptable value within that limit.
III. Selection: The next step of the algorithm calls for selection to
determine whether or not the new vector should become a member of
the next cycle C = C + 1.

The key sense of this selection is that the probability value pi

associated with the new solution vi,j is compared to that of the current
population xi,j using the greedy criterion. If vector vi,j yields a higher
pi value than that of xi,j , then vi,j is selected for the next generation;
otherwise, the old value xi,j is retained. Probability associated with
every solution is evaluated using the following expression (13)

pi =
fiti

SN∑
n=1

fitn

(13)
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where fiti is the fitness value of the solution i and calculated using
Equation (14)

fiti =
{

1
1+fi

Ji ≥ 0
1 + abs(fi) Ji < 0

(14)

where fi is the objective function value. Since designing problem is a
minimization problem, a lower objective function value corresponds to
higher fitness.

Table 1. Amplitude excitations obtained using FFA.

Category of the 

Array 
Current amplitude distribution 

1,  0.27533,  0.49337,  0.49491,  0.62565,   0.53222,  0.58971, 0.78975,  

0.6154,  0.81085,  0.46915,  0.61018,  0.81272,  0.59576,  0.4942,  0.39527,  

0.61523,  0.43186,  0.70456,1 

0.69883,   0.67672,  0.4343,  0.25208,  0.59818,  0.23402,  0.71888,  0.40806,  

0.72573,  0.40653,  0.56536,  0.46627,  0.52075,  0.76734,  0.58851,  0.5672,  

0.73249,  0.51647,  0.33335,  0.61611,  0.58636,  0.033828,  0.71809,  0.28593,  

0.7445,  0.88334 

0.99978,   0.55871,   0.61177,   0.10017,   0.4007,   0.89422,   0.16041,   

0.53909,   0.41372, 0.75962,   0.38097,   0.61658,   0.57319,   0.97661,   

0.71209,   0.39707,    0.38046,   0.69926, 0.66505,   0.65249,   0.40944,   

0.61641,   0.75027,   0.46374,   0.17428,   0.49829,   0.42106, 0.79832,   

0.52087,  0.92743 

 
0.98041,  0.76626,  0.36907,  0.55297,  0.90715,  0.20192,  0.51964,  0.84496,  

0.50948,  0.98057,  0.51426,  0.53871,  0.80273,  0.55406,  0.88082,  0.40378,  

0.33214,  0.46556,  0.50348,  0.94604 

1,  0.72429,  0.55905,  0.44837,  0.71979,  0.31947,  0.70758,  0.62037,  

0.53995,  0.86304,  0.67322,  0.71588,  0.83498,  0.77957,  0.42717,  0.79538,  

0.71365,  0.63019,  0.62672,  0.6301,  0.74732,  0.060126,  0.73871, 0.59844, 

0.77826, 0.9975 

0.99575, 0.68442, 0.62997, 0.049937, 0.17937, 0.73457, 0.48525,  0.61814,  

0.33365,  0.63189,  0.63643,  0.39343,  0.49183,  0.77247,  0.64547,  0.48407,  

0.73964,  0.74411,  0.52797,  0.45014,  0.82218,  0.52901,  0.45825,  0.41905,  

0.48686,  0.24166,  0.86684,  0.63618,  0.29691,  0.99934 

N = 20

θ = 90 o

N = 26

θ = 90 o

N = 30

θ = 90 o

N = 20

θ = 30 o

N = 26

θ = 45 o

N = 30

θ = 60 o
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5. SIMULATION RESULTS

Two examples of broad side and steerable linear arrays are presented
in order to illustrate the proposed technique. We consider six
instantiations with different numbers of array elements (N = 20, 26,
30). In the first example, all the three arrays with 20, 26, 30 elements
are optimized in broadside direction. In the second example, three
array configurations are optimized for different main lobe directions
(θd = 30◦ for N = 20, 45◦ for N = 26, 60◦ for N = 30).

Table 2. Amplitude excitations obtained using ABC.

Category of the 

Array
Current amplitude distribution 

0.98241, 0.5487, 0.33293, 0.50042, 0.53676, 0.59935, 0.36735, 0.66119, 

0.81346,  0.70536,  0.66457,  0.36531,  0.99167,  0.54632,  0.68836,  0.59763,  

0.39796,  0.5254,  0.73636,  0.88989

0.98985,  0.67187,  0.65793,  0.69976,  0.66963,  0.19943, 0.78815,  0.59953, 

0.6124,  0.98883,  0.69772,  0.7644,  0.95048,  0.76006,  0.5575,  0.84152, 

0.67148,  0.65134,  0.78077,  0.83281,  0.64491,  0.23598,  0.60915,  0.82725,  

0.81795,  0.99999

1,  0.55024,  0.54803,  0.37073,  0.38809,  0.69758,  0.14595,  0.66133,  0.318,  

0.76438,  0.40833,  0.50108,  0.62223,  0.96195,  0.65987,  0.45627,  0.36411,  

0.68257,  0.62436,  0.61087,  0.38545,  0.60515,  0.86564,  0.43131,  0.2224,  

0.39246,  0.29024,  0.79482,  0.49202,  0.90367

0.99019,  0.97498,  0.4316,  0.40012,  0.6937,  0.67015,  0.86845,  0.54775, 

0.98904,  0.55144,  0.84704,  0.93989,  0.61825,  0.64675,  0.82054,  0.42283,  

0.77915, 0.39712, 0.78957,  0.99533 

0.81896,  0.81102,  0.62887,  0.47964,  0.50314,  0.34313,  0.57283,  0.24977,  

0.85275, 0.757, 0.28683,  0.9754,  0.46025,  0.50043,  0.69194,  0.77689, 

0.34013, 0.42986, 0.6001, 0.49268, 0.7131,  0.36205,  0.34544,  0.089086, 

0.72293,  0.89501

0.99705,  0.67314,  0.63535,  0.19672,  0.19138,  0.75192,  0.48636,  0.61824,  

0.39223, 0.60121,  0.65837,  0.38652,  0.60241,  0.74725,  0.74974,  0.4252,  

0.83573,  0.64294,  0.59721,  0.48109,  0.83104,  0.57104,  0.44958,  0.43735,  

0.5144,  0.23821,  0.86101,  0.79141,  0.24175,  0.99392 

N = 20

θ = 90 o

N = 26

θ = 90 o

N = 30

θ = 90 o

N = 20

θ = 30 o

N = 26

θ = 45 o

N = 30

θ = 60 o
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FFA and ABC both are used to compute the non-uniform
excitation distribution applied to each element to minimize SLL
keeping the HPBW and FNBW within a specified value corresponding

Table 3. Results for Broadside array with unequal excitation and
unity excitation using FFA.

Design parameters

N = 20

Unequal

excitation

N = 20

Unity

excitation

N = 26

Unequal

excitation

Max SLL (dB) −15.57 −13.189 −15.84

HPBW (degree) 5.0 5.2 4.0

FNBW (degree) 11.4 11.4 8.8

Directivity 18.36 19.99 22.98

Design parameters

N = 26

Unity

excitation

N = 30

Unequal

excitation

N = 30

Unity

excitation

Max SLL (dB) −13.219 −16.02 −13.23

HPBW (degree) 4.0 3.4 3.4

FNBW (degree) 8.8 7.6 7.6

Directivity 25.99 25.92 29.99

Table 4. Results for broadside array with unequal excitation and
unity excitation using ABC.

Design parameters

N = 20

Unequal

excitation

N = 20

Unity

excitation

N = 26

Unequal

excitation

Max SLL (dB) −15.56 −13.189 −15.63

HPBW (degree) 5.0 5.2 4.0

FNBW (degree) 11.4 11.4 8.8

Directivity 18.32 19.99 24.3

Design parameters

N = 26

Unity

excitation

N = 30

Unequal

excitation

N = 30

Unity

excitation

Max SLL (dB) −13.219 −16 −13.23

HPBW (degree) 4.0 3.4 3.4

FNBW (degree) 8.8 7.6 7.6

Directivity 25.99 26.16 29.99
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Table 5. Results for scanned array with unequal excitation and unity
excitation using FFA.

Design parameters

N = 20,

θ = 30◦

Unequal

excitation

N = 20,

θ = 30◦

Unity

excitation

N = 26,

θ = 45◦

Unequal

excitation

Max SLL (dB) −15.59 −13.19 −15.61

HPBW (degree) 10.2 10.4 5.5

FNBW (degree) 25.0 25.0 12.5

Directivity 17.6 19.99 23.9

Design parameters

N = 26,

θ = 45◦

Unity

excitation

N = 30,

θ = 60◦

Unequal

excitation

N = 30,

θ = 60◦

Unity

excitation

Max SLL (dB) −13.21 −15.97 −13.23

HPBW (degree) 5.6 4.0 4.0

FNBW (degree) 12.5 8.8 8.8

Directivity 25.99 26.05 29.99

Table 6. Results for scanned array with unequal excitation and unity
excitation using ABC.

Design parameters

N = 20,

θ = 30◦

Unequal

excitation

N = 20,

θ = 30◦

Unity

excitation

N = 26,

θ = 45◦

Unequal

excitation

Max SLL (dB) −15.53 −13.19 −15.59

HPBW (degree) 10.2 10.4 5.5

FNBW (degree) 25.0 25.0 12.5

Directivity 18.48 19.99 22.53

Design parameters

N = 26,

θ = 45◦

Unity

excitation

N = 30,

θ = 60◦

Unequal

excitation

N = 30,

θ = 60◦

Unity

excitation

Max SLL (dB) −13.21 −15.8 −13.23

HPBW (degree) 5.6 4.0 4.0

FNBW (degree) 12.5 8.8 8.8

Directivity 25.99 26.43 29.99
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to a uniformly excited array of same size and main lobe direction. The
phase is kept at zero degree for broad side array. However, a progressive
phase difference (−kd cos θd) between the elements is used for scanning
the array.

The current amplitude used to excite the array elements for all
six instantiations using each algorithm are presented in Table 1 and
Table 2. We used normalized current amplitude distributions where
the maximum value of the current amplitude is set to 1.

Results obtained for six configurations with FFA and ABC are
tabulated in Table 3 and Table 4. Each array is analyzed with uniform
as well as non-uniform excitation distributions (optimized set of data
using FFA and ABC), and their performances are compared. It is seen
that optimized set of excitation distribution yields lower SLL values
than that of the corresponding array with unity excitation. However,
as the number of array elements increases the improvement of the SLL
performances under the constraints of HPBW and FNBW is not very
significant. It is also observed that beams steered at different directions
offer broader HPBW and FNBW compared to those of the broadside

Table 7. Results obtained using FFA and ABC.

Algorithms FFA ABC

N = 20

Average Cost function

Standard Deviation

P -value

−15.3935

0.1152

NA

−15.2211

0.1280

1.2800e-004

N = 26

Average Cost function

Standard Deviation

P -value

−15.6385

0.1125

NA

−15.2451

0.1356

3.3812e-007

N = 30

Average Cost function

Standard Deviation

P -value

−15.8035

0.1187

NA

−15.5201

0.2079

5.5132e-005

N = 20

at 30◦

Average Cost function

Standard Deviation

P -value

−15.3850

0.1332

NA

−15.1970

0.1247

7.7410e-005

N = 26

at 45◦

Average Cost function

Standard Deviation

P -value

−15.4370

0.1184

NA

−15.2645

0.1267

1.8744e-004

N = 30

at 60◦

Average Cost function

Standard Deviation

P -value

−15.8225

0.0686

NA

−15.6775

0.0769

3.4192e-006
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Figure 2. (a) Normalized Power Patterns with 20 elements broadside
array using FFA and ABC. (b) Convergence curves of 20 elements
broadside array using FFA and ABC.
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Figure 3. (a) Normalized Power Patterns with 26 elements broadside
array using FFA and ABC. (b) Convergence curves of 26 elements
broadside array using FFA and ABC.
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linear arrays. The dissimilarity reduces as the scan angle approaches
to 90◦. SLL performance too degrades slightly due to scanning. We
compute the directivity of all the array configurations with uniform
and non-uniform excitations. However, maximization of directivity is
not included in the optimization task.

For numerical experiments, the control parameters for FFA are set
as suggested by [20, 21]: The maximum and minimum attractiveness
β0 and βmin are set at 1 and 0.2, respectively. We use a time varying
algorithm parameter α with initial value 0.25. Absorption coefficient
γ is set at 1. The algorithm is run for 200 iterations. A swarm size
of 20 is used for the experiment where dynamic range of search space
is bounded within (0, 1). To accelerate the convergence, α is adapted
with iterations according to Equation (10).

The parameters for ABC are set following the guidelines provided
by [22–24]: The number of food sources which is equal to the number
of employed or onlooker bees (SN) is chosen as 20; the value of limit
is set to 25; and the maximum cycle number (MCN) used for the
optimization is 200.

In an attempt to make a fair comparison between FFA and ABC,
we use a similar number of function evaluations for both the cases
(20× 200 = 4000).

Table 7 compares the quality of the optimal solutions achieved
in terms of the mean and standard deviation of the best results for
20 independent run using FFA and ABC. As the distributions of the
best objective function values do not follow a normal distribution, the
Wilcoxon two-sided rank sum test [26–28] was performed to compare
the objective function values. Table 7 shows FFA produces smaller
mean cost values over the six design instances. So we consider FFA as
the best performing algorithm. As the P-values obtained through the
Wilcoxon’s rank sum test between the two algorithms for all the six
configurations are less than 0.05, null hypothesis is rejected at the 5%
significance level. It indicates that the better final cost value achieved
by the best algorithm in each case is statistically significant and does
not occur by chance. Here p values appear as NA stands for “Not
Applicable” and occur for the best performing algorithm itself in each
case.

Figures 2–4 ((a) only) depict the normalized radiation patterns of
the broadside linear arrays with 20, 26 and 30 elements using FFA and
ABC. Figures 5–7 ((a) only) present normalized radiation patterns of
the 20 elements linear array steered at 30◦, 26 elements linear array
steered at 45◦, 30 elements linear array steered at 60◦ using FFA and
ABC.

Convergence characteristics of FFA and ABC over six designing
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Figure 4. (a) Normalized Power Patterns with 30 elements broadside
array using FFA and ABC. (b) Convergence curves of 30 elements
broadside array using FFA and ABC.
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instances are plotted in Figures 2–7 ((b) only). It is seen that FFA
attains the minimum cost function value in each case taking less
number of function evaluations. Moreover, it is seen that FFA takes
less computation time to reach the minimum cost function value in
each case compared to that of ABC.
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Figure 5. (a) Normalized Power Patterns steered at 30◦ with
20 elements array using FFA and ABC. (b) Convergence curves of the
scanned array steered at 30◦ with 20 elements using FFA and ABC.
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Figure 6. (a) Normalize Power Patterns steered at 45◦ with
26 elements array using FFA and ABC. (b) Convergence curves of the
scanned array steered at 45◦ with 26 elements using FFA and ABC.



Progress In Electromagnetics Research B, Vol. 32, 2011 187

-14

-14.2

-14.4

-14.6

-14.8

-15

-15.2

-15.4

-15.6

-15.8

-16

ABC

FFA

20 40 60 80 100 120 140 160 180

Iteration

(a)

(b)

C
o
s
t

200

Figure 7. (a) Normalized Power Patterns steered at 60◦ with
30 elements array using FFA and ABC. (b) Convergence curves of the
scanned array steered at 60◦ with 30 elements using FFA and ABC.
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6. CONCLUSIONS

It is observed from the above study that the angular widths of the main
beams are inversely related with the length of the array. Moreover, for
a given length array, HPBW and FNBW both increase as the side
lobe level is lowered. So the design specification must have a tradeoff
between these conflicting array parameters. Thus the problem can
be referred as multi-objective. We used two relatively new swarm
based optimization techniques, namely FFA and ABC, to solve this
multi-objective designing problem. Algorithms efficiently compute the
non-uniform current distribution on each element for minimizing side
lobe level while HPBW and FNBW are not allowed to exceed the
subsequent values obtained with unity current excitation distribution.
Effectiveness of the proposed algorithms is examined in various array
configurations having different lengths and array pattern directions
(broad side and steerable). Results suggest an improvement in side lobe
level using optimized set of non-uniform current distribution. However,
as the number of radiators increases we find a little improvement in
SLL value under the constraints of HPBW and FNBW. For steerable
linear arrays, as we move away from the broadside direction main beam
broadens. There is a good agreement between the obtained and desired
results using FFA and ABC. However, it is seen that FFA outperforms
ABC in terms of convergence and cost minimization in a statistically
meaningful way. The future research may opt for solving more complex
designing problems using fire fly algorithm.
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