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Abstract

In this paper we present a model of �re sales and market breakdowns, and of the

�nancial ampli�cation mechanism that follows from them. The distinctive feature

of our model is the central role played by endogenous uncertainty. As conditions

deteriorate, more �banks� within the �nancial network become distressed, which

increases each (non-distressed) bank�s likelihood of being hit by an indirect shock.

As this happens, banks face an increasingly complex environment since they need

to understand more and more interlinkages in making their �nancial decisions. Un-

certainty comes as a by-product of this complexity, and makes relatively healthy

banks, and hence potential asset buyers, reluctant to buy. The liquidity of the

market quickly vanishes and a �nancial crisis ensues. The model features a novel

complexity externality which provides a rationale for various government policies

commonly used during �nancial crises, including bailouts and asset price supports.
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1 Introduction

Financial assets provide return and liquidity services to their holders. However, during

severe �nancial crises many asset prices plummet, destroying their liquidity provision

function at the worst possible time. These �re sales are at the core of the ampli�cation

mechanism and credit crunch observed in severe �nancial crises: Large amounts of dis-

tressed asset sales depress asset prices, which exacerbates �nancial distress, leading to

further asset sales, and the downward spiral goes on.

There are many instances in recent �nancial history of these dramatic �re sales and

the chaos they trigger. As explained by Treasury Secretary Paulson and Fed Chairman

Bernanke to Congress in an emergency meeting soon after Lehman�s collapse, the main

goal of the TARP during the subprime crisis as initially proposed was, precisely, to put a

�oor on the price of the assets held by �nancial �rms in order to contain the sharp contrac-

tionary feedback loop triggered by the confusion and panic caused by Lehman�s demise.

And a few years earlier, after the LTCM intervention, then Fed Chairman Greenspan

wrote in his congressional testimony of October 1, 1998:

�Quickly unwinding a complicated portfolio that contains exposure to all

manner of risks, such as that of LTCM, in such market conditions amounts

to conducting a �re sale. The prices received in a time of stress do not re-

�ect longer-run potential, adding to the losses incurred... ...a �re sale may

be su¢ ciently intense and widespread that it seriously distorts markets and

elevates uncertainty enough to impair the overall functioning of the economy.

Sophisticated economic systems cannot thrive in such an atmosphere.�

The question arises for why apparently small shocks relative to the resources of the

key agents (e.g., the subprime shock relative to the wealth of the U.S. �nancial system)

can trigger such large �re sales and multipliers. How can these take place in deep �nancial

markets such as those in the U.S., where a large number of potential buyers should have

the resources to arbitrage the �re sales? In this paper, we present a model in which the

answer to this question builds upon the idea that complexity of the economic environment

(in the usual language sense of complicated) becomes a central concern during crises. This

complexity leads to a dramatic increase in payo¤ uncertainty, which generates �re-sales

and market breakdowns.

The basic structure is that of a network of cross-exposures between �nancial institu-

tions (banks, for short) that is susceptible to contagion. In this context, we conceptualize
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complexity by banks�uncertainty about cross-exposures. In particular, banks have only

local knowledge of cross-exposures: They understand their own exposures, but they are in-

creasingly uncertain about cross-exposures of banks that are farther away (in the network)

from themselves. This assumption captures in a tractable way the increasing amount of

complexity that a bank faces in analyzing the balance sheets of its counterparties (to

which it has exposures), and then their counterparties, and so on.

In this setting, during normal times, banks only need to understand the �nancial health

of their counterparties, which they �nd out by their local knowledge of cross-exposures.

In contrast, when a surprise liquidity shock hits parts of the network, cascades of bank-

ruptcies become possible, and banks become concerned that they might be indirectly hit.

In particular, banks now need to understand the �nancial health of the counterparties of

their counterparties (and their counterparties). Since banks only have local knowledge of

the exposures, they cannot rule out an indirect hit. Consequently, banks now face signif-

icant payo¤ uncertainty and they react to it by retrenching into a liquidity-conservation

mode.

This structure exhibits strong interactions with secondary markets for banks�assets.

Banks in distress can sell their legacy assets to meet the surprise liquidity shock. The

natural buyers of the legacy assets are other banks in the �nancial network, which may

also receive an indirect hit. When the surprise shock is small, cascades are short and

buyers can rule out an indirect hit. In this case, buyers purchase the distressed banks�

legacy assets at their �fair�prices (which re�ect the fundamental value of the assets). In

contrast, when the surprise shock is large, longer cascades become possible and buyers

cannot rule out an indirect hit. As a precautionary measure, they hoard liquidity and

turn into sellers. The price of legacy assets plummets to ��re-sale�levels, which in turn

exacerbates the cascade size and the credit crunch.

This feedback mechanism can generate multiple equilibria for intermediate levels of

the surprise shock. When legacy assets fetch a fair price in the secondary market, the

banks in distress have access to more liquidity. Thus, the surprise shock is contained

after fewer bankruptcies, which leads to a shorter cascade. When the cascade is shorter,

the natural buyers rule out an indirect hit and demand legacy assets, which ensures that

these assets trade at their fair prices. Set against this benign scenario is the possibility

of a �re-sale equilibrium where the price of legacy assets collapses to �re-sale levels. This

leads to a greater number of bankruptcies and a longer cascade. With a longer cascade,

the natural buyers become worried about an indirect hit and they sell their own legacy

assets, which reinforces the collapse of asset prices.
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Our model features a novel complexity externality, which stems from the dependence of

banks�payo¤ uncertainty on the endogenous cascade size. In particular, any action that

increases the cascade size increases the payo¤ uncertainty for banks that are uncertain

about the �nancial network, and they dislike this e¤ect. Our model features two variants

of this complexity externality (one non-pecuniary, one pecuniary), each of which supports

di¤erent government policies. First, a bailout of the distressed banks �nanced by small

lump-sum taxes on all the banks may lead to a Pareto improvement. The equilibrium is

unable to replicate this allocation because each bank fails to take into account that its

contribution to a bailout will reduce the payo¤ uncertainty of all other banks. Second, in

the range of multiple equilibria, policies that support asset prices may lead to a Pareto

improvement by coordinating the banks on the fair-price equilibrium. In this range, the

�re-sale equilibrium is Pareto ine¢ cient because a bank that sells assets does not take

into account the e¤ect of its decision on other banks�payo¤ uncertainty. In particular,

this bank generates a (small) reduction in asset prices, which in turn leads to a longer

cascade and a greater payo¤ uncertainty for all other banks.

In our model, cascades are partial, that is, only a fraction of the �nancial system fails

in response to the surprise shock. Partial cascades nonetheless lead to large aggregate

e¤ects because they increase banks�payo¤ uncertainty. In practice, banks could insure

against this type of uncertainty to some extent by purchasing credit default swaps on their

counterparties. A natural question then is whether our results are robust to allowing for

counterparty insurance. We show that, while banks demand counterparty insurance, the

supply of this type of insurance is also restricted because of sellers�collateral constraints.

In particular, the sellers within the �nancial network choose not to pledge their collateral

in an insurance contract in view of their own payo¤uncertainty (in fact, they would rather

demand insurance for their own cross-exposures). Thus, the only insurance supply comes

from sellers that are outside the �nancial network. When the collateral of these sellers

is small relative to the size of the �nancial network, allowing for counterparty insurance

does not change our qualitative results. This analysis is consistent with the behavior of

the CDS markets during the recent Bear Sterns and Lehman debacles. As described by

Du¢ e (2011), the demand for counterparty insurance in both episodes spiked, but this

demand could not be met by insurance sellers.

Our paper is related to several strands of the literature. There is an extensive literature

that highlights the possibility of network failures and contagion in �nancial markets. An

incomplete list includes Rochet and Tirole (1996), Kiyotaki and Moore (1997a), Allen and

Gale (2000), Laguno¤ and Schreft (2000), Freixas, Parigi and Rochet (2000), Eisenberg
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and Noe (2001), Dasgupta (2004), Leitner (2005), Cifuentes, Ferucci and Shin (2005),

Rotemberg (2008), Allen, Babus, and Carletti (2010), Zawadowski (2011) (see Allen and

Babus, 2009, for a survey). Many of these papers focus on the mechanisms by which

solvency and liquidity shocks may cascade through the �nancial network. In contrast,

we take these phenomena as the reason for the rise in banks�uncertainty and we focus

on the e¤ect of this uncertainty on banks�prudential actions. It is also worth pointing

out that the uncertainty mechanism we emphasize in this paper is operational even for

a relatively small amount of contagion. The contagion literature is sometimes criticized

because it appears unlikely that many �nancial institutions would be caught up in a

cascade of bankruptcies.1 But as this paper illustrates, even partial cascades can have

large aggregate e¤ects since they greatly increase payo¤ uncertainty.2

Our paper is also related to the literature on �ight-to-quality and Knightian uncer-

tainty in �nancial markets, as in Caballero and Krishnamurthy (2008), Routledge and

Zin (2004), Easley and O�Hara (2005), and Hansen and Sargent (2010). Our contribu-

tion relative to this literature is in generating the uncertainty from the complexity of the

�nancial network itself. Our work complements a number of recent papers that focus

on other sources of uncertainty during crises. Brunnermeier and Sannikov (2011) show

that exogenous uncertainty is ampli�ed in a �re sales episode, because price uncertainty

increases natural buyers�balance sheet uncertainty (which in turn feeds back into price

uncertainty). Dang, Gorton and Holmstrom (2010) show that uncertainty (and asymmet-

ric information) in credit markets increases during crises because debt contracts become

information sensitive.

In the canonical model of �re sales, these happen because the natural buyers of the

assets experience �nancial distress simultaneously with sellers (see Shleifer and Vishny,

1992, 1997, and Kiyotaki and Moore, 1997b). More recently, Brunnermeier and Pedersen

(2008) show that, when there are few players, unconstrained potential buyers may choose

not to arbitrage �re sales in the short run because they anticipate a better deal in the

future. Our model lies somewhere in between these two views: Most potential buyers

are unconstrained, as in Brunnermeier and Pedersen (2008), but they are fearful of go-

ing about their normal arbitrage role because of uncertainty (and in this sense they are

1See Upper (2007) for a survey of the empirical literature that uses counterfactual simulations to
assess the danger of contagion. Regarding this literature, Brunnermeier, Crockett, Goodhart, Persaud,
and Shin (2009) note that �it is only with implausibly large shocks that the simulations generate any
meaningful contagion.�

2The role of cascades in elevating complexity and uncertainty was also highlighted in Haldane�s (2009)
speech, who nicely captures the mechanism when he wrote that at times of stress �knowing your ultimate
counterparty�s risk becomes like solving a high-dimension Sudoku puzzle.�
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distressed as in Shleifer and Vishny, 1992). It is the complexity of the environment that

sidelines potential buyers and exacerbates the cascade of �nancial bankruptcy. Impor-

tantly, this mechanism works even when the number of market participants is large.3

The organization of this paper is as follows. In Section 2 we describe the environment

for a benchmark case with no uncertainty about cross-exposures. Section 3 characterizes

the equilibrium for this benchmark and illustrate the mechanics of (partial) cascades in

our setting. Section 4 contains our main results. There, banks have only local knowledge

about cross-exposures, and a su¢ ciently large surprise shock increases the banks�payo¤

uncertainty and leads to �re sales in secondary markets. This section also highlights the

interaction between payo¤ uncertainty and �re sales, and demonstrates the possibility of

multiple equilibria. In Section 5 we describe the complexity externality and its policy

implications. Section 6 shows that our results are robust to allowing for counterparty

insurance. The paper concludes with a �nal remarks section and several appendices.

2 Basic Environment and Equilibrium

In this section, we describe the economic environment and de�ne the equilibrium for the

benchmark case with no uncertainty about the �nancial network.

We consider an economy with three dates f0; 1; 2g and a single consumption good
(a dollar). The economy has n continuums of �nancial intermediaries (banks, for short)

denoted by fbjgn�1j=0 . Each of these continuums is composed of identical banks. For

simplicity, we refer to each continuum bj as bank bj, which is our unit of analysis.4 Banks

start with a given balance sheet at date 0 (which will be described shortly), but they only

consume at date 2. Banks can transfer their date 0 dollars to date 2 by investing in one of

two ways. First, banks can keep their dollars in cash which yields one dollar at the next

date per dollar invested. Second, banks can also invest in an asset. Each unit of the asset

yields R > 1 dollars at date 2 (and no dollars at date 1). The asset is supplied elastically

at date 0 at a normalized price of 1.

While the asset yields a higher date 2 return than cash, it is completely illiquid at date

3Other papers that investigate the mechanisms for �re sales and asset price dislocations in �nancial
markets include Allen and Gale (1994), Gromb and Vayanos (2002), Geanakoplos (2003, 2009), Loren-
zoni (2008), Brunnermeier and Pedersen (2009), Acharya, Gale, and Yorulmazer (2010), Garleanu and
Pedersen (2010), Stein (2010), Diamond and Rajan (2010), and Brunnermeier and Sannikov (2011) (see
Shleifer and Vishny, 2011, for a recent survey). More broadly, this paper belongs to an extensive literature
on �nancial crises that highlights the connection between panics and a decline in the �nancial system�s
ability to channel resources to the real economy (see, e.g., Caballero and Kurlat, 2008, for a survey).

4The only reason for the continuum is for banks to take other banks�decisions as given.

5



1. In particular, it is not possible to sell or borrow against the asset at date 1. (Thus, a

bank cannot convert the asset to dollars at date 1.) This assumption captures the standard

liquidity-return trade-o¤, which is prevalent in �nancial markets. The microfoundations

that lead to this trade-o¤ are well known (e.g., Holmstrom and Tirole, 1998). One can

think of the cash in this model as the liquid securities, such as US treasuries, which yield

lower return but which retain their market value at times of distress. In contrast, the asset

can be thought of as illiquid securities, such as asset backed securities, which potentially

yield a higher return but which lose their market value at times of distress.

Each bank initially has y dollars and 1� y units of the asset it purchased in the past,
which we refer to as legacy assets. At date 0, which is the only meaningful decision date

in our model, banks can trade legacy assets in a secondary market at a price p, which will

be endogenously determined. This price cannot exceed 1 because legacy assets and new

assets are identical (and the price of the latter is 1). We also assume that the natural

buyers of legacy assets are the other banks in the model. In particular, outside agents

(lower valuation users) demand the asset elastically at a discounted price pscrap < 1. Thus,

if legacy assets are sold to outside agents, then they fetch a price p = pscrap. We refer to

this situation as a �re sale of legacy assets.

The basic premise of our model can now be informally described. In normal times

banks do not need dollars at date 1. Consequently, to maximize their net worth at date

2, they retain their legacy assets and they use their dollars to acquire new assets. This

ensures that yn units of new assets are purchased and the price in the secondary market is

p = 1. Against this background, we will consider an unexpected shock which generates the

possibility that banks might need dollars at date 1. This in turn shifts banks�investments

at date 0 from the asset to cash (�ight-to-quality), which has two e¤ects. First, as banks

stop buying new assets, there is a credit crunch in the real sector.5 Second, as banks stop

buying legacy assets (and as they try to sell their own legacy assets to raise dollars), there

is a �re sale of legacy assets in the secondary market. The contribution of our paper

is to describe the role of uncertainty and complexity in generating this �ight-to-quality

episode. To this end, we gradually introduce the main ingredients of our model.

2.1 Cross-exposures and the Financial Network

At date 0, each bank has short term debt claims worth z dollars on one other bank, which

we call the forward neighbor bank. We assume that short term debt cannot be rolled

5In particular, the issuance of new assets will drop. Consequently, consumers and �rms that usually
borrow from the �nancial sector by issuing assets will not be able to do so.
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Figure 1: The initial balance sheet of a generic bank.

over and it must be paid back at date 1, which will be without loss of generality.6 On

the liability side, the bank also has z dollars of short term debt claims held by another

bank which we call the backward neighbor bank. The initial balance sheet of a bank is

illustrated in Figure 1.

The role of these cross debt claims is to capture various types of unsecured cross-

exposures that are common in the �nancial system. One source of cross-exposures is

interbank loans. Upper (2007) documents that interbank loans constitute a large fraction

of banks�balance sheets in many European countries.7 A second and potentially much

larger source of cross-exposures is OTC derivative contracts (such as interest rate swaps

or credit default swaps) traded between �nancial institutions. Bank for International Set-

tlements reports that gross credit exposures in OTC derivative markets in G10 countries

and Switzerland had exceeded $5 trillion by the end of 2008.8 The cross debt claims of

this model can be viewed as capturing the uncollateralized portion of these exposures (al-

though the Lehman crisis revealed that even fully collateralized repo loans can be frozen

by bankruptcy courts).

6In particular, Appendix A.1 considers an extension of the model in which banks have the option to
roll over and shows that the equilibrium is unchanged.

7To give two examples, Upper (2007) notes: �at the end of June 2005 interbank credits accounted for
29% of total assets of Swiss banks and 25% of total assets of German banks.�

8Source: BIS semiannual OTC derivatives statistics. Gross credit exposures take into account bilateral
netting between the same pair of counterparties. Gross market values of exposures, which do not take
into account this netting, is much larger (more than $20 trillion in interest rate derivatives and more than
$5 trillion in credit derivatives by the end of 2008).
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In Caballero and Simsek (2009), we provide one rationale for cross-exposures from their

role in facilitating bilateral liquidity insurance, as in Allen and Gale (2000). In this paper,

we take the exposures as given and we analyze their role in generating �ight-to-quality

episodes.

Banks� cross debt claims form a �nancial network. For analytical tractability, we

assume that the network takes the form of a circle denoted by:

(1)

The notation, bj  � bj+1, illustrates that bank bj+1 has debt claims on bank bj. Note
that banks are ordered around a circle, with bank b0 having debt claims on bank bn�1.

In this paper, we conceptualize �complexity� with banks�uncertainty about cross-

exposures. In particular, banks have only local knowledge of cross-exposures: They un-

derstand their own exposures, but they are increasingly uncertain about cross-exposures

of banks that are farther away (in the network) from themselves. We capture this no-

tion by assuming that banks have only local knowledge about the �nancial network in

(1): They know the identity of their forward neighbor bank (on which they have debt

claims), but they do not know how the rest of the banks are ordered around the circle (i.e.,

which banks are exposed to which other banks). For exposition, we shut down this key

ingredient until Section 4. In the rest of this section, we de�ne a benchmark equilibrium

without uncertainty, in which banks know the exact ordering in (1). The analysis of this

benchmark is useful to illustrate the basic e¤ect of cross-exposures and the mechanics of

cascades in our model.

2.2 Surprise Shock and Banks�Response

At date 0, the banks learn that a rare event (which they had not anticipated at the

unmodeled date �1) has happened and one bank, b0, will become distressed. Similar to
Allen and Gale (2000), in order to remain solvent this bank needs to make � dollars of

payment (to an outsider) at date 1.

This outside debt is senior to the short term debt to the neighbor bank (it can equiv-
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alently be interpreted as a shock to the value of the bank�s assets). Consequently, these

losses might spill over to other banks via the �nancial network and may bring them into

�nancial distress at date 1. To prepare for date 1, at date 0 the banks take one of the

following actions Aj0 = fS;Bg, which are restricted to a binary choice set for simplicity
(see Caballero and Simsek, 2009, for a related model with unrestricted action space). As

a precautionary measure, the bank may choose Aj0 = S, to invest all of its y dollars in

cash and to sell all of its legacy assets 1�y in the secondary market, keeping a completely
liquid balance sheet. Alternatively, the bank may choose Aj0 = B, to be a potential buyer

of assets. In this case, the bank retains its own legacy assets on its balance sheet and it

uses its dollars to buy either new or legacy assets (whichever is more pro�table).

The bank chooses Aj0 to maximize its equity value at date 2, subject to meeting its

debt payment at date 1. Given the rare event, a bank may not be able to pay back its

debt in full (despite the precautionary measures it takes), but instead it ends up paying

qj1 � z. Similarly, the value of bank�s date 2 equity may b q
j
2 � R. Note that either the

bank is solvent, pays qj1 = z, and its date 2 equity value is q
j
2 � 0; or the bank is insolvent,

pays qj1 < z and its date 2 equity value is q
j
2 = 0.

2.3 Secondary Market and Equilibrium

Legacy assets are traded in a centralized exchange that opens (just) at date 0. Given the

legacy asset price p, the banks that choose Aj0 = S sell all of their legacy assets (1 � y
units for each bank) while the banks that choose Aj0 = B are potential buyers of legacy

assets and may spend up to y (their dollars). If p < 1, potential buyers spend all of their y

dollars on legacy assets, while if p = 1, they are indi¤erent between buying legacy or new

assets. Recall that pscrap < 1 denotes the valuation of outside agents. Thus, the market

clearing condition for legacy assets can be written as:

(1� y)
X
j

1
�
Aj0 = S

	
� y
p

X
j

1
�
Aj0 = B

	 8><>:
� 0 if p = pscrap

= 0 if p 2 (pscrap; 1)
� 0 if p = 1

. (2)

The �rst term on the left hand side denotes the total supply of legacy assets while the

second term denotes the maximum potential demand. If the left hand side of Eq. (2) is

negative for each p 2 [pscrap; 1], then legacy assets trade at their fair value 1, potential
buyers are indi¤erent between buying legacy and new assets, and they buy just enough

legacy assets to clear the market. If the left hand side of Eq. (2) is 0 for some p 2 [pscrap; 1],
then p is the equilibrium price. If the left hand side is positive for each p 2 [pscrap; 1],
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then there is excess supply of legacy assets and their price is given by pscrap.

De�nition 1. An equilibrium in the no-uncertainty benchmark is a collection of bank

actions, debt payments, and equity values,
�
Aj0; q

j
1; q

j
2

	
j
, and a price level p 2 [pscrap; 1]

for legacy assets such that each bank bj chooses its actions to maximize its equity value,

qj2, and the legacy asset market clears [cf. Eq. (2)].

To characterize the equilibrium, it is useful to de�ne the notion of a bank�s distance

from the original distressed bank. The original distressed bank, b0, has distance k = 0

from itself. The backward neighbor of the original distressed bank has distance k = 1.

Similarly, the backward neighbor of the backward neighbor has distance k = 2. This

way, each bank can be assigned a unique distance. For the particular �nancial network

in (1), each bank bj has distance k = j: that is, banks�identities and their distances are

identical. For more general orderings of banks (which will be considered in Section 4),

the two notions are typically di¤erent.

The distance is the only payo¤ relevant variable in this economy. In particular, as we

will demonstrate in the next section, a bank is insolvent if and only if it has a su¢ ciently

short distance. Similarly, a bank chooses a precautionary action, Aj0 = S, if and only if

it is su¢ ciently close to the distressed bank. In view of these observations, we de�ne the

following notions of a cascade and a �ight-to-quality which facilitate the characterization

of equilibrium.

De�nition 2. Consider a collection of bank actions and payo¤s
�
Aj0; q

j
1; q

j
2

	
j
.

(i) There is a cascade of length K if banks with distance k � K�1 are insolvent [i.e.,
they pay qj1 < z] while banks with distance k � K are solvent [i.e., they pay qj1 = z].

(ii) There is a �ight-to-quality of size F is banks with distance k � F � 1 choose
Aj0 = S while banks with distance k � F choose A

j
0 = B.

Note that K also corresponds to the number of banks that are insolvent, and F

corresponds to the number of banks that choose the precautionary action. In subsequent

sections, K and F will be useful to summarize the equilibrium in this economy.

3 Equilibrium in the No-Uncertainty Benchmark

In this section, we characterize the equilibrium with no-uncertainty, which is useful to

illustrate the mechanics of cascades in our setting. We show that, if the number of banks
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is su¢ ciently large, then there only can be a partial cascade and a partial �ight-to-quality,

that is, K < n and F < n. Moreover, K and F are �proportional� to the size of the

initial shock, �. That is, when banks have perfect knowledge of the �nancial network,

a su¢ ciently deep �nancial system is resilient to perturbations. These benign results

contrast with those we obtain in the next section once we introduce complexity.

We characterize the equilibrium under the following parametric conditions:

ny > d�e and z + y + (1� y) pscrap � �. (3)

Here, dxe denotes the ceiling function, that is, the unique integer such that dxe � 1 <
x � dxe. The �rst condition in (3) says that the �nancial system has su¢ cient aggregate

liquidity to meet the unexpected liquidity shock, �.9 The second condition (whose role

will be clari�ed below) simpli�es the notation but does not play an essential role.

Our characterization consists of three steps. First, we characterize a generic bank�s

optimal action (and solvency) taking the payo¤s and actions of other banks as given.

Second, we take the asset price, p, as given and we characterize the partial equilibrium

corresponding to banks�actions and payo¤. And third, we characterize the general equi-

librium price and allocations.

3.1 Banks�Optimal Actions

A bank�s optimal action depends on its liquidity need. The liquidity need of a bank bk

with distance k, is:

z � qk�11 + � [k = 0] (4)

(where � [�] denotes the product of � and the indicator function). The �rst term captures

the payment the bank needs to make on its short term debt. The second term captures

the equilibrium payment the bank receives from its forward neighbor. The last term

captures the additional payment that the original distressed bank needs to make. To

meet the liquidity need in (4), a bank can try to obtain dollars at date 1 by choosing the

precautionary action, Aj0 = S, at date 0. By doing so, it keeps its y dollars in cash and

sells 1� y units of legacy assets in the secondary market, obtaining an available liquidity
of:

l (p) = y + (1� y) p (5)

dollars at date 1.
9The rounding of the loss, d�e, in this condition is an artifact of restricting attention to the discrete

action space, fB;Sg.
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The bank�s optimal action can now be characterized by comparing its liquidity need in

(4) and the available liquidity in (5). There are three cases to consider. First, if the bank�s

liquidity need is zero, then it is not distressed. Since this bank does not need dollars at date

1, it chooses the aggressive action, Aj0 = B, to maximize its equity value. Second, if the

bank�s liquidity need lies in the interval, (0; l (p)], then its available liquidity is su¢ cient

to meet its liquidity need. This bank chooses the precautionary action, Aj0 = S, to avert

insolvency at date 1 (which maximizes its equity value at date 2). Third, if the bank�s

liquidity need is greater than l (p), then its available liquidity is not su¢ cient to meet its

liquidity need. This bank is indi¤erent between choosing Aj0 = S or Aj0 = B, because

it will be insolvent regardless of the action. Nonetheless, choosing the precautionary

action increases the liquidation outcome because it enables the bank to liquidate with

time: More speci�cally, the bank�s assets yield l (p) dollars with the precautionary action,

Aj0 = S, and 0 dollars with the aggressive action, A
j
0 = B. Moreover, the precautionary

action increases the payo¤ to debtholders. Given that equity holders are indi¤erent, we

restrict attention to equilibria in which the bank [with liquidity need > l (p)] chooses the

precautionary action, Aj0 = S.

Combining the three cases, note that the bank chooses the precautionary action, Aj0 =

S, if and only if its liquidity need is strictly positive. Moreover, the bank is insolvent

at date 1 if and only if its liquidity need is strictly greater than l (p). We next use this

characterization to solve for the partial equilibrium: that is, banks�actions and payments

for a given price p.

3.2 Partial Equilibrium

The following result characterizes the partial equilibrium in the no-uncertainty bench-

mark.

Proposition 1. Suppose the price of legacy assets are �xed at p 2 [pscrap; 1] and the
conditions in (3) hold. Then, there is a cascade of length

K (p) =

�
�

l (p)

�
� 1, (6)

and a �ight-to-quality of size F = K (p) + 1 (cf. De�nition 2). Both the cascade and the

�ight-to-quality are contained, i.e., K (p) < n and F < n.

Figure 2 illustrates this result. Eq. (6) shows that the cascade size is �proportional�

to the ratio of the size of the shock to the banks�available liquidity, �=l (p). A larger

12



Figure 2: The partial cascade and �ight-to-quality in the no-uncertainty benchmark.

shock naturally leads to a longer cascade. A reduction in available liquidity for banks

also leads to a longer cascade. Intuitively, this is because, when l (p) is lower, banks are

less able to �ght the cascade. Using Eq. (5), it also follows that a reduction in p increases

the length of the cascade. We next provide a proof of Proposition 1, which is useful to

illustrate further the mechanics of cascades in our setting.

Proof of Proposition 1. Under the claim in the proposition, the original distressed

bank, b0, receives full payment from its debt claims on its forward neighbor, i.e., qn�11 = z.

Hence, the liquidity need of bank b0 is � > 0. According to the earlier characterization,

this bank chooses the precautionary action, A00 = S. If � � l (p), then this bank avoids
insolvency and the cascade size is K (p) = 0, which is consistent with (6).

Suppose instead � > l (p). In this case bank b0 is insolvent and pays

q01 = z + l (p)� � < z: (7)

where q01 � 0 in view of the second condition in (3).10 Note that bank b0 receives z dollars
from its claims on bank bn�1, has l (p) units of liquidity at date 1, and it has to make a

payment of � dollars. In this case, the forward neighbor bank b1 with distance 1 receives

10Note that q01 = 0 when the second condition in (3) is violated. That is, the original distressed bank
pays zero on its debt claims because it is unable to make the outside payment. To accommodate for this
case, Eq. (7) could be modi�ed to q01 = max (0; z + l (p)� �). The rest of the analysis would be identical
at the expense of additional notation.
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q01 < z from its debt claims, and it has liquidity need, (4), of

z � q01 = � � l (p) ; (8)

where the second expression comes from using (7) to substitute for q01. Since we are

considering the case � > l (p), the neighbor bank also has a positive liquidity need, and

thus it chooses A10 = S. If � � 2l (p), then the neighbor bank�s available liquidity, l (p), is
greater than its liquidity need. In this case, this bank is able to avoid insolvency and the

cascade size is K (p) = 1. Otherwise, the neighbor bank is also insolvent, and it pays

q11 = l (p) + q
0
1.

From this point onwards, a pattern emerges. The payment by an insolvent bank bk�1

(with distance k � 1) is

qk�11 = l (p) + qk�21 = l (p) (k � 1) + q01.

Here, the �rst equality shows that banks�payments are linearly increasing in their dis-

tance, and the second equality uses this property to solve for the payment of bank bk�1

in closed form. Using this expression along with Eq. (8), bank bk (with distance k) has

the liquidity need:

z � qk�11 = � � l (p) k. (9)

That is, banks�liquidity needs are linearly decreasing in their distance, k. If � > l (p) k,

then bank bk�s liquidity need is positive, and thus it chooses the precautionary action,

Ak0 = S. If � � l (p) (k + 1), this bank is able to avoid insolvency. Otherwise, it is also
insolvent despite taking the precautionary action.

Next note that K (p) de�ned in Eq. (6) is the �rst nonnegative integer such that

� � l (p) (K (p) + 1). Consequently, all banks bk with distance k � K (p)�1 are insolvent
since their liquidity needs are greater than their available liquidity, l(p). These banks

choose Aj0 = S to improve their liquidation outcome. In contrast, bank bK(p) is solvent

since it can meet its losses by choosing the precautionary action, AK(p)0 = S. Since bank

bK(p) is solvent, all banks bk with distance k � K (p) + 1 are also solvent as they do not
incur losses in cross debt claims. These banks choose the aggressive action, Aj0 = B, to

optimize their equity value. It follows that there is a cascade of length K (p) and a �ight-

to-quality of size F = K (p) + 1. The �rst condition in (3) also implies that K (p) < n

and F < n, completing the proof of the proposition.�
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3.3 General Equilibrium

Proposition 1 has characterized banks�actions and payo¤s for a given price, p. We next

state the main result of this section which characterizes the general equilibrium price and

allocations.

Proposition 2. Consider the no-uncertainty benchmark and suppose the conditions in
(3) hold. Then,

(i) The unique equilibrium price is p = 1 (no �re sales).

(ii) There is a cascade of length d�e � 1 and a �ight-to-quality of length d�e.
(iii) The aggregate amount of new asset purchases is: Y = ny � d�e.

This result follows by combining Proposition 1 with the secondary market clearing

condition (2). Note that the banks with distance k � K (p) choose Aj0 = S and sell all
of their existing assets. The remaining banks choose Aj0 = B, i.e., they are potential

buyers of assets. Condition (3) ensures that, for any price p 2 [pscrap; 1], the demand
from potential buyers exceeds the supply from distressed banks. This implies that the

unique equilibrium price is p = 1. Given this price, the cascade length is characterized by

Proposition 1. The aggregate new asset purchases is calculated by considering the asset

demand by potential buyers net of the legacy asset supply by distressed banks (see the

proof in the appendix).

Intuitively, if the cascade is only partial and banks know the �nancial network, then

there exist safe banks which will not make losses from cross-claims and know that much.

These banks do not sell assets and are ready to use their dollars to purchase assets from

distressed banks. When the aggregate liquidity of the �nancial system is su¢ ciently large

[cf. condition (3)], the demand from these potential buyers ensures that legacy assets

trade at their fair price 1.

Figure 3 illustrates this result by plotting the equilibrium variables as a function of

the initial shock, �. Note that the price is �xed at 1, the cascade size is increasing in �,

and the aggregate new asset purchases is decreasing in �. Intuitively, as � increases, there

are more losses to be contained, which further spreads the insolvency. As the insolvency

spreads, more banks keep their dollars in cash, which lowers Y. Note, however, that Y
decreases �smoothly�with �. These results o¤er a benchmark for the next section. There

we show that once auditing becomes costly, both K and Y may experience large changes
with small increases in �.
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Figure 3: Equilibrium in the no-uncertainty benchmark. The top, the middle, and
the bottom panels respectively plot the loan prices, the cascade size, and the aggregate
level of new loans as a function of the losses in the originating bank.

4 Environment and Equilibrium with Complexity

We next introduce our key ingredient, complexity, which we model as banks�uncertainty

about cross-exposures. As we will see, in this context when the shock is small, the

system behaves exactly as in the benchmark. But when the shock is large, banks need to

understand distant linkages in order to assess the amount of counterparty risk they are

facing. Their inability to �gure out these linkages leads to a complex environment and

increases banks�perceived payo¤uncertainty. This increase in complexity (and associated

uncertainty) overturns the relatively benign implications of the benchmark environment.

In this section, we �rst modify the environment in Section 2 to incorporate uncertainty

about the �nancial network. We then de�ne and characterize the equilibrium for this

environment, and present our main result.

Recall that a �nancial network in our setting is an ordering of banks around a circle as

in (1). To introduce uncertainty, we allow for more general orderings than the particular

example in (1). A �nancial network in this section is denoted by, b (�), which corresponds
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to:

(10)

Here, � : f0; 1; ::; n� 1g ! f0; 1; ::; n� 1g is a permutation that assigns bank b�(i) to slot
i in the �nancial network. The no-uncertainty benchmark analyzed in earlier sections

corresponds to a particular permutation, � (i) = i, which assigns each bank to the slot

with the same identity.

The key ingredient is that banks are uncertain about the �nancial network. In partic-

ular, banks know the identity, j, of each other bank, but they have uncertainty about the

ordering of the banks, �. Formally, we let

B = fb (�) j � : f0; 1; ::; n� 1g ! f0; 1; ::; n� 1g is a permutationg (11)

denote the set of possible �nancial networks, and Bj (�) � B denote the set of �nancial
networks which bank bj �nds possible given the actual realization b (�). We refer to the

collection fBj (�)gj;� as an uncertainty model for banks.11 The no-uncertainty benchmark
of earlier sections corresponds to a particular uncertainty model in which each Bj (�)
has the single element, b (�), so that banks have full knowledge of the �nancial network.

Instead, in this section we assume that banks only have local knowledge about the �nancial

network. By local knowledge we mean that each bank observes its forward neighbor (on

which it has claims) but is otherwise uncertain about how the other banks are ordered in

the �nancial network. Formally, we consider the uncertainty model given by:

Bj (�) =
(
b (~�) 2 B j

"
~� (i) = � (i)

~� (i� 1) = � (i� 1)

#
, where i = ��1 (j)

)
. (12)

Note that, for each realization of �, each bank knows its own slot and the slot of its

forward neighbor, but it is otherwise uncertain how the other banks are assigned to the

remaining slots.

11A simpler alternative to the permutations is to have banks ordered in the circle in the same order as
the locations (i.e. bank 1 in location 1, bank 2 in location 2, etc.) and have the uncertainty be about the
identity of the bank in distress rather than about the linkages between the banks. We chose the slightly
more cumbersome route of permutations because it aligns better with the idea of complexity that we want
to capture here. But mechanically, the results would be very similar with the alternative formulation.
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Banks make their decisions at date 0 while facing Knightian uncertainty about the

network. In particular, bank bj considers a range of possible �nancial networks, Bj (�),
and it chooses an action that is robust to this uncertainty. Formally, let

�
qj1 (�) ; q

j
2 (�)

�
denote the bank�s equity and debt payment in equilibrium given the �nancial network,

b (�). We follow Gilboa and Schmeidler (1989)�s Maximin expected utility representation

and write the bank�s optimization problem as:

max
Aj0(�)2fS;Bg

min
b(~�)2Bj(�)

qj2 (~�) . (13)

The Knightian uncertainty, and the corresponding Maximin representation, is not

essential for our results. In particular, our qualitative results also apply in a standard

expected utility framework as long as banks are risk averse. We consider the Maximin

representation for two reasons. First, it provides analytical tractability by enabling us

to focus on the worst case scenario, instead of specifying a distribution over Bj (�) and
taking expectations. Second, and more importantly, Knightian uncertainty seems more

appropriate for our context than quanti�able risk. Given the complexity of the network

of cross-exposures in real �nancial markets, banks are unlikely to have a probability

distribution over various possible networks. Microeconomic studies (both empirical and

theoretical) have argued that economic agents are more averse to this type of uncertainty

compared to quanti�able risks. The optimization problem in (13) enables us to capture

this feature in a tractable way.

We next extend De�nition 1 to the case with uncertainty as follows.

De�nition 3. An equilibrium with network uncertainty is a collection of bank actions, debt
payments, and equity values,

h�
Aj0 (�) ; q

j
1 (�) ; q

j
2 (�)

	
j

i
b(�)
, and a price level p 2 [pscrap; 1]

for legacy assets such that, given the realization of the �nancial network b (�), each bank

bj chooses its actions according to the worst case �nancial network that it �nds possible

[cf. problem (13)] and the legacy asset market clears [cf. Eq. (2)].

To characterize the equilibrium, it is useful to generalize also the notion of the distance

to this setting. Let id 2 f0; 1; ::; n� 1g denote the slot of the distressed bank, b0. Note
that, for each bank bj, there exists a unique k 2 f0; ::; n� 1g such that j = �

�
id + k

�
,

which we de�ne as the distance of bank bj from the distressed bank.12 As in the benchmark,

the distance k is the payo¤relevant information for a bank bj. In particular, as we formally

12We use modulo n arithmetic for the slot index i. For example, id + k = n represents the slot 0,
id + k = n+ 1 represents the slot 1, and so on.
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show in the appendix, the banks� equilibrium payo¤s and actions can be written as a

function of their distance. That is, there exists functions A0 (�) ; Q1 (�) and Q2 (�) such
that: �

Aj0 (�) ; q
j
1 (�) ; q

j
2 (�)

�
= (A0 [k] ; Q1 [k] ; Q2 [k]) , (14)

where k denotes the distance of bank bj given the network b (�). Given this observation,

the notions of a cascade of length K and a �ight-to-quality of length F (cf. De�nition 2)

also naturally generalize to this setting.

We next characterize the equilibrium by repeating the analysis of Section 3 for this

setting. The characterization similarly consists of three steps: (i) banks�optimal actions,

(ii) partial equilibrium for a given p, and (iii) general equilibrium price and allocations.

4.1 Banks�Optimal Actions

Recall from Section 3 that in the no-uncertainty benchmark a bank (with distance k)

chooses the precautionary action, Aj0 = S, if and only if its liquidity need is strictly

positive. With uncertainty, the bank does not necessarily know its exact liquidity need

in (4). This is because the bank does not know the amount, Q1 [k � 1], that will receive
from its forward neighbor. Nonetheless, Appendix A.3 shows that the characterization

of the bank�s optimal action is equally simple in this case: It chooses the precautionary

action, Aj0 = S, if and only if its liquidity need is strictly positive under the lowest possible

payment that it might receive from the forward neighbor.

Using the fact that banks have only local knowledge of the network, we can further

characterize their optimal actions. First consider a bank with distance k � 1. Given

the uncertainty model in (12), this bank knows its distance. Consequently, it knows the

payment, Q1 [k � 1], it will receive from its forward neighbor bank. Thus, the optimal

action of this bank is characterized exactly as in the no-uncertainty benchmark.

Next consider the optimal action of a bank with distance k � 2. This bank is uncertain
about its distance, and it �nds possible all distances ~k 2 f2; 3; ::; n� 1g. Consequently, it
does not necessarily know the payment, Q1

h
~k � 1

i
, it will receive from its forward neigh-

bor. The worst case scenario obtains when the bank is at the closest possible distance,
~k = 2. It follows that this bank chooses its optimal action as if it is at distance ~k = 2. Put

di¤erently, the banks that are uncertain about their distances to the distressed bank choose

their precautionary action as if they are closer to the distressed bank than they actually

are.
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4.2 Partial Equilibrium

The following proposition, which is the analogue of Proposition 1 for this setting, charac-

terizes the partial equilibrium.

Proposition 3. Consider the economy with network uncertainty. Suppose the price of
legacy assets is �xed at p 2 [pscrap; 1] and the conditions in (3) hold. Recall that K (p) =l

�
l(p)

m
� 1 denotes the cascade length in the no-uncertainty benchmark [cf. Eq. (6)].

(i) If � � 2l (p) [so that K (p) � 1], then there is a cascade of length K (p) and a

�ight-to-quality of size F = K (p) + 1.

(ii) If � > 2l (p) [so that K (p) � 2], then there is a cascade of length K (p) and a
�ight-to-quality of size F = n.

Figure 4 illustrates this result by plotting the equilibrium actions (and solvencies)

corresponding to the two cases. The �rst case concerns a liquidity shock, �, that is

smaller than the available liquidity of two banks (i.e., the original distressed bank and its

backward neighbor). In this case, part (i) of the proposition (and the �rst panel of Figure

4) shows that the partial equilibrium is the same as in the no-uncertainty benchmark.

To see this, recall that banks at distance k � 2 act as if they are at distance 2. In this
case, the liquidity shock is su¢ ciently small that the bank at distance 2 does not su¤er

any losses from cross-claims. Consequently, banks with distance k � 2 optimally choose
the aggressive action. This leads to the same partial equilibrium as in the no-uncertainty

benchmark. The proof in Appendix A.3 formalizes this argument.

The second case concerns a liquidity shock, �, which is greater than the available

liquidity of two banks. In this case part (ii) of the proposition (and the second panel

of Figure 4) shows that the equilibrium features a much larger �ight-to-quality than the

no-uncertainty benchmark. In particular, all banks in the �nancial system choose the

precautionary action, Aj0 = S. To see this, note that the liquidity shock in this case is

su¢ ciently large to generate a cascade of at least length 2. Thus, it is optimal for a bank

at distance 2 to choose the precautionary action, Aj0 = S. Consequently, banks with

distance k � 2 also choose the precautionary action. This leads to a �ight-to-quality of
size n.

Intuitively, if the cascade (generated by the initial shock) is su¢ ciently short, the

environment is simple in the sense that banks�uncertainty about the �nancial network

is not payo¤ relevant. In particular, in this simple environment, a bank with distance
~k = 2 is equally safe as a bank with distance ~k = n � 1. Put di¤erently, banks who
are uncertain about their distance ~k can rule out an indirect hit. Hence these banks
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Figure 4: The partial cascade and the precautionary actions with network uncertainty.
The top panel displays the �rst case, � � 2l (p). The bottom panel displays the second
case, � > 2l (p).
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continue to act as in the no-uncertainty benchmark despite being uncertainty averse.

In contrast, if the cascade is su¢ ciently long, then the environment is complex in the

sense that banks�network uncertainty is payo¤ relevant. In particular, in this complex

environment, the bank at distance ~k = 2 makes losses from cross-claims while the bank at

distance ~k = n�1 does not. That is, banks that are uncertain about their distance cannot
rule out an indirect hit. Since they are uncertainty averse, they respond by choosing the

precautionary action.

4.3 General Equilibrium

The following, and the main, result jointly characterizes the equilibrium price and alloca-

tions.

Proposition 4. Consider the economy with network uncertainty and suppose the condi-
tions in (3) hold.

(i) Unique fair-price equilibrium: If � � 2l (pscrap), then there is a unique equi-
librium with price p = 1 (no �re sales). There is a cascade of length K (1) = d�e � 1
and a �ight-to-quality of size F = d�e. The aggregate amount of new asset purchases is
Y = ny � d�e.
(ii) Unique �re-sale equilibrium: If � > 2, then there is a unique equilibrium with

price p = pscrap (�re sales). There is a cascade of length K (pscrap) =
l

�
l(pscrap)

m
� 1 and a

�ight-to-quality of size F = n. The aggregate amount of new asset purchases is Y = 0.
(iii) Multiple equilibria: If � 2 (2l (pscrap) ; 2], then there is a fair-price equilibrium

as in part (i) and a �re-sale equilibrium as in part (ii).

Figure 5 illustrates this result. There is a unique equilibrium for su¢ ciently small and

large levels of �, but there are multiple equilibria for intermediate levels of �. Note also that

the fair-price equilibrium is the same as the equilibrium in the no-uncertainty benchmark

(cf. Proposition 2), while the �re-sale equilibrium is very di¤erent. In particular, the �re-

sale equilibrium features a greater �ight-to-quality than the no-uncertainty benchmark

(F = n vs. F = d�e). Moreover, the size of the �ight-to-quality is disproportionately
larger than the size of the initial shock. This large precautionary reaction generates a

�re-sale in the secondary asset market (p = pscrap). It also leads to a larger credit-crunch

than the no-uncertainty benchmark (Y = 0 vs. Y = ny � d�e).
Proposition 4 is our main result because it shows that as the initial losses (measured

by �) increase, the equilibrium makes a very large and discontinuous jump compared

to the no-uncertainty benchmark. This jump could be realized either in the region of
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Figure 5: Equilibria with network uncertainty. The x axis corresponds to the size
of the shock, �. The y axes correspond to various equilibrium variables. The panels plot
these equilibrium variables a function of the shock, �. The top panel plots the partial
equilibrium cascade size, K (p), for price level p = pscrap (dashed line) and price level
p = 1 (solid line). The second panel plots the general equilibrium price, p. The last panel
plots the aggregate issuance of new loans, Y.
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multiple equilibrium if banks coordinate on the precautionary action, or in the region of

single equilibrium if initial losses are su¢ ciently large. The resulting equilibrium features

a �ight-to-quality episode that is disproportionate to the size of the initial shock. The

central ingredient for this result is complexity, that is, banks� uncertainty about the

�nancial network. We next present a proof of this result which is useful to illustrate

further the role of complexity.

Proof of Proposition 4. There are three cases to consider. The �rst case concerns a

shock, �, that is weakly smaller than the available liquidity of two banks even when the

price of legacy assets is at its lowest level. In this case, part (i) of Proposition 3 applies

regardless of the price. Consequently, the banks�payo¤s and actions are the same as

the no-uncertainty benchmark. In particular, all banks with distance k � 2 choose the
aggressive action, Aj0 = B. In view of condition (3), the asset demand from these banks

exceed the asset supply from distressed banks. This leads to an equilibrium price p = 1

and a cascade length of K (1). Furthermore, aggregate purchase of new assets is the same

as in Proposition 2.

The second case concerns a liquidity shock, �, which is greater than the available

liquidity of two banks even when the price of legacy assets is at its highest level. In

this case, part (ii) of Proposition 3 applies regardless of the price. Consequently, there

is a �ight-to-quality of size n. In particular, all banks choose the precautionary action,

Aj0 = S, which has two e¤ects. First, since all banks are sellers in the secondary market

(and there are no buyers), the market clearing condition (2) implies that p = pscrap.

Second, since all banks choose to keep their dollars in cash, no new assets are purchased,

i.e., Y = 0.
The third case concerns a liquidity shock, �, which is weakly smaller than the available

liquidity of two banks when the price is at its highest level, but not when the price is

at its lowest level. In this case, there are multiple equilibria. To see this, �rst suppose

legacy assets trade at their fair price, p = 1. With this price, the available liquidity,

l (1), is su¢ ciently large that part (i) of Proposition 3 applies. In particular, banks with

distance k � 2 are potential buyers of the asset. This ensures that the fair price, p = 1,
corresponds to an equilibrium. Suppose, instead, that legacy assets�price is at the �re-sale

level, p = pscrap. With this price, the available liquidity, l (pscrap), is su¢ ciently small that

part (ii) of Proposition 3 applies. In particular, all banks (including banks with distance

k � 2) are sellers in the secondary market. This ensures that the �re-sale price, p = pscrap,
also corresponds to an equilibrium.�
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Intuitively, when � is su¢ ciently small, the cascade length is manageable (i.e., below

the critical threshold of 2) regardless of the price of legacy assets. In this case, the

environment is simple (i.e., banks�network uncertainty is not payo¤relevant). In contrast,

when � is su¢ ciently large, the cascade length is unmanageable and the environment is

complex (i.e., banks�network uncertainty is payo¤ relevant) regardless of the price.

For intermediate levels of �, the interaction between the asset price and complexity of

the environment generates multiple equilibria. If legacy assets trade at their fair price,

then there is more market liquidity to counter the initial liquidity shock. This generates to

a shorter cascade and a simple environment. Since the environment is simple, banks that

are uncertain about their distance are potential buyers in the secondary market, which

ensures that legacy assets trade at their fair price. Set against this benign scenario is the

possibility of a �re-sale equilibrium, in which the price of legacy assets collapses. This

reduces market liquidity available to distressed banks, which leads to a longer cascade

and a complex environment. Facing a complex environment, banks that are uncertain

about their distance panic and sell their legacy assets, which reinforces the collapse of

asset prices.

Note also that, whenever there are multiple equilibria, the fair-price equilibrium Pareto

dominates the �re-sale equilibrium for all banks. This observation suggests that there are

externalities in our setting, which we analyze next.

5 Complexity Externality and Policy Implications

Our model features a novel complexity externality, which stems from the dependence of

banks�payo¤ uncertainty on the endogenous cascade size. In particular, any action that

increases the cascade size increases the payo¤ uncertainty for banks that are uncertain

about the �nancial network, and they dislike this e¤ect. Our model features two variants

of this complexity externality (one non-pecuniary, one pecuniary), each of which supports

di¤erent types of policies. The rest of this section discusses the two variants and their

policy implications.

5.1 Nonprice Complexity Externality and Bank Bailouts

To illustrate this externality, it is useful to start with a simple example. Consider an

alternative economy with a continuum of (measure one) agents, i 2 I, with utility func-
tions:

u
�
xi
�
� cai.
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Here, xi denotes agent i�s endowment, ai 2 f0; 1g denotes a costly action taken by agent
i, and u (�) denotes a standard and strictly concave utility function. Suppose also that
each xi is a random variable with mean 1 and variance:

1�
Z
I

aidi.

In particular, each agent can take a costly action that can (slightly) reduce the variance

of endowments of all agents in this economy.

In this example, consider respectively the equilibrium and the planner�s allocations.

In equilibrium, no agent takes the costly action because she incurs a positive cost while

having only a negligible e¤ect on the variance of its own consumption. On the other

hand, for su¢ ciently small c > 0, a social planner would have all agents choose ai = 1.

This allocation gives each agent a constant consumption at a relatively small cost (by

assumption), which is a Pareto improvement over the equilibrium allocation.

In this example, the competitive equilibrium is Pareto ine¢ cient because of a non-

pecuniary externality that operates through the production technology. In particular, an

agent i does not internalize the fact that her action a¤ects the endowment variance of all

other agents. By choosing ai = 0, this agent exerts a negative externality on all other

agents, which leads to a Pareto ine¢ ciency.

We next describe the nonprice complexity externality of our model, which is reminis-

cent of the externality in this example. To this end, consider the setup of Proposition

3, that is, suppose there is network uncertainty and prices are exogenously �xed (which

shuts down any pecuniary channels). Suppose also that

� 2 (2l (p) ; 3l (p)) , (15)

which ensures that there is a cascade of size 2 and a �ight-to-quality of size n (cf. Proposi-

tion 3). In particular, all banks choose the precautionary action, Aj0 = S. Banks�Minimax

utility at date 0 [cf. Eq. (13)] is given by:(
0, if k < 2.

3l (p)� � 2 (0; l (p)) , k � 2.
(16)

In this setting, consider a modi�cation of equilibrium by introducing the possibility of

a �bailout� of the distressed bank, b0, by other banks. In particular, each bank j can

choose to contribute some of her date 0 dollars, y, to a bailout fund. Without loss of
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generality, suppose banks�actions are restricted to a binary set,
�
0; �

n

	
, that is: a bank

either contributes 0 dollars or �
n
dollars to the bailout fund. Note that contributing

�
n
dollars is feasible because the banks have su¢ cient aggregate liquidity by condition

(3). Once all contributions are made, the total amount in the fund is used to pay some

(possibly all) of the liquidity need, �, of bank b0. The equilibrium is then characterized

as before with a potentially lower level of the shock for the original distressed bank and

a lower level of date 0 dollars for the contributing banks.

In this modi�ed equilibrium, banks optimally choose to contribute 0 dollars to the

bailout fund (and thus, the equilibrium remains unchanged). To see this, consider a bank

with distance k � 2. By contributing to the bailout fund, this bank incurs a positive

cost while receiving no bene�ts. This is because this bank alone is not able to change

the cascade size (since it is in�nitesimal by assumption). On the other hand, consider a

social planner that requires all banks to contribute �
n
dollars. With this bailout policy,

the original distressed bank remains solvent and the size of the cascade decreases to

0. In particular, banks�payo¤ uncertainty disappears. Consequently, banks choose the

aggressive action, that is, they keep their legacy assets and they spend their remaining,

y � �
n
, dollars to acquire new assets. Their Minimax utility at date 0 is given by:

(1� y)R +
�
y � �

n

�
R =

�
1� �

n

�
R. (17)

Comparing Eqs. (16) and (17) shows that this bailout policy leads to a Pareto improve-

ment as long as n or R is su¢ ciently large. The fact that banks with distance k < 2 are

better o¤ is not remarkable because these banks are (either directly or indirectly) bailed

out. However, it is remarkable that all other banks at distance k � 2 are also better o¤.
The equilibrium is Pareto ine¢ cient for the same reason as in the earlier example.

Each bank with distance k � 2 does not internalize that its contribution, �
n
, would reduce

the cascade size, and thus, the payo¤ uncertainty faced by other banks. By not con-

tributing, this bank exerts a negative externality on other banks, which we refer to as the

nonprice complexity externality. A bank bailout policy generates a Pareto improvement

by internalizing this externality. Viewed di¤erently, network stability (and similarly, en-

dowment stability in the earlier example) is a public good. Each bank would like to enjoy

this good because it reduces its payo¤ uncertainty. However, each bank would rather not

incur the costs and free ride on other banks. The bailout could be viewed as the provision

of the public good of stability, which solves the free rider problem.

We stress that the nonprice complexity externality is di¤erent than the �re-sale exter-
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nality that is common in the literature. In particular, in the above setting there cannot

be a �re-sale externality because the asset price is �xed. We next consider the setting

with endogenous asset price to illustrate the second variant of the complexity externality.

5.2 Price Complexity Externality and Government Asset Pur-

chases

This externality operates through the interaction of legacy asset prices and the cascade

size. In particular, a bank that decides to sell assets (i.e., that chooses the precautionary

action, Aj0 = S) has a (small) negative impact on asset prices. This in turn has a

(small) positive impact on the cascade size. In particular, with a lower loan price, the

available liquidity, l(p), of each bank is lower. Thus, the crisis is contained after a greater

number of insolvencies [cf. Eq. (6)]. The increase in the cascade size increases the

payo¤ uncertainty faced by other banks and lowers their welfare, demonstrating the price

complexity externality.

The price complexity externality is what leads to multiple Pareto-ranked equilibria in

our setup, as we have already seen in Proposition 4. In particular, an increase in payo¤

uncertainty due to a reduction in the legacy asset price not only lowers the welfare of

many banks, but also induces these banks to take extreme precautionary measures, which

includes further asset sales. The sale of assets by banks in panic mode reduces asset

prices further, which leads to a vicious cycle culminating in the �re-sale equilibrium. In

contrast, an increase in asset prices reduces the payo¤ uncertainty, which may mitigate

the precautionary measures and turn more sellers into buyers, leading to a virtuous spiral

towards the fair price equilibrium. In particular, a social planner that puts a �oor on

asset prices (e.g., through an asset purchase policy) can generate a Pareto improvement

by coordinating banks on the fair-price equilibrium.

We stress that the price complexity externality is also di¤erent than the usual �re-

sale externality (e.g., in Kiyotaki and Moore, 1997b or in Lorenzoni, 2008). It is true

that both externalities operate through asset prices. However, the commonalities end

there because the particular channels for the two externalities are di¤erent. In a �re-

sale externality, the decrease in asset prices erodes the net worth of �nancial institutions

that are natural buyers of this asset. This in turn tightens these institutions�borrowing

constraints, which lowers their welfare and puts further downward pressure on asset prices.

Instead, in the price complexity externality, the decrease in asset prices increases the payo¤

uncertainty for �nancial institutions that are uncertain about the network. The increase

in uncertainty (as opposed to binding constraints) is what lowers the welfare of these
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institutions. Moreover, their precautionary reaction (as opposed to binding constraints)

is what puts further downward pressure on asset prices.

This comparison also suggests that the price complexity externality could be much

more potent than the �re-sale externality. To see this concretely, consider a drop in the

price of subprime mortgage backed securities. From the lenses of the conventional �re-

sale externality, this shock should mostly a¤ect the natural buyers of these securities. In

particular, it should not a¤ect much the institutions that specialize in other businesses or

other asset classes (or natural buyers that happen not to hold the securities at the time of

the shock). Instead, from the lenses of the price complexity externality, this shock could

have a much bigger impact. In particular, suppose the shock is su¢ ciently large that it

leads to the failure of some natural buyers and generates the possibility of cascades. This

in turn increases the payo¤ uncertainty for all �nancial institutions that are uncertain

about the �nancial network. In practice, this includes virtually all �nancial institutions,

illustrating the much greater scope of the price complexity externality.13

6 Robustness to Counterparty Insurance

In our setting, partial cascades lead to aggregate e¤ects because they increase banks�

idiosyncratic payo¤ uncertainty from cross-exposures. A natural question is to what

extent this uncertainty could be insured. In practice, banks could obtain some insurance

by purchasing credit default swaps on their counterparties. This section shows that our

results are robust to allowing for counterparty insurance. The key insight is that, while

banks demand counterparty insurance, the supply of insurance is also restricted because

of sellers�collateral constraints.14

Consider the setting of Proposition 3 with network uncertainty and �xed asset price

(for simplicity). Consider also parameters such thatK (p) � 2, so that banks are trying to
maximize their available liquidity at date 1 (in their worst case scenario). In this setting,

banks have a demand for insurance contracts that pay when they are distressed at date

13In our model, we assumed for simplicity that the natural buyers of the asset are the same as banks
that face network uncertainty. Instead, this discussion suggests natural buyers are likely to be a subset of
the banks that face network uncertainty. Our model could be easily modi�ed to incorporate this feature.
14Another natural question is why banks do not insure ex-ante (that is, before the arrival of the surprise

shock) against this episode. We rule out this type of insurance by assuming that the surprise shock is
unanticipated. Zawadowski (2011) considers banks�ex-ante insurance decisions in a similar setting with
an anticipated shock, and shows that banks�insurance demand is ine¢ ciently low. This is because each
bank fails to take into account the bene�ts of its insurance purchase that accrue to banks that have
exposures to it. This result complements our analysis, and suggests that our results are likely to apply
even if banks (to some extent) anticipate the surprise shock.
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1. To capture this aspect, suppose banks can invest at date 0 in insurance contracts on

the insolvencies of their forward neighbor banks. In particular, for each bank j, there is

a contract, Ij, that pays 1 dollar if bank j is insolvent at date 1 (i.e., if it pays qj1 < 1).

In practice, CDS contracts are often collateralized to protect insurance buyers from a

potential default of the insurance seller. Moreover, the required collateral is particularly

high at times of distress such as our date 0. To capture this aspect, suppose insurance

contracts, fIjgj, must be individually and fully collateralized. In particular, the insurance
seller must pledge 1 unit of cash as collateral for each unit of insurance contract she sells at

date 0. Each contract, Ij, is traded at date 0 in a competitive market at price f j 2 (0; 1),
which will be endogenously determined.

The collateral constraint implies that banks within the network choose not to sell

insurance contracts. To see this, note that selling the contract, Ij, requires the bank

to pledge 1 � f j dollars of cash (in addition to f j dollars which she raises from the

purchase). In particular, selling insurance reduces banks�available liquidity at date 1

(even though it may increase their return at the end of date 1). Given that banks are trying

to maximize their available liquidity, they choose not to sell insurance. Put di¤erently,

network uncertainty not only increases banks�demand for insurance, but it also naturally

decreases their supply of insurance.

It follows that insurance contracts must be sold by an agent outside the �nancial

network. Suppose the outside agent has yout dollars at date 0 and consumes only at

the end of date 1. Suppose the outside agent does not know the �nancial network. In

addition, suppose also that the outside agent does not know the identity of the original

distressed bank, b0.15 Importantly, the outside agent knows that the size of the cascade

will be exactly K (i.e., not all of the banking system can go under). This is the main

feature that will facilitate insurance.

Let xj denote the amount of contract Ij sold by the outside agent. We conjecture an

equilibrium for the insurance market in which f j � f 2 (0; 1) for each j and xj � x for
each j. That is, all banks�insurance contracts trade at the same price and the outside

agent sells equal number of contracts.

To characterize this equilibrium, �rst consider the supply of insurance by the outside

agent. This agent�s portfolio choice problem can be written as:

15This assumption is only made for simplicity. The results do not change if we assume the outside
agent knows b0 (i.e., she knows as much as the inside banks).
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max
~x�0

yout + ~xfn� ~xK, (18)

s.t. n~x (1� f) � yout.

The �rst line is the outside agent�s expected pro�t: For each contract she sells, she collects

fn dollars in premiums and she expects to pay K dollars. Note that, even though the

outside agent does not know the network, it knows that exactly K banks will fail. The

second line of (18) is the outside agent�s budget constraint. For each contract she sells,

she raises f dollars. However, she needs to put an additional, 1� f , dollars as collateral.
The total amount of collateral she pledges cannot exceed her available collateral, yout.

Problem (18) implies that as long as fn > K, which we will verify in equilibrium, the

outside bank sells as much insurance as possible. That is:

x =
yout

n (1� f) . (19)

Next consider the demand for insurance by banks. To maximize their available liq-

uidity at date 1, banks, fbjgn�1j=1 , spend all of their date 0 resources to buy insurance

on their respective forward neighbor banks. This is because they buy insurance at price

f < 1 (which is fully collateralized), that gives them 1 dollar at date 1 in their worst

case scenario (when their forward neighbor is insolvent). Thus, these banks�demand for

insurance is given by:

x =
l (p)

f
. (20)

With these insurance purchases, their available liquidity at date 1 (when their forward

neighbor is insolvent) becomes:

l (p; f) = x =
l (p)

f
. (21)

Consider next the original distressed bank, b0. This bank cannot increase its available

liquidity by buying insurance on its forward neighbor, because its forward neighbor will

always be solvent. On the other hand, this bank is indi¤erent between any level of

insurance (because it will be insolvent regardless of its action). To keep the analysis and

the notation simple, consider equilibria in which this bank�s insurance demand is also

given by (20), which leads to an available liquidity of 0 dollars at date 1.

Given this characterization of insurance purchases and available liquidities, the length
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of the cascade can be calculated as before. In particular, the analogue of Eq. (6) in this

setting is given by:

K (p; f) =

�
�

l (p; f)

�
.

Note that when f is lower, more liquidity is available to banks in distress, which leads to

a shorter cascade.

The equilibrium price of insurance is characterized by equating the supply of insurance

in (19) with the demand for insurance in (20). This leads to the following closed form

solution:

f =
l (p)

yout

n
+ l (p)

and x =
yout

n
+ l (p) .

Note that insurance is expensive when the aggregate collateral of the insurance sellers,

yout, is small relative to the number of banks that demand insurance, n. When yout

n
is

su¢ ciently small, f is close 1, which has two implications. First, the condition, fn > K

[which lead to Eq. (19)], is veri�ed because n > K. Second, banks�available liquidity in

(21) is close to l (p). Consequently, the equilibrium is qualitatively similar to the earlier

setting without insurance.

This analysis illustrates that, as long as the collateral of insurance sellers outside the

�nancial network is scarce, the CDS market does not overturn our results. The behavior of

the CDS market during the recent Bear Sterns and Lehman debacles is broadly consistent

with this analysis. Du¢ e (2011) describes that the demand for insurance spiked in both

episodes (measured by novation requests), and that this demand could not be met by

insurance sellers (dealers) within the �nancial network. For the Lehman episode, Vause

(2010) additionally notes: �Market participants responded to increased concern about

counterparty risk by buying protection on CDS dealers... But none of these trading

responses represented a comprehensive solution to the problem. Buying protection on

one dealer from another dealer is of limited value if there are systemic concerns about the

robustness of counterparties in the market.�These observations suggest that insurance

markets might have failed to eliminate fully the counterparty risk in these episodes, mainly

because the supply of insurance was also limited.

7 Conclusion

In this paper we provide a model that illustrates how �re sales can arise even when

�nancial markets are deep and the shock is small relative to the wealth in the �nancial

network. The key ingredient for this outcome is complexity, which we have captured as
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banks�uncertainty about the network of cross-exposures. This feature generates payo¤

uncertainty once banks are unable to �gure out their exposures to an indirect hit.

We also show that there is a powerful feedback between �re sales and complexity. More

severe �re sales lengthen the potential cascades and increase banks�payo¤ uncertainty.

This triggers a precautionary reaction from potential asset buyers, which pull back and

exacerbate the �re sale. In extreme scenarios these potential buyers can turn into sellers,

leading to a complete collapse in secondary markets.

We only partially explored policy questions, but it is apparent that our environment

creates many policy opportunities. In particular, the complexity externality supports gov-

ernment actions during crises that are aimed at reducing the size of cascades (e.g., bailing

out distressed banks or asset purchases), as well as those that are aimed at reducing the

network uncertainty (e.g., stress testing, and widespread guarantees to banking liabilities

or assets). In addition, the complexity externality also supports preemptive measures

that are aimed at simplifying (and increasing the transparency of) the �nancial network,

e.g., moving OTC transactions to exchanges.

A question that emerges in our environment is whether banks can aggregate their (lo-

cal) information about the �nancial network. In our model, banks cannot credibly share

their information if we assume that distressed banks su¤er losses from revealing that they

are distressed (which is likely to be the case in reality). This is because banks that are

close to the original distressed bank have an incentive to misreport their distance, which

prevents the aggregation of information. More broadly, one could imagine many other

reasons why information production and sharing during a crisis is ine¢ cient, which em-

phasizes the importance of policies that provide information (e.g., stress testing, collecting

data on OTC transactions).

As a parting thought we note that the particular insolvency motive we consider raises

the question of what would happen if the distressed institutions chose to gamble for res-

urrection by not selling their assets, which would improve their outcome in good states

at the cost of a greater bankruptcy risk. Our model suggests that gambling for resurrec-

tion may be a mixed blessing for the aggregate. Gambling by potential buyers, that is,

institutions that are far from the cascade but that do not know this, would limit the �re

sales and the downward spiral of prices. On the other hand, gambling by institutions near

the cascade would increase the cascade size and trigger the complexity mechanism. This

issue also points to important policy trade-o¤s for the decision on which institutions to

guarantee during a systemic event.
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A Appendix: Omitted Proofs and Extensions

A.1 Endogenizing Banks�Debt Rollover Decision

In the main text, we have simpli�ed the model by assuming that all short term debt claims

must be settled at date 1. In this appendix, we consider the extension of the model with

banks�roll-over actions, and we show that the equilibrium is unchanged. Put di¤erently,

all banks choose to withdraw their debt claims immediately.

To see this, consider an extension in which each bank bj has an additional action at

date 1, Aj1 = W (~z) for some ~z 2 [0; z]. A bank that chooses Aj1 = W (~z) withdraws

~z dollars of its debt claims on its forward neighbor bank at date 1, and rolls over the

remaining z � ~z dollars of its debt claims to date 2. In this setting, consider a distressed
bank with a positive liquidity need at date 1 (e.g., the original distressed bank b0). This

bank could try to obtain the required liquidity either by withdrawing its debt claims at

date 1 (i.e., by choosing Aj1 = W (~z) for some ~z > 0) and/or by taking the precautionary

action at date 0 (i.e., by choosing Aj0 = S). Taking the precautionary action is strictly

costly for the bank because it sacri�ces equity value at date 2. However, withdrawing

debt claims is not costly. In fact, either the forward neighbor bank is insolvent, in which

case withdrawing is strictly better than rolling over (recall that each bank is small and

takes the debt payment of the forward neighbor bank as given), or the forward bank is

solvent in which case withdrawing and rolling over generate the same amount of equity

value. Hence, the bank always prefers ex-post withdrawal to the ex-ante precautionary

actions. In other words, the liquidity pecking order is such that a bank that will need

liquidity at date 1 �rst chooses Aj1 = W (~z), and then (if there is need) resorts to ex-ante

precautionary measures.

Next consider the original distressed bank, b0, that will need at least � dollars of

liquidity. This bank withdraws a positive amount of its debt claims from its forward

neighbor, i.e., A01 = W (~z) for some ~z > 0. This puts the neighbor bank also in need of ~z

dollars of liquidity, which also withdraws ~z units of its debt claims on the forward neighbor.

As in Allen and Gale (2000), this triggers further withdrawals until, in equilibrium, Aj1 =

W (~z) for all j. Hence, the original distressed bank tries, but cannot obtain, any net

liquidity through cross debt withdrawals. In particular, this bank still needs at least �

dollars of liquidity after cross debt withdrawals. This further implies that, in equilibrium,

the bank withdraws all of its debt claims, i.e., ~z = z. Thus, no bank rolls over its debt

and all debt claims are settled at date 1. It follows that the equilibria analyzed in the

main text continue to be the equilibria in this setting with a more general action space
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at date 1.

A.2 Equilibrium in the No-Uncertainty Benchmark

This appendix presents the proofs omitted from Section 3.

Proof of Proposition 1. Provided in the text.

Proof of Proposition 2. We complete the sketch proof provided in the paragraph

following Proposition 2. Suppose p 2 [pscrap; 1] and consider the banks�asset supply and
demand. There are K (p) + 1 banks that choose Aj0 = S. The supply of assets from

these banks is given by (1� y) (K (p) + 1). The remaining n � K (p) � 1 banks choose
Aj0 = B. The demand for assets from these banks is given by y(n�K(p)�1)

p
. We claim that

the demand exceeds the supply regardless of the price, that is:

y (n�K (p)� 1)
p

> (1� y) (K (p) + 1) for each p 2 [pscrap; 1] . (22)

By the secondary market clearing condition (2), this claim ensures that the equilibrium

price is p = 1, proving part (i). Given price p = 1, K and F are characterized by

Proposition 1, proving part (ii). Finally, the aggregate amount of new asset purchases is

equal to banks�demand for assets net of the supply of legacy assets. Taking the di¤erence

of the left hand side and right hand side of the inequality in (22) and using p = 1, we

have:

Y = ny � (K (1) + 1) = ny � d�e ,

proving part (iii).

The remaining step is to show the claim in (22). Recall that K (p)+1 =
l

�
l(p)

m
. Using

this expression, the claim in (22) can be written as:

ny >

�
�

l (p)

�
(y + p (1� y)) =

�
�

l (p)

�
l (p) ,

where the equality follows from the de�nition of l (p) in Eq. (5). To show this inequality,

note that:

ny > d�e �
�
�

l (p)

�
l (p) ,

where the �rst inequality follows from condition (3) and the second inequality follows

since l (p) � 1. It follows that the claim in (22) holds, completing the proof.�
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A.3 Equilibrium with Complexity

This appendix presents the analyses and proofs omitted from Section 4. We �rst prove

that banks�optimal actions are characterized as in Section 4.1. We then present proofs

of Proposition 3 and 4.

Consider banks� optimal actions, taking the cross debt payments,
�
qj1
	
j
, as given.

Note that a su¢ cient statistic for bank bj with distance k to choose action Aj0 2 fS;Bg
is the amount it will receive in equilibrium from its forward neighbor. In particular, to

decide on the level of its precautionary measure, this bank only needs to know its liquidity

need in (4), which only depends on the debt payment of its forward neighbor. Formally,

if the bank chooses Aj0 at date 0 and its forward neighbor pays x at date 1, then this

bank�s debt payment and equity value can be written as a function
�
q1
�
Aj0; x

�
; q2
�
Aj0; x

��
.

However, the bank chooses Aj0 while facing uncertainty about the �nancial network, and

consequently about x = qj1 (�). More speci�cally, the bank knows that x lies in some

interval: �
xworst = min

b(~�)2Bj(�)
qj1 (~�) ; x

best = max
b(~�)2Bj(�)

qj1 (~�)

�
,

but it is uncertain about the exact location of x in this interval. Note also that q1
�
Aj0; x

�
and q2

�
Aj0; x

�
are weakly increasing in x for any choice of action. That is, the bank�s debt

and equity payments are increasing in the amount it receives from its forward neighbor

regardless of the ex-ante precautionary measure it takes. In view of the minimax optimiza-

tion [cf. problem (13)], it follows that the bank will choose its action as if it will receive

the lowest possible payment, xworst. Using the analysis in Section 3.1, it follows that the

bank chooses the precautionary action, Aj0 = S, if and only if its liquidity need is strictly

positive under the lowest possible payment, xworst. This completes the characterization

of banks�optimal actions.

Proof of Proposition 3.

Case (i): � � 2l (p). The statement of the proposition can be rewritten as follows.

First, banks with distance k < K (p) are insolvent (they pay, qj1 < z), while banks with

distance k � K (p) are solvent. Second, banks with distance k � K (p) choose the

precautionary action, Aj0 = S, while banks with distance k > K (p) choose the aggressive

action, Aj0 = B. We prove a stronger claim that banks�payo¤s (and thus solvencies)

and actions are the same as in the no-uncertainty benchmark (which is characterized in

Proposition 1).
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To prove this claim, it su¢ ces to show that the payments and actions of the no-

uncertainty benchmark constitute a partial equilibrium also in this case. To show this,

�rst consider the actions of banks with distance k � 1. Recall that these banks�optimal
actions are characterized exactly as in the no-uncertainty benchmark. Moreover, in the

conjectured equilibrium, they receive the same payment from their forward neighbors,

x = Q1 [k � 1], as in the no-uncertainty benchmark. Consequently, they optimally choose
the same actions. Next consider the actions of banks with distance k � 2. Recall that
these banks act as if they are at distance 2. Since � � 2l (p), the cascade size satis�es
K (p) � 1. This implies Q1 [1] = z, that is, the bank at distance 2 does not make any

losses from cross-claims. Consequently, banks with distance k � 2 optimally choose the
aggressive action, Aj0 = B. For this parameterization (which implies K (p) � 1), these
banks choose the aggressive action also in the no-uncertainty benchmark. It follows that

actions chosen in the no-uncertainty benchmark are also optimal in this case. Given the

same set of actions, banks payments are also the same.

This analysis also veri�es for this case that the banks�actions and payments can be

written as a function of their distance [cf. Eq. 14]. Moreover, the function Q1 [k] is weakly

increasing because it is the same as in the no-uncertainty benchmark.

Case (ii): � > 2l (p). In this case, the proposition can be rewritten as follows. First,

banks with distance k < K (p) are insolvent, while banks with distance k � K (p) are
solvent. Second, all banks choose the precautionary action, Aj0 = S.

To prove this claim, �rst consider the banks with distance k � 1. Since the original
distressed bank, b0, receives Q1 [n� 1] = z from its forward neighbor, it can be seen

that these banks�optimal actions and payments are the same as in the no-uncertainty

benchmark. Since � > 2l (p), the cascade size satis�es K (p) � 2. Consequently, banks
with distance k � 1 are insolvent and they choose Aj0 = S, proving the claim for these

banks.

Consider next the banks with distance k � 2. Recall that these banks act as if they
are at distance ~k = 2. Given the characterization for banks with distance k � 1, the bank
at distance ~k = 2 receives the payment, Q1 [1], which is the same as in the no-uncertainty

benchmark. Consequently, these banks choose the action that the bank at distance ~k = 2

would choose in the no-uncertainty benchmark. Since K (p) � 2, all of these banks

optimally choose the precautionary action, Aj0 = S. Consider also the payments of these

banks. It can be checked that the banks with distance k � K (p) � 1 are insolvent and
their debt payments and equity values are the same as in the no-uncertainty economy.

The transition bank with distance K (p) is solvent and its debt payment and equity value
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is also the same as in the no-uncertainty economy. The banks with distance k � K (p)+1
are also solvent and they pay Q1 [k] = z on their debt. However, the equity values of

these banks are di¤erent than the no-uncertainty economy. In particular, the equity value

of a bank with distance k � K (p) + 1 is given by

Q2 [k] = y + (1� y) p < R:

This discussion proves the claim also for banks with distance k � 2, and completes the
proof of the proposition.

This analysis also veri�es for this case that the banks�actions and payments can be

written as function of their distance [cf. Eq. 14]. Moreover, the function Q1 [k] is weakly

increasing because it is the same as in the no-uncertainty benchmark.�

Proof of Proposition 4. Provided in the text.
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