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Abstract. Forest structure and species composition in many western U.S. coniferous 

forests have been altered through fire exclusion, past and ongoing harvesting practices, and 

livestock grazing over the 20th century. The effects of these activities have been most 

pronounced in seasonally dry, low and mid-elevation coniferous forests that once 

experienced frequent, low to moderate intensity, fire regimes. In this paper, we report the 

effects of Fire and Fire Surrogate (FFS) forest stand treatments on fuel load profiles, 

potential fire behavior, and fire severity under three weather scenarios from six western U.S. 

FFS sites. This replicated, multisite experiment provides a framework for drawing broad 

generalizations about the effectiveness of prescribed fire and mechanical treatments on 

surface fuel loads, forest structure, and potential fire severity. Mechanical treatments without 

fire resulted in combined 1-, 10-, and 100-hour surface fuel loads that were significantly 

greater than controls at three of five FFS sites. Canopy cover was significantly lower than 

controls at three of five FFS sites with mechanical-only treatments and at all five FFS sites 

with the mechanical plus burning treatment; fire-only treatments reduced canopy cover at 

only one site. For the combined treatment of mechanical plus fire, all five FFS sites with this 

treatment had a substantially lower likelihood of passive crown fire as indicated by the very 

high torching indices. FFS sites that experienced significant increases in 1-, 10-, and 100-hour 

combined surface fuel loads utilized harvest systems that left all activity fuels within 

experimental units. When mechanical treatments were followed by prescribed burning or pile 

burning, they were the most effective treatment for reducing crown fire potential and 

predicted tree mortality because of low surface fuel loads and increased vertical and 

horizontal canopy separation. Results indicate that mechanical plus fire, fire-only, and 

mechanical-only treatments using whole-tree harvest systems were all effective at reducing 

potential fire severity under severe fire weather conditions. Retaining the largest trees within 

stands also increased fire resistance. 

Key words: fire hazard; fire policy; fire suppression; fire resistance; fuel management; fuel treatment; 
mixed conifer; ponderosa pine; wildfire. 

Introduction 
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accepted 24 July 2008; final version received 21 August 2008. 

Corresponding Editor: D. McKenzie. For reprints of this 
Invited Feature, see footnote 1, p. 283. 
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Forest structure and species composition in many 

western U.S. coniferous forests have been altered 

through fire exclusion, past and ongoing harvesting 

practices, and livestock grazing. The effects of these 

activities have been most pronounced in seasonally dry, 
low and mid-elevation, coniferous forests that once 

experienced frequent, low to moderate intensity fire 
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regimes (Agee and Skinner 2005, Stephens and Fule 
2005). Increased stand density, decreased overall tree 

size, and increased surface fuel loads are well docu 

mented for many forests of this type (Kilgore and Taylor 

1979, Parsons and DeBenedetti 1979, Arno 1980, 
Skinner and Chang 1996, Taylor 2000, Ful? et al. 

2002, Heyerdahl et al. 2002, Hessburg et al. 2005). These 

changes concern fire managers because the increased fuel 

loads and altered forest structure have made many 
forests vulnerable to fire severities outside of desired 

conditions. Changing climates in the next several 

decades may further complicate fire management by 

increasing temperatures and fire season length (McKen 
zie et al. 2004, Westerling et al. 2006). 

Currently over 10 million hectares of coniferous 

forests in the western United States are in moderate or 

high fire hazard condition classes and pose a significant 

problem for management (Stephens and Ruth 2005). 
Because of these conditions, modification of potential 
fire behavior has become a central management focus in 

most coniferous forests in the western United States. 

Several recent fire policies and initiatives such as the 

U.S. National Fire Plan, Ten-Year Comprehensive 

Strategy, and Healthy Forest Restoration Act have 

been enacted to address the national wildfire problem in 

the United States (Stephens and Ruth 2005, Moritz and 

Stephens 2008). 
Fuel reduction methods for modifying fire behavior 

are practiced by many managers (Pollet and Omi 2002, 

Agee and Skinner 2005, Peterson et al. 2005), although 
much remains to be done to more precisely quantify fuel 

treatment effects on potential wildfire severity under 

different fire weather scenarios and stand conditions 

(Fernandes and Botelho 2003). In addition, there is 

relatively little understanding of the ecological effects of 

fuel treatments, in particular the extent to which 

mechanical treatments might emulate natural ecological 

processes such as fire (Sierra Nevada Ecosystem Project 

1996, Mclver et al. 2009). Creating forest structures that 

can reduce fire severity at a landscape level may decrease 

the need for an aggressive suppression response and 

could eventually reduce the costs of fire suppression. 
Debate over the efficacy of treatments utilized to 

modify vegetation structure and fuel loads in ways that 

alter fire behavior is ongoing at local, state, and national 

levels. Though there have been qualitative and com 

parative studies on the effectiveness of various fuel 

treatments, controlled empirical studies using modern 

fuel reduction techniques are relatively rare (Ful? et al. 

2001, Pollet and Omi 2002, Fiedler et al. 2004, Stephens 
and Moghaddas 2005a, Agee and Lolley 2006, Schmidt 
et al. 2008, Youngblood et al. 2008), especially studies 

that are replicated and represent multiple regions of the 

U.S. Researchers have modeled the impacts of different 

fuel treatments on potential fire behavior in western 

coniferous forests (van Wagtendonk 1996, Stephens 

1998, Miller and Urban 2000) but these analyses are 

constrained by model assumptions and a limited number 

of study locations. 

The Fire and Fire Surrogate Study (FFS) was funded 

by the U.S. Joint Fire Science Program to provide 
information on the effects of using different silvicultural 

techniques to reduce fire hazard in common forest types 
that once experienced frequent, low to moderate 

intensity fire regimes across the continental United 

States (Weatherspoon and Mclver 2000, Mclver et al. 

2009; see Plate 1). This study fills an important gap in 
our understanding of how fuel reduction treatments 

affect a range of ecological factors in these forest types. 
Initial effects of FFS treatments on a number of 

response variables, including vegetation, soils, insects, 

wildlife, fire behavior, and social responses to treatments 

have been reported at the site level by several authors 

(e.g., Metlen et al. 2004, Gundale et al. 2005, Knapp et 

al. 2005, Apigian et al. 2006, Youngblood et al. 2006, 

McCaffrey et al. 2008, Moghaddas and Stephens 2008, 
Schmidt et al. 2008). However, comparative treatment 

effects on potential fire severity across multiple FFS sites 

have not been analyzed and are the focus of this work. 

The overriding goal of the fuel treatments was to 

increase stand resistance to the severe effects of wildfire 

and not to emulate historical, pre-European settlement, 
forest conditions. The primary fuel treatment objective 
was to alter stand conditions so that projected fire 

severity would result in at least 80% of the dominant and 

codominant residual trees surviving a wildfire under the 

80th percentile fire weather conditions (the "80-80" 

rule). This standard (80-80 rule) was only a minimum 

requirement and stricter agency or local standards were 

commonly implemented across sites. While recognizing 
this minimum standard would likely not appreciably 
reduce tree mortality or significantly enhance fire 

suppression capabilities under more severe fire weather 

conditions, it may facilitate more widespread use of 

wildland fire use (WFU) and appropriate management 

response (AMR) (USDA and USDI 2005) to manage 
fires. Increasing resistance in forests can also moderate 

expected climate change impacts (Millar et al. 2007). 
In this paper, we report the effects of FFS forest stand 

structure treatments on fuel load profiles and potential 
fire behavior and severity under three weather scenarios 

from six western FFS sites. This replicated, multisite 

experiment provides a framework for drawing broad 

generalizations about the effectiveness different fuel 

treatments in dry, low to mid-elevation coniferous 

forests in the western United States. 

Methods 

Study sites 

The FFS study is a multidisciplinary project imple 
mented at 12 sites nationwide (for map, see Schwilk et 

al. [2009]). Treatments varied somewhat between sites, 
and the data collection methods used two designs; 

however, similarities in how the experiment was 

conducted did facilitate comparison of results across 
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45? N 
i 

Southern Cascades 
Klamath National Forest 

Pondersosa pine/white fir/red fir 
FRI: ~8 yr (5-20 yr) 

1480-1780 m 

Central Sierra Nevada 
Eldorado/Stanislaus/Tahoe 

National Forests 
Sierran mixed conifer 

FRI:~10yr(3-28yr) 
1100-1410 m 

Southern Sierra Nevada 

Sequoia-King Canyon National 

Park/Sequoia National Forest 
Sierran mixed conifer 

FRI:~27yr(7-56yr) 
1900-2150 m 

.** 

Northern Rocky Mountains 
Lolo National Forest 

Pondersosa pine/Douglas-fir 
" 50? N 

FRI:~15yr(2-25yr) 
900-1400 m 

Blue Mountains 
Wallowa-Whitman/Malheur/Umatilla 

National Forests 
Pondersosa pine/Douglas-fir 

FRI:~10yr(3-22yr) 
1000-1500 m 

-40?N 

Southwestern Plateau 
Coconino/Kaibab National Forests 

Pondersosa pine 
FRI: ~5yr (2-10 yr) 

2100-2300 m 

110?W 

Fig. 1. Location, forest type, fire return interval (FRI, mean with range in parentheses), and elevation of the six western United 

States Fire and Fire Surrogate sites used in this work. 

sites. This paper focuses on fuel treatment effects for a 

subset of six sites that are representative of the most 

common dry coniferous forest types in the western 

United States (Fig. 1). The FFS sites were selected to 

represent forests originally characterized by fire regimes 

of frequent, low-moderate intensity. The six sites 

included in this study are (1) Southern Cascades, within 
the Klamath National Forest in northern California; (2) 

Central Sierra Nevada, within the El Dorado National 

Forest in east-central California; (3) Southern Sierra 

Nevada, within Sequoia National Park in the southern 

Sierras of California; (4) Blue Mountains, within the 
Wallowa-Whitman National Forest in northeastern 

Oregon; (5) Northern Rocky Mountains, within the 
Lolo National Forest in western Montana; and (6) 

Southwestern Plateau, within the Coconino and Kaibab 

National Forests in northern Arizona (Table 1, Fig. 1, 

Appendix). 

The forests represented by these sites span a 

latitudinal range of more than 12 degrees and contain 

forests that experience both summer rain and summer 

drought. Historical mean fire return intervals of the six 

sites ranged from 5 to 30 years and all sites have 

experienced a century of near total fire exclusion (Table 

1, Appendix). Sites represented a diversity of past land 

management practices; five had been harvested repeat 

edly with the sixth being an unharvested old-growth 

forest at Sequoia National Park (Appendix). 

Treatments 

Site level treatments included an unmanipulated 

control, prescribed fire only (in the fall, spring, or both), 

mechanical treatment only, and a mechanical plus 

prescribed fire treatment (in the fall or spring). Regional 

variations in treatment implementation were reflective of 

local mechanical treatment and prescribed burning 

practices. All mechanical treatments included removal 

of commercial material composed of stud logs and saw 

logs (trees greater than 20-25 cm diameter at breast 

height [dbh]) and some sites removed biomass or pulp 
trees (trees 5-25 cm dbh). In all mechanical treatments, 

removal of saw logs was completed using whole-tree, 

cut-to-length, or standard chainsaw and skidder or 

forwarder systems (Appendix). Within mechanical plus 

fire and fire-only treatments, prescribed burns were 

implemented in the fall with the exception of the 
Northern Rocky Mountains, which applied spring 

burns, a local prescribed burning preference (Appendix). 

In the Southern Sierra Nevada, mechanical treatments 

were not used; instead fall and spring prescribed burns 

were implemented to compare differences in burn 

seasonality. While most prescribed fires were designed 
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Table 1. Characteristics of the six western United States Fire and Fire Surrogate Study sites. 

Fire surrogate study site, name, and location 
Replicates per 

treatment 
Latitude and 

longitude 

Elevation 

range (m) 

Central Sierra Nevada, Blodgett Forest Research Station, California 3 38? N, 120? W 1100-1410 
Northern Rocky Mountains, Lubrecht Experimental Forest, Montana 3 47? N, 113? W 900-1400 
Southern Cascades, Goosenest Adaptive Management Area, California 3 41.5? N, 122? W 1480-1780 
Blue Mountains, Hungry Bob, Wallowa-Whitman National Forest, Oregon 4 45?30' N, 117? W 1000-1500 
Southwestern Plateau, northern Arizona 3 35? N, 112? W 2100-2300 
Southern Sierra Nevada, Sequoia National Park, California 3 36.5? N, 119? W 1900-2150 

as low intensity understory burns, achieving the 80-80 

objective required mixed fire severities on some sites. 

All treatments were replicated at least three times at 

each FFS site (Table 1). Experimental units were at least 

10 ha each with a central measurement area used for 

field measurements to reduce edge effects. Treatments 

were assigned to experimental units randomly, except at 

the Southwestern Plateau, where one experimental block 

required specific arrangements of burn units for safety 
reasons. 

Assessment of stand structure and fuels 

At the Central Sierra Nevada and Blue Mountains, 

vegetation was measured with the use of 0.04-ha circular 

plots installed in each experimental unit (20 and 25 

plots, respectively, in each experimental unit). Plots were 

placed on a systematic grid with a random starting 

point. Tree species, dbh, tree height, height to live crown 

base, and crown position in the forest canopy (domi 

nant, codominant, intermediate, suppressed) were re 

corded for all trees greater than 10 cm dbh on each plot. 
Similar information was also recorded for all trees 

greater than 1.37 m tall on a 0.004 ha nested subplot in 

each of the 0.04-ha circular plots. Canopy cover was 

measured at 25 points (5 X 5 m grid) on each 0.04-ha 

plot using a sight tube (Jennings et al. 1999). Surface and 

ground fuels were sampled using the line-intercept 
method (van Wagner 1968, Brown 1974) along two 

randomly chosen azimuths at each of the 0.04-ha plots. 
Duff and litter depth (cm) were measured at two points 

along each transect; surface fuel depth (cm) was 

measured at three points along each transect. At the 

Blue Mountains, destructive plot-based sampling was 

used to sample 1-hour (<0.064 cm diameter) and 10 

hour (0.064-2.54 cm diameter) woody fuels. 

At the other four FFS sites, 0.1-ha (20 X 50 m) 
rectangular plots were randomly located in each 

experimental unit at ten of 36 points in a 6 X 6 grid 
(50 m intervals between grid points). These modified 

Whittaker (Keeley and Fotheringham 2005) plots were 
used to sample live and dead vegetation, and fuels. Plots 

were oriented randomly at some sites or oriented in one 

of the four cardinal directions (0?, 90?, 180?, 270?, 

randomly chosen) at other sites. Diameter at breast 

height of all trees with dbh > 10 cm was measured and 

status (alive, standing dead, dead and down) were 

recorded. Saplings (dbh < 10 cm and height > 1.37 m) 

were sampled on half of each 0.1-ha plot. Saplings were 

not individually tagged, but the same data were recorded 

as for trees. Percentage canopy cover was estimated at 

grid points or at the corner of the 0.1-ha plots. Surface 

fuels were measured using two transects (20 m in length) 

placed at each of the 36 grid points within each 

experimental unit; litter and duff depth measurements 

were taken at three locations along these transects. 

At all sites, ground fuel loads were calculated using 
either published equations (Brown 1974, van Wagten 
donk et al. 1996, 1998) or site-specific fuel depth to 

weight relationships developed from destructive sam 

pling of the forest floor. Data analyzed in this study were 

one year posttreatment, except at Blue Mountains, 
which were two years posttreatment. 

Modeling potential fire behavior and severity 

In western U.S. coniferous forests, fire managers often 

use a stricter standard than the FFS 80th percentile 
weather conditions for designing fuels treatments (i.e., 
90th or 97.5th percentile). Therefore, we simulated fire 

behavior and effects under upper 80th (moderate), 90th 

(high), and 97.5th (extreme) percentile fire weather 
conditions based on archived remote access weather 

station (RAWS) data. Weather data from the RAWS 
station (data available online)12 closest to each FFS site 

were analyzed with Fire Family Plus (Main et al. 1990) 
to determine percentile fire weather conditions (Table 2). 
Each RAWS station had a weather record of at least 25 

years and these data were used to generate percentile fire 

weather. 

Fuels Management Analyst Plus (FMA) was used to 
estimate potential fire behavior, crowning index, torch 

ing index, and tree mortality (Carlton 2004). Torching 
and crowning indices are the wind speed (measured at 

6.1 m above ground) required to initiate torching 

(passive crown fire) or to sustain a crown fire (active 
crown fire) within a stand, respectively (Scott and 

Reinhardt 2001). Higher values of torching and crown 

ing indices are desirable. FMA uses information from 

field measurements (tree species, dbh, tree crown ratio, 
tree crown position, percentage canopy cover, surface 

and ground fuel loads, slope) and -fire weather to 

simulate fire behavior and fire effects at the stand scale. 

12 
(http://www.raws.dri.edu/) 
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Table 1. Extended. 

Fire return interval 
Tree species (mean ages of dominant and codominant trees) (mean and range) (yr) 

Pinus ponderosa, Pinus lambertiana, Calocedrus decurrens, Pseudotsuga menziesii (90-100 yr) 10 (3-28) 
Pinus ponderosa, Pseudotsuga menziesii (80-90 yr) 15 (2-25) 
Pinus ponderosa, Abies concolor (70-80 yr) 8 (5-20) 
Pinus ponderosa, Pseudotsuga menziesii (70-100 yr) 10 (3-22) 
Pinus ponderosa (70-90 yr) 5 (2-10) 
Abies concolor, Abies magnifica, Calocedrus decurrens, Pinus Jeffreyi', Pinus ponderosa, 27 (7-56) 

Pinus lambertiana (300-500 yr) 

FMA incorporates published methodologies for com 

puting crown bulk density, fire behavior, and predicted 

mortality by species. See Stephens and Moghaddas 

(2005a, b) for summaries of the methodologies used for 

these computations. The fuel models (Rothermel 1983, 
Carlton 2004, Burgan and Scott 2005) used for 

estimating fire behavior for each treatment and site are 

given in Table 3; fuel models were selected by scientists 

associated with each of the individual FFS sites. 

Acknowledgement is given to the fact that the fuel and 

fire behavior models used in this assessment are 

simplified representatives of real fuel conditions (Burgan 
and Scott 2005) and fire behavior (Pastor et al. 2003). 
Further, the models have not all been field validated 

because of the difficulty of doing so (Scott and 
Reinhardt 2001). Crown fire behavior is notably 
complex and is controlled by several interacting, highly 
variable elements such as weather, crown characteristics, 
and surface fuels, which the models tend to homogenize. 
That said, these models still represent the best available 

compilation of fire behavior science, whether empirically 
or theoretically derived (Pastor et al. 2003), and there 

fore, results of modeled crown fire behavior can be 

particularly useful for relative comparisons between 

treatments. However, predictions should be used with 

caution for estimating absolute values of model outputs 

(Scott 2006), particularly torching index. High values of 

torching index, those that are multiple times the 

magnitude of any possible wind speed at an individual 

site, should be interpreted as a characteristic of a forest 

structure that is extremely resistant to passive crown fire. 

Potential tree mortality (fire severity) is the most 

appropriate metric to compare the results of the FFS 

fuel treatments in this study. 

Data analysis 

An analysis of covariance (ANCOVA) (Zar 1999) was 

performed for each FFS site using the posttreatment fuel 

and stand structure measurements as response variables 

with the pretreatment values used as the covariate. 

Several variables were separately analyzed at all sites 

including vegetation (trees/ha, canopy cover) and sur 

face fuel (1-, 10-, and 100-h time lag fuel loads/ha) 
characteristics. No pretreatment data were collected at 

the Southern Cascades site; therefore an ANOVA was 

completed on the post treatment data only. At all sites, 
Bonferroni multiple pairwise comparisons (Zar 1999) 

were evaluated at the mean value of the covariate to 

determine if significant differences (P < 0.05) existed in 
the vegetation and fuels variables analyzed. Potential for 

crown fire (torching index, crowning index) and fire 

severity (predicted tree mortality) were computed for 

each fire weather combination (Table 2) and fuel 

conditions created by each treatment type (Table 3). 
The JMP statistical software package (Sail et al. 2001) 
(this product is not endorsed by the authors of this 

study) was used in all analyses. All statistical compar 
isons were made between treatment types and controls, 

separately, by site. 

Results 

Surface fuels and stand structure 

The combined 1-, 10-, and 100-h surface fuel loads 

(fuels with diameter 0-7.5 cm) in mechanical-only 
treatments were significantly greater than in the controls 

at three of five FFS sites (Table 4). The mechanical plus 
fire treatment significantly reduced 1-, 10-, and 100-h 

surface fuels at only the Central Sierra Nevada site. Fire 

alone, when used in the fall, significantly reduced 1-, 10-, 

and 100-h surface fuels at two of five FFS sites (Table 4). 
Fire used in the spring significantly reduced 1-, 10-, and 

100-h surface fuels at one of two FFS sites. At the 

Southern Sierra Nevada, where burns were conducted in 

both seasons, there was a significantly greater reduction 

in these fuels with fall burning. Fire alone, in either fall 

or spring, significantly reduced 1-, 10-, and 100-h fuels 

compared to three of five FFS sites utilizing mechanical 

only treatments and one site with the mechanical plus 
fire treatment. 

Canopy cover was significantly lower than controls at 

three of five FFS sites with mechanical-only treatments 

and all five FFS sites with the mechanical plus fire 
treatment (Table 5), Fire alone had no significant effect 

on canopy cover at five of the six FFS sites; canopy 
cover was significantly reduced by fall burning but not 

by spring burning at the Southern Sierra Nevada site 

(Table 5). 
Compared to controls, density of the smallest trees 

(2.5-25 cm dbh) was significantly lower in mechanical 

only treatments at three of five FFS sites and in 

mechanical plus fire treatments at all five FFS sites 

tested (Table 6). Fall burning significantly reduced tree 

density between 2.5 and 25 cm dbh at four of five FFS 
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Table 2. Upper 80th, 90th, and 97.5th percentile fire weather conditions for the six western United States Fire and Fire Surrogate sites. 

Central Sierra Nevada, Northern Rocky Southern Cascades, Blue Mountains, 
Weather parameter Bald Mountain Mountains, Missoula Van Bremmer Roberts Butte 

Weather percentile 80 90 97.5 80 90 97.5 80 90 97.5 80 90 97.5 
Probable maximum 1-min wind 22 27 31 13 16 16 18 16 21 13 13 14 

speed (km/hr) (Crosby and 
Chandler 1966) 

Dry-bulb temperature (?C) 29 32 33 30 33 34 29 31 33 31 33 35 
Relative humidity (%) 25 17 15 26 19 17 17 14 11 15 13 10 
1-h fuel moisture (%) 3.9 3 1.8 4.5 4.8 4 3.5 2.5 2.2 3 2.8 1.5 
10-h fuel moisture (%) 5.2 2.7 2.3 5.5 6.4 4.9 3.9 2.7 2.7 3.7 3.4 2.2 
100-h fuel moisture (%) 7.7 6.6 4.2 9.5 10 8.2 6.8 5.8 5.6 6.2 6 5 

Herbaceous fuel moisture (%) 62 30 30 57 42 47 39 40 36 88 91 95 
Woody fuel moisture (%) 101 47 41 99 80 76 59 60 52 15 13 10 
Foliar fuel moisture (%) 100 80 75 100 80 75 100 80 75 100 80 75 

sites using this treatment. Spring burning significantly 
reduced the density of trees between 2.5 and 25 cm dbh 

at the Northern Rocky Mountains. Tree density from 25 

to 51 cm dbh was significantly reduced in mechanical 

only treatments at four of five FFS sites (all except the 

Blue Mountains) and in mechanical plus fire treatments 

at all five FFS sites that used this treatment (Table 6). In 
the fire-only treatment (fall or spring), density of trees 

between 25 and 51 cm dbh was reduced only at the 

Southern Sierra Nevada with a fall burn. Tree density of 

the 51-76 cm dbh size class was significantly reduced in 

the mechanical-only and mechanical plus fire treatment 

at only the Central Sierra Nevada site. Density of the 

largest trees (dbh > 76 cm) was not significantly reduced 

by any treatment (Table 6). 

Potential crown fire and tree mortality 

The mechanical treatment alone had a variable effect 

on torching index; two FFS sites showed either a 

decrease (Northern Rockies) or little improvement 

(Central Sierra) in the torching index, compared with 

controls, while large increases in the torching index were 

noted at the other three FFS sites (Fig. 2). For the 

combined treatment of mechanical plus fire, all five FFS 

sites with this treatment had a substantially lower 

likelihood of passive crown fire as indicated by the very 

high torching indices. 
Across all FFS sites using mechanical treatments, the 

relative potential for active crown fire (as measured by 
the crowning index) was lowest in mechanical plus fire 

treatments, followed by the mechanical-only treatments, 

closely followed by fire-only treatments (fall or spring), 
and highest in the controls (Fig. 3). The relative 

potential for passive and active crown fires from 

fall/spring burn-only treatments at the Southern Sierra 

Nevada site was lower than most active treatments at all 

other sites (Figs. 2 and 3). 
Predicted tree mortality (all tree size classes) from a 

potential wildfire at all percentile weather conditions 

was lowest for the mechanical plus fire treatment, 

followed by the fire-only treatment (Figs. 4-6). The 

mechanical-only treatment resulted in an effective 

reduction of potential tree mortality across all diameter 

classes compared to controls except at the Northern 

Rockies where potential mortality increased in mechan 

ical-only treatments for all weather scenarios and at the 

Central Sierra Nevada where it was largely unchanged 

(Figs. 4-6). The mechanical-only treatment at the 

Central Sierra slightly increased predicted mortality for 

trees up to 51 cm dbh under 80th percentile weather 

conditions. 

Discussion 

Quantitatively evaluating the source of fire hazard 

from surface, ladder, and crown fuels, or their combi 

nation, will help managers design more effective fuel 

treatments. Fire hazard also can pose a risk to other 

resources that are targeted for protection, including 
human development, wildlife habitat, water quality, 
recreation areas, wood fiber, and other values (McKel 

vey et al. 1996, Agee 2003, Hessburg et al. 2005, Spies et 

al. 2006). More effective strategies are likely to be 

Table 3. Fuel models used for fire behavior and effects modeling at the six western United States Fire and Fire Surrogate sites. 

Location Control Mechanical only Mechanical plus fire Fire only 

Central Sierra Nevada 10A2 11MC2 8A2 8A2 
Northern Rocky Mountains TL-053 SB-023 TL-013 (S) TL-013 (S) 
Blue Mountains 21 11 AC2 91 91 
Southwestern Plateau 91 11CB2 91 91 
Southern Cascades 10M2 11CC2 8A2 8A2 
Southern Sierra Nevada 101 NA NA 81 (S) 

Notes: Burning treatments were in the fall except where specified spring (S). Fuel models used are from the references cited. NA, 
not applicable: this site did not include these treatments. 

References (indicated by superscript numbers): 1, Rothermel (1983); 2, Carlton (2004); 3, Burgan and Scott (2005). 
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Table 2. Extended. 

Southwestern Southern Sierra Nevada, 
Plateau, Tusayan Dinkey Creek and Park Ridge 

80 90 97.5 80 90 97.5 
18 23 16 15 16 15 

26 28 31 27 28 29 
12 10 7 27 20 18 
2.7 3.2 2.5 5.2 4.5 4.2 
3.8 3.6 2.9 6.8 5.6 5.0 
5.1 5.1 4.4 10.0 8.8 7.6 

30 30 30 41 30 21 
50 50 7 83 75 65 
100 80 75 100 80 75 

developed through assessments that span stand and 

landscape scales as appropriate for the area being 
treated. Net treatment costs and reduction in fire risk 

are critical considerations when determining the feasi 

bility of any fuel treatment (Fiedler et al. 2004, Finney 
2005, Hartsough et al. 2008). 

The effectiveness of mechanical thinning for reducing 

passive and active crown fire potential was largely 

dependent on the type of harvest system used, and 

whether the harvest system left activity fuels in the unit. 

The Southern Cascades utilized a whole-tree harvest 

system that resulted in no significant increase in 1-, 10-, 

and 100-h surface fuels after mechanical treatment. The 

Central Sierra Nevada site used a lop and scatter 

treatment of limbs and tree tops followed by mastication 

of approximately 90% of the standing live and dead trees 

from 2.5 to 25 cm dbh. The Northern Rocky Mountains, 

Southwestern Plateau, and Blue Mountains used cut-to 

length systems that left tree limbs and tree tops in the 

experimental units. These mechanical-only treatments 

significantly increased combined 1-, 10-, and 100-h 

surface fuels. It is important to note that at these sites, 

residual surface fuels exceeded 15 Mg/ha (Table 4), but 
the Central Sierra Nevada and Southwestern Plateau 

still had slightly reduced crown fire potential because of 

reduced small tree density (Table 6) and higher canopy 
base heights. At the Northern Rockies site, high surface 

fuel loads combined with low canopy base heights from 

the large number of trees remaining in the 2.5-25 cm 

dbh size class contributed to decreased effectiveness in 

reducing torching potential and predicted tree mortality 
when compared to the untreated forest (controls). 

Mechanical treatments reduced active crown fire 

potential when compared to controls at all five sites 

that included this treatment (Fig. 3). These sites utilized 

low thinning, and sometimes improvement or selection 

cutting to remove commercial and sub-merchantable 

materials, and this resulted in increased horizontal and 

vertical separation of canopy fuels (Fiedler et al. 2003, 

Graham et al. 2004, Ag?e and Skinner 2005, Peterson et 

al. 2005, Youngblood et al. 2008). Silvicultural treat 

ments that remove commercial material yet retain high 
levels of biomass (trees with dbh < 25 cm) do not 

improve resistance to high-severity fire. Mechanical 

treatments followed by prescribed burning or pile 

burning were the most effective treatment for reducing 
crown fire potential and predicted tree mortality. 

The use of whole-tree harvesting has been previously 
recommended to minimize activity fuels (Agee and 

Skinner 2005); the findings reported in our study provide 
quantitative evidence supporting this recommendation. 

Whole-tree removal systems were the most effective 

mechanical system analyzed in this study and may be 

preferred where wood-chip or biomass markets are 

available to forest managers. Where trees are too small 

for sawn products and cannot be economically chipped 
and transported to a processing facility, subsidizing 
treatment or hauling costs should be considered if the 

corresponding decrease in fire hazard warrants the 

additional expenditure. Whole-tree removal systems 
are also advantageous when managers plan to prescribe 
burn after tree removals because only surface fuels 

existing pretreatment need to be consumed (a few 

activity fuels will be left on site). 
Of all active treatments, spring burning alone resulted 

in the fewest significant changes to stand and fuel 

structures. At the Southern Sierra Nevada site, both fall 

and spring fire-only treatments were still effective at 

removing surface fuels. Whereas the fall fire treatment 

was more effective at reducing the density of trees up to 

25 cm dbh; spring burning resulted in greater retention 

of large woody debris (Knapp et al. 2005). While 
treatments involving fall burns resulted in greater 

surface fuel reduction, broad generalizations about the 

effect of burning season on modeled fire behavior and 

Table 4. Mean posttreatment 1-, 10-, and 100-hour combined fuel loads (Mg/ha, with SE in parentheses) by treatment for six 
western United States Fire and Fire Surrogate sites. 

Mechanical Mechanical Mechanical Fire only, Fire only, 
Location Control only + fire, fall + fire, spring fall spring 

Central Sierra Nevada 14.2a (1.1) 17.lb (0.8) 4.8C (0.2) t 4.4C (1.0) f 
Northern Rocky Mountains 8.2a (1.2) 21.1b (2.0) t 7.6a (0.9) f 2.6a (0.2) 
Blue Mountains 4.1(1.0) 5.6(1.5) 3.0(0.7) t 1.7(0.1) t 
Southwest Plateau 5.7bc (1.2) 15.5a (0.7) 8.6e (0.9) t 3.7b (0.2) t 
Southern Cascades 6.3(1.3) 7.1(0.9) 3.6(0.3) t 3.7(0.6) t 
Southern Sierra Nevada 8.5a (0.1) t t t 0.6* (0.2) 2.6e (0.0) 

Note: Mean values in a row with different superscript letters are significantly different (P < 0.05). 
t No treatment of this type at given site. 
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Table 5. Mean (with SE in parentheses) percentage canopy cover by treatment for six western United States Fire and Fire 
Surrogate Study sites. 

Mechanical Mechanical Mechanical Fire only, Fire only, 
Location Control only + fire, fall + fire, spring fall spring 

Central Sierra Nevada 75a (5) 51b (1) 58b (4) f 65ab (3) t 
Northern Rocky Mountains 70a (2.5) 44b (3.1) | 36b (2.6) t 69a (0) 
Blue Mountains 63a (3.8) 60a (7.2) 39b (4.2) | 51a (8) t 
Southwester Plateau 63a (3) 39b (2) 36b (4) t 61a (0) f 
Southern Cascades 59a 39ab 28b f 44ab f 
Southern Sierra Nevada 56ab (7) f | t 50b (1) 61a (4) 

Note: Mean values in a row followed by the same superscript letter are not significantly different (P < 0.05). 
f No treatment of this type at given site. 

effects are not possible here because burns in both 

seasons were only conducted at one site, and too few 

sites used spring burning. However, our results are 

consistent with other recent reports of greater change 

(fuel consumption and tree mortality) with late-season 

burns in western U.S. forest ecosystems (Thies et al. 

2005, Perrakis and Agee 2006). 

An important difference between the fire-only and 

mechanical plus fire treatment is the residual standing 
dead material left after the fire-only treatment (Skinner 

2005). Previous studies in the Central Sierra Nevada site 

found a significantly higher total standing volume of 

snags up to 15 cm dbh in the fire-only treatment when 

compared with the mechanical plus fire treatment 

Table 6. Mean posttreatment live tree density (trees/ha with SE in parentheses) by treatment for six western United States Fire 
and Fire Surrogate sites. 

Size class (dbh) Control 
Mechanical 

only 

Mechanical + 
fire, fall 

Mechanical + 
fire, spring Fire only, fall Fire only, spring 

Central Sierra Nevada 

2.5-25 851.3a (77.7) 
25-51 175.4a (15.6) 
51-76 62.6a (5.4) 
>76 19.8 (4.0) 

All 1109.0a (84.1) 

Northern Rockies 

2.5-25 
25-51 
51-76 
>76 
All 

Blue Mountains 

2.5-25 
25-51 
51-76 
>76 
All 

2406.4a (403.0) 
154.5a (20.8) 
14.5 (7.7) 
0.0 (0.0) 

2575.4a (381.6) 

244.8a (45.9) 
137.8a (9.1) 
10.8 (0.0) 
0.6 (0.7) 

394.0ac (49.0) 

Southwestern Plateau 

2.5-25 
25-51 
51-76 
>76 
All 

442.6 (155.3) 
186.1a (26.6) 

7.6 (0.3) 
0.3 (0.3) 

636.9a (147.4) 

Southern Cascades 

2.5-25 1741.9a (113.3) 
25-51 242.4a (22.4) 
51-76 36.2 (5.9) 
>76 1.3 (0.7) 

All 2021.8a (128.6) 

Southern Sierra Nevada 

2.5-25 462.5a (85.9) 
25-51 87.3a (1.7) 
51-76 38.5 (6.9) 
>76 41.2(3.4) 

All 629.4a (85.0) 

286.9b (139.8) 
61.3b(4.7) 
56.4b (6.6) 
23.9 (3.0) 

428.5b (139.4) 

1051.2bc (131.6) 
83.0b (7.4) 
6.3 (0.9) 
0.0 (0.0) 

1140.5C (132.2) 

248.5a (47.8) 
105.1ab(3.7) 

6.0 (0.0) 
0.0 (0.0) 

359.7C (49.6) 

97.5 (33.1) 
64.2b (13.3) 
17.1 (5.4) 
0.3 (0.3) 

179.2C (24.0) 

27.1C (11.1) 
113.6b(4.7) 
39.8 (4.4) 
2.6(1.7) 

183.2C (8.4) 

t 
f 
t 
t 
t 

100.0b (19.7) 
66.7b(15.4) 
47.8b (3.2) 
24.3 (6.1) 

238.8b (20.9) 

73.5b (25.0) 
91.0b (10.2) 
3.2 (0.0) 
0.3 (0.3) 

167.9bc (33.9) 

67.2(16.1) 
55.0b (15.8) 
14.8 (3.0) 
0.7 (0.7) 

137.7bc(18.1) 

16.2C (3.4) 
76.4b (17.2) 
26.3 (4.9) 

1.3 (0.3) 
120.2C (24.9) 

221.7C (81.3) 
69.2b(15.0) 
5.9 (3.5) 
0.0 (0.0) 

296.8bc (90.8) 

223.9b (21.4) 
137.1a (11.7) 
65.0a (1.1) 
15.2(1.8) 

441.3b (32.1) 

115.6b (29.8) 
124.6ab (24.4) 

4.5 (0.0) 
0.0 (0.0) 

244.7ac (23.4) 

353.4 (178.6) 
188.7a (12.9) 
10.2 (3.7) 
0.3 (0.3) 

552.6ab (163.2) 

413.6b (62.7) 
240.4a (23.4) 
32.3 (10.6) 
0.0 (0.0) 

686.3b (86.0) 

73.6b (5.7) 
42.5 

b 
(16.3) 

24.4(1.3) 
37.2 (2.0) 

177.7 
b 

(19.9) 

f 
t 
f 
t 
f 

1966.6b (824.6) 
145.2a (21.7) 

7.2 (2.4) 
0.0 (0.0) 

2119.1ac(808.3) 

224.9ab (31.1) 
82.3 

ab 
(12.0) 

38.9 (7.3) 
37.9 (2.0) 

383.9 
ab 

(24.0) 

Note: Mean values in a row followed by different superscript letters are significantly different (P < 0.05). 
f No treatment of this type at given site. 
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Fig. 2. Modeled posttreatment torching index (km/h) 
under 80th, 90th, and 97.5th weather percentiles at six western 
United States Fire and Fire Surrogate sites. If there is no bar, a 
treatment was not implemented at that site. Site names are 
abbreviated as: Central Sierra (CS), Northern Rockies (NR), 
Blue Mountains (BM), Southwestern Plateau (SP), Southern 
Cascades (SC), and Southern Sierra (SS). High values of 

torching index, those that are multiple times the magnitude of 

any possible windspeed at a site, should be interpreted as a 
characteristic of a forest structure that is extremely resistant to 

passive crown fire. 

(Stephens and Moghaddas 2005c). This standing dead 
material will eventually fall to the ground and can 
exacerbate fire effects when the site burns again, 

although high fire hazard areas will likely be patchy. 
While additions of this woody debris may be considered 
desirable for habitat value or stabilizing erosive soils, it 

will increase future surface fuel loads and shorten the 

longevity of the fuel treatment. It is expected that several 

fire-only treatments (two to three) would be needed to 

achieve a desired condition regarding potential fire 

behavior and effects in these forests. 

The potential for active crown fire was reduced by 
both mechanical and mechanical plus burning treat 

ments but not appreciably by the fire-only treatment. 

However, the fire-alone and fire plus mechanical treat 

ments greatly increased the torching index and this 

effectively reduced the vulnerability of these stands to 

individual or groups of trees torching. This is supported 

by empirical studies of actual and projected fire effects 
on sites with similar treatments (Graham 2003, Skinner 

et al. 2004, Skinner 2005, Ritchie et al. 2007). 
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Fig. 3. Modeled posttreatment crowning index (km/h) 
under 80th, 90th, and 97.5th weather percentiles at six western 
United States Fire and Fire Surrogate sites. If there is no bar, a 
treatment was not implemented at that site. Site names are 
abbreviated as: Central Sierra (CS), Northern Rockies (NR), 
Blue Mountains (BM), Southwestern Plateau (SP), Southern 
Cascades (SC), and Southern Sierra (SS). 
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Central Sierra Southwestern Plateau 

Ecological Applications 
Vol. 19, No. 2 
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Fig. 4. Modeled postfire tree mortality by dbh class under 80th percentile weather conditions for trees remaining at six western 

United States Fire and Fire Surrogate sites after treatments. When no trees were present in a given treatment, this absence of a 

given size class is denoted by ?. If there is no bar, a treatment was not implemented at that site. 

The controls were the most susceptible to active and 

passive crown fire and had the highest predicted tree 

mortality except in the Northern Rockies site, where the 

mechanical-only treatments had the highest potential 

severity over all weather scenarios. The high fire severity 
in the Northern Rockies site is due to high surface fuel 

depositions from the use of a cut-to-length harvest 

system (Table 4). The overall effectiveness of the fire 

only treatment at reducing potential fire severity at the 

Southern Sierra Nevada site was influenced by the larger 
tree sizes found in this old-growth forest when 

compared with the other five FFS sites, coupled with 
a significant reduction in surface and ladder fuels from 

burning. National Park managers in the Southern 

Sierras did not choose to implement a mechanical 

treatment; fire was therefore the only tool available to 

modify forest structure and this probably resulted in 

higher intensity prescriptions to achieve their desired 

results. 

These results highlight the effectiveness of reducing 
surface fuels, thinning from below, and retaining the 

larger dominant and co-dominant trees in residual 

stands for reducing fire severity and increasing forest 

resistance (Agee and Skinner 2005). Conversely, thin 

ning from above, or overstory removal of dominant and 

co-dominant trees, decreases fire resistance (Stephens 
and Moghaddas 2005/?). Removing trees through a low 

thinning, and removing some low-vigor and more 

abundant shade-tolerant trees (if present) from the main 

canopy through improvement/selection cutting can also 

reduce fire hazards and create more sustainable forest 

conditions (Fiedler et al. 2001). 
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Fig. 5. Modeled postfire tree mortality by dbh class under 90th percentile weather conditions for trees remaining at six western 
United States Fire and Fire Surrogate sites after treatments. When no trees were present in a given treatment, this absence of a 

given size class is denoted by ?. If there is no bar, a treatment was not implemented at that site. 

This analysis did not include the FFS site in 

Washington. In contrast to the six FFS analyzed here, 

the Washington FFS site is remote and not accessible 

from a road network (Agee and Lolley 2006). It 

therefore used a skyline yarding system and limits 

imposed on prescribed fire operations resulted in fuel 

reduction objectives not being obtained. Reducing fire 

hazards in remote forests is challenging and the use of 

WFU or AMR may be an option in these locations 

(Collins and Stephens 2007, Stephens et al. 2007; Collins 
et al. 2008). 

Effectiveness of fuel treatments during actual wildfires 

Mechanical plus fire treatments were effective in 

reducing fire severity in the Cone Fire (Skinner et al. 

2004, Ritchie et al. 2007), the Rodeo Chediski Fire 

(Strom 2005), and the Biscuit fires (Raymond and 

Peterson 2005) as well as other wildfires (Omi and 
Martinson 2004) in the western United States. In 

addition, fire-only treatments were effective at reducing 
fire severity on the Hayman Fire (Graham 2003), the 

Rodeo-Chediski Fire (Finney et al. 2005), and other fires 

(Biswell 1989), though effectiveness of prescribed burn 
treatments will likely decline more rapidly over time as 

surface fuels accumulate (Finney et al. 2005, Skinner 

2005). 
Results of wildfire impacts on areas treated only with 

mechanical methods are mixed. In post-wildfire studies, 
stands treated mechanically with no surface fuel treat 

ments burned with higher severity than those where 

mechanical treatments were followed by prescribed fire, 

though with lower severity than untreated controls 

(Skinner et al. 2004, Cram et al. 2006, Schmidt et al. 

2008). Others (Raymond and Peterson 2005) found 
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Fig. 6. Modeled postfire tree mortality by dbh class under 97.5th percentile weather conditions for trees remaining at six 

western United States Fire and Fire Surrogate sites after treatments. When no trees were present in a given treatment, this absence 

of a given size class is denoted by ?. If there is no bar, a treatment was not implemented at that site. 

areas treated with mechanical-only treatments burned 

with higher severity than untreated areas. It is important 

to note that in the latter study (Raymond and Peterson 

2005), the 10- and 100-hour fuel loads exceeded 15 

Mg/ha and are higher than sites in our study that used a 

whole-tree harvest system (Southern Cascades). These 

results are consistent with our findings that, although 

mechanically treating stands may enhance suppression 

capabilities by reducing crown fire potential, fire effects 

in these stands may be severe (Figs. 4-6), primarily due 

to high residual surface fuel loads (Table 4). Other 
factors influencing fire severity are topographic location, 

average tree size, species composition, and actual fire 

weather and fuel moistures within the stand. 

Thinning from below, with subsequent surface fuel 

reduction by fire, was the most effective treatment when 

the goal was to reduce potential fire behavior and 

severity. However this treatment may not be sufficient in 

some Rocky Mountain stands with dense mid- and 

upper canopies and significant proportion of shade 

tolerant species because of high vertical fuel continuity 

(Fiedler and Keegan 2003, Fiedler et al. 2003). 

Implications for management 

Analysis of our data supports the assertion that "no 

treatment" or "passive management" (Agee 2003, 

Stephens and Ruth 2005) perpetuates the potential for 

high fire seventy in forests similar to those in this study. 
Results indicate that mechanical plus fire, fire-only, and 
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Plate 1. Ignition of a Southern Cascades mechanical plus fire experimental unit by Phil Weatherspoon in October 2001. Phil 
was the original team lead for the Fire and Fire Surrogate Study. Photo credit: C N. Skinner. 

mechanical-only treatments using whole-tree harvest 

systems were all effective at reducing potential fire 

severity under extreme fire weather conditions. It is 

important for managers to apply the results of this study 
within similar forest types, site classes, and stands with 

similar management histories and topography (Dibble 
and Rees 2005). In addition, other management goals 
such as wildlife habitat, water quality, public safety, 
smoke production, and biodiversity (Dombeck et al. 

2004) also need to be considered in decisions of what 

type of management is locally most appropriate. 

Although the FFS study has provided quantitative 
data on the modeled stand level effects of fuel treatments 

on potential fire behavior, it is important for managers 
to consider the landscape context when planning fuel 

management strategies (Schmidt et al. 2008). Currently, 
two dominant paradigms, the use of shaded fuel breaks 

(Agee et al. 2000, Hessburg et al. 2005) and strategically 

placed area treatments (SPLATs) (Finney 2001), are put 
forward as foundational approaches for treating fuels at 

a landscape level. Regardless of the approach or 

combination of approaches taken, land managers should 

consider implementing the array of fuel treatments that 

best meets their objectives within economic constraints 

and acceptable levels of risk. The more effective 

strategies will likely be those that combine approaches 

by adjusting them to fit the local topography and 

vegetation (Weatherspoon and Skinner 1996). Fuel 

treatment strategies are likely to be more effective if 

they integrate knowledge of fire managers who have 

wildfire experience in the areas under consideration for 

treatment. This information can be integrated into long 

range fuel treatment planning through frameworks such 

as the FIRESHED (Husari et al. 2006, Bahro et al. 

2007) or other collaborative planning process. 

Conclusion 

The current condition of many coniferous forests 

across the western United States leaves them susceptible 
to high-severity wildfire. This is particularly true in pine 

(Pinus spp.) dominated and mixed conifer forests that 

were once characterized by fire regimes of frequent, low 

to moderate intensity such as those that were analyzed in 

this study. Managing these types of forests without fuel 

management will maintain or even increase hazard over 

the coming decades. 

The challenge of reducing fire hazards in millions of 
ha of forests in the western United States is formidable 

because of treatment costs, access, and the spatial scale 

of the needed operations. With such a large undertaking 
we recommend that a full suite of potential fuel 

treatments be implemented including prescribed fire, 

mechanical-only, and mechanical followed by fire, along 
with taking advantage of expanded opportunities for 

using WFU and AMR fire management. Moving 

beyond stand level treatments to landscape-level strat 
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egies should improve overall fuels management effec 

tiveness (Arno and Fiedler 2005, Finney 2005). It is 
crucial to maintain the initial effectiveness of fuel 

treatments by implementing successive, appropriate 
maintenance and additional treatments into the future. 

It should be emphasized that the FFS treatments were 

not primarily designed to restore forest structure to 

presettlement conditions (i.e., before 1850). The goal of 

the treatments was to achieve a specific proportion of 

mid- and upper-canopy trees to survive wildfires under a 

stated set of fire weather conditions (increase forest 

resistance). The -weather information analyzed to assess 

potential fire behavior and severity covered the last two 

to three decades in the 20th century. While we believe 

this analysis provides a sound approach, information for 

current conditions may not be appropriate for changing 
climates. 

Present global climate models do not provide enough 

accuracy or precision to enable us to project fire weather 

conditions into the future at even moderate spatial scales 

(Millar et al. 2007). If this capability becomes available, 
we recommend that a similar analysis to that presented 
here be undertaken to estimate the resistance of forest 

structures to wildfires of the future. Designing more fire 

resistant stands and landscapes will likely create forests 

more resistant to changes imposed on them by changing 
climates. For this reason, it is more appropriate to 

design and test a range of specific forest structures to 

learn about their resistance and vulnerabilities, rather 

than restoring them to a presettlement condition that 

may not be appropriate for the future. 
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