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Abstract. Understanding and predicting changes in the abundance of natural populations
is a central goal of ecology. These changes are influenced by a variety of exogenous processes
(weather, floods, fire); variation in these processes leads to variation in vital rates (survival,
fecundity) that may be positively or negatively correlated across the life cycle. We used 20
years of data and a hierarchical Bayesian model to estimate vital rates and their covariation in
an endangered plant, Dicerandra frutescens ssp. frutescens (Lamiaceae), as a function of time
since fire and random year effects. Germination and the number of flowering branches
declined with time since fire, and all plants were increasingly likely to become nonreproductive
with time since fire. Time since fire had negative effects on survival of seedlings, vegetative
plants, and small flowering plants, and positive effects on survival of medium and large
flowering plants. Model comparison strongly supported inclusion of time-since-fire effects and
weakly supported inclusion of year effects influencing all vital rates (‘‘model-wide’’ year
effects). We used samples from the joint posterior distribution of model parameters to
simulate population dynamics as a function of fire regime and year-to-year environmental
variation. These simulations suggest that populations of Dicerandra frutescens ssp. frutescens
are least likely to go extinct if the average time between fires is;24–30 years. The design of the
simulations allowed us to distinguish variation in stochastic population growth associated
with process variability (fire, year effects, and demographic stochasticity) from variation
associated with parameter uncertainty (finite amounts of data). Even with 20 years of data,
half or more of the uncertainty in population growth rates was due to parameter uncertainty.
This hierarchical Bayesian population viability analysis illustrates a general analytical
framework for (1) estimating vital rates as a function of an exogenous environmental factor,
(2) accounting for covariation among vital rates, and (3) simulating population dynamics as a
function of stochastic environmental processes while taking into account uncertainty about
their effects. We discuss future areas of development for this approach.

Key words: Dicerandra frutescens; element selection; environmental stochasticity; extinction risk;
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INTRODUCTION

Understanding and predicting fluctuations in the

abundance of natural populations, whether they are

harvested populations, pest, invasive or disease popula-

tions, or endangered species, is both a central activity of

ecology and of importance to society (Boyce 1992, Shea

et al. 1998, Menges 2000, Beissinger and McCullough

2002, Morris and Doak 2002, Peres et al. 2003). Many

aspects of global change, including altered weather

patterns, ocean conditions, disturbance regimes, nutri-

ent loads, and introduced species, compel us to

understand how exogenous factors affect population

dynamics (Doak and Morris 1999, van Mantgem et al.

2004, Maschinski et al. 2006, Morris et al. 2006, Adler

and HilleRisLambers 2008). Incorporating such factors

into models can improve the understanding and

prediction of population dynamics (Fieberg and Ellner

2001, Ellner 2003, Zabel et al. 2006, Evans et al. 2008,

Bakker et al. 2009), and allow managers to identify the

manipulations most likely to have desired effects.

Here we introduce an integrative approach to

population viability analysis (PVA) that involves (1)

estimation of vital rates in relation to exogenous factors,

followed by (2) simulation of population dynamics using

those estimates of vital rates. In particular, this

approach involves simultaneous analysis of all vital

rates, including their covariation and random year

effects. This allows us to incorporate positive or negative

covariation among vital rates that arises both through

systematic effects of an exogenous variable and through
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random effects associated with particular years. Further,

we incorporate parameter uncertainty into population

simulations through direct use of the joint posterior

distribution of model parameters, and we distinguish

process from parameter uncertainty in population

viability simulations. Thus we provide one of few

examples (that we have been able to find) to model

variation in vital rates as a function of known and

unknown factors, simulate population growth as a

function of those effects, and rigorously account for

covariation among vital rates, parameter uncertainty,

and process variability (for similar accomplishments, see

Bakker et al. 2009). To further set this model in context,

we review the challenges involved in modeling the

demography of a population under the influence of

exogenous environmental variation and approaches that

have been developed thus far.

Modeling stochastic demography.—Changing environ-

mental conditions are pervasive. Exogenous processes

(e.g., weather, hurricanes, fire) influence the demogra-

phy and abundance of natural populations. Typically,

such processes vary in intensity and timing in ways

unrelated to population size, causing them to be

modeled stochastically. Further, vital rates vary among

individuals that differ in age, size, or developmental

stage (making the population ‘‘structured’’; Gotelli 1998,

Caswell 2001, Clark 2007), and individuals of different

age, size, or stage are often affected by an exogenous

factor (such as harsh weather) in different ways or to

different degrees (Coulson et al. 2001). A structured

population calls for the use of transition (projection)

matrices (Cohen 1979, Lande and Orzack 1988, Tulja-

purkar 1989, 1990, Caswell 2001, Morris and Doak

2002). Historically there have been two approaches to

simulating the dynamics of a structured population in

response to environmental stochasticity (see Caswell

2001: Chapter 14). We refer to the two approaches as

‘‘matrix selection’’ (e.g., Bierzychudek 1982, Silva et al.

1991, Caswell and Kaye 2001, Quintana-Ascencio et al.

2003, Menges and Quintana-Ascencio 2004, Smith et al.

2005) and ‘‘element selection’’ (Morris and Doak 2002).

In matrix selection, observed matrices are selected at

random to perform the projection in each year. The

advantage of matrix selection is that it makes linking

variation in the environment and variation in vital rates

straightforward: one selects matrices from categories of

the environment (wet vs. dry years, the number of years

since fire or hurricane, etc.) and any correlations

between vital rates are preserved in the selected matrices.

The disadvantage is that the number of matrices is often

limited. In element selection a probability distribution

for each vital rate is estimated, given several years of

data, and matrices are constructed by random sampling

from the appropriate distributions (Morris and Doak

2002). The advantage of element selection is that an

arbitrarily large number of matrices can be constructed

by sampling. The disadvantage is that a straightforward

implementation of the approach ignores covariance

among vital rates (though see the methods in Morris

and Doak 2002 to address this problem). Here we focus

on modeling vital rates as a function of exogenous

factors as a way to preserve both the advantages of

matrix selection and element selection. Specifying

relationships among exogenous variables and vital rates

induces a correlation between them, as in matrix

selection, and by estimating distributions through those

relationships an arbitrarily large number of matrices can

be constructed, as in element selection.

Modeling vital rates.—Two distinct approaches to

modeling vital rates have emerged that capture correla-

tions among vital rates. One is to estimate correlations

among vital rates via their shared response to an

unidentified environmental factor. This method was

introduced almost 15 years ago (by Doak et al. 1994)

and can be found in key textbooks and methodological

review papers (Caswell 2001, Fieberg and Ellner 2001,

Morris and Doak 2002; see also Runge and Moen 1998),

yet there are few examples where correlations among

vital rates are estimated or incorporated into simulations

of population dynamics.

A second approach is to model vital rates as a

function of a specific (identified) environmental factor,

such as climate, nitrification, or disturbance (Anderson

et al. 1995, Leirs et al. 1997, Lima et al. 1999, 2001,

Coulson et al. 2001, Gotelli and Ellison 2006, Zabel et

al. 2006, Bakker et al. 2009, Gillespie and Golightly

2010). For example, Meyer et al. (2006) modeled plant

vital rates in three years as a function of precipitation

(via regression), then simulated population dynamics as

a function of precipitation. Increasing the variance of

precipitation decreased the risk of extinction because of

seed banking (Meyer et al. 2006). Similarly, Gotelli and

Ellison (2006) estimated vital rates of a carnivorous

plant under three nitrogen treatments, then used simple

linear interpolation to generate a continuous function

relating nitrogen and vital rates. Extinction risk

increased with the rate of nitrogen deposition. Thus

population dynamics can be simulated as a function of

an environmental factor by combining models of vital

rates and matrix population models.

Here we combine both approaches in one model: we

model vital rates as a function of time-since-fire and year

variation, the latter capturing unidentified sources of

variation among years with a common influence on all

vital rates. As a result, we construct vital rates whose

pattern of correlation reflects both the effect of a

measured exogenous variable, time since fire, and

unmeasured environmental variables that affect vital

rates in each year. Estimating correlations among

different parts of the life cycle caused by year variation

calls for a single model that estimates all vital rates

simultaneously, thus our statistical model consists of an

interconnected set of generalized linear models (regres-

sions estimating vital rates from data). In addition, the

model includes two dynamical equations that track soil

seed dynamics, which allows us to infer seed bank
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parameters. Because of this complex structure and the

large number of parameters (at least 1340 parameters;

see Appendix: Table A1), likelihood inference is

generally impractical (though penalized likelihood

[Maunder et al. 2006], importance sampling [Skaug

and Fournier 2006], or data cloning methods [Lele et al.

2007, Ponciano et al. 2009] might allow a solution

through development of special-purpose software). We

chose to estimate parameters of the model using a

Bayesian framework because of the flexibility of this

approach, its ability to handle large numbers of random

effects, its accuracy, our own familiarity with the

methods of implementation, and the availability of

‘‘off-the-shelf’’ software to implement the approach

(Bolker et al. 2008, Bolker 2009). In fact, a case for

Bayesian population viability analysis has been made on

the basis of a number of considerations, ranging from

practical to rigor and downstream usability (Ludwig

1996, Foley 2000, Wade 2000, 2002, Ludwig et al. 2001,

Calder et al. 2003, Clark 2003, Harwood and Stokes

2003, Marin et al. 2003, Drechsler and Burgman 2004,

Maunder 2004). Yet there are few worked examples of

Bayesian PVA per se (Clark 2003, Winship and Trites

2006; see Discussion). There are many examples of

Bayesian analyses of population dynamics in fisheries

and marine biology, including the role of exogenous

effects and the consequences of alternative management

actions (e.g., Punt and Hilborn 1997, Newman et al.

2006, Ruiz et al. 2009). Thus it seems that terrestrial

ecologists have lagged behind marine biologists in taking

advantage of the power and flexibility of hierarchical

Bayesian modeling (reviewed in an April 2009 forum in

Ecological Applications [see Hobbs 2009]). Recently,

zoologists analyzing mark-recapture data have taken up

the use of hierarchical Bayesian modeling to estimate

vital rates and critical parameters describing movement

(Morales et al. 2004, King et al. 2008, Schick et al. 2008,

Calvert et al. 2009, O’Hara et al. 2009, Schofield et al.

2009), but to our knowledge, this has not been

incorporated into simulations of extinction dynamics.

Our purpose here is to introduce a particular approach

to population viability analysis (combining generalized

linear mixed models of vital rates and matrix population

modeling) facilitated by hierarchical Bayesian modeling,

and illustrate how model output can be used for

simulations of population viability.

The species that we model, Dicerandra frutescens ssp.

frutescens, is a plant endemic to the Lake Wales Ridge in

central Florida, USA, and is listed as an endangered

species both federally and by the state of Florida. The

Lake Wales Ridge has gained attention as a global

hotspot of biodiversity (Dobson et al. 1997, Estill and

Cruzan 2001, Turner et al. 2006); habitat loss, fragmen-

tation, and fire suppression are grave threats to this

landscape (Turner et al. 2006, Weekley et al. 2008).

However, even before the arrival of Europeans in

Florida, the distribution of D. frutescens ssp. frutescens

was probably limited by its narrow geographic range

and specific preferences for soil type and fire history

(Menges et al. 2006, 2007).

We used 20 years of data from marked individuals in

five populations of this species; however, we had

relatively few data on seed production (Table 1) and

no direct data on the seed bank (a common situation). A

TABLE 1. Summary of the demographic data available from five populations of Dicerandra frutescens ssp. frutescens, including the
number of populations and (in parentheses) the total number of individuals sampled per year.

Year Ngerm N sdlg br sd x[1] x[2] x[3] x[4] x[5]

1989 4 (46) 4 (19) ��� ��� ��� 4 (92) 4 (58) 4 (79) 4 (67)
1990 5 (224) 5 (97) 5 (204) ��� 4 (19) 4 (154) 4 (43) 4 (49) 4 (38)
1991 5 (102) 5 (67) 5 (131) ��� 5 (97) 5 (125) 5 (46) 5 (44) 5 (50)
1992 5 (187) 5 (84) 5 (143) ��� 5 (67) 5 (129) 5 (24) 5 (47) 5 (54)
1993 5 (145) 5 (74) 5 (127) ��� 5 (84) 5 (86) 5 (30) 5 (52) 5 (50)
1994 5 (135) 5 (54) 5 (133) 3 (75) 5 (74) 5 (95) 5 (21) 5 (37) 5 (52)
1995 5 (110) 5 (49) 5 (113) 4 (67) 5 (54) 5 (95) 5 (16) 5 (25) 5 (39)
1996 5 (57) 5 (40) 5 (82) 3 (57) 5 (49) 5 (84) 5 (13) 5 (19) 5 (36)
1997 5 (31) 5 (25) 5 (57) ��� 5 (40) 5 (64) 5 (16) 5 (12) 5 (14)
1998 5 (111) 5 (51) 5 (42) 2 (59) 5 (25) 5 (69) 5 (6) 5 (10) 5 (10)
1999 5 (109) 5 (76) 5 (21) 3 (90) 5 (51) 5 (36) 5 (15) 5 (15) 5 (17)
2000 5 (97) 5 (27) 5 (41) ��� 5 (76) 5 (54) 5 (6) 5 (23) 5 (24)
2001 5 (9) 5 (7) 5 (61) ��� 5 (27) 5 (55) 5 (18) 5 (33) 5 (38)
2002 5 (382) 5 (95) 5 (89) ��� 5 (7) 5 (29) 5 (23) 5 (21) 5 (21)
2003 5 (121) 5 (85) 5 (66) ��� 5 (95) 5 (26) 5 (8) 5 (26) 5 (34)
2004 5 (42) 5 (26) 5 (68) ��� 5 (85) 5 (84) 5 (16) 5 (18) 5 (43)
2005 5 (11) 5 (10) 5 (78) ��� 5 (26) 5 (110) 5 (14) 5 (20) 5 (44)
2006 5 (45) 5 (13) 5 (78) ��� 5 (10) 5 (84) 5 (19) 5 (32) 5 (42)
2007 5 (28) 5 (21) 5 (94) ��� 5 (13) 5 (54) 5 (8) 5 (19) 5 (26)

Notes: The five types of data were counts of the number of seedlings observed in census areas (Ngerm), the number of those
seedlings that survived to the September census (N sdlg), the number of flowering branches on each flowering plant in census areas
(br), the number of seeds produced per flowering branch on a sample of branches (sd), and the number of plants originating from
each of five plant classes in the previous September (x[1]–x[5]), i.e., seedlings, vegetative plants, and small, medium, and large
flowering plants, respectively. These data were used in regressions (GLMMs) described in Methods (see also Fig. 2). Census areas
were constant throughout the study. Missing data are indicated by ellipses (���).
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hierarchical Bayesian approach (like a likelihood

approach) allows us to integrate these misaligned data

and infer unobserved soil seed parameters (germination

fraction, soil seed survival), including the effect of time

since fire on germination. Further, it is straightforward

in a Bayesian analysis (though not unique to this

approach) to explicitly distinguish uncertainty about

parameter values from variability in process outcomes

(parameter uncertainty vs. process variability; Mills and

Lindberg 2002, Ellner and Fieberg 2003, Harwood and

Stokes 2003, Maunder 2004, Clark 2005). Parameter

uncertainty can be reduced by the addition of new data.

In contrast, process variability, i.e., variation in vital

rates due to the influence of stochastic processes (fire,

weather) or variation among individuals (arising from

genetic differences, plasticity, etc.), cannot reduced by

adding new data. We used samples from the joint

posterior distribution of model parameters to simulate

population dynamics under alternative fire regimes that

managers might apply, exploring the probability of

population extinction. We compare our results to a

previous PVA in relation to fire, using 13 years of data

and a traditional analysis (Menges et al. 2006), and we

discuss directions for further development of hierarchi-

cal Bayesian population models.

METHODS

Study species, fire ecology, and data

Dicerandra frutescens ssp. frutescens is a suffrutescent

(partly woody, partly herbaceous) perennial found in

Florida scrub communities on the Lake Wales Ridge,

particularly in oak–hickory scrub and sand pine scrub

on yellow sands (Menges 1999, 2007). These communi-

ties are characterized by a dense canopy of oaks, pine,

and hickory that is periodically top-killed by fire. Several

dominant plants in these communities resprout vigor-

ously after fire (especially Quercus myrtifolia), re-

establishing the shrub canopy. Dicerandra frutescens

ssp. frutescens is short lived, of short stature, and is

killed by fire. Individuals rarely live more than eight

years (Evans et al. 2004, Menges et al. 2006). For

populations of D. frutescens ssp. frutescens to persist

after fire, individuals must regenerate from seeds that

persist in the soil (Menges et al. 2006) or from seeds

produced by surviving individuals in unburned patches.

While fire kills individuals of D. frutescens ssp.

frutescens, its populations ultimately depend on fire (or

anthropogenic disturbance), because, like several other

endangered plants endemic to Florida scrub, it depends

on canopy openings (Menges et al. 1999). Fire creates

canopy gaps and fire suppression closes those gaps.

Population growth rates and many vital rates decline

with time since disturbance in the ‘‘gap-specialists’’ of

Florida scrub (Quintana-Ascencio et al. 2003, Menges

and Quintana-Ascencio 2004, Menges et al. 2006, Evans

et al. 2008). Because of its sensitivity to time since fire,

D. frutescens ssp. frutescens may be a good indicator of

the historical fire frequency in oak–hickory scrub and

sand pine scrub (Menges 1999), an approach that can

help guide fire management of the community (Menges

2007), in addition to providing guidance on prevention

of population extinction.

We included data from five populations of D.

frutescens ssp. frutescens located in relatively unmodified

Florida scrub habitat. In these populations, sample

areas (1-m2 quadrats) were established in patches where

plants occur (a total of 84, 37, 12, 13, and 40 quadrats in

populations 2, 4, 10, 12, and 19, respectively). All plants

in these quadrats were monitored beginning in Septem-

ber 1988. We analyzed data through 2007, thus 20 years

of data, yielding 19 transitions. This includes a total of

5144 unique plants monitored, and is the first analysis

including post-2000 data. Dicerandra frutescens ssp.

frutescens flowers in September and October and

seedlings germinate mainly in winter (approximately

January–March). Seedlings were identified by the

presence of cotyledons. Quadrats were censused quar-

terly (in March, June, September, and December) for

survival of known plants and the appearance of new

plants, whereas size (the number of branch tips) and an

indicator of fecundity (the number of flowering branch

tips) were recorded in September (the annual census). In

addition, seed production was sampled in certain

populations between 1994 and 1999: the number of

viable seeds per flowering branch was sampled from 8 to

30 branches (mean ¼ 23) per population in two to four

populations per year (except 1997; see Table 1).

We model the life cycle of D. frutescens ssp. frutescens

with the same six stages delineated by Menges et al.

(2006): seeds, seedlings, non-flowering (vegetative)

plants, and flowering plants of three size categories

(,12 branches, 12–27 branches, and .27 branches; Fig.

1). The last three categories were decided on the basis of

regression analyses and the Moloney (1986) algorithm

FIG. 1. Life cycle of Dicerandra frutescens ssp. frutescens.
Arrows indicate transitions that can occur within one time step
(September–September). Fecundity and seedling recruitment
are indicated with dotted arrows. Gray arrows highlight three
rare transitions (from the seedling class to a reproductive class,
‘‘leap-frogging’’).
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(see Menges et al. 2006). We chose to use these stages in

order to better compare our results to Menges et al.

(2006). The dynamics of a population with these six life

stages can be projected with a six by six transition matrix

model, or population projection matrix (sensu Caswell

2001), as described in Appendix: Section 1.1.

The fire histories of the study populations are shown

in Table 2. Three populations (4, 10, 12) burned at least

once during the course of the study. The other two

populations have not burned since 1927 (population 2)

and approximately 1940 (population 19; this is also the

case for population 12 before the 1990 fire). As a result

of these fire histories, the distribution of time since fire

ranges from 0 to 15 years, followed by a gap from 16 to

48, then values from 49 to 80 years after fire (Table 2).

Estimating vital rates from demographic data

We used a Bayesian hierarchical model to estimate

vital rates from the available demographic data. Five

submodels estimate vital rates of different parts of the

life cycle (Fig. 2). Two submodels estimate components

of fecundity (F, per capita seed output) and a third

submodel estimates seed germination and soil seed

survival (Fig. 2). A fourth submodel estimates seedling

survival from the time that a seedling is first detected (at

a quarterly census) to the time of the annual census in

September (Fig. 2). A fifth submodel estimates the

probability of transitions among plant classes (Fig. 2).

In each submodel, we used a generalized linear mixed

model to estimate a vital rate as a function of time since

fire and two (or three) types of random effects. The first

is a year effect (YEAR) shared by all five regressions of

vital rates, thus it links them into a single large model (as

illustrated in the center of Fig. 2). We refer to this as the

‘‘model-wide’’ YEAR effect. This YEAR effect estimates

overall year quality. The biological motivation is that

year variation may influence more than one vital rate at

once: a good year for seedling survival may also be a

good year for flowering branch production. To ensure

that the model is well-specified, we arbitrarily assigned a

positive correlation of unity between the YEAR effect

and the number of flowering branches on large flowering

plants (this choice has no effect on the correlation

structure, as in Doak et al. 1994). Thus in more concrete

terms, the model-wide YEAR effect may be thought of

as the effect of year variation on the number of

flowering branches on large flowering plants. At the

same time, one may suppose that year variation may not

affect all vital rates with the same sign or magnitude. We

incorporated two additional parameters to capture this

possibility. First are the b2 parameters, coefficients

associated with the YEAR effect (see regression

equations below). They were constrained to take on

values of either �1 or þ1, capturing either positive or

negative correlation (respectively) between the effect of

YEAR variation on the number of flowering branches

on large flowering plants and a given vital rate. The

other parameter is a second random year effect, one

unique to each vital rate (eyr in equations below),

modifying the intercept (grand mean) estimated for a

vital rate. These year effects (eyr) capture the possibility

that a given vital rate responds to variation among years

to a different degree than the number of flowering

branches on large flowering plants. To summarize, the

b2 and eyr parameters unique to each vital rate allow us

to estimate the sign and magnitude (respectively) of the

response of that vital rate to year variation compared to

the response of the number of flowering branches on

large flowering plants. A further point is that these year

effects (eyr, YEAR) allow us to calculate correlations

among vital rates associated with variation among years

(see Appendix: Section 1.2). We also estimated random

population effects (epop in equations below) for flower-

ing branches, seeds per branch, and seedling survival

(not germination fraction or transitions among plant

classes). We describe each submodel in more detail in the

following.

Fecundity regressions.—Two generalized linear mod-

els were used to estimate per capita seed production, F

(Fig. 2). The data include counts of flowering branches

per plant (br; i.e., for each flowering plant in each year in

the census areas) and seeds per flowering branch (sd;

samples taken in a subset of years and populations; see

Table 1). We took these data to be Poisson-distributed:

br; Poissonðlbr½p;t;r�Þ

sd; Poissonðlsd½p; t �Þ

and modeled the mean number of branches per plant

(lbr½ p;t;r�) and mean number of seeds per branch (lsd½p;t�) in

population p, year t, and, in the case of flowering

branches, in size class r (small, medium, or large) as a

function of time since fire (TSF), year, and population

effects using generalized linear models with a log link

function:

TABLE 2. The number of years since fire for five populations (Pop) of Dicerandra frutescens ssp. frutescens over the course of the
study (1988–2007).

Pop 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

2 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
4 61 62 63 64 65 66 67 68 69 70 0 1 2 3 4 5 6 7 8 9

10 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11
12 48 49 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
19 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
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FIG. 2. Graphical representation of the Bayesian hierarchical model used to estimate vital rates. At the center of the figure is a
simplified representation of the model, illustrating the five regression submodels linked by a common (model-wide) YEAR effect.
Two regressions contribute to estimating seed production per plant (F ), which in turn helps estimate germination fraction and seed
bank dynamics. Each submodel is additionally shown in an expanded form as a directed acyclic graph (DAG) in a gray box,
including all its data (boxes) and parameters (circles). Note that in the DAG of the transitions regression, we do not include a node
for each time-since-fire effect (bD1 , b

S
1 , b

P
1 , b

L
1 , and so on); because there are 20 such parameters (see Fig. 3), it would be difficult to

show each as its own node. Note also that the flowering branches DAG and seeds per branch DAG should be connected to F in the
seed bank DAG (via lbr and lsd, respectively), as illustrated in the center of the figure. Parameters are defined in Methods:
Estimating vital rates from demographic data and in the Appendix.
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lnðlbr½p;t;r�Þ ¼ bbr0½ r� þ bbr1½ r� 3 lnðTSF½p;t�Þ þ bbr2½ r� 3YEAR½ t�

þ ebryr½p;t;r� þ ebrpop½p;r�

lnðlsd½p;t �Þ ¼ bsd0 þ bsd1 3 lnðTSF½p;t�Þ þ bsd2 3YEAR½ t�

þ esdyr½p;t� þ esdpop½p�:

The terms bbr0 and bsd0 are intercepts describing the mean

number of flowering branches per plant and the mean

number of seeds per flowering branch, respectively; bbr1
and bsd1 are slope coefficients describing how these two

components of fecundity respond to time since fire. We

chose to model the log of the number of flowering

branches and seeds per branch as linear responses to log-

transformed time-since-fire data because graphical

exploration of the data suggested this gave a reasonable

fit. (This was true in all time-since-fire regressions.) We

did not evaluate a nonlinear response to log-trans-

formed time since fire (e.g., a quadratic term) because

the limited replication with respect to time since fire (see

Table 2) would not support inference of a more complex

response. These two regressions share a ‘‘model-wide’’

year effect (YEAR[t]), as described above, and each has

a random year effect (ebr
yr½p;t;r�, esd

yr½p;t�) and a random

population effect (ebr
pop½p;r�, esd

pop½p�). Because of poor

sampling of time since fire among the seeds per branch

data, we had little ability to detect an effect of time since

fire on the number of seeds per branch, so we set the

term bsd1 to zero. We provide a key to all model

parameters in Appendix: Table A1.

Seed bank and germination submodel.—We estimated

germination fraction (g) and monthly soil seed bank

survival (1� d), two latent parameters for which we have

no direct data, by fitting these parameters to the

available time series of data on what goes into the soil

seed bank (seed rain) and what comes out (seedlings).

The product of flowering branches per plant and seeds

per flowering branch yields an estimate of seed

production per plant (lbr 3 lsd ¼ F ). The product of

seed production per plant and the number of reproduc-

tive plants in census areas is an estimate of seed rain, the

number of seeds entering the soil seed bank in census

areas. In these same census areas, we had counts of the

number of seedlings that emerged. Difference equations

tracking soil seed density (lsdb) and seedling density

(lgerm) allowed us to infer the latent parameters g and d,

given the available data:

l
germ

½ p;tþ1� ¼ e�4d
3 g½ p; t �½ðl

sdb
½ p;t�Þ þ ðF½ p;t� 3N

rep

½ p;t�Þ�

lsdb½ p;tþ1� ¼ e�4d
3ð1� g½ p; t�Þ3 e�8d½ðlsdb½ p;t�Þ

þðF½ p;t� 3N
rep

½ p;t�Þ�:

The first equation accounts for the emergence of

seedlings (l
germ
tþ1 ) from existing seeds in the soil (lsdbt )

and new seeds produced by reproductive plants (Ft 3

N
rep
t ) in the previous time step. The second equation

accounts for the density of seeds in the soil (lsdbtþ1), given

soil seed density in the previous time step (lsdbt ) and new

seeds produced by reproductive plants in the previous

time step (Ft3N
rep
t ). We assumed that soil seed survival

can be modeled as a constant decay process. The term

e�4d describes the decay of seeds in the soil during the

(approximately) four-month period from seed produc-

tion to germination (September to January), and the

term e�8d describes the decay of seeds in the soil the

remaining eight months of the census year (January to

September). Further, we modeled the logit transform of

g as a function of time since fire and year effects,

logitðg½p;t�Þ ¼ b
g
0 þ b

g
1 3 lnðTSF½p;t�Þ þ b

g
2 3YEAR½t� þ e

g

yr½t�

following the notation described in Fecundity regressions

(and see Appendix: Table A1).

Seedling survival regression.—We took the counts of

seedlings that survived to the time of the annual census

(N
sdlg

½p;t�) in population p in year t to be draws from a

binomial distribution governed by the probability of

seedling survival, s[ p,t] (specific to that population and

year), and the number of seedlings that emerged in that

population and year, N
germ

½p;t� :

N
sdlg

½p;t� ;Binomialðs½p;t�;N
germ

½p;t� Þ:

We modeled s as a function of time since fire and year

effects using a generalized linear model with a logit link

function:

logitðs½p;t�Þ ¼ bs0 þ bs1 3 lnðTSF½p;t�Þ þ bs2 3YEAR½t�

þ esyr½p;t� þ espop½p�:

As before, we estimated two types of year effects: the

‘‘model-wide’’ YEAR effect and a second year effect that

affects only seedling survival (plus a random population

effect; see Fig. 2 and Table A1).

Transitions regression.—The transitions submodel is

an interconnected set of five multinomial logistic

regressions, similar to the model described in Evans et

al. (2008). For each of five classes of plants at time t

(seedling, vegetative, and small, medium, and large

flowering), we modeled the counts of plants recorded in

five possible fates at time t þ 1 (vegetative, small,

medium, or large flowering, or dead; Fig. 3) as stochastic

draws from a multinomial distribution governed by

transition probabilities, which we wish to infer, and the

number of plants in each stage at time t. The logit

transform of each transition probability is modeled as

the sum of an intercept, the effect of time since fire, and

two year effects (see equations in Appendix: Table A2).

Not all of the probabilities in a multinomial model can

be freely estimated since together they must sum to one,

thus for each class of plants, we standardized the odds of

the other fates to the odds of death. In contrast to

Menges et al. (2006) and Evans et al. (2008), time since
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fire was treated as continuous and we did not pool data

when the number of plants in a particular class at time t

(i.e., sample size) was small or zero.

As in Evans et al. (2008), we estimated the effect of

time since fire on the odds of seven biologically distinct

types of transitions: death, stasis, progression, retro-

gression, progression from the vegetative stage to any

one of the three flowering classes (Pr), retrogression

from any flowering class to the vegetative stage (Rv),

and ‘‘leap-frogging’’ (Fig. 3). Leap-frogging (or ‘‘leap’’)

refers to a direct transition from the seedling stage to

any one of the three flowering classes, a rare event that

tends to occur in the few years immediately after fire.

Death is a self-explanatory transition. Stasis occurs

when a plant remains in the same stage from one year to

the next. Progression and retrogression refer to transi-

tions forward and backward, respectively, in terms of

either size or developmental status. Progression into a

flowering class and retrogression out of a flowering class

are of special interest because flowering starts or stops,

respectively. Many of these time-since-fire effects were

divided further (e.g., we estimated separate effects of

time since fire on the odds of death of seedlings,

vegetative plants and flowering plants of three size

classes), as described in the Appendix (Section 1.3,

Transitions regression and illustrated via subscripting in

Fig. 3).

Prior distributions.—Bayesian statistical inference

requires that prior distributions are assigned for all

model parameters. Of particular interest are the

numerical priors assigned to highest-level parameters

(Table 3). These prior distributions were broad within a

biologically reasonable range. (Defining prior distribu-

tions that are too broad leads to instability in the

Markov chain Monte Carlo simulation.) For example,

in the regression of the number of flowering branches

per plant, we assigned normal prior distributions for the

intercept terms, bbr0½r�, with mean 0, 1.3, and 3.5, and

standard deviation of 1.0, for small, medium, and large

flowering plants, respectively (Table 3). Back-trans-

forming these values from the log scale to the original

scale, this corresponds to lognormal distributions with

mean of 1.7, 5.9, and 54.5 flowering branches, and

standard deviation 62.2, 7.3, and 71.7 flowering

branches for the three size classes, respectively. These

values were assigned based on simple linear mixed

effects regressions (using lmer in R; Bates et al. 2008) of

the flowering branches data. The slope terms with

respect to time since fire, bbr1½r� were assigned normal

prior distributions with mean 0 and standard deviation

of 1.0 (Table 4). Back-transforming from the log scale to

the original scale, this corresponds to exploring biolog-

ically reasonable time-since-fire effects: ranging from

�4.4 toþ6.4 flowering branches per individual with each

additional year since fire. As described above, we

constrained the prior distributions for bbr2½r�’s to take

the values 1 or �1, with probability pbr
b2½r�. This was

accomplished by assigning to the intermediate parame-

ter Ibr
b2½r� a sample from a Bernoulli process (coin flip),

yielding either the value 0 or 1, then multiplying this

sample by 2, and subtracting 1:

Ibrb2½r� ;Bernoulliðpbrb2½r�Þ

bbrb2½r� ¼ ð2Ibrb2½r�Þ � 1:

Since (230)� 1¼�1 and (23 1)� 1¼1, this constrains

bbr2½r� to take values of 1 or�1. The Bernoulli process has
probability pbr

b2½r� (i.e., the probability of sampling 0 vs.

1), and we assigned uniform prior distributions ranging

from 0 to 1 for pbr
b2½r�:

pbrb2½r� ;Uniformð0; 1Þ

thus allowing the model to estimate the sign of the

correlation between the effect of YEAR on a particular

vital rate compared to the effect of YEAR on the

number of flowering branches in the large flowering

class. The model-wide YEAR effect was assigned a

normal prior distribution, centered on zero, with a

uniform prior distribution (0, 0.5) for the standard

FIG. 3. Schematic illustrating the effects of time since fire
on transitions, as estimated by the multinomial logistic
regression model (transitions regression; see Methods). The
column indicates the stage of the plant at time t (seedling,
vegetative, or small, medium, or large flowering), and the row
indicates the stage of the plant at time t þ 1. The multinomial
model estimated the effect of time since fire on seven types of
transitions: stasis (S ), progression (P), retrogression (R),
progression to a reproductive class (Pr), retrogression to a
vegetative class (Rv), leap-frogging (L), and death (D).
Subscripting indicates unique effects that were estimated; i.e.,
the model estimated different effects of time since fire on the
odds of death of seedlings (Dsd) vs. vegetative plants (Dv) vs.
small flowering (Dsf ) vs. medium flowering (Dmf ) vs. large
flowering (Dlf ). Another example: the model estimated the same
effect of time since fire (P1) on the odds of a seedling becoming
a vegetative plant, the odds of a vegetative plant becoming a
small flowering plant, the odds of a small flowering plant
becoming a medium flowering plant, and the odds of a medium
flowering plant becoming a large flowering plant (a one-step
progression).
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deviation (following Gelman et al. 2003) of YEAR

effects (rYEAR). The prior distributions of random

population effects (ebr
pop½p;r�) were centered on the

intercept bbr0½r�, and the prior distributions of random

year effects (ebr
yr½p;t;r�) were centered on the sum of the

intercept, the population effect and the model-wide

YEAR effect (see Appendix: Section 1.4, Hierarchical

centering), with uniform prior distributions for the

TABLE 3. Prior distributions assigned to highest-level parameters.

Parameter(s) Submodel Distribution Parameter 1 Parameter 2

bbr0½1� flowering branches normal 0 1 (std.b0)

bbr0½2� flowering branches normal 1.3 1 (std.b0)

bbr0½3� flowering branches normal 3.5 1 (std.b0)

bbr1½r� flowering branches normal 0 1 (std.b1)

pbrb2½1�, p
br
b2½2� flowering branches uniform 0 1

rbr
yr½r� flowering branches uniform 0.1 0.9

rbr
pop½r� flowering branches uniform 0.05 0.5

bsd0 seeds per branch normal 0.15 1.3 (std.b0.sd)

psdb2 seeds per branch uniform 0 1

rsd
yr seeds per branch uniform 0.5 1.5

rsd
pop seeds per branch uniform 0.5 1.5

lsdb½p;1� seed bank Poisson 1000

d seed bank gamma 2 20

b
g
0 germination normal 0 1 (std.b0)

b
g
1 germination normal 0 1 (std.b1)

p
g

b2 germination uniform 0 1

rg
yr germination uniform 0 2 (max.sd)

bs0 seedling survival normal 0 1 (std.b0)

bs1 seedling survival normal 0 1 (std.b1)

psb2 seedling survival uniform 0 1

rs
yr seedling survival uniform 0 2 (max.sd)

rs
pop seedling survival uniform 0 2 (max.sd)

btr0½i; j� transitions normal 0 1 (std.b0)

bRv1½r� transitions normal 0 1 (std.b1)

bL1 transitions normal 0 1 (std.b1)

bPr1 transitions normal 0 1 (std.b1)

bs1½ j� transitions normal 0 1 (std.b1)

bP11 , b
P2
1 , b

P3
1 , b

P4
1 transitions normal 0 1 (std.b1)

bR11 , b
R2
1 transitions normal 0 1 (std.b1)

ptrb2½i; j� transitions uniform 0 1

rtr
yr½i; j� transitions uniform 0 2 (max.sd)

rYEAR shared by all uniform 0 0.5

Notes: We list the submodel in which the parameter enters and the type of distribution.
Parameter 1 and parameter 2 are, for normal distributions, the mean and standard deviation; for
uniform distributions, the minimum and maximum; for the Poisson distribution, the mean; and for
the gamma distribution, shape and 1/scale. The final column includes (in parentheses) the name
given to parameter 2 in the model code (see Supplement 1). Parameters are defined in Methods:
Estimating vital rates from demographic data and in the Appendix.

TABLE 4. The percentage of variation in the stochastic population growth rate arising from parameter uncertainty in stochastic
simulations of population growth with different average intervals between fires (FRI).

Simulation

FRI (years)

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Full, 16 64 50 50 52 54 55 55 55 55 55 55 55 55 55 55 54 55 55 55 54
Full, 64 64 50 50 53 54 55 56 56 56 55 56 55 55 55 55 55 55 55 56 55
No year, 16 59 45 45 48 50 51 52 52 53 53 52 52 52 52 53 52 53 52 53 53

Notes: Three simulations are compared: two sets of simulations based on the ‘‘full’’ statistical model, and one based on the ‘‘no
year’’ statistical model. Simulations were run with the shape parameter of the fire (Weibull) distribution equal either to 16 or 64.
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standard deviation of population (0.1, 0.9) and year

(0.05, 0.5) effects. Prior distributions for other regres-

sion parameters follow this pattern (see Table 4). We did

not systematically explore the influence of priors on

model output (see for example, the method of Millar

2004), thus this paper may be viewed as an introduction

to a particular approach, rather than a definitive

analysis that management decisions should be based

upon (sensu Newman et al. 2006).

Implementation of the statistical model.—The joint

posterior density of parameters was estimated via

Markov Chain Monte Carlo simulations in OpenBUGS

(Version 1.4.1; Spiegelhalter et al. 2003). We ran the

simulations with three parallel chains, with initial values

for all parameters chosen randomly from the prior

distributions. To improve convergence, we used a

method of reparameterization known as ‘‘hierarchical

centering’’ (detailed in Appendix: Section 1.4). Conver-

gence was assessed using the Gelman-Rubin-Brooks

diagnostic, which compares variation within vs. among

chains. This comparison is close to unity if the chains are

well-mixed (Gelman and Rubin 1992, Carlin et al. 2006).

We identified a burn-in phase of 105 iterations by

examining traces of the chains. The burn-in phase was

discarded and we continued the simulation for another

105 iterations. Based on examination of autocorrelation

plots of the MCMC output, we retained every 100th

sampled value, leading to a posterior sample of 3000

(1000 samples from each of three chains). The BUGS

code for our model is found in Supplement 1.

Model comparison.—To explore alternatives to the

statistical model described above, we constructed three

variations, and compared their fit to the data using an

information measure known as the log of the pseudo-

marginal likelihood (LPML). The four models were

given the following names: full, reduced, no time since

fire, and no year. The full model was as described above.

The reduced model had no time-since-fire effects on

transitions among plant classes (i.e., the multinomial

regression). The ‘‘no TSF’’ model had no time-since-fire

effects on any vital rates. The ‘‘no year’’ model included

time-since-fire effects and year effects unique to each

vital rate, but not the model-wide YEAR effect.

The log pseudomarginal likelihood is defined in terms

of conditional predictive ordinates (CPO). The CPO for

a particular data point is its posterior probability

conditional on the remainder of the data (Gelfand et

al. 1992, Gelfand and Dey 1994), similar to leave-one-

out cross-validation. The LPML is the sum (across all

individual data points) of the log of the CPO (Dey et al.

1997), thus it provides a model-wide measure of the fit

to all the data (the number of flowering branches and

seeds per flowering branch, the number of seedlings

germinated, the number of seedlings that survive, and

FIG. 4. Nested structure of the stochastic simulations of population growth. A sample from the joint posterior distribution of
parameters specifies values for all of the parameters needed to simulate population growth (b

g
0, b

g
1, and so on). These parameter

values were used for a set of 100 replicates of population growth. The stochastic population growth rate (k) was calculated from
each replicate of population growth; the probability of quasi-extinction (PQE) was calculated among the replicates of each
posterior sample.

MARGARET E. K. EVANS ET AL.636 Ecological Monographs

Vol. 80, No. 4



the number of plants making each of 25 possible

transitions among plant classes). Higher values of CPO

and LPML indicate a better fit to the data. This criterion

does not include an explicit penalty for the number of

parameters, but overfitting will cause the model to

poorly estimate some data points, reducing the LPML.

We did not use DIC (the deviance information criterion,

the Bayesian analog of AIC) because it is sensitive to the

‘‘focus’’ chosen during evaluation (i.e., the level of model

hierarchy at which likelihoods are evaluated; Spiegel-

halter et al. 2002), and in our application a single focus

may not be appropriate.

Simulations of population dynamics

We simulated the population dynamics of D. frutes-

cens ssp. frutescens as a function of fire and year effects

using samples from the joint posterior distribution of

parameters. The simulation process had two levels of

replication, one nested within the other (Fig. 4). The first

level of replication involved 1000 different samples from

the joint posterior distribution, each specifying a

location in n-dimensional parameter space, thus associ-

ated with a particular value for each of the parameters

estimated by the model. Differences among parameter

sets represent parameter uncertainty. For each of these

alternative sets of parameter values, we replicated the

process of population growth 102 times, as described in

the following. Differences among simulations for a

particular parameter set represent process variability.

Each replicate of population growth began with the

year of fire, when the population consisted of 106 seeds

in the soil. Thereafter, fire occurred stochastically with

increasing probability as time since fire increased,

according to the cumulative distribution function of

the Weibull distribution (see Appendix: Fig. A1.1). The

Weibull distribution is often used to model fire (Rupp et

al. 2006, Bouchard and Pothier 2008, Moritz et al. 2009)

because it is a flexible function that can mimic a variety

of other distributions (normal, exponential). In this case

we used the Weibull distribution to simulate fire regimes

that fire managers might apply, to explore the conse-

quences for population viability (not to infer historical

fire frequency). If fire occurred, all plants died and the

surviving population consisted of seeds in the soil. If fire

did not occur, vital rates were calculated as a function of

time since fire and year effects, using the values of

regression coefficients (b
g
0, b

g
1, bbr0½1�, bbr1½1�, etc.) and

estimates of the standard deviation of year effects

(rYEAR, r
g
yr, r

g

yr½r�, etc.) sampled for that set of replicates

of population growth. Thus year effects were stochastic

draws (at each time step) from normal distributions with

a mean of zero and standard deviation of rYEAR (for the

model-wide YEAR effect), rg
yr (variation among years in

germination), rbr
yr½1� (variation among years in the

number of flowering branches on small flowering

plants), etc. We did not add population random effects,

thus we modeled the dynamics of an average population,

rather than specific observed populations.

Once vital rates were calculated, plant and seed fates

and seed production were sampled from distributions,

generating demographic stochasticity. The fates of

plants were random draws from multinomial distribu-

tions (i.e., their fates were governed by multinomial

transition probabilities, calculated as a function of time

since fire and year effects). For example, given the

transition probabilities 0.40, 0.15, 0.15, 0.10, and 0.20, a

total of 10 vegetative plants at time t might become, at

time t þ 1, six vegetative plants, one small flowering

plant, zero medium flowering plants, one large flowering

plant, and two dead plants, respectively. Similarly, seed

fates were random draws from a multinomial composed

of three possible fates: seeds might survive and

germinate, survive and not germinate, or die (with

germination probability a function of time since fire and

year effects). Seed production was a random draw from

a Poisson distribution (where the mean number of seeds

was a function of time since fire and year). This process

was repeated at each time step: fire occurred or not, vital

rates were calculated as a function of time since fire and

year effects, and seed production and the fates of plants

and seeds were sampled from appropriate distributions

according to those vital rates.

After 75 time steps, we calculated stochastic lambda

and determined whether or not the population had

fallen below each of four quasi-extinction thresholds

(total population size of 1, 10, 100, or 1000 individuals,

including plants and seeds). Stochastic lambda was

calculated as the mean of the log of all non-zero one

time-step population growth rates (population size at

time tþ 1 divided by population size at time t, including

plants and seeds), as in Caswell’s (2001) Eq. 14.61. In

order to evaluate the consequences of different fire

management regimes, we performed simulations of

population dynamics using a range of mean fire return

intervals, from two to 40 years, in increasing increments

of two years. Several aspects of the simulations were

chosen to match the design in Menges et al. (2006),

including the initial population size (106 seeds), the

duration of replicates (75 years), and the quasi-

extinction thresholds (1, 10, 100, and 1000). The

simulations of population growth were implemented

with original programming in R, provided in Supple-

ment 2.

We performed a nested analysis of variance to

evaluate how much of the variability in stochastic

lambda arises from parameter uncertainty vs. process

variability. Three sources of stochasticity (fire that

occurs according to a Weibull distribution, year effects,

and demographic stochasticity) generate different tra-

jectories among replicates of the process of population

growth (process variability). Because the simulations

have a nested structure, with replication of different

possible parameter values as well as different stochastic

realizations of population growth within each set of

parameter values (Fig. 4), we were able to identify

variation in the stochastic growth rate due to parameter
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uncertainty vs. process variability. We used a general-

ized linear mixed model, treating the posterior sample as

a random effect modifying the intercept, to analyze

variation in stochastic lambda. This model was imple-

mented using the lmer function in the library lme4 in R

(Bates et al. 2008).

RESULTS

Model comparison, model fit

Among the four models that we examined, the no-

year model and full model were indistinguishable in

terms of overall fit to the data (LPML¼�13 142.45 and

�13 142.88, respectively). The remaining models, re-

duced and no-TSF, performed much worse (LPML ¼

�13 177.98 and �13 387.99, respectively). Like AIC,

differences in the LPML of 2 to 5 units are considered

substantial evidence in favor of one model over another

(unlike AIC, a larger, less negative value indicates a

better fit to the data; see Methods).

To more closely examine the fit of the full vs. no-year

models to the data, we compared their conditional

predictive ordinates. Fig. 5 shows the log of the ratio of

the likelihood of each data point under the no-year

model (numerator) vs. the full model (denominator).

This illustrates that the two models perform equally or

close to equally well at predicting much of the data (thus

the log likelihood ratio falls close to zero), though

slightly more data were better predicted by the full

model than by the no-year model (53% below the zero

line, 47% above). Thus the models seem to be

indistinguishable by the LPML criterion only as a result

of a few data points that were fit better by the no-year

model than by the full model (three extreme values

above the zero line in Fig. 5).

In Fig. 6, we show the observed data compared to

predictions made by the full model, illustrating the fit to

the data. The model does very well at predicting seedling

survival to the September census (Fig. 6a), as well as the

mean number of seeds per branch and the mean number

of flowering branches (triangles, Fig. 6b, c). Not

surprisingly, there was more variation from the observed

data in the multinomial part of the model (Fig. 6d),

because the sample size in each category was relatively

small (average¼ 9.6 plants, median¼6 plants). Also, the

multinomial regression did not include population

random effects, in contrast to the seedling survival,

seeds per branch, and flowering branches regressions.

Vital rates and effects of time since fire

Parameter estimates from the full model suggest that

time since fire has negative effects on some but not all

parts of the life cycle of Dicerandra frutescens ssp.

frutescens. Seed germination per year was low (;1–2%)

and declined with increasing time since fire (x- and z-

axes, respectively, Fig. 7a). At the same time, yearly soil

seed survival was estimated to be high: ;58% (y-axis,

Fig. 7a). Average survival of seedlings from first

detection to the time of the annual census in September

was estimated to be ;35%, and increased with time since

fire (Fig. 7b). Time since fire had a positive effect on the

number of flowering branches on small flowering plants,

but an increasingly negative effect on the number of

flowering branches on medium and large flowering

plants (Fig. 7c). The average flowering branch produced

six seeds.

Fig. 7 also illustrates parameter uncertainty; i.e., we

obtained a distribution of possible values for each

parameter, rather than a single estimate. Further,

particular values for the slope and intercept with respect

to germination are associated with one another, and

these in turn are associated with particular values of soil

seed survival (Fig. 7a). We emphasize this to make it

clear that in the simulations of population dynamics, we

used samples from the joint posterior distribution of

parameters; i.e., samples involve non-random combina-

tions of values from the posterior distributions of

different parameters estimated by the model (b
g
0, b

g
1, d,

etc.). The non-randomness of those combinations

reflects covariation in our uncertainty about them.

Survival of seedlings, vegetative plants, and small

flowering plants was negatively affected by time since

fire, though only weakly so, whereas survival of medium

and large flowering plants was positively affected by

time since fire (Fig. 8). All plants were increasingly

unlikely to flower with increasing time since fire (Fig. 8).

We expected to see this effect for seedlings (‘‘leapfrog-

FIG. 5. Comparison of the likelihood of each observed data
point given the no-year model vs. the full model (conditional
predictive ordinates, CPO). On the y-axis is the log of the ratio
of the likelihoods (log[CPOno-year/CPOfull]). On the x-axis are
the five types of data analyzed by the model: br (the number of
flowering branches per plant), N germ (the number of seedlings
observed to germinate), sd (the number of seeds per flowering
branch), N sdlg (the number of seedlings that survived to the
annual September census), and x (counts of plants in five
classes; as in Table 1).
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ging’’ is rare other than immediately after fire); the effect

is particularly striking for medium and large flowering

plants (Fig. 8).

Correlations among vital rates

Posterior distributions of all 325 possible pair-wise

correlations between vital rates induced by the model-

wide year effect are shown in the Appendix: Fig. A1.2.

The 90% credible intervals of all the correlations overlap

zero, but some show a clear non-zero trend. For

example, variation in the number of flowering branches

produced by small flowering plants (lbr½p;t;1�) was posi-

tively correlated with variation in the transition from

vegetative to small flowering (posterior mean correla-

tion¼ 0.34), and negatively correlated with variation in

the number of flowering branches produced by medium

flowering plants (posterior mean �0.25; Fig. 9). In

general, the number of flowering branches on small

flowering plants and the odds of a seedling becoming a

vegetative plant were positively correlated with transi-

tions ‘‘forward’’ (e.g., progression) and negatively

correlated with transitions ‘‘backward’’ (e.g., retrogres-

sion; Fig. 9). The number of flowering branches on large

flowering plants was correlated with other vital rates in a

similar, but weaker pattern, whereas the number of

flowering branches on medium flowering plants showed

the opposite pattern (Appendix: Fig. A1.2). Several vital

rates, including germination fraction, the number of

seeds per flowering branch, seedling survival, and the

odds of a seedling becoming a flowering plant, showed

FIG. 6. Comparison of observed data vs. values predicted by the statistical model for (a) seedling survival, (b) the number of
seeds per flowering branch, (c) the number of flowering branches per plant, and (d) transition probabilities among plant classes. The
1:1 line indicates perfect match between observed and predicted values in each panel. In panels (a) and (d), each point represents the
observed data from a population–year combination; i.e., (a) the fraction of seedlings that survived and (d) the fraction of plants
making a transition. In panels (b) and (c), the observed data (counts) for individual plants are the small jittered points, whereas
each large point indicates the maximum likelihood vs. Bayesian posterior estimate of the mean of those data (per population–year
combination).
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no particular correlation with other parts of the life cycle

(Appendix: Fig. A1.2).

Stochastic simulations of population dynamics

The probability of total population size falling below

the quasi-extinction threshold of 10 individuals (or one

individual) was minimized at an average fire return

interval of about 24–30 years (Fig. 10). The mean

stochastic growth rate increased with the median fire

return interval up to about 24 years between fires, after

which it changed little (Fig. 11). Figs. 10 and 11 also

illustrate that there is a great deal of uncertainty about

both the stochastic growth rate and probability of

extinction. Uncertainty about the stochastic growth rate

includes both parameter uncertainty and process vari-

ability (as well as Monte Carlo error; Koehler et al.

2009), whereas uncertainty about the probability of

quasi-extinction arises from parameter uncertainty (plus

Monte Carlo error). ANOVA indicated that 50–64% of

the variation in the stochastic growth rate was due to

parameter uncertainty (Table 4). A slightly lower

fraction of the variation in the stochastic growth rate

was due to parameter uncertainty in simulations based

on the ‘‘no-year’’ model compared to the ‘‘full’’ model

(Table 4). We found little difference, either in terms of

the probability of quasi-extinction or stochastic growth

rate, between simulations based on output from the

‘‘full’’ model vs. the ‘‘no-year’’ model (compare Fig. 10

vs. Appendix: Fig. A1.3a and Fig. 11 vs. Appendix: Fig.

A1.4a), or between simulations with more vs. less

variation around the median time between fires (com-

pare Fig. 10 vs. Appendix: Fig. A1.3b and Fig. 11 vs.

Appendix: Fig. A1.4b).

DISCUSSION

Demography and fire management of Dicerandra

frutescens ssp. frutescens

Modeling vital rates provided estimates of vital rates

and how they are affected by time since fire. Germina-

tion fraction is predicted to be about 1–2% per year

(consistent with germination trials reported in Menges et

al. 2006), and to decline with time since fire. Soil seed

survival is estimated to be ;60% per year. Production of

flowering branches (by medium and large flowering

plants) and the odds of becoming reproductive (all plant

classes) declined strongly with time since fire, and

survival of seedlings, vegetative plants, and small

flowering plants declined weakly with time since fire.

On the other hand, production of flowering branches on

small plants and survival of seedlings up to the time of

the annual census increased weakly with time since fire

and survival of medium and large flowering plants

increased strongly with time since fire. Thus the decline

of populations of Dicerandra frutescens ssp. frutescens

with time since fire seems to be a result of negative

effects on fecundity and recruitment, rather than

survival. In particular, medium and large flowering

plants are predicted to be lost with extended fire

suppression.

Negative effects of time since fire on fecundity and

recruitment is consistent with the specialization of D.

frutescens ssp. frutescens to gaps (Menges et al. 1999)

and the decline of gaps with time since fire. Gaps

provide distinct microhabitats compared to the shrub

matrix: in gaps, soil water availability is higher (Week-

ley et al. 2007), light levels are higher, and leaf litter

accumulation is lower. Reduced soil moisture as shrubs

encroach into gaps may reduce or temporarily end

reproduction by mature D. frutescens ssp. frutescens

plants and increased leaf litter may suppress recruit-

ment (germination or seedling survival before the time

of seedling detection). Another possible negative effect

of time since fire is the decay of a post-fire nutrient

pulse (S. Hicks and E. S. Menges, unpublished

manuscript).

We found positive effects of time since fire on seedling

survival from the time of detection to the time of the

annual census (Fig. 7b) and survival of medium and

large flowering plants (Fig. 8). One possibility is that

these plants may survive better in smaller canopy gaps

(corresponding to greater time since fire), if small gaps

are buffered from extremes of heat or drought. The

mechanistic basis of positive and negative effects of time

since fire can be explored (confirmed or denied) via

experiments with nutrients and canopy removal. In any

case, the results from the model have stimulated ideas

about the reasons for decline of D. frutescens ssp.

frutescens with time since fire.

Modeling vital rates served a second purpose: it

provided the basis for simulations of population-level

demography with respect to time since fire. We found

that the probability of quasi-extinction (PQE) was

minimized with a median fire return interval of ;24–

30 years (Fig. 10). The average stochastic growth rate

increased up to a median fire return interval of ;24–30

years, but did not decline with longer intervals between

fires (Fig. 11). Since this growth rate reflects populations

that did not go extinct, we infer that longer intervals

between fires increase the probability of extinction, but

that the growth rate of persistent populations does not

decline.

The overall pattern of PQE with fire that we found is

similar to the pattern obtained from a likelihood

analysis for parameter estimation and matrix selection

for simulations (Menges et al. 2006). However, we

found higher extinction probabilities, and the fire return

interval corresponding to the minimal probability of

quasi-extinction is longer in our analysis (24–30 years,

as opposed to 6–21 years reported by Menges et al.

2006). We suggest two possible explanations for these

differences.

First, the time-since-fire data may not adequately

capture the history of disturbance at one of the two

long-unburned sites. One of the long-unburned popula-

tions (population 19) declined from a high of 42
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reproductive plants in 1990 to a low of zero reproductive

plants in 1997, 1998, and 1999 (with few reproductive

plants thereafter). The other, population 2, has not

shown such a decline, in spite of the fact that it has not

burned in 80 years (as of 2007; Table 2). Population 2

occurs on a trail used for animal surveys (in addition to

the quarterly censuses of Dicerandra); the plants are

found in persistent canopy gaps along this trail. In

addition, Hurricane Charlie (in 2004) caused pine

mortality at this site, resulting in a progressively more

open canopy. A further point is that zero reproductive

plants in 1997–1999 (and other cases of zero plants) in

the declining population (population 19) mean that the

only data available to the model for inferring vital rates

and the effect of time since fire on vital rates come from

the persistent population (population 2). The result may

be the weak increase in PQE seen in Fig. 10 with longer

intervals between fires.

A second explanation has to do with the effect of

stochasticity in simulations of population growth.

FIG. 7. Joint posterior distributions of parameters estimated by the statistical model. Panel (a) shows parameters relevant to
seed dynamics, including average germination fraction (b

g
0, x dimension), the effect of time since fire (tsf ) on germination (b

g
1, z

dimension), and yearly soil seed survival (1� d, y dimension). The posterior mean is identified with a red thermometer. Panel (b)
shows average seedling survival (bs0, x-axis) and the effect of time since fire on seedling survival (bs1, y-axis), with the posterior mean
identified with a red triangle. Panel (c) shows the average number of flowering branches per plant (bbr0½r�, x-axis) and the effect of
time since fire (bbr1½r�, y-axis) for three classes of flowering plants (small, medium, large), with posterior means identified by green,
blue, and red triangles, respectively.
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FIG. 8. Predicted fraction of plants experiencing five fates at time t þ 1 (vegetative, small flowering, medium flowering, large
flowering, and dead, in increasingly darker shades of gray within each bar) as a function of increasing time since fire (x-axis in each
panel) in populations of Dicerandra frutescens ssp. frutescens. The five panels show five classes of plants (i.e., the state of the plant
at time t): seedling, vegetative plant, and small, medium, and large flowering plant.

FIG. 9. Posterior densities of the correlation between the number of flowering branches on small flowering plants (mu.brpt1) and
each of the other (25) vital rates (listed on the y-axis). Tick marks indicate the 90% highest posterior density (or credible interval,
CI). Vital rate names are given in model code (see Supplement 1).
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Menges et al. (2006) found that stochastic fire increased

the optimal fire return interval for Dicerandra frutescens

ssp. frutescens, from 6–12 years under a deterministic

fire regime to 6–21 years, and increased the minimum

probability of quasi-extinction. To try to verify this

effect of fire stochasticity, we ran simulations of

population growth with little variation around the

median fire return interval (by specifying a larger value

for the Weibull shape parameter), but patterns of PQE

changed little (Appendix: Fig. A1.3b compared to Fig.

10). Our simulations included parameter uncertainty, as

well as demographic stochasticity, and greater year

variation (by estimating and sampling from the distri-

bution of year effects, rather than resampling observed

vital rates), compared to Menges et al. (2006). Simula-

tions without parameter uncertainty (green triangles,

Fig. 10) follow the trend of simulations with parameter

uncertainty (black dots, Fig. 10), indicating that

parameter uncertainty is not responsible for the

differences between this study and Menges et al.

(2006). Thus it may be that demographic stochasticity

and a different approach to modeling year variation

resulted in yet higher optimal fire interval, PQE that

increases more weakly with time since fire after that

optimal range, and higher minimum PQE, compared to

Menges et al. (2006). Further dissection of the effects of

different sources of variability (sensu Melbourne and

Hastings 2008) would be revealing.

In addition to these unresolved issues, the gap in the

time-since-fire data between 16 and 48 years (Table 2)

means that the response of the probability of quasi-

extinction to fire return interval (Fig. 10) is an

interpolation in this range of time since fire. For all

these reasons, we do not recommend long intervals

between fires as a management regime to support

populations of D. frutescens ssp. frutescens, in spite of

the weak increase in PQE after 30 years between fires.

We recommend fire management with median intervals

between fires no more than 30 years.

Mean stochastic growth rates were, for the most part,

well below the replacement level of 1.0, regardless of fire

return interval (Fig. 11), suggesting populations of

FIG. 10. Box-and-whisker plots of the probability of quasi-extinction (PQE) as a function of fire return interval, given four
different thresholds: 1, 10, 100, and 1000 individuals. At each fire return interval, variation among 1000 PQEs is summarized, where
each PQE value is derived from 100 simulations of population growth using a different sample from the joint posterior distribution
of possible parameter values (see Fig. 4). Box limits fall at the first and third quartiles, whiskers end at 1.5 times the interquartile
range, and open circles are outliers. Black dots show the median among 1000 PQEs, whereas green triangles show the PQE based
on 100 simulations using the posterior mean values of parameters (i.e., no parameter uncertainty). Parameter estimates are from the
‘‘full’’ model, and simulations used a Weibull shape parameter of 16.
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Dicerandra frutescens ssp. frutescens will decline even

under the ‘‘best’’ fire management regime. We see several

possible interpretations of this result. First, an optimal

fire regime really should lead to stochastic growth rates

near one and low extinction risks, but we do not yet

have enough data to reliably infer the effect of time since

fire on vital rates, since we have observed only three fires

(Table 2). Second, factors other than fire may have been

negatively affecting populations of Dicerandra frutescens

ssp. frutescens. In terms of annual precipitation, 2000

and 2007 were the second and third driest on record

since 1934, and 2002 was the fifth wettest. Winter

precipitation, which normally supports seedling recruit-

ment, has been low over the period 2000–2007.

Explicitly including weather variables in the model and

simulating population growth under alternative weather

regimes may help better understand the influence of

weather on demography and the possible effects of

climate change. A third possibility is that the Florida

scrub landscape is now missing a source of disturbance

(other than fire) that was historically present (for

example, megafauna present up until ;10 000 years

ago; Koch et al. 1998). Populations of Dicerandra

frutescens ssp. frutescens found in road margins perform

very well (Menges et al. 2006), indicating that fire is not

the only form of disturbance to which this plant

responds.

Parameter uncertainty vs. process variability

Hierarchical Bayesian methods have been noted for

their ability to account for both parameter uncertainty

and process variability (Wade 2002, Clark 2003,

Maunder 2004), though this is not unique to a

hierarchical Bayesian approach. The nested design of

our simulations (Fig. 4) allowed us to distinguish

between them. We found that parameter uncertainty

was responsible for 50–64% of variation in the

stochastic growth rate (Table 4). This is a sobering

result given that the data set that we used is extraordi-

narily long (20 years) and involved thousands of

individuals in multiple populations. On the other hand,

we observed only three fires (Table 2), thus the

information available for regressions involving time

since fire was relatively limited. Another probable source

of parameter uncertainty was the choice to split plants

into classes and estimate separate parameters for the

transitions among classes. We made this choice to better

compare our results to Menges et al. (2006). A future

analysis may do well to avoid this (parameter-rich)

aspect of the model by employing an integral projection

model approach (Childs et al. 2004, Ellner and Rees

2006), where plant fates are modeled as a function of

continuous (i.e., size) data. Also sobering is the result

that much of the variability in the population growth

rate resulted from process variability, including stochas-

tic variation in fire history, year variation, and

FIG. 11. Box-and-whisker plots of the stochastic growth rate (k) as a function of fire return interval. At each fire return interval,
variation among 100 000 k’s is summarized, due to 1000 samples from the joint posterior distribution of parameter values and 100
replicates of population growth each (see Fig. 4). The mean among all 100 000 k’s is indicated with a horizontal black bar, whereas
triangles show the mean k based on 100 simulations using the posterior mean values of parameters (i.e., no parameter uncertainty).
Parameter estimates are from the ‘‘full’’ model, and simulations used a Weibull shape parameter of 16.
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demographic fates among replicates of population

growth, which would not be reduced by additional data.

Thus our analysis is useful for choosing a fire

management regime, not for predicting the exact fate

of populations over a long time span (as discussed by

Menges 2000, Reed et al. 2002, Drechsler et al. 2003).

We suggest PVA is best used in the framework of

ecological forecasting or adaptive management, assim-

ilating new data into the model as they are generated

and updating forecasts of population trends using

specific scenarios of fire and other factors (Clark et al.

2001, Hui et al. 2008, Bakker and Doak 2009).

Model comparison, model structure

Our current (modest) effort at exploring alternative

models found that the full model and no-year model

were indistinguishable in terms of their fit to the data

(according to the LPML criterion). We used the full

model to estimate correlations among vital rates

associated with year-to-year variation, and incorporated

those correlations into simulations of population

growth. This aspect of our model is similar to Doak et

al.’s (1994), in that correlations between vital rates (not

due to time since fire) were assumed to be caused by

their shared dependence on an ‘‘unidentified’’ factor

(YEAR). However, Doak et al. (1994) made multiple

estimates of the correlation between each vital rate and

the environmental variable, based on each of the other

vital rates in the life cycle, then calculated the average of

these estimates. Here all vital rates, time-since-fire

effects, YEAR effects, and the correlations among vital

rates arising from their shared dependence on YEAR

were estimated simultaneously using a single model.

Contemporary Bayesian methods make it possible to

create a single complex model that estimates several vital

rates as a function of a shared variable (here, YEAR).

Correlations between vital rates could also be estimated

from the independent year effect estimated by the ‘‘no-

year’’ model, however, if those correlations are impor-

tant, the estimates of other parameters will not be as

good as they should be. That is, the full model better

reflects the design of the data, thus it should provide

better estimates of parameters. The full model structure

also offers an avenue for including climate effects:

weather variables (precipitation, drought) could be

regressed on the YEAR effect to identify specific drivers

of variation in demography. On the other hand, it may

be that different vital rates are affected by different

aspects of weather and to different degrees, such that it

is more efficient to regress weather variables on year

effects unique to those different vital rates, and do away

with the model-wide YEAR effect altogether.

Ultimately, we think further evaluation of alternative

models is needed. Simulated data should be used to test

the ability of the full model vs. the no-year model to

detect exogenous effects on vital rates and correlations

among vital rates. Alternative responses of vital rates to

time since fire are also worth pursuing.

The threefold challenge of PVA

Population viability analysis is challenging for at least

three reasons: ideally, one would like to (1) incorporate

the effects of covariates, (2) include correlations among

vital rates, and (3) account for both parameter

uncertainty and process variability. Our model accom-

plishes these three things. Parameter uncertainty is a

familiar problem: the use of a single value (e.g., the

maximum likelihood estimate, MLE) for each vital rate

in a population model ignores parameter uncertainty,

resulting in underestimation of the risk of early

population collapse (Ludwig 1996, Wade 2002). Boot-

strapping, either parametric or nonparametric, is the

usual solution to this problem (Kalisz and McPeek 1993,

Caswell 2001, Morris and Doak 2002, Evans et al. 2007,

Beissinger et al. 2008), however bootstrapping does not

account for process variability. Process variability can

be addressed by repeated simulation of the relevant

process (here, replication of population growth with

respect to stochastic fire and year variation). Yet there

are few examples in the literature where bootstrapping

has been combined with repeated simulation to address

both parameter uncertainty and process variability (but

see Restrepo et al. 1992, Bakker et al. 2009). A further

point is that without explicit attention to correlations

among vital rates, bootstrapping potentially creates

unrealistic combinations of vital rates, which alters

estimates of population growth rate and extinction risk

(Tuljapurkar 1990, Doak et al. 1994, Ferson and

Burgman 1995, Fieberg and Ellner 2001). Morris and

Doak (2002) explain methods to account for correla-

tions among vital rates. Here we’ve taken the approach

of modeling vital rates as a function of fixed effects (time

since fire) and random effects (random year effects) to

capture both process variability and correlations among

vital rates. Many previous examples that included

covariates have ignored uncertainty about their effect

(Anderson et al. 1995, Leirs et al. 1997, Lima et al. 1999,

2001, Coulson et al. 2001, Gotelli and Ellison 2006,

Meyer et al. 2006); here we account for parameter

uncertainty by sampling from the joint posterior

distribution of parameters. None of these previous

examples with covariates included a shared random

effect to account for correlations among vital rates not

due to the measured covariate. Thus we provide one of

very few examples that model vital rates as a function of

known and unknown sources of variation, account for

covariation among vital rates, as well as parameter

uncertainty and process variability. Bakker et al. 2009

focus on a similar set of issues using likelihood methods.

The growing literature using hierarchical Bayesian

methods to analyze demography (Sullivan 1992, Ver

Hoef and Frost 2003, Wikle 2003, Rivot et al. 2004,

Royle and Wikle 2005, Newman et al. 2006, Winship

and Trites 2006, Diez 2007, Diez and Pulliam 2007,

Hooten and Wikle 2007, 2008, Hooten et al. 2007,

LaDeau et al. 2007, McMahon and Diez 2007, Purves et

al. 2007, Royle et al. 2007, Adler and HilleRisLambers
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2008, Lillegard et al. 2008, Schick et al. 2008, Snall et al.

2008, Gillespie and Golightly 2010) also addresses

several of these issues, though not all at once, that we

have been able to find. The model presented here,

among other emerging analytical approaches to demog-

raphy, should allow us to make better use of hard-

earned data and gain a better understanding of the

reasons for changes in the abundance of populations of

concern.
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APPENDIX

Additional methodological details about the statistical model (Ecological Archives M080-022-A1).

SUPPLEMENT 1

WinBUGS code for the statistical model that estimates vital rates, effects of time since fire, year and population effects
(Ecological Archives M080-022-S1).

SUPPLEMENT 2

R code that simulates the dynamics of populations of Dicerandra frutescens ssp. frutescens experiencing alternative fire regimes,
using BUGS output (Ecological Archives M080-022-S2).
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