
Original article

FirebrowseR: an R client to the Broad Institute’s

Firehose Pipeline

Mario Deng1,*, Johannes Br€agelmann2, Ivan Kryukov3,

Nuno Saraiva-Agostinho4,5 and Sven Perner1

1Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck and the Research

Center Borstel, Leibniz Center for Medicine and Biosciences, 23538 Luebeck and 23845 Borstel,

Germany, 2Molecular Pathology & Department of Translational Genomics, University Hospital Cologne,

Weyertal 115b, Cologne, 50931, Germany, 3Department of Biochemistry and Molecular Biology and

Alberta Children’s Hospital Research Institute Calgary Biochemistry and Molecular Biology Doctoral

Program in Bioinformatics, University of Calgary, Cumming School of Medicine, Alberta, Canada,
4Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa,

Portugal and 5Departamento de Inform�atica, Faculdade de Ciências, Universidade de Lisboa, 1749-016

Lisboa, Portugal

*Corresponding author: Email: mario.deng@uksh.de

Citation details: Deng,M., Br€agelmann,J., Kryukov,I. et al. FirebrowseR: an R client to the Broad Institute’s Firehose

Pipeline. Database (2016) Vol. 2016: article ID baw160; doi:10.1093/database/baw160

Received 23 June 2016; Revised 8 November 2016; Accepted 9 November 2016

Abstract

With its Firebrowse service (http://firebrowse.org/) the Broad Institute is making large-

scale multi-platform omics data analysis results publicly available through a

Representational State Transfer (REST) Application Programmable Interface (API).

Querying this database through an API client from an arbitrary programming environ-

ment is an essential task, allowing other developers and researchers to focus on their

analysis and avoid data wrangling. Hence, as a first result, we developed a workflow to

automatically generate, test and deploy such clients for rapid response to API changes.

Its underlying infrastructure, a combination of free and publicly available web services,

facilitates the development of API clients. It decouples changes in server software from

the client software by reacting to changes in the RESTful service and removing direct

dependencies on a specific implementation of an API. As a second result, FirebrowseR,

an R client to the Broad Institute’s RESTful Firehose Pipeline, is provided as a working ex-

ample, which is built by the means of the presented workflow. The package’s features

are demonstrated by an example analysis of cancer gene expression data.

Database URL: https://github.com/mariodeng/

VC The Author(s) 2017. Published by Oxford University Press. Page 1 of 6

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2017, 1–6

doi: 10.1093/database/baw160

Original article

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

160/2846064 by guest on 16 August 2022

http://firebrowse.org/
https://github.com/mariodeng/
http://www.oxfordjournals.org/


Background

Sharing data in the field of cancer research is a common

task, where the method of transfer and the file type

strongly depend on the needs and available infrastructure

of the curator. For data sets with a low grade of complex-

ity it is common to provide tab or comma separated text

files (TSV or CSV, respectively), as done with the Variant

Call Format (VCF) [see Danecek et al. (1) for a details]

files, or just plain text files as done with the Sequence

Alignment Map (SAM), described by Li et al (2). Although

these files might be compressed into the Binary Alignment

Map (BAM) to lower their file size, they still carry needless

information when only a subset is requested. Also these

data types carry an overhead in the form of duplicated

entries, making them non optimal for permanent storage

and distribution of information, although they are used

widely and represent the current standard. To reduce the

amount of data and preserving the information, files can

be transformed into a more complex format, allowing a

more memory efficient way of storage. A common ap-

proach as used by database management systems (DBMS),

is to only persist unique atomic components and the struc-

tural information in the form of linked tables. For the dis-

tribution across the network data sets may be provided as

single large objects (as with VCF or SAM/BAM files) or in

a non-redundant way as done with databases. Apart from

the file size advantages and disadvantages between both

approaches concerning the underlying infrastructure and

their ease of implementation have to be taken into account.

For example, automation of downstream analysis requires

a constant file layout as applications could break due to

format changes. As there is no standard protocol for flat

files, ensuring such framework conditions, this feature is

provided by DBMS. A common way to overcome these

problems is to use a RESTful web API. As an API itself is

just an arbitrary interface to an application, REST defines

how the machine–machine interaction is realized. Even

though this concept was introduced by Fielding (3) in

2000, there still is no standard definition. Regarding web

applications it is common practice to realize the REST im-

plementation over the Hypertext Transfer Protocol

(HTTP) verbs, as defined by Berners-Lee and Fielding et al.

in version 1.0 and 1.1 (4, 5). With an API in place, the soft-

ware interaction with the database through an API will not

be affected by changes to the database. For web applica-

tions, the API receives a query as a customized Uniform

Resource Locator (URL), and delivers its results in a struc-

tured format, such as JavaScript Object Notation (JSON)

or TSV files. This has the advantage that changes to the

database do not affect the communication of client and ser-

ver, as the database output is mapped to the API.

Updates and changes to the API itself are communicated

within its definition.

As the amount of omics data sets generated is increasing

rapidly the mining and analysis of these data sets is prefer-

able done on the latest release, live access to the stored in-

formation is necessary. With Firehose (https://gdac.

broadinstitute.org/) the Broad Institute provides such live

access to results of its data analysis pipeline with 14 729

cancer disease cases, distributed over 38 types of cancer at

the time of writing. To build a client, which is kept

updated with the API itself, we developed a workflow

which automatically generates and deploys such software

clients. As a working example we present FirebrowseR, an

R client that allows the direct querying of the Firehose API

from within the R programming environment. Just as other

R software packages, like rentrez by Winter et al. (6)—pro-

viding an R interface to the Entrez database (7), and GO.

db by Carlson et al. (8)—giving access to the Gene

Ontology database (9), FirebrowseR can be integrated into

existing analysis workflows. Using such API clients over

the download of flat files has several advantages, including

having the latest data available, making the process of data

importing obsolete and avoiding data re-formatting, which

often serves as an additional source of errors.

FirebrowseR’s source code and documentation is almost

entirely generated automatically using the most current

Firehose API definition. Following updates of the API def-

inition the FirebrowseR code is automatically re-

generated, tested and deployed. It thereby ensures that

FirebrowseR releases are always synchronized with the

API without requiring any action from the programmer,

despite from updating the package GitHub.

Implementation

The main benefit of using an API to retrieve data is that its

definition is made available online through the API itself.

This definition is structured in a hierarchical order and can

be traversed from the root (entry point) of this hierarchy.

This entry point is called the base URL and can be found

under http://firebrowse.org/api/api-docs/for the API of the

Broad Institute’s Firehose Pipeline. Here, on the top level,

three basic entries can be found (i) apiVersion, (ii) apis and

(iii) swaggerVersion, where the apis entry is a set of further

definitions listing all available sub-APIs and (i) and (ii) are

server specific meta information. Traversing the apis entry

the entire API definition can be explored, providing the de-

veloper with all information required to communicate with

the API, such as method names, parameters and the ex-

pected HTTP method (e.g. GET or POST).

Out of these definitions almost all of the source code

needed to implement a fully functional client can be

Page 2 of 6 Database, Vol. 2017, Article ID baw160

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

160/2846064 by guest on 16 August 2022

Deleted Text: (
Deleted Text: [
Deleted Text: ]
Deleted Text: )
Deleted Text: a
Deleted Text: [
Deleted Text: ]
Deleted Text: -
Deleted Text: [
Deleted Text: ]
Deleted Text: &hx0026;
Deleted Text: [
Deleted Text: ]
https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
Deleted Text: .
Deleted Text: [
Deleted Text: ] - 
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ] - 
Deleted Text: [
Deleted Text: ]
http://firebrowse.org/api/api-docs/
Deleted Text: ,


generated. To do so it is common to use a logic-less tem-

plate in the mustache format (https://mustache.github.io/).

This template provides a raw construct of an R function

including all the comments, which will be rendered as the

documentation when the final package is built. The tem-

plate used to build the FirebrowseR package from the

Firehose API definition is shown and discussed in the sup-

plemental code listing 1. It is designed in the way that for

each function, a list of all the function arguments is cre-

ated, which are than validated and combined to a final

HTTP request. Afterwards, a download manager than exe-

cutes this generalized HTTP request. This way any func-

tion can be represented in the same form and only one

central download manager is needed.

To now combine both, the API definition and the tem-

plate into interpretable R source code, the complete API

definition is recursively traversed and the corresponding R

code is generated.

Workflow

The entire workflow is a combination of free web services

(Figure 1). The first problem to be tackled is to notice a

change in the API definition. To do so, a cron-job (hosted

on https://cron-job.org/) accesses the API hourly, parsing

and comparing the APIs current version with the current

master branch on GitHub (https://github.com/). If a new

version is found, the source code is generated using R’s

mustache implementation, whisker (please see technical

details section for further information), and pushed to a

developer branch on GitHub. This branch automatically

spawns a unit test suite with upfront hand written unit

tests (overall test coverage of 88% and 100% for API spe-

cific functions) at the Travis Continuous-Integration plat-

form (https://travis-ci.org/), executing these tests are under

Linux (Ubuntu LTS, release v12.04.5 as used by TravisCI

at time of writing). If no errors occur, the newly generated

code is pushed to FirebrowseRs master branch in GitHub

and tested again, as errors could have occurred during

pushing to another branch. If at any point a test does not

pass, Travis-CIs event manager immediately contacts the

developer team through email notifications.

Results

Using the automated workflow all functions provided by

the Broad Institute’s Firehose Pipeline are automatically

generated and included into the FirebrowseR package.

Therefore, the entire nomenclature of all functions, param-

eters, default and return values (including the return for-

mat) matches the API, simplifying the user’s transition

between web API and the R programming environment. As

described above, changes to the Firehose API trigger an

automated update and predefined unit tests to

FirebrowseR, keeping the package’s version in sync with

the latest API.

One of the main differences in comparison of

FirebrowseR to other existing software such as

TCGA2STAT is that FirebrowseR implements exactly the

same functions as the API, allowing users to narrow down

their search on the query level by preselecting genes, sam-

ples or entities upfront (10). When using TCGA2STAT

only the analyses type can be specified and an entire

Figure 1. The complete system is composed of three web platforms. On

cron-job.org the current API version is checked hourly and compared to

the last one generated. If a new version is available, its definition is

downloaded and the R source code is generated using whisker tem-

plates. The newly generated source code is then pushed to a developer

branch on the second component, github.com. The third component,

travisci.com, now applies pre-defined unit tests to the generated source

on github’s developer branch. If no errors occur, the new R code is

pushed into the repositories master branch. Otherwise the developer is

notified via mail.

Database, Vol. 2017, Article ID baw160 Page 3 of 6

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

160/2846064 by guest on 16 August 2022

https://mustache.github.io/
https://cron-job.org/
https://github.com/
https://travis-ci.org/


archive for the analyses type and cancer entity in question

is downloaded from the Broad Institutes File Transfer

Protocol (FTP) server, making it more suitable for explora-

tory analyses. This fact draws a clear line for the use cases

of both software packages. While TCGA2STAT aims to

provide its results as a basis for exploratory mass data ana-

lyses, FirebrowseR is considered a library to be used within

other applications or hypotheses driven analyses where

often a subset of analysis results for patients and genes is

requested.

We are aware that besides TCGA2STAT other software

packages exist, including TCGA-Assembler (11) and

RTCGAToolbox (12). We did not include these packages

into our discussion, as both packages (at time of writing)

are outdated and have not received any updates recently.

Further, neither package meets the current API definitions

of the Broad Institutes Firehose service anymore, making

the software unreliable.

Example

In Code Listing 1, we give a short demonstration of

FirebrowseR’s capabilities. As an example we created an

analysis of breast cancer mRNA expression data for a user-

defined set of candidate genes utilizing FirebrowseR only.

After the package is installed and loaded (lines 1–5), the

cohort’s metadata is downloaded and searched for the

word ‘breast’, to determine the breast cancer cohort’s

unique identifier (BRCA) (lines 6–9). Now clinical data is

retrieved for all breast cancer patients using the

Samples.Clinical function and only samples from deceased

patients are kept for further analyses (lines 11–18).

Utilizing the Samples.mRNASeq function mRNA expres-

sion data is download for determined samples and the

genes ESR1, GATA3, XBP1, FOXA1, GRB7, EGFR,

FOXC1 and MYC (lines 20–28). This set of expression

values is further filtered, to keep just samples having tumor

and adjacent normal tissue available (lines 30–35). As

shown in Figure 2, ggplot2’s boxplot function is used to

plot the mRNA expression levels for paired samples suffer-

ing from breast cancer disease, while expression levels are

grouped by tissue (lines 37–41).

Conclusion

Here we present a workflow that enables programmers to

automatically generate clients to RESTful API interfaces,

which are tested, updated and deployed automatically. As

a result and working example of this workflow we intro-

duced FirebrowseR, an R package for the interactive re-

trieval of data sets generated by the Broad Institutes

Firehose Pipeline. With this capability of implementing the

complete API interface, FirebrowseR is the perfect supple-

ment to existing software, as it closes the niche between

mass data and manual data retrieval. The complete project

is hosted on GitHub (https://github.com/mariodeng/

FirebrowseR) allowing every user to contribute and

licensed under MIT license. User support is provided via

the https://www.biostars.org platform, where we are ac-

tively following posts tagged with ‘FirebrowseR’.

The complete system is composed of three web plat-

forms. On cron-job.org the current API version is checked

hourly and compared to the last one generated. If a new

version is available, its definition is downloaded and the R

source code is generated using whisker templates. The

newly generated source code is then pushed to a developer

branch on the second component, github.com. The third

component, travis-ci.com, now applies pre-defined unit

tests to the generated source on github’s developer branch.

If no errors occur, the new R code is pushed into the repo-

sitories master branch. Otherwise the developer is notified

via mail.

Boxplot indicating the expressions levels for tumor (TP)

and adjacent normal tissue (NT) of deceased breast cancer

patients. To provide clear example, well known oncogenes

have been used to display potential differential expression.

Code listing 1

The source code used generated the boxplot for the sam-

ples of deceased breast cancer patients and the pre-selected

gene of interest. The FirebrowseR package is used to

download cohort, clinical and mRNA Expression data.

Finally the expression values for paired normal and tumor

samples are plotted using the ggplot2 library.

Supplemental code listing legend 1

The template used to generate the R source code, which is

then used by FirebrowseR. Variables being replaced by

whisker are displayed in braces. For variables taking mul-

tiple parameters the # operator denotes an iteration over

all available states a categorical function parameter can

take. Further, negation can be taken into account by using

thê sign.

Technical details

FirebrowseR is implemented using the R programming lan-

guage (https://www.r-project.org/) version 3.2.3 and tested

using the testthat (v1.0.2) package (13) by Hadley

Wickham. JSON parsing is done using the jsonlite (v1.0)

package by Jeroen Ooms (14). The httr (v1.2.1) package

by Hadley Wickham (https://cran.r-project.org/web/pack

Page 4 of 6 Database, Vol. 2017, Article ID baw160

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

160/2846064 by guest on 16 August 2022

Deleted Text: s
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ]
Deleted Text: -
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: f
Deleted Text: -
https://github.com/mariodeng/FirebrowseR
https://github.com/mariodeng/FirebrowseR
https://www.biostars.org
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: L
Deleted Text: C
Deleted Text: L
Deleted Text: L
Deleted Text: D
https://www.r-project.org/
Deleted Text: [
Deleted Text: ]
Deleted Text: [
Deleted Text: ]
https://cran.r-project.org/web/packages/httr/index.html


ages/httr/index.html) is used to determine HTML response.

R’s Mustache implementation whisker (v0.3-2) (https://

cran.r-project.org/web/packages/whisker/index.html) by

Edwin de Jonge is utilized to fill the templates.

Conflict of interest. None declared.

References

1. Danecek,P., Auton,A., Abecasis,G. et al. (2011) The variant call

format and VCF tools. Bioinformatics, 27, 2156–2158.

2. Li,H., Handsaker,B., Wysoker,A. et al. (2009) The Sequence

Alignment/Map format and SAMtools. Bioinformatics, 25,

2078–2079.

3. Fielding,R.T. (2000) Architectural Styles and the Design of

Network-based Software Architectures. Building, 54, 162.

4. Fielding,R.T. and Nielsen,H.F. Hypertext Transfer Protocol—

HTTP/1.0. Security 1995(November 1994):1–57.

5. Fielding,R., Gettys,J., Mogul,J. et al. RFC 2616—Hypertext

Transfer Protocol—HTTP/1.1. Society 1999:1–114.

6. Winter,D. rentrez: Entrez in R. R package version 1.0.4 2016:

https://CRAN.R-project.org/package¼rentrez.

7. Maglott,D. (2004) Entrez Gene: gene-centered information

at NCBI. Nucleic Acids Res., 33(Database issue), D54–D58.

8. Carlson,M. (2013). GO.db: A set of annotation maps describing

the entire Gene Ontology. R package Version 3.1.2.

9. The GO Consortium. (2000) Gene ontology: tool for the identifi-

cation of biology. Nat. Genet., 25, 25–29.

Figure 2. Boxplot indicating the expressions levels for tumor and adjacent normal tissue of deceased breast cancer patients. To provide clear ex-

ample, well-known onco genes have been used to display potential differential expression.

Database, Vol. 2017, Article ID baw160 Page 5 of 6

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

160/2846064 by guest on 16 August 2022

https://cran.r-project.org/web/packages/httr/index.html
https://cran.r-project.org/web/packages/whisker/index.html
https://cran.r-project.org/web/packages/whisker/index.html
https://CRAN.R-project.org/package=rentrez
https://CRAN.R-project.org/package=rentrez


10. Wan,Y., Allen,G.I. and Liu,Z. (2016) Data and text mining

TCGA2STAT : simple TCGA data access for integrated statis-

tical analysis in R. 32, 952–954.

11. Zhu,Y., Qiu,P. and Ji,Y. (2014) TCGA-assembler: open-source

software for retrieving and processing TCGA data. Nat.

Methods, 599–600.

12. Samur,M.K. (2014) RTCGAToolbox : a new tool for exporting

TCGA firehose data. 9, e0106397.

13. Wickham,H. (2011) testthat: Get Started with Testing. R J., 3,

5–10.

14. Ooms,J. (2014) The jsonlite package: a practical and consistent

mapping between JSON data and R objects. arXiv, 1–29.

Page 6 of 6 Database, Vol. 2017, Article ID baw160

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baw

160/2846064 by guest on 16 August 2022


