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Abstract The Firefighter Problem was proposed in 1995 as a deterministic discrete-time model

for the spread and containment of a fire. The problem is defined on an undirected finite graph

G = (V,E), where fire breaks out initially at f nodes. In each subsequent time-step, two

actions occur: a certain number b of firefighters are placed on nonburning nodes, permanently

protecting them from the fire, then the fire spreads to all nondefended neighbors of the nodes

on fire. Because the graph is finite, at some point each node is either on fire or saved, and thus

the fire cannot spread further. One of the objectives for the problem is to place the firefighters

in such a way that the number of saved nodes is maximized.

The applications of the Firefighter Problem reach from real fires to the spreading of diseases

and the containment of floods. Furthermore, it can be used to model the spread of computer

viruses or viral marketing in communication networks. Most research on the problem considers

the case in which the fire starts in a single place (i.e., f = 1), and in which the budget of

available firefighters per time-step is one (i.e., b = 1). So does the work in this study. This

configuration already leads to hard problems and, even in this case, the problem is known to

be NP-hard.

In this work, we study the problem from a game-theoretical perspective. We introduce a strategic

game model for the Firefighter Problem to tackle its complexity from a different angle. We refer

to it as the Firefighter Game. Such a game-based context seems very appropriate when applied

to large networks where entities may act and make decisions based on their own interests,

without global coordination.

At every time-step of the game, a player decides whether to place a new firefighter in a

nonburning node of the graph. If so, he must decide where to place it. By placing it, the

player is indirectly deciding which nodes to protect at that time-step. We define different utility

functions in order to model selfish and nonselfish scenarios, which lead to equivalent games.

We show that the Price of Anarchy (PoA) is linear for a particular family of graphs, but it is at

most two for trees. We also analyze the quality of the equilibria when coalitions among players

are allowed. It turns out that it is possible to compute an equilibrium in polynomial time, even

for constant-size coalitions. This yields to a polynomial time approximation algorithm for the

problem and its approximation ratio equals the PoA of the corresponding game. We show that

for some specific topologies, the PoA is constant when constant-size coalitions are considered.

1. INTRODUCTION

The Firefighter Problem was introduced [25] as a deterministic discrete-time model

for the spread and containment of fire. Since then, it has been subject to a wide variety
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of research for modeling the spread and containment phenomena such as diseases, floods,

ideas in social networks and viral marketing.

The Firefighter Problem is defined on an undirected finite graph G = (V,E), where

fire breaks out initially at f nodes. In each subsequent time-step, two actions occur:

first, a certain number b of firefighters are placed on nonburning nodes, thus permanently

protecting them from the fire; then the fire spreads to all nondefended neighbors of the

nodes on fire. Because the graph is finite, at some point each node is either on fire or saved.

Then the process finishes, because the fire cannot spread any further. There are several

different objectives for the problem. Typically, the goal is to save the maximum number

of nodes. Other objectives include minimizing the number of firefighters (or time-steps)

until the spreading stops, or determining whether a specified collection of nodes can be

prevented from burning.

Most research on the Firefighter Problem (including the work in this sudy) considers

the case with only one starting place on fire and one available firefighter to protect a

nonburning place at a time (i.e., f = b = 1), which already leads to hard problems. The

problem was proved NP-hard for bipartite graphs [30], graphs with degree three [17], cubic

graphs [28], and unit disk graphs [21]. However, the problem is polynomial-time solvable

for various well-known graph classes, including interval graphs, split graphs, permutation

graphs, caterpillars, and Pk-free graphs for fixed k [18, 23, 30, 21]. Furthermore, the problem

is (1 − 1/e)-approximable on general trees [8], 1.3997-approximable for trees where nodes

have at most three children [27], and it is NP-hard to approximate within n(1−ε) for any

ε > 0 [2]. Later results on approximability for several variants of the problem can be

found in [2, 4, 11].

Recently, the scientific community has focused on the study of the parameterized

complexity of the problem. It was shown to be fixed parameter-tractable with respect to

the combined parameter “pathwidth" and “maximum degree" [10]. Other important results

can be found in [12, 3]. From this perspective, the problem is known to be fixed-parameter

tractable (FPT) on trees in various parameterizations. When parameterized by the number

of burned nodes, the problem is FPT on general graphs but has no polynomial kernel on

trees. When parameterized by the number of unburned nodes, the problem is W[1]-hard

even on bipartite graphs.

In 2000, the greedy algorithm for trees, which saves the vertex v that maximizes the

number of nodes that will be saved if v is protected, was proved to be a 1/2-approximation

algorithm [26]. A linear programming relaxation for trees that supposedly gives a c-

approximation algorithm was presented in 2006 [24], and a subexponential (1 − 1/e)-

approximation method in 2008 [8]. These results have been improved in 2011 [27]. How-

ever, exact polynomial solutions exist for caterpillar and P-trees [18, 23, 30].

First approaches for grids of 2 and 3 dimensions were provided in 2002 [20, 34] and

then generalized in 2007 [13]. These studies concluded that two firefighters were needed

to contain the fire in an infinite 2-dimensional square grid and 2d − 1 in a d-dimensional

grid with d ≥ 3. There exist concrete results for triangular, strong, and hexagonal grids

[20, 31, 32, 33, 22], and for other graph classes [21].

The surviving rate of a graph is defined as the average percentage of nodes that can

be saved when f fires break out at random nodes of the graph [7]. The study of this concept

has become very fruitful in the literature and the evidence is the existence of many works

on the subject for different graph structures [9, 6, 14, 16, 29, 36, 41, 44, 42, 43].

A complementary concept is called the burning number of a graph. It indicates how

fast a graph can burn completely if there is a new fire in every round. It can be used as a

measure of the speed of the spread of contagion in a graph [5].
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For other variants of the Firefighter Problem see [15, 35, 18].

In this work, we introduce a game-theoretical model for the Firefighter Problem to

tackle its complexity from a different angle. Our main objective is to try to bypass the NP-

hardness of the problem of computing the optimal solution of the Firefighter Problem by

taking into account different kinds of solutions. Our proposal as a possible set of solutions

to the Firefighter Problem corresponds to the set of Nash equilibria of a new strategic game

that we call the Firefighter Game. In this game there is a player for each time-step. Each

player decides where to put the firefighters at his corresponding time-step. The goal of each

player is to save as many nodes as possible. The outcomes of this strategic game represent

solutions to the classical Firefighter Problem. Game theory provides a powerful toolset for

analyzing the quality of stable outcomes or equilibria.

To the best of our knowledge, the only existing game-theoretical models to similar

problems are those referred to as the vaccination problem [2, 19], the spreading of ru-

mors [45, 46], and competitive diffusion [1, 37, 40, 39, 38]. Those models, however, focus

on information spreading on social networks, and, thus, take into account other inherent

aspects of those scenarios, such as preferences, reputation, popularity, and other personal

traits of the users, and relevance or truthfulness of the information. Our proposal is well

suited to model fighting against spreading phenomena in large networks, where the protec-

tion strategy for each time-step is decided by one player, independently from the others. We

believe that our model has legitimacy, especially if this problem is used to model processes

that take place on some modern networks where no central entity exists. In this case, the

resources to fight the spreading have to be delegated by independent agents, who might not

be able to compute a global solution. Once we have defined formally the model, we focus

on the study of the Nash equilibria and the Price of Anarchy as measures for the quality of

the equilibria.

This article is organized as follows. In Section 2 we define some basic game-

theoretical concepts extensively used throughout, most importantly the measures of the

quality of equilibria, i.e., the Price of Anarchy. In Section 3 we introduce the game and we

study the set of equilibria corresponding to two different utility functions. In Section 4 we

analyze the Price of Anarchy for different families of graphs. In Section 5 we consider that

the players might form coalitions and we analyze the equilibria for constant size coalitions.

Finally, conclusions and directions for future work can be found in Section 7.

2. GAME-THEORETICAL DEFINITIONS

Let us introduce some basic definitions. A strategic game G is defined by a tuple

G = (N , (Si)i∈N , (ui)i∈N ), where

� N denotes the set of players,
� Si is the set of actions of player i ∈ N , and
� ui is the utility function of player i ∈ N .

The strategy si of a player i is to select an action si ∈ Si . Let s = (s1, . . . , s|N |) be

a strategy profile describing the strategies si of each player i ∈ N . We denote by S the set

of all strategy profiles, S = S1 × . . . × S|N |. The utility function of player i, ui : S → R,

assigns to each strategy profile (s1, . . . , s|N |) ∈ S a value ui(s1, . . . , s|N |). This value

quantifies the benefit that player i receives by selecting strategy si when the strategies of

other players are (sj )j∈N ,j �=i .

Given a strategy profile s = (s1, . . . , s|N |), we denote s−i = (sj )j∈N \{i}. Furthermore,

we denote (s−i, s
′
i) = (s1, . . . , s

′
i, . . . , s|N |), i.e., strategy vector s, where player i changed
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his strategy from si to s ′
i . The social benefit of the outcome of the game for any strategy

profile is quantified by a function that is called Social Welfare W : S → R.

Definition 2.1. (Nash Equilibrium.) A strategy profile of a game is a Nash equilibrium

if no player can improve his payoff by changing his strategy. Formally, given a strategic

game G = (N , (Si)i∈N , (ui)i∈N ), a strategy profile s is a Nash equilibrium of G if and only

if

∀i ∈ N ,∀s ′
i ∈ Si : ui(s) ≥ ui(s−i, s

′
i).

We denote by ne(G) the set of all Nash equilibria of G. Whenever there is no possible

confusion, we will use the notation ne without any reference to the game. In order to

measure the quality of the equilibria, Koutsoupias and Papadimitriou introduced the Price

of Anarchy concept in 1999.

Definition 2.2. (Price of Anarchy.) The Price of Anarchy (PoA) of a game G (with

respect to a social welfare function W ) is defined as follows:

PoA(G) =
maxs∈S W (s)

mins∈ne W (s)
.

If, instead of considering the worst equilibria with relation to the social welfare, we

consider the best equilibria, then we have the Price of Stability.

Definition 2.3. (Price of Stability.) The Price of Stability (PoS) of a game G (with respect

to a social welfare function W ) is defined as follows:

PoS(G) =
maxs∈S W (s)

maxs∈ne W (s)
.

3. THE FIREFIGHTING GAME

Each instance of the Firefighting Problem is defined by an undirected graph G =

(V,E) and a marked node v0 ∈ V . We assume that, initially, the fire breaks out at v0 and

it burns. At each time-step t ≥ 1 the burned nodes at time step t − 1 incinerate all their

neighboring nodes. Let us call them burning nodes. At each time-step a fixed number of

firefighters b, called budget, can be placed on nonburning nodes to permanently protect

them from burning. These nodes are called defended. If a node never burns because it is

defended or cut off from the fire it is called saved. All other nodes are called vulnerable.

We consider only the case when the budget is of size one (i.e., b = 1).

3.1. Players and Strategies

In order to model the Firefighter problem as a game, we define a set of players

N = {1, . . . , n − 1} where n = |V |. Player i represents the firefighter who selects the set

of nodes to be protected at time step i. Hence, the set of all possible strategies of player i

is defined by Si = {U | U ⊆ V }. The strategy of player i consists of selecting a subset

of nodes U ∈ Si . Because we deal only with the case of b = 1, we overload notation,
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and instead of subsets of size one, we set the strategies to the vertices themselves or to

the empty set, i.e., Si = V ∪ {∅}. This means that every player can choose one node or

the empty set as strategy. Note that player i ∈ N applies its strategy si at time-step i. Let

s = (s1, . . . , s|N |) denote the strategy profile of all players.

3.2. The Outcome of a Strategy Profile

The outcome of a strategy profile s = (s1, . . . , s|N |) on a given graph G = (V,E)

is a partition of V into saved and burning nodes. It is defined in the following way. At

time-step 0, the only burning node is v0. At time-step i > 0, two events occur: first, player

i’s node is protected if his action is valid w.r.t. to strategy profile s, i.e., it is neither burning

nor already defended at the end of time-step i − 1. Second, each node burning at time-step

i − 1 incinerates all its nondefended neighbors. The process stops when the fire cannot

spread any further. Let us denote by Safe(s) ⊂ V the set of nodes that are saved by the

strategy profile s.

In the following we introduce some predicates in order to define formally the outcome

of a strategy profile on a given graph G.

Notice that, when no further restrictions apply on the strategies for each player, then

it might be the case that a player selects a node that is already burning or that already has

a firefighter on it. In order to identify these situations, we introduce additional predicates.

Given a strategy profile s, a node v ∈ V , and a player i ∈ N , we define

� defended(s, v, i) = true iff in the strategy profile s, node v is defended at the end of

time-step i,
� burning(s, v, i) = true iff in the strategy profile s, node v is burning at the end of

time-step i, and
� invalid(s, i) = true iff player i’s action is not valid with respect to strategy vector s, i.e.,

player i wants to place a firefighter either on a node that already is defended at time-step

i − 1 or on a node that is burning at time-step i − 1.

Let Safei(s) denote the set of nodes that would burn if player i switched his action to

the empty set. Formally, Safei(s) = Safe(s) \ Safe(s−i,∅).

At this point we can define all the previous predicates inductively on i ≥ 0. For the

case i = 0, we have no player, but the process starts by burning v0. Formally:

∀s ∈ S,∀v ∈ V : defended(s, v, 0) = f alse. (3.1)

∀s ∈ S,∀v ∈ V \ {v0} : burning(s, v, 0) = f alse. (3.2)

∀s ∈ S : burning(s, v0, 0) = true. (3.3)

These equations define the starting configuration. Equation (3.1) makes sure that all nodes

are undefended at time 0. Equation (3.3) defines that the fire starts at node v0, and (3.2)

declares all other nodes as nonburning.

For any player i ∈ N (or time-step i ≥ 1) and for any s ∈ S we define as follows

invalid(s, i) =

{

false if si = ∅,
∨

v∈si

(

defended(s, v, i − 1) ∨ burning(s, v, i − 1)
)

otherwise.
(3.4)
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The first case in (3.4) makes sure that it is always valid to play the empty set. The

second case states that the move of player i is invalid if he tries to put a firefighter on a

node that is either already defended or already burning. We can also define inductively on

i ≥ 1 the predicates defended and burning.

∀s ∈ S,∀v ∈ V : defended(s, v, i) =
∨

j∈N∧j≤i

(

v ∈ sj ∧ ¬invalid(s, j )
)

. (3.5)

Equation (3.5) states that a node v is defended at (the end of) time-step i if one of the

players who has made a valid move until then has decided to put a firefighter on node v.

To define that a node v is burning at (the end of) time-step i ≥ 1, we need the

neighborhood relation of nodes. Let N (v) denote the neighborhood of v, i.e., w ∈ N (v) if,

and only if, (v,w) ∈ E. Then,

∀s ∈ S, v ∈ V, i ≥ 1 :

burning(s, v, i) = ¬defended(s, v, i) ∧
∨

w∈N(v)

(

burning(s, w, i − 1)
)

. (3.6)

Equation (3.6) states that a node v is burning at time-step i if it is not defended by

the end of time-step i and at least one of its neighbors is burning at time-step i − 1. We can

also define the set of all nodes that will be saved when a strategy vector s is played, which

are those that are still not burning at time-step n − 1.

∀s ∈ S : Safe(s) = {v ∈ V | ¬burning(s, v, n − 1)}.

Furthermore, we can define the set of nodes that a player i helped to save, i.e., that

would burn if player i changed his strategy to the empty set.

∀s ∈ S,∀i ∈ N : Safei(s) = Safe(s) \ Safe(s−i,∅).

We can consider two different and natural utility functions. The first models a selfish

behavior, whereas the second models a nonprofitable behavior.

3.3. Selfish Firefighters Model

In this model, firefighters get paid for the nodes they save. Intuitively, if player i

makes a valid move other than the empty set, he gets one unit of currency from each node

he helped to save. In other words, he gets paid by all nodes that are saved with respect to

the played strategy vector, but would not be saved if he was to change his strategy to the

empty set. Additionally, he will get charged a penalty if he makes an invalid move. Now,

let us define the utility function formally.

u
(Selfish)
i (s) =

⎧

⎨

⎩

−c if invalid(s, i),

0 if si = ∅,

|Safei(s)| − ε otherwise,

with 0 < ε < 1 and c > 0. We can see that the definition follows the intuition very closely.

Subtracting an ε cost for placing a firefighter makes sure that players always prefer to play



FIREFIGHTING AS A STRATEGIC GAME 107

the empty set over placing a firefighter on a node that is already saved (which would not be

an invalid move).

Hence, a game G(Selfish) in this Selfish Firefighters Model is defined by a tuple

G(Selfish) = (G, v0, ε, c), where G = (V,E) is an undirected graph, v0 ∈ V is the ini-

tial burning node, and ε, c are constants. The utility function of each player i ∈ N is

defined as u
(Selfish)
i .

3.4. Nonprofit Firefighters Model

Here we assume that the goal of every firefighter is to save as many total nodes as

possible, independently of which firefighters actually save more nodes. Formally, we define

u
(Nonprofit)

i (s) =

⎧

⎨

⎩

−c if invalid(s, i),

|Safe(s)| if si = ∅,

|Safe(s)| − ε otherwise,

with 0 < ε < 1 and c > 0. Hence, a game G(Nonprofit) in this Nonprofit Firefighters Model

is defined by a tuple G(Nonprofit) = (G, v0, ε, c), where G = (V,E) is an undirected graph,

v0 ∈ V is the initial burning node, and ε, c are constants (w.r.t n = |V |). The utility function

of each player i ∈ N is defined as u
(Nonprofit)

i . Let us denote by G(Selfish)(G, v0, ε, c) and by

G(Nonprofit)(G, v0, ε, c) the games defined by G, v0, ε, and c in the models Selfish Firefighters

and Nonprofit Firefighters, respectively. For simplicity, we also denote by ne(G) the set of

ne of the game G.

Notice that in an equilibrium, no player plays an invalid move or puts a firefighter on

a safe node. Also, since we have that 0 < ε < 1, the utility of playing the empty set is less

than the utility of saving one node. Because of that, given that a player does not play the

empty set, the ε-value does not affect his preferences. Therefore, we will ignore it in the

proofs.

Proposition 3.1. For any graph G = (V,E), any initial node v0 ∈ V , and any constants

ε, ε′, c, c′ such that 0 < ε, ε′ < 1 and c, c′ > 0, we have that:

i) ne(G(Selfish)(G, v0, ε, c)) = ne(G(Selfish)(G, v0, ε
′, c′)),

ii) ne(G(Nonprofit)(G, v0, ε, c)) = ne(G(Nonprofit)(G, v0, ε
′, c′)).

From now on we will omit ε and c in the definition of the games.

3.5. Equivalence of Games

Surprisingly, the behavior of selfish firefighters leads to the same equilibria as the

behavior of the nonprofit firefighters.

Let us now formally show that the games G(Selfish) and G(Nonprofit) are equivalent in the

sense that their sets of equilibria are the same.

Proposition 3.2. For any graph G = (V,E) and any v0 ∈ V , if

G(Selfish) = G(Selfish)(G, v0) , and G(Nonprofit) = G(Nonprofit)(G, v0) , then

ne(G(Selfish)) = ne(G(Nonprofit)).
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Proof.

(i) Let us show that ne(G(Selfish)) ⊆ ne(G(Nonprofit)):

Let s = (s1, ..., sn) ∈ ne(G(Selfish)). If s �∈ ne(G(Nonprofit)), then there is a player

i who can improve his payoff by changing his strategy from si to another s ′
i . If

we denote by s ′ = (s−i, s
′
i), we have that u

(Nonprofit)

i (s) < u
(Nonprofit)

i (s ′), and then

|Safe(s)| < |Safe(s ′)|.

By definition,

Safe(s) = Safe(s−i,∅) ∪ Safei(s) , and

Safe(s ′) = Safe(s−i,∅) ∪ Safei(s
′).

Notice that Safe(s−i,∅) = Safe(s ′
−i,∅) and Safei(s

′) ∩ Safe(s−i,∅) = ∅. Then, the

cardinalities of Safe(s ′) and Safe(s ′) can be expressed as:

|Safe(s ′)| = |Safe(s−i,∅)| + |Safei(s
′)|, (3.7)

|Safe(s)| = |Safe(s−i,∅)| + |Safei(s)|. (3.8)

Because we have assumed that |Safe(s)| < |Safe(s ′)|, then |Safei(s)| < |Safei(s
′)|,

contradicting the fact that s ∈ ne(G(Selfish)).

(ii) Let us now prove that ne(G(Nonprofit)) ⊆ ne(G(Selfish)):

Let us suppose that there is a strategy s = (s1, ..., sn) ∈ ne(G(Nonprofit)), which is

not in ne(G(Selfish)). Then, there exists a player i and a strategy s ′
i �= si such that

|Safei(s)| < |Safei(s
′)| where s ′ = (s−i, si).

Since we can express the cardinalities as in (3.7) and (3.8), and |Safei(s)| <

|Safei(s
′)|, then

|Safe(s)| < |Safe(s ′)|.

But this is a contraction with the fact that

s = (s1, ..., sn) ∈ ne(G(Nonprofit)).

Social welfare. We define the social welfare of a strategy as the number of nodes

that are saved, i.e., W (s) = |Safe(s)|.

Corollary 3.3. Let G = (V,E) be a graph and let v0 ∈ V . Let G(Selfish) = G(Selfish)(G, v0)

and G(Nonprofit) = G(Nonprofit)(G, v0). Then,

PoA(G(Selfish)) = PoA(G(Nonprofit)),

PoS(G(Selfish)) = PoS(G(Nonprofit)).

Therefore, we will use the utility function, which is more convenient for the proofs.

From now on, we will also refer to a firefighter game with G, whenever the respective result

holds for both the selfish and the nonprofit model.
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Figure 1 Family of graphs GPoA(n) = (VPoA(n), EPoA(n)).

4. QUALITY OF EQUILIBRIA

Once we have established the model, we can analyze the quality of the equilibria. It

is easy to argue that equilibria always exist. Notice that in the Nonprofit Firefighter Model,

the social welfare of a strategy s coincides with the utility of every player i on such strategy,

W (s) = |Safe(s)| = u
(Nonprofit)

i (s). Hence, in the case of nonprofit firefighters, every strategy

that maximizes the social welfare also maximizes the utility of every player i. In an optimal

solution s no player protects nodes that are already saved or already burned. Then s not

only is an optimal solution but also a Nash equilibrium. Therefore, we have the PoS is 1.

This is independent of the class of graphs we are considering and holds for every solution

concept by which players maximize their utility function.

Proposition 4.1. For any firefighter game G,

PoS(G) = 1.

In contrast to the PoS, the PoA might be very high in this model. In Figure 1 we

depict a family of graphs GPoA(n) = (VPoA(n), EPoA(n)) that allows us to show a linear

lower bound for the PoA. Note that (v1, v4) ∈ EPoA(n) and (v2, v3) ∈ EPoA(n). For better

visibility, these edges are not drawn in the picture. Further, we have that |VPoA(n)| = n,

hence, the size of the complete subgraph is n−8, and nodes v1, v2, v3, and v4 are connected

to every node in the complete subgraph.

Theorem 4.2. For any n ≥ 1, the firefighter game G = G(GPoA(n), v0) satisfies that

PoA(G) = �(n).

Proof. Notice that any strategy profile s of the game G satisfies that Safe(s) ≤ n. Hence,

we need to prove only that PoA(G) = �(n).

Recall that the fire starts at v0. It is easy to see that s = ({v1}, {v2},∅
n−3) is the

optimal strategy. Only nodes v0 and u0 burn, hence, the social welfare is W (s) = n − 2.

Furthermore, we have that s ′ = ({v3}, {v4},∅
n−3) is an equilibrium. Note that the complete

graph is burning after two time-steps, therefore, at time-step 3 only u1 and u2 are neither

burning nor defended. But these nodes are already safe, hence, players i with i > 2 will
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not place firefighters on them. Furthermore, players 1 and 2 cannot improve their payoff,

because if one of them changes strategy, that player will save at most one node. The

social welfare of s ′ is W (s ′) = 4. Hence, we have that PoA(G) ≥ n−2
4

. It follows that

PoA(G) ∈ �(n).

The Price of Anarchy for trees. Because the PoA might be very high in general,

we are interested in studying the quality of equilibria for particular topologies. Our aim is

to prove that there are cases where the quality of the equilibria is close to the quality of an

optimal solution. In the following we analyze the PoA on tree topologies.

Theorem 4.3. For any tree T = (V,E) and any node v0 ∈ V , the firefighter game

GTree = G(T , v0) satisfies that:

PoA(GTree) ≤ 2.

Proof. In this proof, we use ideas similar to the proof of the approximation ratio of a

greedy algorithm [26]. We assume that the initial burning node v0 is the root of the tree.

We use the utility functions of the selfish firefighters. This implies that the utility u
(Self ish)

i

of player i is less than, or equal to, the size of the subtree rooted by si .

Let s = (s1, . . . , s|N |) be a ne, and let opt = (opt1, . . . , opt|N |) be an optimal

solution. Notice that for each pair of different players i, j , we have that si cannot be an

ancestor of sj . Even though it can be the case that opti is an ancestor of optj , we can always

consider an equivalent strategy opt’ = (opt−j ,∅) such that W (opt’) = W (opt). Hence,

there exists an optimal strategy opt’ such that, for every pair i, j , i �= j , the subtrees rooted

at opt’i and opt’j , respectively, are disjoint.

Let optA be the set of optimal actions opti that they are neither equal to any strategy

sj nor successors of any strategy sj . Formally,

optA = {opti | ∀j ∈ N : sj �= opti ∧ sj is not an ancestor of opti}.

Let optB denote the remaining optimal actions:

optB = {optj | j ∈ N ∧ optj �∈ optA}.

Let P (opti) denote the set of strategies sj that are successors of opti . Let sA denote the set

of strategies, that do not have an optimal action as an ancestor. Formally,

sA = {si | ∀j ∈ N : optj is not an ancestor of si}.

Let sB denote the remaining player actions.

sB = {sj | j ∈ N ∧ sj �∈ sA}.

Let save(a) denote the number of nodes saved by action a. Notice that save(si) = ui(s)

(the size of the subtree rooted at si) and save(optj ) is equal to the size of the subtree

rooted at optj . Moreover, because the subtrees rooted at opti and optj are disjoint, then

W (opt) =
∑

i∈N save(opti). Therefore, we have that
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∑

i∈N |opti∈optB

save(opti) ≤
∑

i∈N |si∈sA

save(si). (4.1)

Because s is a ne, then for each i ∈ N

save(si) ≥ save(opti) −
∑

sj ∈P (opti )

save(sj ),

otherwise player i would have an incentive to switch his strategy to opti . Summing up all

optimal actions in optA, we get

∑

i∈N |opti∈optA

save(opti) ≤
∑

i∈N |opti∈optA

⎛

⎝save(si) +
∑

sj ∈P (opti )

save(sj )

⎞

⎠ .

We can split the sum on the right-hand side and get

∑

i∈N |opti∈optA

save(si) +
∑

i∈N |opti∈optA

∑

sj ∈P (opti )

save(sj ).

Note that in the double sum, we sum up exactly over the player actions that have an optimal

action as an ancestor i.e., sB . So, we can rewrite this to

∑

i∈N |opti∈optA

save(opti) ≤
∑

i∈N |opti∈optA

save(si) +
∑

i∈N |si∈sB

save(si).

Now we can use 4.1 to get

∑

i∈N

save(opti) ≤
∑

i∈N |opti∈optA

save(si) +
∑

i∈N

save(si).

Furthermore, we have that
∑

opti∈optA
save(si) ≤

∑

si∈s save(si), which yields to

∑

i∈N

save(opti) ≤ 2
∑

i∈N

save(si).

Since W (s) =
∑

i∈N save(si) and W (opt) =
∑

i∈N save(opti), we have that PoA(Gtree) ≤ 2.

As we will see in Section 6, the problem of finding a ne of a given firefighter

game G is polynomial time computable. Hence, the algorithm of computing a ne yields a

polynomial time approximation algorithm for the firefighter problem with an approximation

ratio bounded by PoA. In the case of the trees, the algorithm of computing a ne provides

an approximation algorithm with an approximation ratio upper bounded by 2 (the number

of nodes saved by an optimum solution is at most twice the number of nodes saved by a ne

solution as in the case of the greedy algorithm presented in [26]).
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Figure 2 Example graph. Note that all nodes have distance at most two from the fire.

5. COALITIONS

In this section we consider that players may form coalitions among themselves. A

coalition is willing to deviate from the strategy as long as no player in the coalition loses

payoff and at least one player increases his utility. We show that this might affect the PoA.

We consider that a strategy vector s is an equilibrium strategy with respect to coalition size

k, if no set of at most k players can simultaneously change their strategies in such a way

that at least one player increases his payoff and no player of the coalition decreases his

payoff. In the following we define formally these concepts.

Let K ⊆ N be a coalition set and let s be a strategy profile of all the players in N .

Let sK denote the joint strategy profile of all the players in K , sK = (si)i∈K . We say that

coalition K has an attractive joint deviation from s when there exists a joint strategy profile

s ′
K , such that for all i ∈ K , ui(s) ≤ ui(s−K , s ′

K ) and there is at least one player j ∈ K such

that uj (s) < uj (s−K , s ′
K ).

We say that a strategy profile s is an equilibrium with respect to coalition size k if for

every K ⊆ N such that |K| ≤ k, coalition K does not have any attractive deviation from

s. Let Ek ⊆ S denote the set of all equilibria with respect to coalition size k.

In the case of equilibria with respect to a coalition size, we do not have an equivalence

between selfish and non profit firefighters as in the Nash case.

Lemma 5.1. There exists a graph G, a node v0 ∈ V (G), and a coalition size k > 1

such that the firefighter games G(Selfish) = G(Selfish)(G, v0) and G(nonprofit) = G(nonprofit)(G, v0)

satisfy that

Ek(G(Selfish)) �⊆ Ek(G(Nonprofit)).

Proof. Consider the graph in Figure 2 and assume a coalition size k ≥ 2. Note that only

Players 1 and 2 can make meaningful moves, hence, without loss of generality we denote

the strategy vector with s = (s1, s2).

We have that s = ({v1}, {v2}) is an equilibrium strategy for the selfish firefighters,

because deviating to s ′ = ({v′
1}, {v

′
2}) would decrease the utility of Player 2. However, s is

not an equilibrium strategy for nonprofit firefighters, because the joint deviation s ′ increases

the total number of saved nodes.

Lemma 5.2. There exists a graph G, a node v0 ∈ V (G), and a coalition size k > 1

such that the firefighter games G(Selfish) = G(Selfish)(G, v0) and G(Nonprofit) = G(Nonprofit)(G, v0)
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satisfy that

Ek(G(Nonprofit)) �⊆ Ek(G(Selfish)).

Proof. Consider the graph in Figure 3 and assume a coalition size k ≥ 2. Note that, at

most, the first 3 players can make meaningful moves, hence, without loss of generality, we

denote the strategy vector with s = (s1, s2, s3).

Figure 3 Example graph. Note that all nodes have distance at most three from the fire.

We have that s = ({v1}, {v2},∅) is an equilibrium strategy for the nonprofit firefight-

ers, because deviating to s ′ = ({v′
1}, {v

′
2}, {v

′
3}) would decrease the total number of saved

nodes. However, s is not an equilibrium strategy for selfish firefighters, because the joint

deviation s ′
K = ({v′

1}, {v
′
2}) strictly increases the utility of player 1 without decreasing that

of player 2.

From now on we will consider only nonprofit firefighters because they resemble the

usual objective to save as many nodes as possible.

5.1. Price of Anarchy

We analyze the PoA for coalitions and its relation with the coalition size.

Definition 5.3. (Price of Anarchy for coalitions.) The PoA for a coalition size k (PoAk)

of a game G is defined as follows:

PoAk(G) =
maxs∈S W (s)

mins∈Ek
W (s)

.

We show that the PoA for a coalition size k is O( n
k
) for any class of graphs.

Proposition 5.4. Let k > 1 be the coalition size. Any nonprofit firefighter game G =

G(G, v0) where |V (G)| = n ≥ 2k and any v0 ∈ V (G) satisfies that

PoAk(G) ≤ f racnk − 1.
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Figure 4 Family of graphs GPoA(n, k) = (VPoA(n, k), EPoA(n, k)), with |VPoA(n, k)| = n.

Proof. In order to show this bound, we bound the welfare of the optimal solution from

above and bound the welfare of the worst equilibrium from below. Let us consider the

following two cases:

(i) If there is an optimal solution that uses k or fewer firefighters, a coalition of size k

can always make a joint deviation to that solution. Hence, there are no equilibria that

have a lower welfare than the optimal solution. It follows that PoAk(G) = 1 for those

instances.

(ii) If every optimal solution uses strictly more than k firefighters, the optimal solution saves

at most n − (k + 1) nodes. This is because it uses at least k + 1 time-steps and at least

one node burns every time-step, otherwise the fire would be contained. An equilibrium,

however, always saves at least k nodes in this case, because for every strategy profile

in which the players save fewer than k nodes, the first k players can jointly deviate to

the first k steps of the optimal solution, saving at least the nodes they protect, i.e., k.

This yields the desired bound: PoAk(G) ≤ n
k

− 1.

Furthermore, we can also show that there exists a family of graphs in which this upper

bound is tight. Figure 4 shows the construction of the family of graphs GPoA(n, k) =

(VPoA(n, k), EPoA(n, k)), with |VPoA(n, k)| = n. All nodes that are not specifically depicted

are inside the complete subgraph. Hence, the size of the complete subgraph is n − 4k − 2.

Note that nodes v1 to vk+1 are connected to every node in the complete subgraph. The nodes

v′
1 to v′

k together with w form a clique. Furthermore, for every vi and uj and for every v′
i

and u′
j , there are edges (vi, uj ) and (v′

i, u
′
j ), respectively, if i ≤ j . Last, for every ui and

u′
i , there is an edge to ui+1 and u′

i+1, respectively. We refer to v0 as the initial fire, nodes v1

to vk+1, u2 to uk+1 and the complete subgraph as the left part of the graph, and the rest as

the right part of the graph.

Theorem 5.5. Let k > 1 be the coalition size. For any n ≥ 2k, the nonprofit firefighter

game G = (GPoA(n, k), v0) satisfies that

PoAk(G) = �
(n

k

)

.
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Proof. Let us show that PoAk(G) = �( n
k
). Notice that the welfare of any strategy profile is

a lower bound for the welfare of an optimal solution, whereas the welfare of any equilibrium

gives an upper bound for the worst equilibrium in terms of quality.

The strategy profile s∗ = (v1, v2, . . . , vk+1,∅
|N |−k−1) saves all but 3k +1 nodes. The

nodes that burn are u2 to uk+1 and v0 as well as the right part of the graph. This yields a

lower bound for the welfare of an optimal solution.

Furthermore, we have that s = (v′
1, v

′
2, . . . , v

′
k,∅

|N |−k) is an equilibrium that saves

node w and the nodes that are protected by the firefighters. Because at time-step k +1 there

are no vulnerable nodes left, players i, with i > k, have no incentive to deviate from the

empty set. Furthermore, we have to argue that for every joint deviation of a coalition of

size k, at most k + 1 nodes can be saved.

We use an inductive argument to show that there is no attractive joint deviation for

any coalition of size k into the left part of the graph. Notice that for the left side of the

graph, v1 is connected to all other vulnerable nodes, which means that if player 1 does not

protect v1, then all vulnerable nodes in the left part will be adjacent to the fire in the next

time-step. The next player can protect only one extra node, but then everything burns with a

total number of two saved nodes. If player 1 protected v1, node v2 assumes the role of v1 for

the next time-step, because it is again connected to all other vulnerable nodes. Hence, for

time-step i, with i ≤ k, we have the following situation. If players from 1 to i − 1 protect

nodes v1 to vi−1, respectively, vi is connected to all other vulnerable nodes. If player i does

not protect vi , the next player can protect at most one extra node and everything else burns,

yielding a number of at most i + 1 total saved nodes. This implies that in order to save at

least k + 1 nodes in the left part of the graph, players from 1 to k have to protect nodes

from v1 to vk , respectively, and player k + 1 has to play an action different from the empty

set. Hence, more than k players would have to jointly deviate from strategy profile s.

For the right part of the graph, we can make a symmetric argument, where v′
i assumes

the role of vi for every i, 1 ≤ i ≤ k. This yields that the only way to save at least k + 1

nodes is to play strategy profile s.

Finally, we have to argue that there is no attractive joint deviation considering the

case that some nodes from both sides of the graph are protected. Note that both sides of

the graph burn in two time-steps if there are no firefighters. This implies that the only way

to place firefighters in both parts of the graph is to put one in the left side at the first step

and one in the right side at the second, or vice versa. Then, at the third time-step, all other

nodes in the part where the firefighter was placed in the second time-step are burning. In

the part where the first firefighter was placed, all unprotected nodes are also burning or are

adjacent to the fire. This means that only one extra node can be saved in the third time-step

and then the process finishes saving at most three nodes.

Now, we can conclude that s ∈ Ek and we have that W (s) = k + 1. This yields a

lower bound

PoAk(G) ≥
n − 3k − 1

k + 1
≥

n

k + 1
− 3.

From this lower bound jointly with the general upper bound shown in Proposition 5.4, it

follows that PoAk(G) = �( n
k
).

It is interesting to see that in the same family of graphs {GPoA(n, k)}n≥2k , if n = �(k),

then PoAk(G) = �(1). But in general, because k is a constant, we have that PoAk = �(n).

It seems natural to analyze whether coalitions can improve the quality of equilibria for
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certain families of graphs. In the next subsection we address this question with regard with

regard to the particular case of families of graphs having constant cut-width.

5.2. Graphs with Constant Cut-Width

In this section we explore the impact of the cut-width of a graph on the PoA for

certain coalition sizes. In order to define the cut-width of a graph, we need to introduce

some basic concepts.

Definition 5.6. (Cut-width under a linear order.) Given a graph G = (V,E), let

L = (v0, . . . , vn−1) be a linear order of V . The cut-width of G under the linear order L is

denoted by cw(G,L) and it is defined as follows:

cw(G,L) = k

if, and only if, for every i such that 0 ≤ i < n − 1, the number of edges with one

endpoint in {v0, . . . , vi} and the other in {vi+1, . . . , vn−1} is at most k and there exists

j, 0 ≤ j < n − 1, such that the number of edges with one endpoint in {v0, . . . , vj } and the

other in {vj+1, . . . , vn−1} is equal to k.

Definition 5.7. (Cut-width of a graph.) The cut-width of a graph G is denoted by cw(G)

and it is defined as follows:

cw(G) = min{k | ∃L linear order of V : cw(L,G) = k}.

Lemma 5.8. Let (G, v0) be an instance of the firefighter problem. Then, there exists a

strategy profile such that at most b(cw(G)) nodes are burned for some function b.

The proof of a more general version of this claim in contained in the proof of

Theorem 2 of [10] and brings us into the position of showing the following proposition.

Proposition 5.9. For any k ≥ 1, for any graph G = (V,E) such that cw(G) = k, and

any v0 ∈ V , there exists a coalition size bk such that

PoAbk
(G(G, v0)) ≤ 1 +

bk − 1

n − bk

.

Proof. Let G = G(G, v0) where G = (V,E), v0 ∈ V and cw(G) = k. By Lemma 5.8

there is strategy profile s, such that at most bk = b(cw(G)) nodes burn. Now we make use

of the fact that the number of time-steps before the spreading of the fire stops is fewer or

equal to the total number of burned vertices. This is because in each time-step, at least one

node has to burn, otherwise the spreading of the fire would be stopped. Hence, we get that

with strategy profile s, the fire is contained in at most bk time-steps. Note that we can place

at most one firefighter per time-step, therefore, a coalition of size bk can apply this strategy

profile. Furthermore, only a constant number of nodes burn. Hence, asymptotically, we

have that PoAbk
(G) ≤ n−1

n−bk
.

However, we cannot achieve this PoA without coalitions as the following instance

shows. Figure 5 shows a family of graphs Gcw(n). Note that n = 4m. Each ti is connected
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to ui and vi ; furthermore, we have edges (ui, vi) and (vi, wi) for each i. Additionally, for

each i < m, we have edges (ti, ti+1), (ui, ui+1), and (vi, vi+1). A linear layout is given by

the horizontal position of the nodes in the figure,

(t1, u1, v1, t2, w1, u2, v2, t3, w2, . . . , tm, wm−1, um, vm, wm).

It shows that the cut-width of the graph is at most 6, because every vertical line through the

graph crosses at most 6 edges. Let v0 = u1 be the initial fire. Without coalitions, saving

the nodes v1 to vm is an equilibrium, because each player saves one extra node and cannot

do better by switching to another node. Note that only a constant fraction of the nodes is

saved, whereas, in the case of coalition, all nodes except a constant number can be saved.

Thus, for this class of graphs, constant-size coalitions can improve the PoA.

6. COMPUTATIONAL COMPLEXITY

Let us explore the computational complexity of computing equilibria. More specifi-

cally, let us bound the computation time of a best response and the converging time of best

response dynamics.

Lemma 6.1. For any coalition size k ≥ 1, the computational complexity of finding an

equilibrium with respect to a coalition size k of any given non profit firefighter game is

polynomial time computable.

Proof. Let G = G(G, v0) any non profit firefighter game and let n = |V (G)|. Note that

for a given strategy vector s, we can simulate the spreading of fire in polynomial time and,

hence, compute the social welfare W (s) and check whether there are no invalid actions in

s. Let O(q(n)), for some polynomial q, denote the computation time.

For a coalition size k, we can find a best response (if it exists) in time O(q(n) · nk)

by simply trying out every possible joint deviation. Furthermore, we have that the social

welfare is strictly increased with every best response, because it equals the utility function

of the players. Recall that the social welfare counts the nodes that are saved, so its value

cannot exceed n−1. Hence, the best response dynamics converge after at most n iterations.

It follows that we can find an equilibrium in time O(p(n) · nk) for some polynomial

p.

This implies that we can find equilibria in polynomial time in the case of constant size

coalitions. This yields to a polynomial time approximation algorithm for the firefighting

problem. The computation of a ne with respect a coalition size k can be seen as an

approximation algorithm with an approximation ratio that depends on the quality of the

equilibrium. Hence, in the case of trees we have shown that we can compute in polynomial

time a ne and its quality with respect to the social optimum that is bounded by PoA ≤ 2

Figure 5 Family of graphs Gcw(n) with constant cut-width.
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(coalition size 1). In the case of graphs with constant cut-width k, we can compute a ne

with PoAbk
≤ 1 + bk−1

n−bk
(coalition size bk).

7. CONCLUSIONS

We have defined a new strategic game that models the Firefighter Problem. We

have shown that for a particular family of graphs PoA(G) = �(n). For trees, however, we

get a PoA(G) ≤ 2. Furthermore, we have shown that the coalition size has a direct effect

on the quality of the equilibria. We have proved that PoAk(G) = �( n
k
) for a specific family

of graph, with k being the coalition size. We have shown that there are topologies where

PoAbk
(G) ≤ 1+ bk−1

n−bk
for coalitions of constant size bk , e.g., graphs with constant cut-width

k.

Notice that it is possible to compute an equilibrium in polynomial time, even for

constant-size coalitions. This can be done following a best response dynamics. This yields

to a polynomial time approximation algorithm for the Firefighter Problem and its approxi-

mation ratio equals the PoA of the corresponding game.

We think that the most promising area to explore is the PoA for other restricted classes

of graphs, and the impact of the coalition size in those cases. Particularly interesting are

classes of graphs within which we can achieve a good PoA with constant-sized coalitions.

The results for trees and graphs with constant cut-width are a nice starting step in this

direction. In the case of trees, we showed a PoA of 2; the next step would be to investigate

how far we can improve the PoA if we allow coalitions. Note that it is not possible to get a

PoA of one for trees with constant-sized coalitions unless P = NP, because the firefighter

problem is known to be NP-hard, even on trees [17]. However, we can try to find restricted

classes of trees within which we can get a PoA of one. Finding the most general description

of trees with this property is an open problem [18]. Other classes of graphs we want to

consider are grids and graphs with a bounded number of cycles. A related open question is

whether the Firefighter Problem is solvable in polynomial time on graphs with path-width

two [10].

It also makes sense to analyze the quality of the equilibria with respect to different

game-theoretical solution concepts and different social welfare functions. In general, there

are other optimization objectives for the Firefighter Problem, for example, minimize the

number of time-steps until the fire stops spreading [18]. They have to be reflected in the

social welfare function if we want to analyze the quality of the outcomes of the game for

those cases.

A natural extension of our model is to allow more than one firefighter per time-step

and more than one initial fire. This is a generalization that has also been made for the

classical Firefighter Problem, although most results are done for the basic case of one

initial fire and one Firefighter per time-step. Many complexity questions in the general case

are still open problems, even for trees.
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