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Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary
realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such
problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio
optimization problem.�is is especially true for swarm intelligence algorithmswhich represent the newer branch of nature-inspired
algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio
problem with entropy constraint was found in the literature. �is paper introduces modi	ed 	re
y algorithm (FA) for the CCMV
portfoliomodelwith entropy constraint. Fire
y algorithm is one of the latest, very successful swarm intelligence algorithm; however,
it exhibits some de	ciencies when applied to constrained problems. To overcome lack of exploration power during early iterations,
we modi	ed the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modi	ed
	re
y algorithmproved to be better than other state-of-the-art algorithms,while introduction of entropy diversity constraint further
improved results.

1. Introduction

Sincemost real-life problems can bemodeled as optimization
tasks, many methods and techniques that could tackle such
problemswere developed.�us, the optimization becameone
of the most applicable 	elds in mathematics and computer
science.

�e di�culty of an optimization problem depends on the
mathematical relationships between the objective function,
potential constraints, and decision variables. Hard optimiza-
tion problems can be combinatorial (discrete) or continuous
(global optimization), while continuous problems can be
further be classi	ed as constrained or unconstrained (bound
constrained).

�e optimization problem becomes even harder when
some variables are real-valued, while others can take only
integer values. Such mixed continuous/discrete problems
usually require problem-speci	c search techniques in order
to generate optimal, or near optimal solution.

One representative example of such hard optimization
problems is portfolio optimization, a well-known issue in
economics and 	nance. Many methods and heuristics were
developed to optimize various models and formulations of
the portfolio problem [1]. Various portfolio optimization
problemmodels may ormay not include di�erent constraints
in their formulations. Also, to enhance the diversity of portfo-
lio, some approaches include entropy in its formulations [2].

Unconstrained (bound constrained) optimization is for-
mulated as �-dimensional minimization or maximization
problem:

min (or max) � (�) , � = (�1, �2, �3, . . . , ��) ∈ �, (1)

where � represents a real vector with� ≥ 1 components and� ∈ 
� is hyper-rectangular search space with � dimensions
constrained by lower and upper bounds:

��� ≤ �� ≤ ���, � ∈ [1, �] . (2)
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In (2), ��� and ��� are lower and upper bounds for the �th
problem component, respectively.

�e nonlinear constrained optimization problem in the
continuous space can be formulated in the same way as in (1),
but in this case � ∈ � ⊆ �, where � is �-dimensional hyper-
rectangular space as de	ned in (2) while � ⊆ � represents
the feasible region de	ned by the set of� linear or nonlinear
constraints: �� (�) ≤ 0, for � ∈ [1, �] ,

ℎ� (�) = 0, for � ∈ [� + 1,�] , (3)

where � is the number of inequality constraints, and� − � is
the number of equality constraints.

Fundamental versions of algorithms and metaheuristics
for constrained numerical optimization problems do not
includemethods for dealing with constraints.�erefore, con-
straint handling techniques are usually added to these algo-
rithms to improve and redirect the search process towards the
feasible region of the search space. Equality constraints make
optimization even harder by shrinking the feasible search
space which becomes very small compared to the entire
search space. To tackle such problem, equality constraints are
replaced with the inequality constraints [3]:

|ℎ (�)| − � ≤ 0, (4)

where � > 0 is some small violation tolerance, usually
dynamically adjusted.

Since hard optimization problems are unsolvable in a rea-
sonable amount of time, the exact methods which trace opti-
mal solution cannot be applied. For such problems, it is more
appropriate to employ nondeterministic metaheuristics.

Metaheuristics are iterative, population based, and
stochastic approaches that do not guarantee 	nding the
optimal solution, but they can obtain satisfying solution
within acceptable time [4]. In metaheuristics imple-
mentations, the processes of exploitation and exploration
conduct the search process. Exploitation directs search
around the current best solutions, while the exploration
randomly discovers new regions of a search domain.

During the last few decades, wewitnessed development of
nature-inspired sophisticated intelligent systems that can be
used as optimization tools for many complex and hard prob-
lems. Metaheuristics that incorporate and simulate natural
principles and rules are called nature-inspired metaheuris-
tics.

Nature-inspired metaheuristics [5] can roughly be
divided into two categories: evolutionary algorithms (EA)
and swarm intelligence. �e most prominent representative
of EA is genetic algorithms (GA). GA can obtain good results
for many kinds of optimization problems [6].

Social behavior of swarms of ants, bees, worms, birds,
and 	sh was an inspiring source for the emerge of swarm
intelligence [7]. Although swarm system consists of rela-
tively unsophisticated individuals, they exhibit coordinated
behavior that directs swarm towards the desired goal with no
central component that manages the system as a whole.

Ant colony optimization (ACO) was founded on ant’s
ability to deploy a substance called pheromone for marking

the discovered path between the food source and ant’s nests.
It is one of the oldest members of swarm intelligence family
[8] but it is constantly being improved and applied to di�erent
problems [9–11].

Arti	cial bee colony (ABC) algorithmmimics the behav-
ior of honey bee swarm. In this paradigm, three types of arti-
	cial bees perform search. Each type of bees has its particular
role in the search process. ABC was originally proposed by
Karaboga for problems of continuous optimization [12]. �is
algorithm proves to be robust and capable of solving high
dimensionality problems [13–15].

Cuckoo search (CS) is an iterative approach that models
search process by employing Levy 
ights (series of straight

ight paths with sudden 90 degrees turn). It was 	rst
proposed by Yang and Deb [16] and proved to be a robust
optimization technique [17], obtaining satisfying results in
real-life optimizations like image thresholding [18].

Also, swarm intelligence metaheuristics whichmimic the
human search process were developed. Seeker optimization
algorithm (SOA) is established on human memory, reason-
ing, past experience, and social interactions. It has been
proven that the SOA is a robust technique for solving global
numerical and real-life optimization problems [19] and is
continuously being improved [20].

As a result of the literature survey, it can be concluded that
for portfolio optimization problem there are some genetic
algorithm (GA) implementations. However, there are only
few swarm intelligence algorithms adapted for this problem.
�ere are papers which refer to solving portfolio prob-
lem with nondominating sorting genetic algorithm (NSGA)
which was 	rst proposed by Srinivas and Deb [21]. Newer
version NSGA-II improves the convergence and the spread
of solutions in the population [22]. Lin et al. presented
NSGA-II based algorithm with integer encoding for solving
MV portfolio model with minimum transaction lots (MTL),
	xed transaction costs (TC), and linear constraints on capital
investments.�e optimization of MV portfolio problem with
cardinality andholdingweights constraints byGA is shown in
[23]. Soleimani et al. [24] presented GA with RAR crossover
operator for solving MV portfolio problem where cardinality
constraints, MTL, and constraints on sector capitalization are
taken into account.

As mentioned, only few swarm intelligence metaheuris-
tics exist for portfolio optimization. Deng and Lin presented
ant colony optimization (ACO) for solving the cardinality
constraints Markowitz MV portfolio model [25]. Haqiqi and
Kazemi [26] employed the same algorithm to MV portfolio
model. We emphasize on one ACO implementation based
on the average entropy for real estate portfolio optimization
[27]. �is is one of the rare papers that incorporates entropy
in portfolio model. Cura investigated PSO approach to
cardinality constrained MV portfolio optimization [1]. �e
test data set contains weekly prices from March 1992 to
September 1997 from the following 	ve indexes: Hang Seng
in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P
100 in USA, and Nikkei in Japan. �e results of this study
are compared with those from genetic algorithm, simulated
annealing, and tabu search approaches and showed that
PSO has potential in portfolio optimization. Zhu et al. [28]
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presented PSO algorithm for nonlinear constrained portfolio
optimization with multiobjective functions. �e model is
tested on various restricted and unrestricted risky investment
portfolios and a comparative study with GA is showed. PSO
demonstrated high computational e�ciency in constructing
optimal risky portfolios and can be compared with other
state-of-the-art algorithms.

ABC algorithm formixed quadratic and integer program-
ming problem of cardinality constrainedMVportfoliomodel
was presented by Wang et al. [29]. Some modi	cations of
classical ABC algorithm for constrained optimization prob-
lems were adopted. �e approach was tested on a standard
benchmark data set and proved to be a robust portfolio
optimizer.

One of the 	rst implementations for portfolio optimiza-
tion problem by the 	re
y algorithms was developed by
Tuba et al. [30, 31]. Framework for solving this problem
was devised. Metaheuristic was tested on standard 	ve-asset
data set. FA proved to be robust and e�ective technique for
portfolio problem. Among other metaheuristics for portfolio
problem, one approach based on neural networks (NN)
should be distinguished [32].

In this paper, we propose a modi	ed 	re
y algorithm
(FA) for cardinality constrained mean-variance (CCMV)
portfolio optimization with entropy constraint. FA was 	rst
introduced by Yang for unconstrained optimization [33].
Later, it was adapted [34] for solving various numerical and
practical optimization problems [35–37].

We modi	ed pure FA algorithm to adjust it for con-
strained problems and to improve its performance. We
intensi	ed exploration during early phase and eliminated it
during late iterationswhen the proper part of the search space
has been reached. Details will be given in Section 4.

�e implementation of metaheuristics for the CCMV
portfolio model with entropy constraint was not found in the
literature survey. �us, we conducted three experiments.

(i) First, we compared original FA with our modi	ed
mFA applied to portfolio optimization problem. We
wanted to see what is the real improvement of our
approach.

(ii) �en, we compared results of our algorithm for the
CCMV portfolio model with and without entropy
constraint. In this test, we analyzed the in
uence of
entropy constraint to portfolio diversi	cation.

(iii) Finally, in the third test, we made comparative anal-
ysis between our modi	ed mFA and other state-of-
the-art metaheuristics. We compared our proposed
algorithm to Cura’s PSO [1] and also to GA, TS, and
SA, indirectly from [23].

�e rest of the paper is organized as follows. Section 2
presents mathematical formulations of variety portfolio opti-
mization models. �e presentation of the original FA is
given in Section 3. Our proposed modi	ed FA approach
for the CCMV portfolio problem with entropy constraint
is discussed in Section 4. Section 5 	rst shows algorithm
parameter settings that are used in experiments. �en, we
present three experiments which we conducted along with

the comparative analyses with other metaheuristics. Finally,
Section 6 gives conclusions and recommendations for future
research.

2. Portfolio Optimization Problem Definitions

Portfolio optimization, as one of the most important issues
in modern 	nancial management, tackles the problem of
distribution of 	nancial resources across a number of assets
to maximize return and control the risk.

When making 	nancial decisions, investors follow the
principle of diversi	cation by investing their capital into
di�erent types of assets. By investment in portfolios, rather
than in single assets, the risk is mitigated by diversi	cation
of the investments, without negative impact on expected
returns.

�e essential form of portfolio optimization is formulated
as bicriterion optimization problem where the reward, which
is measured by the mean of return, should be maximized,
while the risk, measured by the variance of return, should be
minimized [38]. �is problem deals with the selection of the
portfolio of securities that minimizes the risk subject to the
constraints, while guaranteeing a given level of returns [39].

By literature researchmanymethods for solving portfolio
problem can be found. Markowitz’s standard mean-variance
(MV) model choses one important objective function that
is subject to optimization, while the remaining objective
functions are being threated as constraints [40].�e key point
in the MV formulation is to employ the expected returns
of a portfolio as the investment return and the variance of
returns of the portfolio as the investment risk [41]. Its basic
assumptions are that the investors are rational with either
multivariate normally distributed asset returns or in the case
of arbitrary returns, a quadratic utility function [42]. �is
approach is widely adapted and plays an important role in the
modern portfolio theory.

Markowitz’s MV model considers the selection of risky
portfolio as objective function, and the mean return of
an asset as one of the constraints [43]. �is model can
mathematically be de	ned as

min�2�� = �2� = �∑
�=1

�∑
�=1

����Cov (
� 
�) (5)

subject to


� = � (
�) = �∑
�=1
��
� ≥ 
, (6)

�∑
�=1
�� = 1, �� ≥ 0, ∀� ∈ {1, 2, . . . , !} , (7)

where ! is the total number of available assets, 
� is the

mean return on asset �, and Cov(
� 
�) is covariance of
returns of assets � and �, respectively. Constraint de	ned in
(7) guarantees that the whole disposable capital is invested.
Weight variable �� has a role of control parameter that



4 �e Scienti	c World Journal

determines the proportion of the capital that is placed in asset�. Weight variable has a real value in the range [0, 1].
In the presented MV formulation, the objective is to

minimize the portfolio risk �2�, for a given value of portfolio

expected return 
�.
E�cient frontier model, which is o�en called single-

objective function model, constructs only one evaluation
function that models portfolio optimization problem. In this
model, the desired mean return 
 is varying for the purpose
of 	nding di�erent objective function values. Risk aversion
indicator " ∈ [0, 1] controls this process [28].

E�cient frontier de	nition is

min "[[
�∑
�=1

�∑
�=1

����Cov (
� 
�)]] − (1 − ") [ �∑
�=1
��
�] (8)

subject to

�∑
�=1
�� = 1

�� ≥ 0, ∀� ∈ {1, 2, . . . , !} .
(9)

In the presented formulation " is critical parameter. It
controls the relative importance of themean return to the risk
for the investor. When the value of " is set to 0, mean return
of portfolio is being maximized without considering the risk.
Alternatively, when " has a value of 1, risk of the portfolio
is minimized regardless of the mean return. �us, when the
value of " increases, the relative importance of the risk to the
mean return for the investor rises, and vice versa.

Each " value generates di�erent objective function value
which is composed of themean return and the variance (risk).
By tracing the mean return and variance intersections for
di�erent ", a continuous curve can be drawn which is called
an e�cient frontier in the Markowitz’s modern portfolio
theory.

Another model worth mentioning is Sharpe ratio (SR)
which uses the information from mean and variance of an
asset [44]. In this model, the measure of mean return is
adjusted with the risk and can be described by

SR = 
� − 
�
StdDev (-) , (10)

where - denotes portfolio, 
� is the mean return of the
portfolio -, and 
� is a test available rate of return on a risk-
free asset. StdDev(-) is a measure of the risk in portfolio
(standard deviation of
�). By adjusting the portfolio weights/�, portfolio’s Sharpe ratio can be maximized.

However, all three models: the MV, e�cient frontier, and
Sharpe ratio were constructed under strict and simpli	ed
assumptions that do not consider real-world parameters
and limitations and as such are not always suitable for real
applications. For these reason extendedMVmodel is devised.

Extended MV formulation takes into account additional
constraints such as budget, cardinality, transaction lots, and
sector capitalization. �ese constraints model real-world

legal and economic environment where the 	nancial invest-
ments are being done [45]. Budget constraint controls the
minimum andmaximum total budget proportion that can be
invested in particular asset. Cardinality constraint controls
whether a particular asset will be included in the portfolio.
�e minimum transaction lots constraint ensures that each
security can only be purchased in a certain number of
units. Sector capitalization constraint directs the investments
towards the assets that belong to the sectors where higher
value of market capitalization can be accomplished. �e
review of this constraint is given in [24].

When all the above-mentioned constraints are being
applied to the basic portfolio problem formulation, the
problem becomes a combinatorial optimization problem
whose feasible region is not continuous. �us, the extended
MV model belongs to the group of quadratic mixed-integer
programming models. Its formulation is

min�2�� = �2� = �∑
�=1

�∑
�=1

����Cov (
� 
�) , (11)

where

�� = ��3�4�∑��=1 ��3�4� , � = 1, . . . , !, (12)

�∑
�=1
4� = 6 ≤ !, 6,! ∈ N,
4� ∈ {0, 1} , � = 1, . . . , !

(13)

subject to

�∑
�=1
��3�4�
� ≥ 7
 (14)

�∑
�=1
��3�4� ≤ 7 (15)

0 ≤ 7low�
≤ ��3� ≤ 7up�

≤ 7, � = 1, . . . , ! (16)

∑
��
8�� ≥ ∑

���
8���

∀9	9	� ̸= 0, �	, �	� ∈ {1, 2, . . . , !}
;, ;
 ∈ {1, 2, . . . , �} , ; < ;
,

(17)

where

9	 = {{{{{
1 if ∑

��
4� > 0

0 if ∑
��
4� = 0, (18)

In (11)–(18) 6 represents the number of selected assets
among possible! assets. 7 is the total disposable budget, and7low�

and7up�
are lower andupper limits of the budget that can

be invested in asset �, respectively. � represents the number of
sectors in the market where the investment is being placed,
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3� is the size of transaction lot for asset �, and �� denotes the
number of such lots (of asset �) that is purchased.

Decision variable 4� is used to apply cardinality con-
straint: 4� is equal to 1 if an asset � is present in the
portfolio, otherwise its value is 0. Equation (17)models sector
capitalization constraint. Despite the fact that a certain sector
has high capitalization, security from this sector that has
low return and/or high risk must be excluded from the 	nal
portfolio’s structure. To make such exclusion, variable 9	 is
de	ned and it has a value of 1 if the corresponding sector has
at least one selected asset, and 0 otherwise. In (17) �	 is a set
of assets which can be found in sector ;. Sectors are sorted in
descending order by their capitalization value.

Entropy was introduced by Jaynes [46] for wide appli-
cation in optimization, crystallography in the beginning,
networks [47], and so forth, but it also becomes an important
tool in portfolio optimization and asset pricing. Entropy is
widely recognized measure of portfolio diversi	cation [2].
In multiobjective portfolio optimization models, the entropy
can be used as an objective function. Here, we will address
entropy as diversity constraint in portfolio models, because
we employed it in portfolio model that is used for testing of
our modi	ed FA approach.

�e entropy constraint de	nes lower boundC� of entropy�(D) of portfolio D according to the following equation [48]:

� (D) = − �∑
�=1
�� ln�� ≥ C�, (19)

where! is the number of assets in portfolioD and�� is weight
variable of the security �.

In one extreme, when the weigh variable of only one
asset in portfolio D is 1, and for the rest of the assets is 0,�(D) reaches its minimum at −1 ∗ ln 1 = 0 [49]. �is is
the least diverse scenario. Contrarily, in the most diverse
condition that, for∀�, �� = 1/!,�(D) obtains itsmaximum in−!(1/! ln 1/!) = ln!. According to this, C� is in the range[0, ln!]. Greater value of entropy denotes better portfolio’s
diversity, and C� is used to make sure that the diversity of D
is not too low.

Entropy constraint equation (19) can be transformed into
the upper-bound constraint [49]:

� (D) = G−�(�) = G∑��=1 �� ln�� ≤ H�. (20)

As shown previously, 0 ≤ �(D) ≤ ln!, which implicates

that 0 ≥ −�(D) ≥ − ln!. �en, the condition G0 = 1 ≥G−�(�) = �(D) ≥ G− ln� = 1/! holds. �us, the range of
upper-bound constraint H� is [1/!, 1].

In this paper, for testing purposes, we used model which
employs some of the constraints that can be found in the
extended MV formulation. In the experimental study, we
implemented modi	ed FA for optimizing cardinality con-
strained mean-variance model (CCMV) which is derived
from the standard Markowitz’s and the e�ciency frontier
models.

We were inspired by Usta’s and Kantar’s multiobjec-
tive approach based on a mean-variance-skewness-entropy
portfolio selection model (MVSEM) that employs Shannon’s

entropy measure to the mean-variance-skewness portfolio
model (MVSM) to generate a well-diversi	ed portfolio [50,
51]. �us, we added entropy measure to the CCMV portfolio
formulation to generate well-diversi	ed portfolio.

Formulation of theCCMVmodel with entropy constraint
is

min "[[
�∑
�=1

�∑
�=1

������,�]] − (1 − ") [ �∑
�=1
��I�] (21)

subject to

�∑
�=1
�� = 1, (22)

�∑
�=1
4� = J, (23)

K�4� ≤ �� ≤ L�4�, 4 ∈ {0, 1} , � = 1, 2, 3, . . . , !, (24)

− �∑
�=1
4��� ln�� ≥ C�. (25)

As already mentioned in this section,! is the number of
potential securities that will be included in portfolio, " is risk
aversion parameter, �� and �� are weight variables of assets �
and �, respectively, L�,� is their covariance, and I� is �th asset’s
return.J is the desired number of assets that will be included
in the portfolio. Decision variable 4� controls whether the
asset � will be included in portfolio. If its value is 1, asset �
is included, and if the value is 0, asset � is excluded from the
portfolio. K and L are lower and upper bounds of the asset that
is included in portfolio and they make sure that the asset’s
proportion in the portfolio is within the prede	ned range.

We applied entropy constraint equation (25) with lower
bounds, as in (19), to ensure that the diversity of portfolio is
not too low. C� is lower bound of the entropy in the range[0, lnJ]. In (25), 4� ensures that only assets that are included
in portfolio are taken into account.

From the CCMV formulation with entropy constraint it
can be seen that this problem belongs to the group of mixed
quadratic and integer programming problems. It employs
both real and integer variables with equity and inequity
constraints.

3. Presentation of the Original FA

Fire
y algorithm (FA) was originally proposed by Yang in
2008 [33], with later improvements [52]. It was applied to
continuous [53], discrete [54], and mixed [55] optimization
problems. �e emergence of this metaheuristic was inspired
by the social and 
ashing behavior of 	re
ies.

Fire
ies inhabit moderate and tropical climate environ-
ments all around the word. �eir 
ashing behavior has many
di�erent roles. Synchronized 
ashing by males is unique in
the animal world and involves a capacity for visually coordi-
nated, rhythmically coincident, and interindividual behavior.
Also, 
ashing is used to alleviate communication for mating
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and to frighten the predators.�ese 
ashing properties can be
incorporated into swarm intelligence metaheuristic in such a
way that they are associatedwith the objective functionwhich
is subject to optimization.

With respect to the facts that the real 	re
y system is
sophisticated and that the metaheuristics are approximations
of real systems, three idealized rules are applied with the goal
to enable algorithm’s implementation [33]: (1) all 	re
ies are
unisex, so the attractions between 	re
ies do not depend on
their sex; (2) attractiveness of a 	re
y is directly proportional
to their brightness, and the less brighter 	re
y will move
towards the brighter one. Brightness increases as the distance
between 	re
ies decreases; (3) the brightness of a 	re
y is
determined by the value of objective function. For minimiza-
tion problems, brightness increases as the objective function
value decreases. �ere are also other forms of brightness
which can be de	ned similar to 	tness function in genetic
algorithms (GA) [6].

In the implementation of FA, one of the most important
issues that should be considered is the formulation of attrac-
tiveness. For the sake of simplicity, a good approximation
is that the attractiveness of a 	re
y is determined by its
brightness which depends on the encoded objective function.

In the case of maximization problems, the brightness of
a 	re
y at a particular location � can be chosen as N(�) ∼�(�), where N(�) is the attractiveness and �(�) is the value of
objective function at this location. Otherwise, if the goal is to
minimize function, the following expression can be used:

N (�) = {{{
1� (�) , if � (�) > 0

1 + PPPP� (�)PPPP , otherwise. (26)

�e variations of light intensity and attractiveness are
monotonically decreasing functions because as the light
intensity and the attractiveness decrease, the distance from
the source increases, and vice versa. �is can be formulated
as [56]

N (Q) = N01 + RQ2 , (27)

where N(Q) is the light intensity, Q is distance, and N0 is the light
intensity at the source. Besides that, the air also absorbs part
of the light, and the light becomes weaker. Air absorption is
modeled by the light absorption coe�cient R.

In most FA implementations that can be found in the
literature survey, the combined e�ect of both the inverse
square law and absorption can be approximated using the
following Gaussian form:

N (Q) = N0G−��2 . (28)

Attractiveness S of a 	re
y is relative because it depends
on the distance between the 	re
y and the beholder. �us,
it varies with the distance Q�,� between 	re
ies � and �. �e
attractiveness is direct proportional to 	re
ies light intensity
(brightness), as shown in the following:

S (Q) = S0G−��2 , (29)

where S0 is the attractiveness at Q = 0. Equation (29) deter-
mines a characteristic distance Γ = 1/√R over which the

attractiveness changes signi	cantly from S0 to S0G−1.
But, in practical applications, the above expression is

usually replaced with

S (Q) = S01 + RQ2 . (30)

Main reason for this replacement is that the calculation of
exponential function in (29) demands much more computa-
tional power than simple division in (30).

�e movement of a 	re
y � (its new position in iterationV + 1) towards the brighter, and thus more attractive 	re
y �
is calculated using

�� (V + 1) = �� (V) + S0Q−��2�,� (�� − ��) + W (X − 0.5) , (31)

where S0 is attractiveness at Q = 0, W is randomization
parameter, X is random number drawn from uniform or
Gaussian distribution, and Q�,� is distance between 	re
ies �
and �. �e positions of 	re
ies are updated sequentially by
comparing and updating each pair of them at every iteration.

�e distance between 	re
ies � and � is calculated using
Cartesian distance form [56]:

Q�,� = ZZZZZ�� − ��ZZZZZ = √ �∑
�=1

(��,� − ��,�), (32)

where � is the number of problem parameters. For most
problems, S0 = 0 and W ∈ [0, 1] are adequate settings.

�e parameter R has crucial impact on the convergence
speed of the algorithm. �is parameter shows the variation
of attractiveness and in theory it has a value of [0, +∞), but
in practice it is determined by the characteristic distance Γ of
the system that is being optimized. In most implementationsR parameter varies between 0.01 and 100.

�ere are two special cases of the FA, and they are both
associated with the value of R as follows [33]:

(i) if R = 0, then S = S0. �at means that the air around
	re
y is completely clear. In this case, S is always
the largest it could possibly be, and 	re
ies advance
towards other 	re
ies with the largest possible steps.
�e exploration-exploitation is out of balance because
the exploitation is maximal, while the exploration is
minimal;

(ii) if R = ∞, then S = 0. In this case, there is a thick fog
around 	re
ies and they could not see each other.�e
movement is performed in a random steps, and explo-
ration is more intensive with practically no exploi-
tation at all.

�e pseudocode for the original FA is given as Algo-
rithm 1.

In the presented pseudocode, �! is total number of
	re
ies in the population, N! is total number of algorithm’s
iterations, and V is the current iteration.
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Generate initial population of 	re
ies ��, (� = 1, 2, 3, �!)
Light intensity N� at point �� is de	ned by �(�)
De	ne light absorption coe�cient R
De	ne number of iterations IN
while V < N! do

for � = 1 to SN do

for � = 1 to � do
if N� < N� then
Move 	re
y � towards 	re
y � in _ dimension
Attractiveness varies with distance Q via exp[−RQ]
Evaluate new solution, replace the worst with
better solution and update light intensity

end if

end for

end for

Rank all 	re
ies and 	nd the current best
end while

Algorithm 1: Original 	re
y algorithm.

4. Proposed mFA for the CCMV Portfolio
Problem with Entropy Constraint

As mentioned in Section 1, we propose a modi	ed 	re
y
algorithm for cardinality constrained mean-variance portfo-
lio optimization with entropy constraint.

By analyzing FA we noticed that, as most other swarm
intelligence algorithms, the pure version of the algorithm,
developed for unconstrained problems, exhibits some de	-
ciencies when applied to constrained problems. In the early
cycles of algorithm’s execution established balance between
exploitation and exploration is not completely appropriate
for this class of problems. During early phase exploration
is not intensive enough. However, during late cycles when
FA was able to discover the right part of the search space,
the exploration is no longer needed. To control whether
the exploration will be triggered or not, we introduced
exploration breakpoint �7D control parameter.

In this section, we show implementation details of our
modi	ed FA algorithm which we named mFA.

4.1. Initialization Phase and Fitness Calculation. At the initial-
ization step, FA generates random population of �! 	re
ies
(arti	cial agents) using

��,� = ��� + rand (0, 1) ∗ (��� − ���) , (33)

where ��,� is the weight of the �th portfolio’s asset of the �th
agent, rand(0, 1) is random number uniformly distributed
between 0 and 1, and ��� and ��� are upper and lower weight
bounds of the �th asset, respectively.

If the initially generated value for the �th parameter of
the �th 	re
y does not 	t in the scope [���, ���], it is being
modi	ed using the following expression:

if (��,�) > ���, then ��,� = ���
if (��,�) < ���, then ��,� = ���. (34)

Moreover, in the initialization phase, decision variables4�,� (� = 1, . . . , �!, � = 1, . . . , !) are also initialized for
each 	re
y agent �. ! is the number of potential assets in
portfolio. According to this, each 	re
y is modeled using2∗! dimensions. 4� is a binary vector, with values 1, when an
asset is included in portfolio, and 0, when it is excluded from
it.

Decision variables are generated randomly by applying

4�,� = {1, if a < 0.50 if a ≥ 0.5, (35)

where a is random real number between 0 and 1.
To guarantee the feasibility of solutions, we used similar

arrangement algorithm as proposed in [1]. �e arrangement
algorithm is applied 	rst time in the initialization phase.

In the arrangement algorithm, � is the current solution
that consists of b the distinct set of J∗� assets in the �th
solution, 4�,� is the decision variable of asset �, and ��,� is
the weight proportion for asset �. Arrangement algorithm
pseudocode is shown as Algorithm 2.

For the constraint ∑��=1 �� = 1 we set c = ∑�∈� ��,�
and put ��,� = ��,�/c for all assets that satisfy � ∈ b.
�e same approach for satisfying this constraint was used
in [1]. To make sure that each asset’s proportion is within
prede	ned lower and upper bounds, K and L, respectively, we
used �� ��,� > L�,� then ��,� = L�, � and �� ��,� < K�,� then��,� = K�,�.

We did not apply 3-value based approach for adding
and removing assets from the portfolio as in [1]. According
to our experiments, using 3-value does not improve FA
performance. It only increases computational complexity.

In modi	ed FA, the 	tness is employed to model the
attractiveness of the 	re
ies. Attractiveness is directly propor-
tional to the 	tness.

A�er generating �! number of agents, 	tness value is cal-
culated for each 	re
y in the population. Fitness (brightness)
is calculated as in the original FA implementation (26).
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while J∗� < J do

select random asset � such that � ∉ b4�,� = 1, b = b ∪ [�], J∗� = J∗� + 1
end while

while J∗� > J do

select random asset � such that � ∈ b4�,� = 1, b = b − [�], J∗� = J∗� − 1
end while

while true dof = ∑
�∈�

��,�, ��,� = ��,�c , g = ∑
�∈�

max (0, ��,� − L�) , a = ∑
�∈�

max (0, g� − ��,�)
if g = 0 and a = 0 then

exit algorithm
end if

for � = 1 to! do

if 4�,� = 1 then

if ��,� > L� then��,� = L�
end if

if ��,� < K� then��,� = K�
end if

end if

end for

end while

Algorithm 2: Arrangement algorithm.

In the initialization phase, for each 	re
y in the popu-
lation, constraint violation CV is being calculated. CV is a
measure of how much the agents violate constraints in the
problem de	nition:

CV� = ∑
��(��)>0

�� (��) + �∑
�=�+1

ℎ� (��) . (36)

CV calculation is necessary, because it is later used for
performing selection based on Deb’s method [57, 58].

4.2. Fire�y Movement. �e movement of a 	re
y � towards
the 	re
y that has a higher 	tness � is calculated as in the
original FA implementation [56]:

�� (V + 1) = �� (V) + S0Q−��2�,� (�� − ��) + W (X − 0.5) , (37)

where ��(V + 1) is new solution generated in iteration (V + 1),S0 is attractiveness at Q = 0, W is randomization parameter,X is random number drawn from uniform or Gaussian
distribution, and Q�,� is distance between 	re
ies � and �.

Also, when moving a 	re
y, new decision variables are
calculated:

4�+1�,� = round( 11 + G−���,	+��,�(���,	−���,	) − 0.06) , (38)

where 4�+1�,� is decision variable for the kth asset of the new
solution, 4�,� is a decision variable of the kth parameter of the

old solution, and 4�,� is decision variable of kth parameter of
the brighter 	re
y �.

It should be noticed that the decision variables in the
employed bee phase are generated di�erently than in the
initialization phase equation (35).

A�er the new �th solution is generated in exploitation
process using (37) and (38) the winner between new ��(V + 1)
and old ��(V) solution is retained using the selection process
based on Deb’s rules.

4.3. Exploration. As mentioned before, we noticed insu�-
cient exploration power in the original FA implementation,
particularly in early iterations of algorithm’s execution. In
this phase of algorithm’s execution, exploitation-exploration
balance is not well established for this type of problems.
�is balance was also discussed in [14]. �us, we adopted
mechanism similar to scout bee with ����V parameter from
the ABC metaheuristic.

We introduced parameter abandonment threshold (lm)
that represents the allowed predetermined number of unsuc-
cessful tries to improve particular solution. When a potential
solution (	re
y) is stagnating (not being improved) for lm
iterations, it is replaced by a new, randomone using (33), (34),
and (35). Hence, 	re
ies that exploited exhausted solutions
are transformed into scouts that perform the exploration
process. �e value of lm is empirically determined and will
be shown in the experimental section.

Also, during late iterations, with the assumption that
the right part of the search space has been found, the
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Generate initial population of 	re
ies �� and 4� (� = 1, 2, 3, . . . , �!) by using (33) and (35)
Apply arrangement algorithm
Light intensity N� at point �� is de	ned by �(�)
De	ne light absorption coe�cient R
De	ne number of iterations IN
Calculate 	tness and CV for all 	re
ies using (26) and (36)
Set initial values for W
Set V value to 0
while V < IN do

for � = 1 to SN do

for � = 1 to � do
if N� < N� then

Move 	re
y � towards 	re
y � in _ dimension using (37) and (38)
Attractiveness varies with distance Q via exp[−RQ]
Evaluate new solution, replace worse with better solution
using Deb’s method and update light intensity
if solution � is not improved and V� < �7D thenHNn� increment by 1
elseHNn� set to 0
end if

end if

end for

end for

if V < �7D then

replace all agents whose UIC > lm with random agents using (33)
end if

Apply arrangement algorithm
Rank all 	re
ies and 	nd the current best
Recalculate values for W using (39)

end while

Algorithm 3: Modi	ed 	re
y algorithm.

intensive exploration is not needed anymore. In that case, the
exploration is not being triggered. For this purpose, we intro-
duce new control parameter, exploration breakpoint (�7D)
which controls whether the exploration will be triggered.�e
discussion of this parameter is also given in experimental
section.

Also, we should note that the parameter W for FA search
process is being gradually decreased from its initial value
according to

W (V) = (1 − (1 − ((10−49 )1/��))) ∗ W (V − 1) , (39)

where V is the current iteration and N! is the maximum num-
ber of iterations.

Pseudocode of mFA is given as Algorithm 3. Some
implementation’s details are omitted for the sake of simplicity.

In the pseudocode, �! is total number of 	re
ies in the
population, N! is total number of algorithm’s iterations, andV is the current iteration. As explained, lm is the maximum
number of unsuccessful attempts to improve particular solu-
tion a�er which it will be considered exhausted and replaced
by a new, random solution.

5. Algorithm Settings and
Experimental Results

In this section, we 	rst present parameter settings which were
adjusted for testing purposes of our proposed mFA. �en,
we show experimental results, discussion, and comparative
analysis with other state-of-the-art algorithms.

5.1. Parameter Settings. To test the performance and robust-
ness of our modi	ed FA, we set algorithm parameters similar
to [1]. Number of 	re
y agents in the population �! is
calculated by employing the following expression:

�! = 20√!, (40)

where! is the number of potential assets in portfolio.
�e value of maximum number of iterations N! in one

algorithm’s run is set according to

N! = 1000 ∗ !�! . (41)

As mentioned in Section 4, to improve the exploration
power of the original FA, we introduced parameter lm with
corresponding counters HNn� (� = 1, 2, . . . , �!) that count
howmany times a particular 	re
y agent unsuccessfully tried
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" = 0
while " ≤ 1 do�! = 20√!

Set portfolio problem parametersJ, K and L
InitializationPhase()
ArrangementAlgorithm()
FitnessCalculation()
Set UIC to 0 and calculate AT value according to (42)
Set initial values for � and WN! = 1000!�!
for V = 1 to IN do

Fire
y movement
Apply Selection between old and new solution using Deb rules
Exploration phase (if necessary)
ArrangementAlgorithm()
Rank all 	re
ies and 	nd the current best
Recalculate values for � and WV + +

end for" = " + Δ"
end while

Algorithm 4: Modi	ed 	re
y with parameters.

improvement. When the value of HNn� reaches predeter-
mined abandonment threshold lm, corresponding agent is
being replaced by a random agent. lm is determined by the
values of �! and N!, like in [14]:

lm = N!�! = (1000 ∗ !) /�!20√! . (42)

Exploration breakpoint �7D controls whether or not the
exploration will be triggered. According to our experimental
tests, modi	ed FA generates worse results if the exploration
is triggered during late iterations. In most of the runs, the
algorithm is able to 	nd a proper part of the search space
during early cycles, and exploration during late cycles is not
useful. To the contrary, it just relaxes the exploitation. �7D is
empirically set to N!/2.

FA search process parameter W is set to start at 0.5, but it
is being gradually decreased from its initial value according
to (39).

�e promising approaches for handling equality con-
straints include dynamic, self-adaptive tolerance adjustment
[59]. When this tolerance is included, the exploration is
enhanced by exploring a larger space.

In modi	ed FA implementation, besides the adoption
of arrangement algorithm we used (4) and violation limit� for handling constraints. Good experimental results are
obtained by starting with a relatively large � value, which
is gradually decreasing through the algorithm’s iterations.
It is very important to chose the right value for �. If the
chosen value is too small, the algorithmmay not 	nd feasible
solutions, and otherwise the results may be far from the
feasible region [14].

We used the following dynamic settings for the �:
] (V + 1) = ] (V)_G3 , (43)

where V is the current generation and _G3 is a value slightly
larger than 1. For handling equality constraints, we set initial
value for � to 1.0, _G3 to 1.001 and the threshold for � to 0.0001
like in [3].

For generating heuristics e�cient frontier, we used u = 51
di�erent" values.�us, we setΔ" to 0.02 because" in the 	rst
algorithm’s run is 0 and in the last is 1.

We also set number of assets that will be included in
portfolio J to 10, lower asset’s weight K to 0.01, and upper
asset’s weight L to 1.

Since the entropy lower bound depends on the number of
assets that will be included in portfolio, we set C� in the range
of [0, ln 10].

We present again short modi	ed FA pseudocode as Algo-
rithm 4, but this time with the emphasis on the parameter
settings.

For making better distinction between parameters, we
divided algorithm parameters into four groups: modi	ed FA
global control parameters, FA search parameters, portfolio
parameters, and constraint-handling parameters.

Parameters are summarized in Table 1.

5.2. Experimental Results and Comparative Analysis. In this
subsection, we show the results obtained when search-
ing the general e�cient frontier that provides the solu-
tion for the problem formulated in (21)–(25). �e test
data were downloaded from http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/portinfo.html.
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Table 1: Parameters.

Parameter Value

Modi	ed FA global control parameters

Number of
	re
ies-solutions (SN)

Depends on!
Number of iterations (IN) Depends on SN

Abandonment threshold
(AT)

Depends on SN and IN

Exploration breakpoint
(EBP)

Depends on IN

FA search parameters

Initial value for
randomization parameter W 0.5

Attractiveness at Q = 0, S0 0.2

Absorption coe�cient R 1.0

Portfolio parameters

Number of potential
securities (!)

Depends on the problem

Number of assets in
portfolio (J) 10

Initial value of risk aversion
(") 0

Di�erent " values (u) 51

Lower asset’s weight (K) 0.01

Upper asset’s weight (L) 1.0

Lower bound of entropy
(C�) [0, lnJ]

Constraint-handling parameters

Initial violation tolerance
(�) 1.0

Decrement (dec) 1.002

Benchmark data refers to the weekly stock prices from
March 1992 to September 1997 for the indexes: theHongKong
Hang Seng with 31 assets, the German Dax 100 with 85 assets,
the British FTSE 100 with 89 assets, the US S&P 100 with 98
assets, and the Japanese Nikkei with 225 assets.

We adapted test data and stored it in Excel spreadsheets.
For all indexes, we used the following data: mean return,
standard deviation of return for each asset, and correlation
for each possible pair of assets. Also, for generating standard
e�ciency frontier, we used mean return and variance of
return for each security.

Since �!, 6n!, and lm parameters depend on the
problem size ! (number of securities in the test), we show
exact values used for all indexes (tests) in Table 2. Formula
results are rounded to the closest integer values.

Lower bound for entropy for all benchmarks set is in the
range between 0 and ln 10, because J is set to 10 for all test
cases.

We conducted tests on Intel CoreTM i7-4770K processor
@4GHz with 16GB of RAM memory, Windows 7 x64
Ultimate 64 operating system and Visual Studio 2012 with
NET 4.5 Framework.

Table 2: Benchmark speci	c parameters.

Parameter Value

Hang Seng index with 31 assets

Number of 	re
ies-solutions (SN) 111

Number of iterations (IN) 279

Abandonment threshold (AT) 3

Exploration breakpoint (EBP) 140

DAX 100 index with 85 assets

Number of 	re
ies-solutions (SN) 185

Number of iterations (IN) 459

Abandonment threshold (AT) 3

Exploration breakpoint (EBP) 230

FTSE 100 index with 89 assets

Number of 	re
ies-solutions (SN) 189

Number of iterations (IN) 479

Abandonment threshold (AT) 3

Exploration breakpoint (EBP) 240

S&P 100 index with 98 assets

Number of 	re
ies-solutions (SN) 198

Number of iterations (IN) 494

Abandonment threshold (AT) 3

Exploration breakpoint (EBP) 247

Nikkei index with 225 assets

Number of 	re
ies-solutions (SN) 300

Number of iterations (IN) 750

Abandonment threshold (AT) 3

Exploration breakpoint (EBP) 375

When sets of Pareto optimal portfolios obtained with
modi	ed FA are taken, heuristic e�cient frontier can be
traced. In this paper, we compare the standard e�cient
frontiers for 	ve real-world benchmark sets mentioned above
with the heuristic e�cient frontier for the same data set. For
comparison of standard and heuristic e�ciency frontier, we
use mean Euclidean distance, variance of return error, and
mean return error as in [1]. We also give the execution time
of modi	ed FA for each benchmark on our computer system
platform.

For calculation purposes of mean Euclidean distance,
let the pair (V	� , Q	� ) = (� = 1, 2, 3, . . . , 2000) denote the
variance andmean return of the point in the standard e�cient

frontier, and the pair (Vℎ� , Qℎ� ) = (� = 1, 2, 3, . . . , u) represents
the variance and mean return of the point in the heuristic
e�cient frontier. �en, the index �� of the closest standard
e�ciency frontier point to the heuristic e�ciency frontier
point, denoted as (V	�,�, Q	�,�), is calculated using Euclidean

distance by

�� = arg min
�=1,2,...,2000

(√(V	� − V
ℎ
�)2 + (Q	� − Qℎ� )2)
� = 1, 2, 3, . . . , u.

(44)
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Using (44), mean Euclidean distance is de	ned as

∑��=1√(V	�,� − V
ℎ
�)2 + (Q	�,� − Qℎ� )2u . (45)

In addition to mean Euclidean distance, we used two
other measures to test modi	ed FA, variance of return error
and mean return error.

Variance of return error is de	ned as

( �∑
�=1

PPPPPV	�,� − V
ℎ
�
PPPPP

V
ℎ
�

) 1u . (46)

Mean return error is calculated as

( �∑
�=1

PPPPPQ	�,� − Qℎ� PPPPPQℎ� ) 1u . (47)

For testing purposes, we conducted three experiments.
In the 	rst experiment, we compared mFA with the original
FA for CCMV problem with entropy constraint. Second
experiment refers to comparative analysis between mFA
for CCMV problem with and without entropy constraint.
Finally, in the third experiment, we perform comparative
analysis between our modi	ed mFA and other state-of-the-
art metaheuristics. We compared our proposed algorithm to
Cura’s PSO [1] and also to GA, TS, and SA, indirectly from
[23].

We 	rst wanted to analyze how our mFA compares to
the original FA when optimizing CCMV portfolio model
with entropy constraint. �us, we also implemented orig-
inal FA for this purpose. We compared mean Euclidean
distance, variance of return error, and mean return error.
�ese performance indicators were described above. We also
calculated computational time for both algorithms.�is time
is comparable since the same computer platformwas used for
testing both original FA and mFA.�is comparison is shown
in Table 3. For better distinction between indicator values, we
marked better results in bold.

As can be seen fromTable 3,mFAobtains better results for
almost all benchmarks. Only for variance of return error and
mean return error indicators for�m��100 index test, original
FA managed to achieve better values. For this benchmark,
exploration in early iterations is unnecessary because the
algorithm quickly converges to the right part of the search
space, and the 	re
y agents are being wasted on exploration.

All three indicators, mean Euclidean distance, variance
of return error, and mean return error, are signi	cantly
better for mFA tests for yz~��G~�, DAX100, S&P100, and!�kkG� indexes. SincemFAutilizes exploration at early cycles,
computation time for all tests is worse (higher) than for the
original FA implementation.

In the second experiment, we compared our mFA for
CCMVproblemwith andwithout entropy constraint to show
how the entropy constraint in
uences the results. CCMV
formulation without entropy constraint is de	ned in (21)–
(24).

According to the results presented in Table 4, it is clear
that the entropy constraint slightly e�ects the portfolio’s
performance. In the CCMV optimization with entropy con-
straint, for yz~��G~� and S&P tests, mean Euclidean dis-
tance is slightly better, so the portfolio is better diversi	ed. For
other three tests, the results obtained for this indicator are the
same. Also, for yz~��G~�, DAX100, �m��100, and S&P100
indexes, optimization of the model with entropy gains better
variance of return error and mean return error values. Only
for!�kkG� tests, those indicators have better value for CCMV
model optimization without entropy constraint. Since the
algorithm takes extra time to calculate the entropy constraint,
execution time for CCMV with entropy is higher for all tests
except yz~��G~� because this benchmark incorporates less
securities than the other benchmarks.

�e implementation of metaheuristics for CCMV port-
folio model with entropy constrained could not be found in
the literature. �us, in the third experiment, we compared
our mFA approach with metaheuristics for CCMV portfolio
formulation which did not employ entropy. �is model is
de	ned by (21)–(24). We note that this test is not objective
indicator of mFA’s e�ectiveness compared to the other algo-
rithms.

We compared mFA with tabu search (TS), genetic algo-
rithm (GA), simulated annealing (SA), from [23], and PSO
from [1] for the same set of benchmark data. As in the
	rst two experiments, for performance indicators, we used
mean Euclidean distance, variance of return error, and mean
return error. Parameter settings for our mFA are given in
Tables 1 and 2 and are comparable to parameters for other
four compared algorithms that can be found in [1, 23]. We
also give computational time for mFA, but those results are
incomparable with results for other metaheuristics because
we used di�erent computer platform and portfolio model. In
experiments in [1], PentiumM 2.13GHz computer with 1 GB
RAM was used. In the results table, best obtained results of
all 	ve heuristics are printed bold.

Other metaheuristic implementations for CCMV port-
folio problem, such as modi	ed ABC [29] and hybrid ABC
(HABC) [41] that have similar performance, can be found in
the literature.

If we consider that the optimization of CCMV with
entropy constraint obtains only slightly better results than
optimization of CCMVmodel without entropy in Table 4, the
experimental results in Table 5 could be used for comparison
of the performance ofmFAwith othermetaheuristics in some
sense.

�e experimental results presented in Table 5 prove that
none of the four algorithms which we used for comparisons
has distinct advantages but that on average, mFA is better
approach than other four metaheuristics.

mFA obtains better (smaller) mean Euclidean distance
for all 	ve benchmark sets. In yz~��G~� and �m��100
benchmarks, mFA is better than all four algorithms for all
three indicators, mean Euclidean distance, variance of return
error, and mean return error. For those benchmarks, mFA
was able to approximate the standard e�cient frontier with
the smallest mean return and variance of return error, and
under the same risk values.
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Table 3: Experimental results of FA and mFA for CCMVmodel.

Index ! Performance indicators FA mFA

Hang Seng 31

Mean Euclidean distance 0.0006 0.0003

Variance of return error (%) 1.7092 1.2387

Mean return error (%) 0.7172 0.4715

Execution time 18 20

DAX 100 85

Mean Euclidean distance 0.0032 0.0009

Variance of return error (%) 7.3892 7.2569

Mean return error (%) 1.4052 1.3786

Execution time 67 71

FTSE 100 89

Mean Euclidean distance 0.0005 0.0004

Variance of return error (%) 2.6391 2.7085

Mean return error (%) 0.3025 0.3121

Execution time 81 94

S&P 100 98

Mean Euclidean distance 0.0011 0.0003

Variance of return error (%) 3.9829 3.6026

Mean return error (%) 1.0025 0.8993

Execution time 129 148

Nikkei 225

Mean Euclidean distance 0.0001 0.0000

Variance of return error (%) 1.7834 1.2015

Mean return error (%) 0.7283 0.4892

Execution time 335 367

Table 4: Experimental results of mFA for CCMVmodel with and without entropy constraint.

Index ! Performance indicators mFA for CCMV mFA for CCMV with entropy

Hang Seng 31

Mean Euclidean distance 0.0004 0.0003

Variance of return error (%) 1.2452 1.2387

Mean return error (%) 0.4897 0.4715

Execution time 20 20

DAX 100 85

Mean Euclidean distance 0.0009 0.0009

Variance of return error (%) 7.2708 7.2569

Mean return error (%) 1.3801 1.3786

Execution time 70 71

FTSE 100 89

Mean Euclidean distance 0.0004 0.0004

Variance of return error (%) 2.7236 2.7085

Mean return error (%) 0.3126 0.3121

Execution time 92 94

S&P 100 98

Mean Euclidean distance 0.0004 0.0003

Variance of return error (%) 3.6135 3.6026

Mean return error (%) 0.8997 0.8993

Execution time 146 148

Nikkei 225

Mean Euclidean distance 0.0000 0.0000

Variance of return error (%) 1.1927 1.2015

Mean return error (%) 0.464 0.4892

Execution time 360 367

Second best algorithm shown in Table 5 is GA which
obtains best mean return error and variance of return error
in DAX100 and S&P100 tests, respectively. TS shows best
performance for mean return error indicator in S&P100
benchmark, SA for mean return error in !�kkG� test, while

PSO proves to be most robust for variance of return error in
DAX100 index.

From the presented analysis it can be concluded that our
approach obtained results for CCMV portfolio optimization
problem that can be more valuable for the investors: mFA’s
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Table 5: Experimental results for 	ve metaheuristics.

Index ! Performance indicators GA TS SA PSO mFA

Hang Seng 31

Mean Euclidean distance 0.0040 0.0040 0.0040 0.0049 0.0003

Variance of return error (%) 1.6441 1.6578 1.6628 2.2421 1.2387

Mean return error (%) 0.6072 0.6107 0.6238 0.7427 0.4715

Execution time 18 9 10 34 20

DAX 100 85

Mean Euclidean distance 0.0076 0.0082 0.0078 0.0090 0.0009

Variance of return error (%) 7.2180 9.0309 8.5485 6.8588 7.2569

Mean return error (%) 1.2791 1.9078 1.2817 1.5885 1.3786

Execution time 99 42 52 179 71

FTSE 100 89

Mean Euclidean distance 0.0020 0.0021 0.0021 0.0022 0.0004

Variance of return error (%) 2.8660 4.0123 3.8205 3.0596 2.7085

Mean return error (%) 0.3277 0.3298 0.3304 0.3640 0.3121

Execution time 106 42 55 190 94

S&P 100 98

Mean Euclidean distance 0.0041 0.0041 0.0041 0.0052 0.0003

Variance of return error (%) 3.4802 5.7139 5.4247 3.9136 3.6026

Mean return error (%) 1.2258 0.7125 0.8416 1.4040 0.8993

Execution time 126 51 66 214 148

Nikkei 225

Mean Euclidean distance 0.0093 0.0010 0.0010 0.0019 0.0000

Variance of return error (%) 1.2056 1.2431 1.2017 2.4274 1.2015

Mean return error (%) 5.3266 0.4207 0.4126 0.7997 0.4892

Execution time 742 234 286 919 367

results are more accurate and the generated investment
strategy is able to more e�ciently diversify the risk of the
portfolio.

6. Conclusions

In this paper we presented modi	ed 	re
y algorithm (mFA)
for cardinality constrained mean-variance portfolio opti-
mization problem with entropy constraint. We adopted from
the ABC algorithm ����V parameter that controls and directs
the exploration process. Original 	re
y algorithm su�ers
from low exploration power at early iterations of algo-
rithm’s execution for this type of problems. By introducing
exploration into this phase of execution, we overcome this
de	ciency. However, during late cycles when the right part
of the search space was reached, the exploration is no longer
needed. To control whether the exploration will be triggered
or not, we introduced exploration breakpoint �7D control
parameter.

Since swarm intelligence implementations for the CCMV
portfolio model with entropy constraint could not be found
in the literature, we conducted three experiments. In the
	rst experiment, to measure the enhancement gained by our
modi	cations, we compared our proposed mFA with the
original FA for CCMV model. Test results show that our
modi	cations completely recti	ed original FA de	ciencies.
To show how the entropy constraint a�ects the CCMV port-
folio model, in the second experiment we compared results
of the mFA for CCMV models with and without entropy
constraints. Test results proved that inclusion of the entropy
constraint is justi	ed since it ensures portfolio diversi	cation
and, consequently, quality of results enhancement. Finally,

to test the performance and robustness of our algorithm,
we compared it with four other state-of-the-art algorithms
from [1] (and indirectly [23]). Our proposed algorithm
proved almost uniformly better compared to genetic algo-
rithm, tabu search, simulated annealing, and particle swarm
optimization. �is all establishes modi	ed 	re
y algorithm
as a usable tool for cardinality constrained mean-variance
portfolio optimization problem with entropy constraint.

Future research may include application of the proposed
mFA to other portfolio optimization models and formula-
tions with di�erent constraints. Also, additional modi	ca-
tions of the FA algorithm can be investigated for possible
further improvement of results.
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