
FIREWALL POLICY ADVISOR FOR

ANOMALY DISCOVERY AND RULE EDITING

Ehab S. Al-Shaer and Hazem H. Hamed
Multimedia Networking Research Laboratory

School of Computer Science, Telecommunications and Information Systems

DePaul University, Chicago, USA

{ehab,hhamed}@cs.depaul.edu

Abstract:

Keywords:

Firewalls are core elements in network security. However, managing firewall rules, es­

pecially for enterprize networks, has become complex and error-prone. Firewall filtering

rules have to be carefully written and organized in order to correctly implement the secu­

rity policy. In addition, inserting or modifying a filtering rule requires thorough analysis

of the relationship between this rule and other rules in order to determine the proper order

of this rule and commit the updates. In this paper, we present a set of techniques and al­
gorithms that provide (1) automatic discovery of firewall policy anomalies to reveal rule
conflicts and potential problems in legacy firewalls, and (2) anomaly-free policy editing

for rule insertion, removal and modification. This is implemented in a user-friendly tool

called "Firewall Policy Advisor." The Firewall Policy Advisor significantly simplifies the

management of any generic firewall policy written as filtering rules, while minimizing

network vulnerability due to firewall rule misconfiguration.

Firewall, security management, security policy, policy conflict.

1. Introduction

With the global Internet connection, network security has gained significant at­

tention in the research and industrial communities. Due to the increasing threat of

network attacks, firewalls have become important integrated elements not only in en­

terprize networks but also in small-size and home networks. Firewalls have been the

frontier defense for secure networks against attacks and unauthorized traffic by filter­

ing out unwanted network traffic coming into or going from the secured network. The

filtering decision is taken according to a set of ordered filtering rules defined based on

predefined security policy requirements [4].

Although deployment of firewall technology is an important step toward securing

our networks, the complexity of managing firewall policy might limit the effective­

ness of firewall security. A firewall policy may include anomalies, where a packet

may match with two or more different filtering rules. When the filtering rules are

defined, serious attention has to be given to rule relations and interactions in order

to determine the proper rule ordering and guarantee correct security policy seman­

tics. As the number of filtering rules increases, the difficulty of writing a new rule or

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35674-7_66

© IFIP International Federation for Information Processing 2003
G. Goldszmidt et al. (eds.), Integrated Network Management VIII

http://dx.doi.org/10.1007/978-0-387-35674-7_66

18 E. AI-Shaer and H. Hamed

that might be written by different administrators in various times. This significantly

increases the potential of anomaly occurrence in the firewall policy, jeopardizing the

security of the protected network.

Therefore, the effectiveness of firewall security is dependent on providing policy

management techniques and tools that enable network administrators to analyze, pu­

rify and verify the correctness of written firewall legacy rules. In this paper, we define

a formal model for firewall rule relations and their filtering representation. The pro­

posed model is simple and visually comprehensible. We use this model to develop an

anomaly discovery algorithm to report any anomaly that may exist among the filtering

rules. We finally develop an anomaly-free firewall rule editor, which greatly sim­

plifies adding, removing and modifying rules into firewall policy. We used the Java

programming language to implement these algorithms in one graphical user-interface

tool called the "Firewall Policy Advisor."

Although firewall security has been given strong attention in the research com­

munity, the emphasis was mostly on the filtering performance and hardware support

issues [5, 8, 10, 11, 17]. On the other hand, few related work [6, 10] present a res­

olution for the correlation conflict problem only. Other approaches [2,9, 12, 14, 18]

propose using a high-level policy language to define and analyze firewall policies and

then map this language to filtering rules. Firewall query-based languages based on

filtering rules are also proposed in [7, 11]. So in general, we consider our work a new

progress in this area because it offers new techniques for complete anomaly discovery

and rule editing that can be applied on legacy firewall policies of low-level filtering
rule representation. .

This paper is organized as follows. In Section 2, we give an introduction to firewall

operation and filtering rule format. In Section 3, we formally define filtering rule

relations, and we present our proposed model of filtering rule relations and the policy

tree representation. In Section 4, we classify and define firewall policy anomalies, and

then we describe the anomaly discovery algorithm and implementation. In Section

5, we present the design and implementation of anomaly-free firewall rule editor. In

Section 6, we give a summary of related work. Finally, in Section 7, we show our

conclusions and our future work plan.

2. Firewall Background

A firewall is a network element that controls the traversal of packets across the

boundaries of a secured network based on a specific security policy. A firewall se­

curity policy is a list of ordered filtering rules that define the actions performed on

matching packets. A rule is composed of filtering fields (also called network fields)

such as protocol type, source IP address, destination IP address, source port and des­

tination port, and an action field. Each network field could be a single value or range

of values. Filtering actions are either to accept, which passes the packet into or from

the secure network, or to detty, which causes the packet to be discarded. The packet is

accepted or denied by a specific rule if the packet header information matches all the

network fields of this rule. Otherwise, the following rule is examined and the process

is repeated until a matching rule is found or the default policy action is performed [3].

In this paper, we assume a "deny" default policy action.

Firewall Policy Advisor 19

order protocol src_ip src_port dst_ip dst_port action

1 : tcp, 140.192.37.20, any, *.*.*.*, 80, deny
2: tcp, 140.192.37.*, any, *.*.*.*, 80, accept
3: tcp, *.*.*.*, any, 161.120.33.40, 80, accept
4: tcp, 140.192.37.*, any, 161.120.33.40, 80, deny
5: tcp, 140.192.37.30, any, *.*.*.*, 21, deny
6: tcp, 140.192.37.*, any, *.*.*.*, 21, accept
7: tcp, 140.192.37.*, any, 161.120.33.40, 21, accept
8: tcp, *.*.*.*, any, *.*.*.*, any, deny
9: udp, 140.192.37.*, any, 161.120.33.40, 53, accept

10: udp, *.*.*.*, any, 161.120.33.40, 53, accept
11: udp, *.*.*.*, any, *.*.*.*, any, deny

Figure 1. A firewall policy example.

Filtering Rule Format It is possible to use any field in IP, UDP or TCP headers in

the rule filtering part, however, practical experience shows that the most commonly

used matching fields are: protocol type, source IP address, source port, destination IP

address and destination port. Some other fields, like TTL and TCP flags, are occasion­

ally used for specific filtering purposes [5]. The following is the common format of

packet filtering rules in a firewall policy:

<order> <protocol><src_ip><src_port><dst_ip><dst_port> <action>

In this paper, we refer to the network fields as the "5-tuple filter." The order of

the rule determines its position relative to other filtering rules. IP addresses can be a

host (e.g. 140.192.37.120), or a network address (e.g. 140.192.37.*). Ports can be

either a single specific port number, or any port number indicated by "any." Some

firewall implementations allow the usage of non-wildcard ranges in specifying source

and destination addresses or ports. However, it is always possible to split a filtering

rule with a multi-value field into several rules each with a single-value field [15]. An

example of typical firewall rules is shown in Figure 1.

3. Firewall Policy Modelling

As a basic requirement for any firewall policy management solution, we first model

the relations between the rules in a firewall policy. Rule relation modelling is neces­

sary for analyzing the firewall policy and designing management techniques such as

anomaly discovery and policy editing. In this section, we formally describe our model

of firewall rule relations.

3.1 Formalization of Firewall Rule Relations

To be able to build a useful model for filtering rules, we need to determine all the

relations that may relate two or more packet filters. In this section we define all the

possible relations that may exist between filtering rules, and we show that there is

no other relation exists. We determine the relations based on comparing the network

fields of filtering rules as follows.

20 E. AI-Shaer and H. Hamed

DEFINITION 1 Rules Rx and Ry are completely disjoint if every field in Rx is not

a subset and not a superset and not equal to the corresponding field in Ry.

Formally, Rx and Ry are completely disjoint iff

Vi: Rx[i] Ry[i]
where IXI E {C,::J, =}, i E {protocol, src_ip, src_port, dst_ip, dst_port}

DEFINITION 2 Rules Rx and Ry are exactly matched if every field in Rx is equal

to the corresponding field in Ry •

Formally, Rx exactly matches Ry iff

Vi : Rx[i] = Ry[i] where i E {protocol, src_ip, src_port, dst_ip, dst_port}

DEFINITION 3 Rules Rx and Ry are inclusively matched if they do not exactly

match and if every field in Rx is a subset or equal to the corresponding field in Ry.
Rx is called the subset match while Ry is called the superset match.

Formally, Rx inclusively matches Ry iff
Vi: Rx[i] Ry[i] and 3j such that: Rx[j] =F Ry[j]
where i, j E {protocol, src_ip, src_port, dst_ip, dst_port}

For example, rule 1 inclusively matches rule 2 in Figure 1. Rule 1 is the subset

match of the relation while rule 2 is the superset match.

DEFINITION 4 Rules Rx and Ry are partially disjoint (or partially matched) if
there is at least one field in Rx that is a subset or a superset or equal to the corre­

sponding field in Ry, and there is at least one field in Rx that is not a subset and not

a superset and not equal to the corresponding field in Ry.

Formally, Rx and Ry are partially disjoint (or partially matched) iff

3i,j such that Rx[i]1XI Ry[i] and Rx[j] Ry[j] and i =F j
where IXI E {c,::J, =}, i, j E {protocol, src_ip, src_port, dst_ip, dst_port}

For example, rule 2 and rule 6 in Figure 1 are partially disjoint (or partially matched).

DEFINITION 5 Rules Rx and Ry are correlated ifsomefields in Rx are subsets or

equal to the corresponding fields in Ry, and the rest of the fields in Rx are supersets

of the corresponding fields in Ry •

Formally, Rx and Ry are correlated iff

Vi : Rx [i]1XI Ry [i] and

3i,j such that: Rx[i] C Ry[i] and Rx[j] ::J Ry[j] and i =F j
where IXI E {C,::J, =}, i, j E {protocol, src_ip, src_port, dst_ip, dst_port}

For example, rule 1 and rule 3 in Figure 1 are correlated.

Firewall Policy Advisor

6. ShadowIng

o Redundancy

o Correlation

o Generalization

deny deny

r--.Ji--' r-rub--i
L® __ ,@L\!)_J

accept deny

r-Nil-icq rJ-i1-'
L ____ J

Figure 2. The policy tree for the firewall policy in Figure I.

21

The following theorems show that these relations are distinct, i.e. only one relation

can relate Rx and Ry, and complete, i.e. there is no other relation between Rx and Ry
could exist. A complete proof of the theorems is presented in [1].

THEOREM 1 The relations defined above are distinct; i.e. any two k-tuplefilters in

a firewall policy are related by only one of the defined relations.

THEOREM 2 The union of these relations represents the universal set of relations

between any two k-tuple filters in a firewall policy.

3.2 Firewall Policy Representation

We represent the firewall policy by a single rooted tree that we name the policy tree.

The tree model provides a simple and apprehensible representation of the filtering

rules and at the same time allows for easy discovery of relations and anomalies among

the rules. Each node in a policy tree represents a field of the filtering rule, and each

branch at this node represents a possible value of the associated field. The root node

of the policy tree represents the protocol field, and the leaf nodes represent the action

field, intermediate nodes represent other 5-tuple filter fields in order. Every tree path

starting at the root and ending at a leaf represents a rule in the policy and vice versa.

Rules that have the same field value at a specific node, will share the same branch

representing that value.

22 E. Al-Shaer and H. Hamed

Figure 2 illustrates the policy tree model of the security policy in Figure 1. Notice

that every rule should have an action leaf in the tree. The dotted box below each

leaf indicates the rule represented by that branch in addition to other rules that are

in anomaly with it as described in the following section. The tree shows that rules 1

and 5 each has a separate source address branch as they have different field values,

whereas rules 2, 4, 6 and 7 share the same source address branch as they all have the

same field value. Also notice that rule 8 has a separate branch and also appears on

other rule branches of which it is a superset, while rule 4 has a separate branch and

also appears on other rule branches of which it is a subset.

The basic idea for building the policy tree is to insert the filtering rule in the correct

tree path. When a rule field is inserted at any tree node, the rule branch is determined

based on matching the field value with the existing branches. If a branch exactly

matches the field value, the rule is inserted in this branch, otherwise a new branch

is created. The rule also propagates in superset or superset branches to preserve the

relations between the policy rules.

4. Firewall Policy Anomaly Discovery

The ordering of filtering rules in a firewall policy is very crucial in determining the

security policy because the firewall packet filtering process is performed by sequen­

tially matching the packet against filtering rules until a match is found. If filtering rules

are completely disjoint, the ordering of the rules is insignificant. However, it is very

common to have filtering rules that are inter-related. In this case, if the relative rule

ordering is not carefully assigned, some rules may be always screened by other rules

producing an incorrect security policy. Moreover, when a security policy contains a

large number of filtering rules, the possibility of writing conflicting or redundant rules

is relatively high. A firewall policy anomaly is defined as the existence of two or more

different filtering rules that match the same packet. In this section, we classify differ­

ent anomalies that may exist among filtering rules and then describe a technique for

discovering these anomalies.

4.1 Firewall Policy Anomaly Classification

Here, we describe and then define a number of possible firewall policy anoma­

lies. These include errors for definite conflicts that cause some rules to be always

suppressed by other rules, or warnings for potential conflicts that may be implied in

related rules.

1. Shadowing anomaly A rule is shadowed when a previous rule matches all the

packets that match this rule, such that the shadowed rule will never be activated.

Rule Ry is shadowed by rule Rx if Ry follows Rx in the order, and Ry is a

subset match of Rx, and the actions of Rx and Ry are different. As illustrated

in the rules in Figure 1, rule 4 is a subset match of rule 3 with a different action.

We say that rule 4 is shadowed by rule 3 as rule 4 will never get activated.

Shadowing is a critical error in the policy, as the shadowed rule never takes

effect. This might cause a permitted traffic to be blocked and vice versa. It

is important to discover shadowed rules and alert the administrator who might

correct this error by reordering or removing the shadowed rule.

Firewall Policy Advisor 23

2. Correlation anomaly Two rules are correlated if the first rule in order matches

some packets that match the second rule and the second rule matches some pack­

ets that match the first rule. Rule Rx and rule Ry have a correlation anomaly if

Rx and Ry are correlated, and the actions of Rx and Ry are different. As illus­

trated in the rules in Figure 1, rule 1 is in correlation with rule 3; if the order of

the two rules is reversed, the effect of the resulting policy will be different.

Correlation is considered an anomaly warning because the correlated rules im­

ply an action that is not explicitly handled by the filtering rules. Consider rules

1 and 3 in Figure 1. The two rules with this ordering imply that all HTfP traf­

fic coming from address 140.192.37.20 and going to address 161.120.33.40 is

denied. However, if their order is reversed, the same traffic will be accepted.

Therefore, in order to resolve this conflict, we point out the correlation between

the rules and prompt the user to choose the proper order that complies with the

security policy requirements.

3. Generalization anomaly A rule is a generalization of another rule if this gen­

eral rule can match all the packets that match a specific rule that precedes it.

Rule Ry is a generalization of rule Rx if Ry follows Rx in the order, and Ry is

a superset match of Rx, and the actions of Ry and Rx are different. As illus­
trated in the rules in Figure 1, rule 2 is a generalization of rule 1; if the order of

the two rules is reversed, the effect of the resulting policy will be changed, and

rule 1 will not be effective anymore, as it will be shadowed by rule 2. Therefore,

as a general guideline, if there is an inclusive match relationship between two

rules, the superset (or general) rule should come after the subset (or specific)

rule.

Generalization is considered only an anomaly warning because the specific rule

makes an exception of the general rule, and thus it is important to highlight its

action to the administrator for confirmation.

4. Redundancy anomaly A redundant rule performs the same action on the same

packets as another rule such that if the redundant rule is removed, the security

policy will not be affected. Rule Ry is redundant to rule Rx if Rx precedes Ry
in the order, and Ry is a subset or exact match of Rx, and the actions of Rx and

Ry are similar. If Rx precedes Ry in the order, and Rx is a subset match of Ry,
and the actions of Rx and Ry are similar, then Rule Rx is redundant to rule Ry

provided that Rx is not involved in any generalization or correlation anomalies

with other rules preceding Ry. As illustrated in the rules in Figure 1, rule 7 is

redundant to rule 6, and rule 9 is redundant to rule 10, so if rule 7 and rule 9 are

removed, the effect of the resulting policy will not be changed.

Redundancy is considered an error. A redundant rule may not contribute in

making the filtering decision, however, it adds to the size of the filtering rule

table, and might increase the search time and space requirements. It is important

to discover redundant rules so that the administrator may modify its filtering
action or remove it altogether.

24 E. Al-Shaer and H. Hamed

Figure 3. State diagram for detecting anomalies for rules R", and Ely. Ely comes after Rz.

4.2 Anomaly Discovery Algorithm

The state diagram shown in Figure 3 summarizes anomaly discovery for any two

rules, R:c and Ry where Ry comes after Rx in the order. For simplicity, the source

address and source port and integrated into one field, and the same with the destination

address and port. This simplification reduces the number of states and simplifies the

explanation of the diagram. A similar state diagram can be produced for the real case

of five fields with a substantially larger number of states involved.

Initially no relationship is assumed. Each field in Ry is compared to the corre­

sponding field in Rx starting with the protocol then source address and port, and

finally destination address and port. The relationship between the two rules is de­

termined based on the result of subsequent comparisons. If every field of Ry is a

subset or equal to the corresponding field in Rx and both rules have the same action,

Ry is redundant to Rx, while if the actions are different, Ry is shadowed by Rx. If

every field of Ry is a superset or equal to the corresponding field in Rx and both rules

have the same action, Rx is potentially redundant to Ry, while if the actions are dif­

ferent, Ry is a generalization of Rx. If some fields of Rx are subsets or equal to the

corresponding fields in R y , and some fields of Rx are supersets to the corresponding

fields in Ry, and their actions are different, then Rx is in correlation with Ry. If none

of the preceding cases occur, the two rules do not involve any anomalies.

The basic idea for discovering anomalies is by determining if two rules coincide

in their policy tree paths. If the tree path of a rule coincides with the tree path of

another rule, there is a potential anomaly that can be determined based on the previous

definitions of anomalies. If rule paths do not coincide, these rules are disjoint and

they have no anomalies. The algorithm for building the policy tree and determining

the anomalies among the filtering rules is shown in Figures 4 and 5. The algorithm
is divided into two main parts: an anomaly discovery routine, DiscoverAnomaly,

which represents the transition states in the state diagram, and an anomaly decision

routine, DecideAnomaly, which represents the termination states.

Firewall Policy Advisor

function DiscoverAnomaly(rule, field, node, anomaly_state)

if field = ACTION then
value_found = FALSE
for each branch in node. branch_list do

if branch. value = rule.field.value then

value_found = TRUE
if anomaly_state = NOANOMALY then anomaly_state = REDUNDANT
DiscoverAnomaly(rule, field.next, branch. node , anomaly_state)

else if rule.field.value is superset of branch. value then
if anomaly_state = GENERALIZATION then

DiscoverAnomaly(rule, field.next, branch. node , CORRELATION)
else

DiscoverAnomaly(rule, field.next, branch. node , SHADOWING)
else if rule.field.value is subset of branch. value then

if anomaly_state = SHADOWING then
DiscoverAnomaly(rule, field. next , branch. node , CORRELATION)

else
DiscoverAnomaly(rule, field.next, branch. node , GENERALIZATION)

end if
end for
if value_found = FALSE then

new_branch = new TreeBranch(rule, rule. field, rule. field. value)
node. branch_list. add (new_branch)
DiscoverAnomaly(rule, field. next , new_branch. node , NOANOMALY)

end if
else 1* action field reached *1

call DecideAnomaly(rule, field, node, anomaly_state)
end if

end function

Figure 4. Algorithm for building the policy tree with anomaly discovery.

25

In the discovery routine, the previous anomaly state is checked if there is a value

match between the field of the new rule and the already existing field branch. The
next anomaly state is determined based on the shown state diagram and the algorithm

is executed recursively to let the rule propagate in existing branches and check the

remaining fields. As the rule propagates, the anomaly state is updated until the final

state is reached. If there is no exact match for the value of a field, a new branch

is created at the current node to represent the inserted field value, and the anomaly

state is initialized to no anomaly. The decision routine is activated once all the rule

fields have been inserted in the tree and the action field is reached. If the rule action

coincides with the action of another rule, an anomaly is discovered. At that point

the final anomaly state is determined and reported. If an anomaly is discovered and

decided, the user is reported with the type of anomaly and the rules involved.

Applying the algorithm on the rules in Figure 1, the discovered anomalies are

marked in the dotted boxes at the bottom of the policy tree in Figure 2. Shadowed

rules are marked with a triangle, redundant rules with a square, correlated rules with a

pentagon and generalization rules with a circle.

Figure 6 shows the graphical user interface for the Firewall Policy Advisor. The
bottom panel shows a tabular list of filtering rules. The top-left panel displays the
policy tree showing aggregated rules. The top-right panel displays the anomalies dis­

covered along with highlighting redundant and shadowed rules in a different color.

26 E. At-Shaer and H. Hamed

function DecideAnomaly(rule, field, node, anomaly)
if node has branch_list then

branch = node.branch_list.first()
if anomaly = CORRELATION then

if not rule.action = branch . value then
branch.rule.anomaly = CORRELATION
report rule rule . id is in correlation with rule branch .rule.id

else anomaly = NONE
else if anomaly = GENERALIZATION and not rule.action = branch. value then

branch.rule . anomaly = SPECIALIZATION
report rule rule . id is a generalization of rule branch.rule.id

else if anomaly = GENERALIZATION and rule.action = branch. value then
if branch. rule. anomaly = NONE then

anomaly = NONE; branch.rule.anomaly = REDUNDANCY
report rule branch.rule . id is redundant to rule rule.id

end if
else if rule .action = branch . value then

anomaly REDUNDANCY
report rule rule.id is redundant to rule branch.rule.id

else if not rule . action = branch . value then
anomaly = SHADOWING
report rule rule.id is shadowed by rule branch.rule.id

end if
end if
rule. anomaly = anomaly

end function

Figure 5. Algorithm for making the anomaly decision.

Rules Tr1!8 """'=,.,.-. r---.,-""

ptlep
::J sa 140 192 37,20132

I EI 50140.192.37.018

1 I ' :J 5p 0

1
daO.OOOlO

I I dp80
1 t • 2: om pi

I -. 4: derry

I, II I a

I 8: ."apl

1 I 1- • 7: ."apl

II d: 1 40132

o $' 0,0,0,010
W sa 140.192,37,30132

L pi udp

Rules USI

Rule Protocol Sourc91P

1 19! 140.192.37.20132
2-- tco 140.192,37.018

3 lCP 0,0,0,010

4 tcp: 40.192 7.1lA!

5 leo 140.192.37.30132

6 lcp 140,192,37,018

7 leD- 140. 92. 7.018

8 leo 00.0,010

9 UdD 140',19'2',37.018

1 10 udD 0,0,0,0/0

0
0
0
0
0
0

0
0
0

rule 2 is III. Qener:aUz.ation ot rule 1

rule 3 I, in cottelat10n with rule 1

Ewe 4 1, ,hodoved by rule 2

[ule 4 13 sbadowed by rule 3

x:ule: 6 1, a qe:ne:r:aUtat1on or tule: 5

rule 7 is tedWldant. to rule 6

rule 7 is in cOJ:r:elat1on vith rule 5

rule: 8 1s III. oe:ne:taU:at1on or z:u.le Z

rule 8 Is a genet:al1z:at.1on ot rule 6

rule 8 1, a O'enetaUzat,lon oc tule 7

tule: 8 1, Ito qe.nual1z:et1on ot rUle 3

rule 9 1s tedundant co rule 10

ru.le: 11 1, a l1enetal1:e.c,1on ot rule: 9

rule 11 1, a qmez:e.11z:ation tu1e 10

Showdelalls

- ---
Oeslln IP DasHn Port AeUon

0.0.0,010 80 derry
0,0,0,010 80 oceepl

161.120.33.40132 80 .ccept

6112033.41lr. 80 deny

0,0,0.010 21 deny

0,0.0.010 21 ace.ol

'te ' a 3.41lr. 21 acc,ol

0.0,0,010 0 darry

161.120.3:3.40132 53 lace.Pl

J I61.120.33.40132 53 .cc.pt

Figure 6. Policy Advisor anomaly discovery user interface.

&

9

Firewall Policy Advisor 21

5. Firewall Policy Editor

Firewall policies are often written by different network administrators and occa­

sionally updated (by inserting, modifying or removing rules) to accommodate new

security requirements and network topology changes. Editing a security policy can

be far more difficult than creating a new one. As rules in firewall policy are ordered,

a new rule must be inserted in a particular order to avoid creating anomalies. The

same applies if any network field in a rule is modified. In this section, we present a

policy editor tool that simplifies the rule editing task significantly, and avoids intro­

ducing anomalies due to policy updates. The policy editor (1) prompts the user with

the proper position(s) for a new or modified rule, (2) shows the changes in the security

policy semantic before and after removing a rule, and (3) provides visual aids for users

to track and verify policy changes. Using the policy editor, administrators require no

prior knowledge or understating of the firewall policy in order to insert, modify or

remove a rule.

5.1 Rule Insertion

Since the ordering of rules in the filtering rule list directly impacts the semantics

of the firewall security policy, a new rule must be inserted in the proper order in the

policy such that no shadowing or redundancy is created. The policy editor helps the

user to determine the correct position(s) of the new rule to be inserted. It also identifies

anomalies that may occur due to improper insertion of the new rule.

The general idea is that the order of a new rule is determined based on its relation

with other existing rules in the firewall policy. In general, a new rule should be inserted

before any rule that is its superset match, and after any rule that is its subset match.

The policy tree is used to keep track of the correct order of the new rule, and discover

any potential anomalies. The algorithm implementing the mechanism to insert a new

rule is fully described in [I].

The algorithm is organized into two phases: the browsing phase and the insertion

phase. In the browsing phase, the fields of the new rule are compared with the corre­

sponding tree branch values one at a time. If the field value of the new rule is a subset

of an existing branch, then the new rule must be inserted before the minimum order of

all the rules in this branch. If the field value is a superset of an existing branch, the rule

must be inserted after the maximum order of all the rules in this branch. In addition, if

the field value is an exact match or a subset match of a branch, evaluating the next field

continues recursively by browsing through the branch sub-tree until correct position

of the rule within the sub-tree is determined. Otherwise, if disjoint or superset match

occurs, a branch is created for the new rule.

The algorithm enters into the insertion phase when the action field of a new rule

is to be inserted. If an action branch is created for the new rule, then the rule will be

inserted and assigned the order determined in the browsing phase. If there is more than

one possible order for this rule, the user is asked to select an order from within a valid

range of orders as determined in the browsing phase. However, if the order state of the

new rule remains undetermined then policy editor rejects this new rule and prompts

the user with the appropriate message. If the rule is inserted, the anomaly discovery

algorithm is invoked to alert the administrators with any generalization or correlation

cases as a possible source of anomalies in the firewall policy.

28 E. A/-Shaer and H. Hamed

ro .

Soutte IP Source Pot! 08911n IP

CP 0.0.0.010[.. _ . oj 161.120.33.50132

Ano"ely wexninq 1:

The new rule 1:!1 in C'ou::elat1on tdtb t"ule 1. The .fOllowing rule is i.plied:

tcp, 140.192 . 37.20132, 0, 161.120. 33.S0132, eo, deny

Figure 7. Rule editor user interface.

5.2 Rule Removal and Modification

In gener?l, removing a rule has much less impact on the firewall policy than inser­

tion. A removed rule does not introduce an anomaly but it might change the policy

semantics and this change should be highlighted and confirmed. To remove a rule, the

user enters the rule number to retrieve the rule from the rule list and selects to remove

it. To preview the effect of rule removal, the policy editor gives a textual translation of

the affected portion of the policy before and after the rule is removed. The user is able

to compare and inspect the policy semantics before and after removal, and re-assure

correctness of the policy changes. Modifying a rule in a firewall policy is also a criti­

cal operation. However, this editing action can be easily managed as rule removal and

insertion as described before.

Figure 7 shows the graphical user interface for the rule editor tool. The figure shows

the final step in inserting a rule in the filtering rule table. The tool alerts the user for

any anomalies that may be introduced by inserting the new rule.

6. Related Work

A significant amount of work has been reported in the area of firewall and policy­

based security management. In this section, we focus our study on related work that

intersects with our work in three areas: packet filter modelling, conflict discovery and

rule analysis.

Several models have been proposed for filtering rules. Ordered binary decision

diagram is used as a model for optimizing packet classification in [11]. Another model

using tuple space is developed in [16], which combines a set of filters in one tuple and

stored in a hash table. The model in [17] uses bucket filters indexed by search trees.

Multi-dimensional binary tries are also used to model filters [15]. In [6] a geometric

model is used to represent 2-tuple filtering rules. Because these models were designed

particularly to optimize packet classification in high-speed networks, we found them

too complex to use for firewall policy analysis. We can confirm from experience that

the tree-based model is simple and powerful enough for this purpose.

Firewall Policy Advisor 29

Research in policy conflict analysis has been actively growing for many years.

However, most of the work in this area addresses general management policies rather

than firewall-specific policies. For example, authors in [13] classify possible policy

conflicts in role-based management frameworks, and develop techniques to discover

them. A policy conflict scheme for IPSec is presented in [8]. Although this work is

very useful as a general background, it is not directly applicable in firewall anomaly

discovery. On the other hand, few research projects address the conflict problem in

filtering rules. Both [6] and [10] provide algorithms for detecting and resolving con­

flicts among general packet filters. However, they only detect what we defined as

correlation anomaly because it causes ambiguity in packet classifiers. In conclusion,

we could not find any published research work that uses low-level filtering rules to

perform a complete anomaly analysis and guided editing of firewall policies.

7. Conclusions and Future Work

Firewall security, like any other technology, requires proper management to pro­

vide the proper security service. Thus, just having a firewall on the boundary of a

network may not necessarily make the network any secure. One reason of this is the

complexity of managing firewall rules and the potential network vulnerability due to

rule conflicts. The Firewall Policy Advisor presented in this paper provides a number

of user-friendly tools for purifying and protecting the firewall policy from anomalies.
The administrator can use the firewall policy advisor to manage a general firewall

security policy without prior analysis of filtering rules. In this work, we formally de­

fined all possible firewall rule relations and we used this to classify firewall policy

anomalies. We then model the firewall rule information and relations in a tree-based

representation. Based on this model and formalization, the firewall policy advisor

implements two management tools:

• Policy Anomaly Detector for identifying conflicting, shadowing, correlated

and redundant rules. When a rule anomaly is detected, users are prompted with

proper corrective actions. We intentionally made the tool not to automatically

correct the discovered anomaly but rather alarm the user because we believe that

the administrator is the one who should do the policy changes.

• Policy Editor for facilitating rules insertion, modification and deletion. The

policy editor automatically determines the proper order for any inserted or mod­

ified rule. It also gives a preview of the changed parts of the policy whenever a

rule is removed to show the affect on the policy before and after the removal.

The firewall policy advisor is shown to be very useful and effective when used on

real firewall rules in different academic and industrial environments [1]. However, we

believe that there is more to do in firewall policy management area. Our future re­

search plan includes extending the proposed techniques to handle distributed firewall

policies with centralized or distributed repositories, classifying different semantics in

firewall policies and extracting them from the filtering rules, translating low-level fil­

tering rules into high-level textual description, providing a query-based policy analysis

algorithms to enhance our visualization of the underlying firewall security policy.

30 E. Al-Shaer and H. Hamed

Acknowledgments

We gratefully thank Iyad Kanj for his feedback on the theory work in this paper.
We would also like to thank Lopamudra Roychoudhuri and Yongning Tang for their
useful comments on an earlier version of this paper.

References
[1] E. Al-Shaer and H. Hamed. "Design and Implementation of Firewall Policy Advisor Tools." Tech­

nical Report CTI-techrep080l, School of Computer Science Telecommunications and Information
Systems, DePaul University, August 2002.

[2] Y. Bartal., A. Mayer, K. Nissim and A. Wool. "Firmato: A Novel Firewall Management Toolkit."
Proceedings of 1999 IEEE Symposium on Security and Privacy, May 1999.

[3] D. Chapman and E. Zwicky. Building Internet Firewalls, Second Edition, Orielly & Associates Inc.,
2000.

[4] W. Cheswick and S. Belovin. Firewalls and Internet Security, Addison-Wesley, 1995.

[5] S. Cobb. "ICSA Firewall Policy Guide v2.0." NCSA Security White Paper Series, 1997.

[6] D. Eppstein and S. Muthukrishnan. "Internet Packet Filter Management and Rectangle Geometry."
Proceedings of 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Jannary 2001.

[7] p. Bronen and J. Zitting. "An Expert System for Analyzing Firewall Rules." Proceedings of 6th
Nordic Workshop on Secure IT-Systems (NordSec Z001), November 2001.

[8] Z. Fu, F. Wu, H. Huang, K. Lob, F. Gong, I. Baldine and C. Xu. "IPSeclVPN Security Policy:
Correctness, Confiict Detection and Resolution." Proceedings of Policy'Z001 Workshop, January
2001.

[9] J. Guttman. "Filtering Posture: Local Enforcement for Global Policies." Proceedings of 1997 IEEE
Symposium on security and Privacy, May 1997.

[10] B. Hari, S. Suri and G. Parulkar. "Detecting and Resolving Packet Filter Confiicts." Proceedings of
IEEE INFOCOM'oo, March 2000.

[11] S. Hazelhusrt. "Algorithms for Analyzing Firewall and Router Access Lists." Technical Report TR­
WitsCS-1999, Department of Computer Science, University of the Witwatersrand, South Africa, July
1999.

[12] S. Hinrichs. "Policy-Based Management: Bridging the Gap." Proceedings of 15th Annual Computer
Security Applications Conference (ACSAC'99), December 1999.

[13] E. Lupu and M. Sloman. "Confiict Analysis for Management Policies." In Proceedings of IFIPREEE
International Symposium on Integrated Network Management (IM'1997), May 1997.

[14] A. Mayer, A. Wool and E. Ziskind. "Fang: A Firewall Analysis Engine." Proceedings ofZooo IEEE
Symposium on Security and Privacy, May 2000.

[15] L. Qiu, G. Varghese, and S. Suri. "Fast Firewall Implementations for Software and Hardware-based
Routers?' Proceedings of 9th International Conference on Network Protocols (ICNP'Zool), Novem­
ber2001.

[16] V. Srinivasan, S. Suri and G. Varghese. "Packet Classification Using Tuple Space Search." Computer
ACM SIGCOMM Communication Review, October 1999.

[17] T. Woo. ''A Modular Approach to Packet Classification: Algorithms and Results." Proceedings of
IEEE INFOCOM'oo, March 2000.

[18] A. Wool. "Architecting the Lumeta Firewall Analyzer." Proceedings of lath USENIX Security
Symposium, August 2001.

[19] "Cisco Secure Policy Manager 2.3 Data Sheet."
http://www.cisco.comlwarplpublic/cc/pd/sqsw/sqppmnlprodlitlspmgr..ds.pdf

[20] "Check Point Visual Policy Editor Data Sheet."
bttp:/Iwww.cbeckpoint.comlproductsldownloads/vpe..datasbeet.pdf

	2
FIREWALL POLICY ADVISOR FORANOMALY DISCOVERY AND RULE EDITING
	1. Introduction
	2. Firewall Background
	3. Firewall Policy Modelling
	3.1 Formalization of Firewall Rule Relations
	3.2 Firewall Policy Representation

	4. Firewall Policy Anomaly Discovery
	4.1 Firewall Policy Anomaly Classification
	4.2 Anomaly Discovery Algorithm

	5. Firewall Policy Editor
	5.1 Rule Insertion
	5.2 Rule Removal and Modification

	6. Related Work
	7. Conclusions and Future Work
	Acknowledgments
	References

