
Firewall Policy Queries
Alex X. Liu, Member, IEEE, and Mohamed G. Gouda, Member, IEEE

Abstract—Firewalls are crucial elements in network security, and have been widely deployed in most businesses and institutions for

securing private networks. The function of a firewall is to examine each incoming and outgoing packet and decide whether to accept or

to discard the packet based on its policy. Due to the lack of tools for analyzing firewall policies, most firewalls on the Internet have been

plagued with policy errors. A firewall policy error either creates security holes that will allow malicious traffic to sneak into a private

network or blocks legitimate traffic and disrupts normal business processes, which in turn could lead to irreparable, if not tragic,

consequences. Because a firewall may have a large number of rules and the rules often conflict, understanding and analyzing the

function of a firewall has been known to be notoriously difficult. An effective way to assist firewall administrators to understand and

analyze the function of their firewalls is by issuing queries. An example of a firewall query is “Which computers in the private network

can receive packets from a known malicious host in the outside Internet?” Two problems need to be solved in order to make firewall

queries practically useful: how to describe a firewall query and how to process a firewall query. In this paper, we first introduce a simple

and effective SQL-like query language, called the Structured Firewall Query Language (SFQL), for describing firewall queries. Second,

we give a theorem, called the Firewall Query Theorem, as the foundation for developing firewall query processing algorithms. Third, we

present an efficient firewall query processing algorithm, which uses decision diagrams as its core data structure. Fourth, we propose

methods for optimizing firewall query results. Finally, we present methods for performing the union, intersect, and minus operations on

firewall query results. Our experimental results show that our firewall query processing algorithm is very efficient: it takes less than

10 milliseconds to process a query over a firewall that has up to 10,000 rules.

Index Terms—Network security, firewall queries, firewall testing, firewall correctness.

Ç

1 INTRODUCTION

SERVING as the first line of defense against malicious

attacks and unauthorized traffic, firewalls are crucial
elements in securing the private networks of most busi-

nesses, institutions, and even home networks. A firewall is

placed at the point of entry between a private network and

the outside Internet so that all incoming and outgoing

packets have to pass through it. A packet can be viewed as a

tuple with a finite number of fields; examples of these fields

are source/destination IP address, source/destination port

number, and protocol type. A firewall maps each incoming
and outgoing packet to a decision according to its policy

(i.e., configuration). A firewall policy defines which packets

are legitimate and which are illegitimate by a sequence of

rules. Each rule in a firewall policy is of the form

hpredicatei ! hdecisioni:

The hpredicatei in a rule is a Boolean expression

over some packet fields and the network interface card

(NIC) on which a packet arrives.1 For the sake of brevity,

we assume that each packet has a field that contains the

identification of the network interface on which a packet

arrives. The hdecisioni of a rule can be accept, or

discard, or a combination of these decisions with other

options such as the logging option. For simplicity,

we assume that the hdecisioni in a rule is either accept

or discard.
A packet matches a rule if and only if the packet satisfies

the predicate of the rule. The predicate of the last rule in a

firewall is usually a tautology to ensure that every

packet has at least one matching rule in the firewall. The

rules in a firewall often conflict. Two rules in a firewall

conflict if and only if they overlap and they have different

decisions. Two rules in a firewall overlap if and only if there

is at least one packet that can match both rules. Due to

conflicts among rules, a packet may match more than one

rule in a firewall, and the rules that a packet matches may

have different decisions. To resolve conflicts among rules,

for each incoming or outgoing packet, a firewall maps it to

the decision of the first (i.e., highest priority) rule that the

packet matches. Note that two overlapping rules with

different decisions syntactically conflict but semantically do

not conflict because of the first-match semantics. In this

paper, the definition of “conflict” among firewall rules is

based on the syntax of rules.

766 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

. A.X. Liu is with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824.
E-mail: alexliu@cse.msu.edu.

. M.G. Gouda is with the Department of Computer Sciences, The University
of Texas at Austin, 1 University Station (C0500), Austin, TX 78712-0233.
E-mail: gouda@cs.utexas.edu.

Manuscript received 1 Apr. 2008; revised 6 Oct. 2008; accepted 8 Dec. 2008;
published online 22 Dec. 2008.
Recommended for acceptance by M. Singhal.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDS-2008-04-0124.
Digital Object Identifier no. 10.1109/TPDS.2008.263.

1. Note that most firewall vendors (such as Cisco [10]) allow
administrators to specify NIC information in rules. For firewall products
(such as Check Point firewalls [9]) that do not provide this functionality, we
can use the Rule Assignment and Direction Setting (RADIS) algorithm in
[5], [6] to automatically assign the NIC information to each rule. Wool gave
a comprehensive discussion of the NIC issue in firewall rules in [44].

1045-9219/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

The function (i.e., behavior) of a firewall is specified in its
policy, which consists of a sequence of rules. The policy of a
firewall is the most important component in achieving the
security and functionality of the firewall [41]. However,
most firewalls on the Internet are poorly configured, as
witnessed by the success of worms2 and viruses like Blaster
[8] and Sapphire [11], which could be easily blocked by a
well-configured firewall [43]. It has been observed that most
firewall security breaches are caused by configuration
errors [7]. An error in a firewall policy means that some
illegitimate packets are identified as being legitimate, or
some legitimate packets are identified as being illegitimate.
Such a policy error either creates security holes that will
allow malicious traffic to sneak into a private network or
blocks legitimate traffic and disrupts normal business
processes, which in turn could lead to irreparable, if not
tragic, consequences. Clearly, a firewall policy should be
well understood and analyzed before being deployed.

However, due to the large number of rules in a firewall
and the large number of conflicts among rules, under-
standing and analyzing the function of a firewall has been
known to be notoriously difficult [34], [35]. The implication
of any rule in a firewall cannot be understood without
examining all the rules listed above that rule. There are
other factors that contribute to the difficulties in under-
standing and analyzing firewalls. For example, a corporate
firewall often consists of rules that are written by different
administrators at different times and for different reasons. It
is difficult for new firewall administrators to understand
the implication of each rule that they have not written.

An effective way to assist administrators to understand
and analyze firewalls is by issuing firewall queries.
Firewall queries are questions concerning the function of
a firewall. An example firewall query is “Which computers
in the private network can receive BOOTP3 packets from
the outside Internet?” Figuring out answers to such
firewall queries is of tremendous help for a firewall
administrator to understand and analyze the function of
the firewall. For example, assuming the specification of a
firewall requires that all computers in the outside Internet,
except a known malicious host, are able to send e-mails to
the mail server in the private network; a firewall admin-
istrator can test whether the firewall satisfies this require-
ment by issuing a firewall query “Which computers in the
outside Internet cannot send e-mails to the mail server in
the private network?” If the answer to this query contains
exactly the known malicious host, then the firewall
administrator is assured that the firewall does satisfy this
requirement. Otherwise, the firewall administrator knows
that the firewall fails to satisfy this requirement and needs
to be reconfigured.

Firewall queries are also useful in a variety of other
scenarios, such as firewall maintenance and firewall
debugging. For a firewall administrator, checking whether

a firewall satisfies certain conditions is a part of daily
maintenance activity. For example, if the administrator
detects that a computer in a private network is under attack,
the firewall administrator can issue queries to check which
other computers in the private network are also vulnerable
to the same type of attacks. In the process of designing a
firewall, the designer can issue some firewall queries to
detect design errors by checking whether the answers to the
queries are consistent with the firewall specification.

To make firewall queries practically useful, two pro-
blems need to be solved: how to describe a firewall query
and how to process a firewall query. The second problem is
especially difficult. Recall that the rules in a firewall are
sensitive to the rule order and the rules often conflict. The
naive solution is to enumerate every packet specified by a
query and check the decision for each packet. Clearly, this
solution is infeasible. For example, to process the query
“which computers in the outside Internet cannot send any
packet to the private network,” this naive solution needs to
enumerate 288 possible packets and check the decision of
the firewall for each packet, which is infeasible. Note that
firewall queries are inherently different from relational
database queries. In a relational database, each field of a
tuple has a fixed value. Although each rule in a firewall
seems analogous to a tuple in a database, each field of a rule
is a range, not a fixed value.

In this paper, we present solutions to both problems.
First, we introduce a simple and effective SQL-like query
language, called the Structured Firewall Query Language
(SFQL), for describing firewall queries. This language uses
queries of the form “select . . . from . . .where” Second,
we present a theorem, called the Firewall Query Theorem,
as the foundation for developing firewall query processing
algorithms. Third, we present an efficient query processing
algorithm that uses firewall decision diagrams as its core
data structure. For a given firewall of a sequence of rules,
we first construct an equivalent firewall decision diagram
using a construction algorithm. Then, the firewall decision
diagram is used as the core data structure of this query
processing algorithm for answering each firewall query.
Fourth, we propose methods for optimizing firewall query
results. Finally, we present methods for performing the
union, intersect, and minus operations on firewall query
results. Our experimental results show that our firewall
query processing algorithm is very efficient: It takes less
than 10 milliseconds to process a query over a firewall that
has up to 10,000 rules.

The rest of the paper proceeds as follows: We first review
related work in Section 2. We then formally define our
problem and notation in Section 3. In Section 4, we present
the actual syntax of the structured firewall query language
and show how to use this language to describe firewall
queries. The theory foundation and algorithms on firewall
query processing are presented in Section 5. In Section 6, we
present methods for optimizing firewall query results. In
Section 7, we present methods for performing the union,
intersect, and minus operations on firewall query results. In
Section 8, we show experimental results. Finally, we give
concluding remarks in Section 9.

LIU AND GOUDA: FIREWALL POLICY QUERIES 767

2. Note that not all worms can be blocked by only examining packet
headers.

3. The Bootp protocol is used by workstations and other devices to obtain
IP addresses and other information about the network configuration of a
private network. Since there is no need to offer the service outside a private
network, and it may offer useful information to hackers, usually Bootp
packets are blocked from entering a private network.

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

2 RELATED WORK

There is little work that has been done on firewall queries.
In the seminal work [34], [35], [42], a query-based firewall
analysis system named Fang was presented. In Fang, a
firewall query is described by a triple (a set of source
addresses, a set of destination addresses, a set of services),
where each service is a tuple (protocol type, source port
number, and destination port number). The meaning of
such a query is, “which IP addresses in the set of source
addresses can use which services in the set of services to
which IP addresses in the set of destination addresses.” We
make three contributions in comparison with Fang. First, in
processing a query on a firewall, our query processing
algorithm is much more efficient than Fang. In Fang, a
query is processed by comparing the query with every rule
in a firewall in a linear fashion. In contrast, we first convert
a firewall to a tree representation and then process queries
on the tree, which is much more efficient. Second, our
system can describe and process firewall queries over
discard traffic, while Fang only supports queries over
accept traffic. Third, we formulate firewall queries using an
SQL-like language.

Some firewall analysis methods have been proposed in
[4], [14], [15], [19], [25], [26], [29], [30], [31], [36]. In [29], Liu
presented algorithms for performing the change impact
analysis of firewall policies. In [30], Liu presented an
algorithm for verifying firewall policies. The verification of
distributed firewalls is studied in [19]. In [31], Liu and
Gouda studied the redundancy issues in firewall policies
and gave an algorithm for removing all the redundant rules
in a firewall policy. In [26], some ad hoc “what if”
questions that are similar to firewall queries were dis-
cussed. However, no algorithm was presented for proces-
sing the proposed “what if” questions. In [15], expert
systems were proposed to analyze firewall rules. Clearly,
building an expert system just for analyzing a firewall is
overwrought and impractical. Detecting potential firewall
policy errors by conflict detection was discussed in [4], [14],
[25], [36]. Similar to conflict detection, some anomalies are
defined and techniques for detecting anomalies are pre-
sented in [2], [47]. Examining each conflict or anomaly is
helpful in reducing potential firewall policy errors; how-
ever, the number of conflicts or anomalies in a firewall is
typically large, and manual checking of each conflict or
anomaly is unreliable because the meaning of each rule
depends on the current order of the rules in the firewall,
which may be incorrect.

Some firewall design methods have been proposed in [5],
[20], [21], [22], [24], [32]. These works aim at creating
firewall rules, while we aim at analyzing firewall rules.
Gouda and Liu proposed to use decision diagrams for
designing firewalls in [20], [22]. In [32], Liu and Gouda
applied the technique of design diversity to firewall design.
Gouda and Liu also proposed a model for specifying
stateful firewall policies [21]. Guttman proposed a Lisp-like
language for specifying high-level packet filtering policies
in [24]. Bartal et al. proposed a UML-like language for
specifying global filtering policies in [5].

Design of high-performance ATM firewalls was dis-
cussed in [45], [46] with focus on firewall architectures.

Firewall vulnerabilities were discussed and classified in
[45], [46]. However, the focus of [17], [28] are the vulner-
abilities of the packet filtering software and the supporting
hardware part of a firewall, not the policy of a firewall.

There are some tools currently available for network
vulnerability testing, such as Satan [16], [18] and Nessus
[38]. These vulnerability testing tools scan a private net-
work based on the current publicly known attacks, rather
than the requirement specification of a firewall. Although
these tools can possibly catch errors that allow illegitimate
access to the private network, they cannot find the errors
that disable legitimate communication between the private
network and the outside Internet. Firewall policy testing
was studied in [27].

3 FORMAL DEFINITIONS

We now formally define the concepts of fields, packets,
firewalls, and the Firewall Compression Problem. A field Fi

is a variable whose domain, denoted DðFiÞ, is a finite
interval of nonnegative integers. For example, the domain
of the source address field in an IP packet is ½0; 232 � 1�. A
packet over the d fields F1; . . . ; Fd is a d-tuple ðp1; . . . ; pdÞ,
where each pi (1 � i � d) is an element in DðFiÞ. We use �

to denote the set of all packets over fields F1; . . . ; Fd. It
follows that � is a finite set and j�j ¼ jDðF1Þj � � � �
�jDðFdÞj, where j�j denotes the number of elements in set
� and jDðFiÞj denotes the number of elements in set DðFiÞ
for each i.

A firewall rule has the form hpredicatei ! hdecisioni. A
hpredicatei defines a set of packets over the fields F1

through Fd specified by the predicate F1 2 S1 ^ � � � ^ Fd 2
Sd, where each Si is one nonempty interval that is a subset
of DðFiÞ. A packet ðp1; . . . ; pdÞ matches a predicate F1 2
S1 ^ � � � ^ Fd 2 Sd and the corresponding rule, if and only if
the condition p1 2 S1 ^ � � � ^ pd 2 Sd holds. We use � to
denote the set of possible values that hdecisioni can be.
Typical elements of � include accept, discard, accept with
logging, and discard with logging. For any i, if Si ¼ DðFiÞ,
we often use the keyword all to denote Si.

Some existing firewall products, such as Linux’s ipchains
[1], represent source and destination IP addresses as
prefixes in their rules. An example of a prefix is
192:168:0:0=16 or 192:168: � : � , both of which represent
the set of IP addresses in the range from 192.168.0.0 to
192.168.255.255. Essentially, each prefix represents one
integer interval (as we can treat an IP address as a 32-bit
integer). In this paper, we uniformly represent firewall rules
using intervals.

A firewall f over the d fields F1; . . . ; Fd is a sequence of
firewall rules. The size of f , denoted jf j, is the number of rules
in f . A sequence of rules hr1; . . . ; rni is complete if and only if
for anypacket p, there is at least one rule in the sequence that p
matches. A sequence of rules needs to be complete for it to
serve as a firewall. To ensure that a firewall is complete, the
predicate of the last rule in a firewall is usually specified as
F1 2 DðF1Þ ^ � � �Fd 2 ^DðFdÞ, which every packet matches.

Fig. 1 shows an example of a simple firewall. In this
example, we assume that each packet has only two fields: S
(source address) and D (destination address), and both

768 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

fields have the same domain ½1; 10�. Let f1 be the name of
this firewall.

Two rules in a firewall may overlap; that is, a single
packet may match both rules. For example, rule r1 and r2 in
the firewall in Fig. 1 overlap. Furthermore, two rules in a
firewall may conflict; that is, the two rules not only overlap
but also have different decisions. For example, rule r1 and
r2 in the firewall in Fig. 1 not only overlap but also conflict.
To resolve such conflicts, firewalls typically employ a first-
match resolution strategy where the decision for a packet p
is the decision of the first (i.e., highest priority) rule that p
matches in f . The decision that firewall f makes for packet p
is denoted fðpÞ.

We can think of a firewall f as defining a many-to-one
mapping function from � to �. Two firewalls f1 and f2 are
equivalent, denoted f1 � f2, if and only if they define the
same mapping function from � to �; that is, for any packet
p 2 �, we have f1ðpÞ ¼ f2ðpÞ. For any firewall f , we use ffg
to denote the set of firewalls that are semantically
equivalent to f .

4 STRUCTURED FIREWALL QUERY LANGUAGE

In this section, we present the syntax of our firewall query
language and show how to use this language to describe
firewall queries.

4.1 Query Language

A query, denoted Q, in our Structured Firewall Query
Language (SFQL) is of the following format:

where Fi is one of the fields F1; . . . ; Fd, f is a firewall, each
Sj is a nonempty subset of the domain DðFjÞ of field Fj, and
hdeci is either accept or discard.

The result of query Q, denoted Q:result, is the following
set:

fpijðp1; . . . ; pdÞ is a packet in �; and;

ðp1 2 S1Þ ^ � � � ^ ðpd 2 SdÞ ^ ðf:ðp1; . . . ; pdÞ ¼ hdeciÞg:

Recall that � denotes the set of all packets, and
f:ðp1; . . . ; pdÞ denotes the decision to which firewall f maps
the packet ðp1; . . . ; pdÞ.

We can get the above set by first finding all the packets
ðp1; . . . ; pdÞ in � such that the following condition holds,

ðp1 2 S1Þ ^ � � � ^ ðpd 2 SdÞ ^ ðfððp1; . . . ; pdÞÞ ¼ hdeciÞ;

then projecting all these packets to the field Fi.
For example, a question to the firewall in Fig. 1, “Which

computers whose addresses are in the set ½4; 8� can send

packets to the computer whose address is 6?,” can be

formulated as the following query using SFQL:

The result of this query is f4; 5; 6; 7g.
As another example, a question to the firewall in Fig. 1,

“Which computers cannot send packets to the computer

whose address is 6?,” can be formulated as the following

query using SFQL:

The result of this query is f3; 8g.

4.2 Firewall Query Examples

Next,we give some example firewall queries using SFQL. Let

f be the name of the firewall that resides on the gateway

router in Fig. 2. This gateway router has two interfaces:

interface 0, which connects the gateway router to the outside

Internet, and interface 1, which connects the gateway router

to the inside local network. Attached to the private network

are a mail server, and two hosts, host 1 and host 2. In these

examples, we assume each packet has the following five

fields: I (Interface), S (Source IP), D (Destination IP), N

(Destination Port), and P (Protocol Type).

LIU AND GOUDA: FIREWALL POLICY QUERIES 769

Fig. 1. Example firewall f1.

4. Bootp packets are UDP packets and use port number 67 or 68.

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

5 FIREWALL QUERY PROCESSING

5.1 Theory Foundation

In this section, we discuss how to process a firewall query

for consistent firewalls. A firewall is consistent if and only if

no two rules in the firewall conflict. A firewall is inconsistent

if and only if there are at least two rules in the firewall that
conflict. Note that a firewall with conflicting rules is
syntactically inconsistent, but semantically consistent be-
cause of the first-match semantics. In this paper, our
definitions of “consistent firewalls” and “inconsistent fire-
walls” are based on the syntax of firewalls.

Recall that two rules in a firewall conflict if and only if
they have different decisions and there is at least one packet
that matches both rules. For example, the first two rules in
the firewall in Fig. 1, namely r1 and r2, conflict. Note that for
any two rules in a consistent firewall, if they overlap, i.e.,
there is at least one packet that can match both rules, they
have the same decision. So, given a packet and a consistent
firewall, all the rules in the firewall that the packet matches
have the same decision. Fig. 1 shows an example of an
inconsistent firewall, and Fig. 3 shows an example of a
consistent firewall. Note that these two firewalls are
equivalent. In these two firewall examples, we assume that
each packet only has two fields: S (source address) and D
(destination address), and both fields have the same
domain ½1; 10�.

Our interest in consistent firewalls is twofold. First, as
discussed in Section 5.3, each inconsistent firewall can be
converted to an equivalent consistent firewall. Second, as
shown in the following theorem, it is easier to process
queries for consistent firewalls than for inconsistent ones.

Theorem 1. (Firewall Query Theorem). Let Q be a query of
the following form:

select Fi
from f
where ðF1 2 S1Þ ^ � � � ^ ðFd 2 SdÞ ^ ðdecision ¼ hdeciÞ
Also let f be a consistent firewall that consists of n rules

r1; . . . ; rn, where each rule rj is of the form ðF1 2 S0
1Þ ^

� � � ^ ðFd 2 S0
dÞ ! hdec0i. Then,

Q:result ¼
[

n

j¼1

Q:rj;

where each Q:rj is defined using rule rj as follows:

Q:rj ¼
Si \ S0

i; if ðS1 \ S0
1 6¼ ;Þ ^ � � � ^ ðSd \ S0

d 6¼ ;Þ
^ðhdeci ¼ hdec0iÞ,

;; otherwise:

8

<

:

770 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

Fig. 3. Consistent firewall f2.

Fig. 2. Firewall f.

5. SMTP stands for Simple Mail Transfer Protocol. SMTP packets are
TCP packets and use port number 25.

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

Proof. First, we prove
Sn

j¼1 Q:rj 	 Q:result by proving
Q:rj 	 Q:result for each j. Let rj be ðF1 2 S0

1Þ ^ � � � ^ ðFd 2
S0
dÞ ! hdec0i. If ðS1 \ S0

1 6¼ ;Þ ^ � � � ^ ðSd \ S0
d 6¼ ;Þ ^ ðhdeci ¼

hdec0iÞ does not hold, then Q:rj ¼ ; and clearly Q:rj	
Q:result. I f ðS1 \ S0

1 6¼ ;Þ ^ � � � ^ ðSd \ S0
d 6¼ ;Þ ^ ðhdeci ¼

hdec0iÞ does hold, then Q:rj ¼ Si \ S0
i. Because of rule rj,

for any packet ðp1; . . . ; pdÞ that ðp1 2 S1 \ S0
1Þ ^ � � � ^ ðpd 2

Sd \ S0
dÞ, we have f:ðp1; . . . ; pdÞ ¼ hdec0i. Since hdeci ¼

hdec0i, the following set

fpi j ðp1; . . . ; pdÞ is a packet in �; and

ðp1 2 S1 \ S0
1Þ ^ � � � ^ ðpd 2 Sd \ S0

dÞg

is a subset of Q:result. Because each Si or S
0
i is a nonempty

set, we have

Q:rj ¼ Si \ S0
i

¼ fpi j ðp1; . . . ; pdÞ is a packet in �; and;

ðp1 2 S1 \ S0
1Þ ^ � � � ^ ðpd 2 Sd \ S0

dÞg:

So, Q:rj 	 Q:result.
Second, we prove Q:result 	

Sn
j¼1 Q:rj. Consider a pi in

Q:result. By the definition of Q:result, there is at least one
packet ðp1; . . . ; pdÞ such that the condition ðp1 2 S1Þ ^ � � � ^
ðpd 2 SdÞ ^ ðf:ðp1; . . . ; pdÞ ¼ hdeciÞ holds. Let rule r, ðF1 2
S0
1Þ ^ � � � ^ ðFd 2 S0

dÞ ! hdec0i, be a rule that ðp1; . . . ; pdÞ
matches in f . Because all the rules in the consistent firewall
f that ðp1; . . . ; pdÞ matches have the same decision, we have
f:ðp1; . . . ; pdÞ ¼ hdec0i. So hdeci ¼ hdec0i. Because each pi is
an element of Si \ S0

i, we have ðS1 \ S0
1 6¼ ;Þ ^ � � � ^

ðSd \ S0
d 6¼ ;Þ ^ ðhdeci ¼ hdec0iÞ. So Q:rj ¼ Si \ S0

i. Therefore,
pi 2 Q:rj. So Q:result 	

Sn
j¼1 Q:rj. tu

5.2 Rule-Based Firewall Query Processing

The Firewall Query Theorem implies a simple query
processing algorithm: given a consistent firewall f that
consists of n rules r1; . . . ; rn and a query Q, compute Q:rj for
each rule rj, then

Sn
j¼1 Q:rj is the result of query Q. We call

this algorithm the rule-based firewall query processing algo-
rithm. Algorithm 1 shows the pseudocode of this algorithm.

Algorithm 1. Rule-Based Firewall Query Processing

Algorithm

Input: 1 A consistent firewall f that consists of n rules:

r1; . . . ; rn.

2 A query Q: select Fi from f where

ðF1 2 S1Þ ^ � � � ^ ðFd 2 SdÞ ^ ðdecision ¼ hdeciÞ
Output: Result of query Q.

1 Q:result :¼ ;;
2 for j :¼ 1 to n do

3 /*Let rj ¼ ðF1 2 S0
1Þ ^ � � � ^ ðFd 2 S0

dÞ ! hdec0i*/
4 if ðS1 \ S0

1 6¼ ;Þ ^ � � � ^ ðSd \ S0
d 6¼ ;Þ ^

ðhdeci ¼ hdec0iÞ then
5 Q:result :¼ Q:result [ðSi \ S0

iÞ then
6 return Q:result;

5.3 FDD-Based Firewall Query Processing
Algorithm

Observe that multiple rules in a consistent firewall may
share the same prefix. For example, in the consistent
firewall in Fig. 3, the first three rules, namely r01, r

0
2, and

r03 share the same prefix S 2 ½4; 7�. Thus, if we apply the

query processing algorithm in Algorithm 1 to answer a

query, for instance, whose “where clause” contains the

conjunct S 2 f3g, over the firewall in Fig. 3, then the

algorithm will repeat three times the calculation of

f3g \ ½4; 7�. Clearly, if we reduce the number of these

repeated calculations, the efficiency of the firewall query

processing algorithm can be greatly improved.
Next, we present a more efficient firewall query

processing algorithm that has no repeated calculations

and can be applied to both consistent and inconsistent

firewalls. The basic idea of this query processing algorithm

is as follows: First, we convert the firewall (whether

consistent or inconsistent) that we want to query to an

equivalent firewall decision diagram. Second, because the

resulting firewall decision diagram is a consistent and

compact representation of the original firewall, it is used as

the core data structure for query processing. We call this

algorithm the FDD-based firewall query processing algorithm.
Here, we give a brief introduction to firewall decision

diagrams [20]. A similar data structure was used by

Rovniagin andWool in [40] andbyDobkin andLipton in [12].

Definition 1. (Firewall Decision Diagram). A Firewall

Decision Diagram (FDD) with a decision set DS and over

fields F1; . . . ; Fd is an acyclic and directed graph that has the

following five properties:

1. There is exactly one node in f that has no incoming
edges. This node is called the root of f . The nodes in f
that have no outgoing edges are called terminal nodes
of f .

2. Each node v has a label, denoted F ðvÞ, such that

F ðvÞ 2
fF1; . . . ; Fdg; if v is a nonterminal node,

DS; if v is a terminal node.

�

3. Each edge e in f has a label, denoted IðeÞ, such that if e
is an outgoing edge of node v, then IðeÞ is a nonempty
subset of DðF ðvÞÞ.

4. A directed path in f from the root to a terminal node is
called a decision path of f . No two nodes on a decision
path have the same label.

5. The set of all outgoing edges of a node v in f , denoted
EðvÞ, satisfies the following two conditions:

a. Consistency: IðeÞ \ Iðe0Þ ¼ ; for any two distinct
edges e and e0 in EðvÞ,

b. Completeness:
S

e2EðvÞ IðeÞ ¼ DðF ðvÞÞ.

We define a full-length ordered FDD as an FDD where in

each decision path all fields appear exactly once and in the

same order. For ease of presentation, as the rest of this

paper only concerns full-length ordered FDDs, we use the

term “FDD” to mean “full-length ordered FDD” if not

otherwise specified.
Fig. 4 shows an example FDD named f3. In this example,

we assume that each packet has only two fields: S (source

address) and D (destination address), and both fields have

the same domain ½1; 10�. In the rest of this paper, including

this example, we use “a” as a shorthand for accept and “d”

LIU AND GOUDA: FIREWALL POLICY QUERIES 771

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

as a shorthand for discard. Note that this FDD represents the
firewall in Fig. 1 and also the firewall in Fig. 3.

A decision path in an FDD f is represented by
ðv1e1 � � � vkekvkþ1Þ where v1 is the root, vkþ1 is a terminal
node, and each ei is a directed edge from node vi to
node viþ1. A decision path ðv1e1 � � � vkekvkþ1Þ in an FDD
defines the following rule:

F1 2 S1 ^ � � � ^ Fn 2 Sn ! F ðvkþ1Þ;

where

Si ¼

IðejÞ; if there is a node vj in the decision

path that is labeled with field Fi,

DðFiÞ; if no node in the decision path is

labeled with field Fi.

8

>

>

<

>

>

:

For an FDD f , we use Sf to denote the set of all the rules
defined by all the decision paths of f . For any packet p,
there is one and only one rule in Sf that p matches because
of the consistency and completeness properties; therefore, f
maps p to the decision of the only rule that p matches.
Considering the FDD f3 in Fig. 4, Fig. 3 shows all the six
rules in Sf3 .

Given an FDD f , any sequence of rules that consists of all
the rules in Sf is equivalent to f . The order of the rules in
such a firewall is immaterial because the rules in Sf are
nonoverlapping.

Given a sequence of rules, we can construct an
equivalent FDD using the FDD construction algorithm in
[32]. For example, the FDD generated from the firewall in
Fig. 1 is shown in Fig. 4.

The algorithm for converting an inconsistent firewall f to
a consistent firewall consists of two steps. First, convert f to
an equivalent FDD f 0 by the construction algorithm in this
section. Second, generate a rule for each decision path in f 0,
i.e., obtain Sf 0 ; then any sequence of rules that consists of all
the rules in Sf 0 is a consistent firewall that is equivalent to f .

The pseudocode of the FDD-based firewall query
processing algorithm is shown in Algorithm 5.3. This
algorithm has two inputs, an FDD and a query described
by SFQL. Note that Q:result is a global variable. Also note
that our assumption of using full-length ordered FDDs is
only for simplifying the presentation of this paper. In
practice, the FDDs used for processing firewall queries do
not need to be full-length or ordered. Our FDD-based
firewall query processing algorithm can be easily adapted
for processing queries on FDDs that are not full-length or
not ordered.

This FDD-based firewall query processing algorithm
works as follows. Suppose the two inputs of this algorithm
are an FDD f and a query Q:

select Fi

from f
where ðF1 2 S1Þ ^ � � � ^ ðFd 2 SdÞ ^ ðdecision ¼ hdeciÞ.
The algorithm starts by traversing the FDD from its root.

Let Fj be the label of the root. For each outgoing edge e of

the root, we compute IðeÞ \ Sj. If IðeÞ \ Sj ¼ ;, we skip

edge e and do not traverse the subgraph that e points to. If

IðeÞ \ Sj 6¼ ;, then we continue to traverse the subgraph

that e points to in a similar fashion. Whenever a terminal

node is encountered, we compare the label of the terminal

node and hdeci. If they are the same, assuming the rule

defined by the decision path containing the terminal node is

ðF1 2 S0
1Þ ^ � � � ^ ðFd 2 S0

dÞ ! hdec0i, then add Si \ S0
i to

Q:result. In this pseudocode and the rest of this paper, we

use e:t to denote the (target) node that the edge e points to.

Algorithm 2. FDD-based Firewall Query Processing

Algorithm

Input: (1) An FDD f .

(2) A query Q: select Fi from f where

ðF1 2 S1Þ ^ � � � ^ ðFd 2 SdÞ ^ ðdecision ¼ hdeciÞ
Output: Result of query Q.

1 Q:result ¼ ;
2 CHECKðf:root,
ðF1 2 S1Þ ^ � � � ^ ðFd 2 SdÞ ^ ðdecision ¼ hdeciÞ;

3 return Q:result;

4 CHECKðv; ðF1 2 S1Þ ^ � � � ^ ðFd 2 SdÞ ^
ðdecision ¼ hdeciÞÞ

5 if (v is a terminal node) and (F ðvÞ ¼ hdeci) then
6 Let ðF1 2 S0

1Þ ^ � � � ^ ðFd 2 S0
dÞ ! hdec0i be the rule

segment defined by the decision path containing

node v;

7 Q:result :¼ Q:result [ðSi \ S0
iÞ;

8 If (v is a nonterminal node)

9 /*Let Fj be the label of v*/

10 For each edge e in EðvÞ do
11 If IðeÞ \ Sj 6¼ ; then

12 CHECKðe:t; ðF1 2 S1Þ ^ � � � ^ ðFd 2 SdÞ ^
ðdecision ¼ hdeciÞÞ.

5.4 Efficient FDD Reduction Using Hashing

To further improve the efficiency of the FDD-based

firewall query processing algorithm, after we convert a

firewall to an equivalent FDD, we need to reduce the size
of the FDD. A full-length ordered FDD is reduced if and

only if no two nodes are isomorphic and no two nodes

have more than one edge between them. Two nodes v and

v0 in an FDD are isomorphic if and only if v and v0 satisfy
one of the following two conditions: 1) both v and v0 are

terminal nodes with identical labels; 2) both v and v0 are

nonterminal nodes and there is a one-to-one correspon-

dence between the outgoing edges of v and the outgoing
edges of v0 such that every pair of corresponding edges

have identical labels and they both point to the same node.

Fig. 5 shows an FDD before reduction and Fig. 6 shows the

corresponding FDD after reduction.
A brute force deep comparison algorithm for FDD

reduction was proposed in [22]. In this paper, we use a

more efficient FDD reduction algorithm that processes the

772 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

Fig. 4. Firewall decision diagram f3.

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

nodes level by level from the terminal nodes to the root
node using signatures to speed up comparisons [33].

Starting from the bottom level, at each level, we compute
a signature for each node at that level. For a terminal node
v, set vs signature to be its label. For a nonterminal node v,
suppose v has k children v1; v2; . . . ; vk, in increasing order of
signature (SigðviÞ < Sigðviþ1Þ for 1 � i � k� 1), and the
edge between v and its child vi is labeled with Ei, a
sequence of nonoverlapping prefixes in increasing order.
Set the signature of node v as follows:

SigðvÞ ¼ hðSigðv1Þ; E1; . . . ; SigðvkÞ; EkÞ;

where h is a one-way and collision resistant hash function
such as MD5 [39] and SHA-1 [13]. For any such hash
function h, given two different inputs x and y, the
probability of hðxÞ ¼ hðyÞ is extremely small.

After we have assigned signatures to all nodes at a given
level, we search for isomorphic subgraphs as follows: For
every pair of nodes vi and vj (1 � i 6¼ j � k) at this level, if
SigðviÞ 6¼ SigðvjÞ, then we can conclude that vi and vj are
not isomorphic; otherwise, we explicitly determine if vi and
vj are isomorphic. If vi and vj are isomorphic, we delete
node vj and its outgoing edges, and redirect all the edges
that point to vj to point to vi. Further, we eliminate double
edges between node vi and its parents.

For example, the signatures of the non-root nodes in
Fig. 5 are computed as follows:

Sigðv4Þ ¼ a;

Sigðv5Þ ¼ d;

Sigðv2Þ ¼ hðSigðv4Þ; ½4; 8�; Sigðv5Þ; ½1; 3�; ½9; 10�Þ;

Sigðv3Þ ¼ hðSigðv4Þ; ½4; 8�; Sigðv5Þ; ½1; 3�; ½9; 10�Þ:

Note that we can perform further optimization of
removing nonterminal nodes that have only one outgoing
edge in an FDD, which is similar to the path compression
technique for binary tries [37].

5.5 Complexity Analysis of Firewall Query
Processing Algorithms

Next, we analyze the complexity of rule-based and FDD-
based firewall query processing algorithms, which shows
that the FDD-based algorithm is much more efficient.

5.5.1 Complexity of Rule-Based Firewall Query

Processing Algorithm

Given a firewall, which may be consistent or inconsistent,
we first need to convert it to an equivalent consistent

firewall using the algorithm in [32]. Given a firewall with
n rules where each rule examines d packet fields, its
equivalent consistent firewall will have OðndÞ rules. As the
rule-based firewall query algorithm linearly scans every
rule and performs d comparison for each rule, its complex-
ity is Oðndþ1Þ.

5.5.2 Complexity of FDD-Based Firewall Query

Processing Algorithm

As every nonterminal node in a reduced FDD cannot have
more than 2n� 1 outgoing edges, finding the right outgoing
edge to traverse takes OðlognÞ time using binary search. Let
k be the total number of paths that a query overlaps on an
FDD, the processing time for the query is Oðkd lognÞ. Note
that k is typically small.

6 FIREWALL QUERY POSTPROCESSING

To keep our presentation simple, we have described a
somewhat watered-down version of the firewall query
language where the “select” clause in a query has only
one field. In fact, the “select” clause in a query can be
extended to have more than one field. The results in this
paper, e.g., the Firewall Query Theorem and the two
firewall query processing algorithms, can all be extended
in a straightforward manner to accommodate the extended
“select” clauses.

However, when the “select” clause in a query has more
than one field, the query result may contain many disjoint
multidimensional predicates. For example, consider the
following query on the firewall in Fig. 1, the FDD of which
is shown in Fig. 4.

Running the FDD-based firewall query processing
algorithm, the result contains the following two predicates:

S 2 ½4; 7� ^D 2 ½2; 5�;

S 2 ð½3; 3� _ ½8; 8�Þ ^D 2 ½2; 5�:

To make the query result easier for firewall adminis-
trators to read, we next present an algorithm to minimize
the number of predicates generated from the firewall query
engine. This algorithm consists of three steps. In the first
step, we treat every predicate as a firewall rule and convert

LIU AND GOUDA: FIREWALL POLICY QUERIES 773

Fig. 5. A full-length ordered FDD before reduction. Fig. 6. A full length ordered after reduction.

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

these nonoverlapping rules with the same decisions to an
equivalent partial FDD. A partial FDD is a diagram that has
all the properties of an FDD except the completeness
property. For example, we treat the above two predicates as
the following two rules where the decision of each rule is
the decision in the “where” clause

S 2 ½4; 7� ^D 2 ½2; 5� ! d;

S 2 ð½3; 3� _ ½8; 8�Þ ^D 2 ½2; 5� ! d:

Fig. 7 shows the converted partial FDD from these two
rules.

In the second step, we run the FDD reduction algorithm
on the partial FDD. Essentially, this step combines some
predicates together. Fig. 8 shows the reduced partial FDD.

In the third step, we generate predicates from the
reduced partial FDD. The predicate that is generated from
the reduced partial FDD in Fig. 8 is

S 2 ½3; 8� ^D 2 ½2; 5�:

Alternately, we can simply present the reduced partial
FDD as the query result.

In some cases, minimizing the number of predicates
generated from the firewall query engine may not be the
best way to present query results to firewall administrators.
It is certainly worth investigating better ways to present
query results to administrators. We leave a comprehensive
study of this issue to future work.

7 FIREWALL QUERY ALGEBRA

Similar to SQL, a complex firewall query can be formulated
by the union, intersect, or minus of multiple queries. In this
section, we present algorithms for processing such complex
firewall queries.

7.1 Union

Performing the union of two firewall query results is
simple: Combine the two sets of predicates into one set and
then run the firewall query postprocessing algorithm to
minimize the number of predicates.

7.2 Intersect

The intersect of two firewall query results A1 and A2 can be
done by simply intersecting every predicate in A1 and
every predicate in A2. More formally, S1 \ S2 ¼
fP1 \ P2jP1 2 A1;P2 2 A2g. Given two predicates P1 ¼
F1 2 S1 ^ � � � ^ Fd 2 Sd and P2 ¼ F1 2 S1

0 ^ � � � ^ Fd 2 Sd
0,

P1 \ P2 ¼ F1 2 ðS1 \ S1
0Þ ^ � � � ^ Fd 2 ðSd \ Sd

0Þ. For exam-
ple, the intersect of two predicates S 2 ½3; 8� ^D 2 ½2; 5� and

S 2 ½6; 9� ^D 2 ½4; 7� is S 2 ½6; 8� ^D 2 ½4; 5�. As the predi-
cates in any query result are nonoverlapping, for any
predicate in A1, it overlaps at most one predicate in A2.

7.3 Minus

Computing the minus of one firewall query result from
another one is more involved. Given two firewall query
results A1 and A2, we compute A1 �A2 as follows. In the
first step, we build a partial FDD from the rules formed
by the predicates in A2. In the second step, for each
predicate P in A1, we append a rule r formed by P to the
partial FDD such that the resulting partial FDD is
equivalent to the rule sequence that is formed by all the
rules formed by the predicates in A2 followed by the rule
formed by P. After appending r, all the new paths
generated from r constitute r�A2.

Next, we consider how to append rule r to this partial
FDD. Suppose the partial FDD constructed from A2 has a
root v with label F1, and v has k outgoing edges e1; � � � ; ek.
Let r be the rule ðF1 2 S1Þ ^ � � � ^ ðFd 2 SdÞ ! hdecisioni,
which is formed by a predicate in A1.

First, we examine whether we need to add another
outgoing edge to v. If S1 � ðIðe1Þ [� � � [IðekÞÞ 6¼ ;, we need
to add a new outgoing edge with label S1 � ðIðe1Þ [� � � [
IðekÞÞ to v, because any packet whose F1 field is an element
of S1 � ðIðe1Þ � � � [IðekÞÞ does not match any of the first i
rules, but does match r provided that the packet satisfies
ðF2 2 S2Þ ^ � � � ^ ðFd 2 SdÞ. We then build a decision path
from ðF2 2 S2Þ ^ � � � ^ ðFd 2 SdÞ ! hdecisioni, and make the
new edge of the node v point to the first node of this
decision path.

Second, we compare S1 and IðejÞ for each j where
1 � j � k. This comparison leads to one of the following
three cases:

1. S1 \ IðejÞ ¼ ;: In this case, we skip edge ej because
any packet whose value of field F1 is in set IðejÞ does
not match r.

2. S1 \ IðejÞ ¼ IðejÞ: In this case, for a packet whose
value of field F1 is in set IðejÞ, it may match one
of the first i rules, and it may also match rule r.
So, we append the rule ðF2 2 S2Þ ^ � � � ^ ðFd 2
SdÞ ! hdecisioni to the subgraph rooted at the
node that ej points to.

3. S1 \ IðejÞ 6¼ ; and S1 \ IðejÞ 6¼ IðejÞ: In this case, we
split edge e into two edges: e0 with label IðejÞ � S1

and e00 with label IðejÞ \ S1. Then, we make two
copies of the subgraph rooted at the node that ej
points to, and let e0 and e00 point to one copy each.

774 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

Fig. 8. A reduced partial FDD.

Fig. 7. A partial FDD before reduction.

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

We then deal with e0 using the first case, and e00

using the second case.

We next show an example of computing the minus on
firewall query results. Let A1 ¼ fS 2 ½6; 9� ^D 2 ½4; 7�g and
A2 ¼ fS 2 ½3; 8� ^D 2 ½2; 5�g. To compute A1 �A2, we first
construct a partial FDD from A2, which is shown in Fig. 8.
Second, we append S 2 ½6; 9� ^D 2 ½4; 7� to this partial FDD.
The resulting FDD is shown in Fig. 9. The dashed paths
represent the result of A1 �A2.

8 EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of our firewall
query processing algorithms by the average execution time
of each algorithm versus the total number of rules in the
original inconsistent firewalls. In the absence of publicly
available firewalls, we create synthetic firewalls according
to the characteristics of real-life packet classifiers discovered
in [3], [23]. Note that a firewall is also a packet classifier.
Each rule has the following five fields: interface, source IP
address, destination IP address, destination port number,
and protocol type. The programs are implemented in SUN
Java JDK 1.4. The experiments were carried out on a
SunBlade 2,000 machine running Solaris 9 with 1Ghz CPU
and 1 GB of memory.

Fig. 10 shows the average execution time of the rule-
based firewall query processing algorithm and the FDD-
based firewall query processing algorithm versus the total
number of rules in the original inconsistent firewalls. In
Fig. 10, the horizontal axis indicates the total number of
rules in the original inconsistent firewalls, and the vertical
axis indicates the average execution time (in milliseconds)

for processing a firewall query. Note that in Fig. 10, the
execution time of the FDD-based firewall query processing
algorithm does not include the FDD construction time
because the conversion from a firewall to an equivalent
FDD is performed only once for each firewall, not for each
query. Similarly, the execution time of the rule-based
firewall query processing algorithm does not include the
time for converting an inconsistent firewall to an equivalent
consistent firewall because this conversion is performed
only once for each firewall, not for each query. Recall that
the procedure for converting an inconsistent firewall to a
consistent firewall consists of two steps: first, construct an
equivalent FDD from the original inconsistent firewall;
second, generate one rule for each decision path of the FDD,
and any sequence of all the rules defined by the decision
paths of the FDD constitutes the final consistent firewall.

From Fig. 11, we can see that the FDD-based firewall
query processing algorithm is much more efficient than the
rule-based firewall query processing algorithm. For exam-
ple, for processing a query over an inconsistent firewall that
has 10,000 rules, the FDD-based query processing algorithm
uses about 10 milliseconds, while the rule-based query
processing algorithm uses about 100 milliseconds. The
experimental results in Fig. 11 confirm our analysis that the
FDD-based query processing algorithm saves execution
time by reducing repeated calculations.

Fig. 11 shows the average execution time for constructing
an equivalent FDD from an inconsistent firewall. In Fig. 11,
the horizontal axis indicates the total number of rules in the
original inconsistent firewalls, and the vertical axis indi-
cates the average execution time (in seconds) for construct-
ing an equivalent FDD from an inconsistent firewall. From
Fig. 11, we can see that the FDD construction algorithm is
very efficient. It takes less than 4 seconds to construct an
equivalent FDD from an inconsistent firewall that has up to
10,000 rules. Thus, if one intends to run more than 40-
50 queries on the same firewall, then using the FDD-based
algorithm, even including the cost of building the FDD, is
more efficient than the simple linear search.

9 CONCLUDING REMARKS

We make a number of contributions in this paper. First, we
introduce a simple and effective SQL-like query language,
which is called the Structured Firewall Query Language, for

LIU AND GOUDA: FIREWALL POLICY QUERIES 775

Fig. 10. Query processing time versus number of rules.

Fig. 11. FDD construction time versus number of rules.

Fig. 9. A partial FDD.

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

describing firewall queries. Second, we present a theorem,

the Firewall Query Theorem, as the foundation for devel-

oping firewall query processing algorithms. Third, we

present an efficient query processing algorithm that uses

firewall decision diagrams as its core data structure. Our

experimental results show that this query processing

algorithm is very efficient. Fourth, we present methods for

optimizing firewall query results. At last, we present

methods for performing the union, intersect, and minus

operations on firewall query results.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their

constructive comments and suggestions on improving the

presentation of this work. The work of Alex X. Liu is

supported in part by the US National Science Foundation

(NSF) under Grant No. CNS-0716407. Thework ofMohamed

G. Gouda is supported by the NSF under Grant No. 0520250.

REFERENCES

[1] ipchains, http://www.tldp.org/howto/ipchains-howto.html,
2009.

[2] E. Al Shaer and H. Hamed, “Discovery of Policy Anomalies in
Distributed Firewalls,” Proc. IEEE INFOCOM ’04, Mar. 2004.

[3] F. Baboescu, S. Singh, and G. Varghese, “Packet Classification for
Core Routers: Is There an Alternative to CAMs?” Proc. IEEE
INFOCOM, 2003.

[4] F. Baboescu and G. Varghese, “Fast and Scalable Conflict
Detection for Packet Classifiers,” Proc. 10th IEEE Int’l Conf.
Network Protocols, 2002.

[5] Y. Bartal, A.J. Mayer, K. Nissim, and A. Wool, “Firmato: A Novel
Firewall Management Toolkit,” Proc. IEEE Symp. Security and
Privacy, pp. 17-31, 1999.

[6] Y. Bartal, A.J. Mayer, K. Nissim, and A. Wool, “Firmato: A Novel
Firewall Management Toolkit,” ACM Trans. Computer Systems,
vol. 22, no. 4, pp. 381-420, 2004.

[7] CERT, Test the Firewall System, http://www.cert.org/security-
improvement/practices/p060.html, 2009.

[8] CERT Coordination Center, http://www.cert.org/advisories/ca-
2003-20.html, Aug. 2003.

[9] CheckPoint FireWall-1, http://www.checkpoint.com/, Mar. 2005.
[10] Cisco PIX 500 Series Firewalls, http://www.cisco.com/en/us/

products/hw/vpndevc/ps2030/, Nov. 2003.
[11] D. Moore et al., http://www.caida.org/outreach/papers/2003/

sapphire/sapphire.html, 2003.
[12] D. Dobkin and R.J. Lipton, “Multidimensional Searching Pro-

blems,” SIAM J. Computing, vol. 5, no. 2, pp. 181-186.
[13] D. Eastlake and P. Jones, “Us Secure Hash Algorithm 1 (SHA-1),”

RFC 3174, 2001.
[14] D. Eppstein and S. Muthukrishnan, “Internet Packet Filter

Management and Rectangle Geometry,” Proc. Symp. Discrete
Algorithms, pp. 827-835, 2001.

[15] P. Eronen and J. Zitting, “An Expert System for Analyzing
Firewall Rules,” Proc. Sixth Nordic Workshop Secure IT Systems
(NordSec ’01), pp. 100-107, 2001.

[16] D. Farmer and W. Venema, Improving the Security of Your Site by
Breaking into It, http://www.alw.nih.gov/Security/Docs/admin-
guide-to-cracking.101.html, 1993.

[17] M. Frantzen, F. Kerschbaum, E. Schultz, and S. Fahmy, “A
Framework for Understanding Vulnerabilities in Firewalls Using
a Dataflow Model of Firewall Internals,” Computers and Security,
vol. 20, no. 3, pp. 263-270, 2001.

[18] M. Freiss, Protecting Networks with SATAN. O’Reilly & Assoc., Inc.,
1998.

[19] M. Gouda, A.X. Liu , and M. Jafry, “Verification of Distributed
Firewalls,” Proc. IEEE GLOBECOM, 2008.

[20] M.G. Gouda and A.X. Liu, “Firewall Design: Consistency,
Completeness and Compactness,” Proc. 24th IEEE Int’l Conf.
Distributed Computing Systems (ICDCS ’04), pp. 320-327, 2004.

[21] M.G. Gouda and A.X. Liu, “A Model of Stateful Firewalls and its
Properties,” Proc. IEEE Int’l Conf. Dependable Systems and Networks
(DSN ’05), pp. 320-327, June 2005.

[22] M.G. Gouda and A.X. Liu, “Structured Firewall Design,” Computer
Networks J., vol. 51, no. 4 pp. 1106-1120, Mar. 2007.

[23] P. Gupta, “Algorithms for Routing Lookups and Packet Classifi-
cation,” PhD thesis, Stanford Univ., 2000.

[24] J.D. Guttman, “Filtering Postures: Local Enforcement for Global
Policies,” Proc. IEEE Symp. Security and Privacy, pp. 120-129, 1997.

[25] A. Hari, S. Suri, and G.M. Parulkar, “Detecting and Resolving
Packet Filter Conflicts,” Proc. IEEE INFOCOM ’00, pp. 1203-1212,
2000.

[26] S. Hazelhurst, A. Attar, and R. Sinnappan, “Algorithms for
Improving the Dependability of Firewall and Filter Rule Lists,”
Proc. Int’l Conf. Dependable Systems and Networks (DSN ’00),
pp. 576-585, 2000.

[27] J. Hwang, T. Xie, F. Chen, and A.X. Liu, “Systematic Structural
Testing of Firewall Policies,” Proc. 27th IEEE Int’l Symp. Reliable
Distributed Systems (SRDS), 2008.

[28] S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and M. Frantzen,
“Analysis of Vulnerabilities in Internet Firewalls,” Computers and
Security, vol. 22, no. 3, pp. 214-232, 2003.

[29] A.X. Liu, “Change-Impact Analysis of Firewall Policies,” Proc.
12th European Symp. Research Computer Security (ESORICS ’07),
pp. 155-170, Sept. 2007.

[30] A.X. Liu, “Firewall Policy Verification and Troubleshooting,” Proc.
IEEE Int’l Conf. Comm. (ICC ’08), May 2008.

[31] A.X. Liu and M.G. Gouda, “Complete Redundancy Detection in
Firewalls,” Proc. 19th Ann. IFIP Conf. Data and Applications Security,
pp. 196-209, Aug. 2005.

[32] A.X. Liu and M.G. Gouda, “Diverse Firewall Design,” IEEE Trans.
Parallel and Distributed Systems, to be published.

[33] A.X. Liu, C.R. Meiners, and E. Torng, “TCAM Razor: A Systematic
Approach Towards Minimizing Packet Classifiers in TCAMs,”
IEEE/ACM Trans. Networking, to be published.

[34] A. Mayer, A. Wool, and E. Ziskind, “Fang: A Firewall Analysis
Engine,” Proc. IEEE Symp. Security and Privacy, pp. 177-187, 2000.

[35] A. Mayer, A. Wool, and E. Ziskind, “Offline Firewall Analysis,”
Int’l J. Information Security, vol. 5, no. 3, pp. 125-144, 2005.

[36] J.D. Moffett and M.S. Sloman, “Policy Conflict Analysis in
Distributed System Management,” J. Organizational Computing,
vol. 4, no. 1, pp. 1-22, 1994.

[37] D.R. Morrison, “Patricia Practical Algorithm to Retrieve Informa-
tion Coded in Alphanumeric,” J. ACM, vol. 15, no. 4, pp. 514-534,
1968.

[38] Nessus, http://www.nessus.org/, Mar. 2004.
[39] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321, 1992.
[40] D. Rovniagin and A. Wool, “The Geometric Efficient Matching

Algorithm for Firewalls,”Proc. 23rd IEEEConvention of Electrical and
Electronics Eng. in Israel (IEEEI), pp. 153-156, http://www.eng.
tau.ac.il/~yash/ees2003-6.ps, 2004.

[41] A.D. Rubin, D. Geer, and M.J. Ranum, Web Security Sourcebook,
first ed. Wiley Computer Publishing, 1997.

[42] A. Wool, “Architecting the Lumeta Firewall Analyzer,” Proc. 10th
USENIX Security Symp., pp. 85-97, Aug. 2001.

[43] A. Wool, “A Quantitative Study of Firewall Configuration Errors,”
Computer, vol. 37, no. 6, pp. 62-67, June 2004.

[44] A. Wool, “The Use and Usability of Direction-Based Filtering in
Firewalls,” Computers & Security, vol. 23, no. 6, pp. 459-468, 2004.

[45] J. Xu and M. Singhal, “Design and Evaluation of a High-
Performance ATM Firewall Switch and Its Applications,” IEEE J.
Selected Areas in Comm., vol. 17, no. 6, pp. 1190-1200, 1999.

[46] J. Xu and M. Singhal, “Design of a High-Performance ATM
Firewall,” ACM Trans. Information and System Security, vol. 2, no. 3,
pp. 269-294, 1999.

[47] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“Fireman: A Toolkit for Firewall Modeling and Analysis,” Proc.
IEEE Symp. Security and Privacy, May 2006.

776 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 6, JUNE 2009

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

Alex X. Liu received the PhD degree in computer
science from The University of Texas at Austin in
2006. He is currently an assistant professor in the
Department of Computer Science and Engineer-
ing at Michigan State University. He won the
2004 IEEE & IFIP William C. Carter Award, the
2004 National Outstanding Overseas Students
Award sponsored by the Ministry of Education of
China, the 2005 George H. Mitchell Award for
Excellence in Graduate Research in the Uni-

versity of Texas at Austin, and the 2005 James C. Browne Outstanding
Graduate Student Fellowship in the University of Texas at Austin. His
research interests include computer and network security, dependable
and high-assurance computing, applied cryptography, computer net-
works, operating systems, and distributed computing. He is a member of
the IEEE.

MohamedG. Gouda received the BSc degree in
engineering and in mathematics from Cairo
University, the MA degree in mathematics from
York University, and the master’s and PhD
degrees in computer science from the University
of Waterloo. He was with the Honeywell Corpo-
rate Technology Center at Minneapolis from
1977 to 1980. In 1980, he joined The University
of Texas at Austin, where he currently holds the
Mike A. Myers Centennial professorship in

computer sciences. He is the 1993 winner of the Kuwait Award in Basic
Sciences. He won the 2001 IEEE Communication Society William R.
Bennet Best Paper Award for his paper “Secure Group Communications
Using Key Graphs,” coauthored with C.K. Wong and S.S. Lam, and
published in the IEEE/ACM Transactions on Networking (vol. 8, no. 1,
pp. 16-30). In 2004, his paper “Diverse Firewall Design,” coauthored with
Alex X. Liu and published in the Proceedings of the International
Conference on Dependable Systems and Networks, won the William C.
Carter award. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIU AND GOUDA: FIREWALL POLICY QUERIES 777

Authorized licensed use limited to: Michigan State University. Downloaded on October 21, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

