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Abstract The theoretical, numerical and experimen-
tal demonstrations of firing dynamics in isolated neu-

ron are of great significance for the understanding of
neural function in human brain. In this paper, a new
type of locally active and non-volatile memristor with

three stable pinched hysteresis loops is presented. Then

a novel locally active memristive neuron model is es-

tablished by using the locally active memristor as a

connecting autapse, both firing patterns and multista-

bility in this neuronal system are investigated. We have

confirmed that, on the one hand, the construced neuron

can generate multiple firing patterns like periodic burst-

ing, periodic spiking, chaotic bursting, chaotic spiking,

stochastic bursting, transient chaotic bursting and tran-

sient stochastic bursting. On the other hand, the phe-

nomenon of firing multistability with coexisting four
kinds of firing patterns can be observed via changing its

initial states. It is worth noting that the proposed neu-

ron exhibits such firing multistability previously unob-

served in single neuron model. Finally, an electric neu-

ron is designed and implemented, which is extremely

useful for the practical scientific and engineering ap-

plications. The results captured from neuron hardware

experiments match well with the theoretical and nu-

merical simulation results.
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1 Introduction

Firing is one of the primary electric activities of bio-

logical neurons and plays a crucial role in neural infor-

mation transmission and encoding. The neural signals

encoded by neuronal action potentials are considered

to be the neural bases for the realization of various ad-

vanced intelligent behaviors like learning, memory and

emotion in the human brain [1–3]. Thus the investiga-

tion of neuronal firing is extremely important to develop

neuromorphic systems with neural functions [4–7] and

artificial intelligence with emotional algorithms [8–10].
In the past decades, great progresses in nonlinear dy-

namics have inspired an increasing enthusiasm in stud-
ies on the complex dynamics in neural electrical activi-
ties. From the perspective of dynamics, firing patterns
of neurons can be divided into periodic and chaotic

spiking firings [11], stochastic bursting firing [12], peri-

odic and chaotic bursting firings [13] as well as chaos
firing [14]. Since British biologists Hodgkin and Hux-

ley reproduced the pulse firing in an isolated neuron

model described by dynamical equations [15], various

firing patterns have been widely investigated based on

theoretical and experimental neuron models. For exam-

ple, Hindmarsh and Rose (HR) [16, 17] discovered the
periodic spiking firing and periodic bursting firing in

a 2-dimension (2D) and a 3-dimension (3D) nerve im-

pulse models, respectively. In [18], the generating mech-

anisms of periodic bursting firing and chaotic bursting

firing are revealed in a simplified HR neuron model.

And Lakshmanan and his team found that the periodic

and chaotic spiking, and the periodic and chaotic burst-
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ing can be observed based on the HR neuron with time

delays [19]. With the rapid development in nonlinear
dynamics and bio-physiology, based on single neuron,

the phenomena of multiple modes and mode transition

in electrical activities of neuron have been explored by

considering different external environment factors. For

instance, Lv and Ma [20] detected that when exter-

nal electromagnetic radiation is imposed on the neu-
ron, the bursting firings with different periodicities can
be changed by changing the intensity of magnet field.

Some similar research results have also been reported

in [21, 22]. And [23] obtained multiple firing patterns

such as periodic bursting, stochastic bursting, chaotic
bursting and chaos firing in an isolated neuron exposed

to external electric field. Similarly, multiple firing pat-

terns including chaotic bursting and stochastic bursting

have been verified in a sciatic nerve chronic constriction

injury neuron [24]. Additionally, in [25], hidden chaos

firing pattern has also been discovered in a memristive
HR neuron model.

In recent years, the phenomenon of coexisting be-

haviors [26–29] has become a very important research

topic and received extensive attention. Coexisting be-

havior is an intricate dynamical phenomenon that con-

tains different kinds of stable dyanmical behaviors in

the same nonlinear system under different initial states
[30]. Particularly, the coexistence of three or more dif-

ferent dynamical states under different initial condi-

tions is called as multistability [31, 32]. Multistability

means that a rich diversity of stable states exists in

a nonlinear system, which reflects the characteristics

of the brain itself [33, 34]. Numerous electrophysiologi-

cal experiments show that multistability of firing pat-
terns exist in the electrical activities of biological neu-
rons [35, 36]. Such multistable behaviors may be mod-

ulated by neuromodulators, which has many potential

implications for dynamic memory and information pro-

cessing in a neuron [37, 38]. Recently, the phenomenon

of coexisting two types of firing patterns has been ob-

served in single neuron model. For example, in [39],
the coexistence of two chaotic bursting with different

topologies has been found in a modified HR neuron by

imposing an external alternating current. [40] captured

the coexisting phenomenon of periodic spiking firing

and chaotic bursting firing in a 2D HR neuron model

stimulated by bipolar pulse. In particular, Bao et al. [25]
demonstrated that the coexisting behaviors of periodic

spiking and hidden chaos firing can be produced in the

memristive HR neuron model under two sets of differ-

ent initial conditions. And the coexistence of periodic

bursting firing and hidden bursting firing has been dis-

covered in a threshold memristive neuron model [41].

Besides, the multistability with coexisting three types

of periodic bursting firing patterns with different peri-

odicities has been observed in single Morris-Lecar neu-
ron model [42]. However, the multistability with coex-

isting four or more firing patterns has not been detected

in isolated neuron models up to now. Therefore, it is im-

portant to explore firing multistability from single neu-

ron models, which is helpful for better understanding

of complicated dynamics of electrical activities observed

in biological neurons.

It is well known that memristor [43, 44] is a natu-

ral nonlinear nano-electronic device. Due to excellent

biomimetic characteristics like nano-scale, nonlinearity

and memorability, memristors usually are used to im-

itate biological synapses [45, 46]. Local activity is con-

sidered as the origin of complexity [47, 48]. The first
locally active memristor exhibiting local activity was

proposed by Leon Chua in 2014 [49]. Thereafter, the

mathematical and physical locally active memristive

devices have attracted increasing attention from scien-

tific and technological communities. There is evidence

that the locally active memristors [50–52] have intense

nonlinearity and complicated dynamics due to its rich
equilibria stability. At present, the locally active mem-

ristor models with one or two stable pinched hystere-
sis loops under different initial states have been re-
ported. For example, [49] designed the locally active

memristor with one pinched hysteresis loops under dif-

ferent initial conditions. Jin et al. [53] presented a lo-

cally active memristor model with two stable equilib-
ria, and using it obtained a simplest chaotic circuit.

And the bistable bi-locally active memristor with two
stable pinched hysteresis loops has been investigated
by Chang et al. [54]. As we all know, synapses are

considered as the locally active non-volatile memris-

tors [55, 56]. Therefore, the locally active memristors

can efficiently mimic the neural synapses. Motivated
by these considerations, we present a new locally active

and non-volatile memristor with three stable pinched
hysteresis loops, which has not been reported in the pre-
vious investigation. After that, the locally active mem-

ristor is selected as a autapse to construct a novel lo-

cally active memristive neuron model based on a 2D HR

neuron. Through the theoretical and numerical anal-

ysis, we determine that the locally active memristive
neuron can generate multiple firing patterns and firing
multistability. Moreover, hardware experiments of the

locally active memristive neuron are provided to verify

the effectiveness of the numerical simulation results.

The rest of this paper is organized as follows. Section

2 designs a novel locally active memristor. In Section 3,

the locally active memristive neuron is modeled, and its

firing multistability is revealed. In Section 4, the circuit

of the locally active memristive neuron is designed, and
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the theoretical and numerical results are demonstrated

in hardware experiments. Section 5 summarizes the pa-
per.

2 The new locally active memristor

Generally, a memristive model with n different stable
pinched hysteresis loops under different initial condi-

tions is called n-stable memristor [52]. The value of

n is determined by the number of the stable equilib-

rium points of the locally active memristor. Numerous

investigation results [49, 50, 53, 54] show that the lo-
cally active memristor with a larger number of stable

pinched hysteresis loops under different initial states

exhibits more complex dynamical behaviors. Unfortu-

nately, until now, the maximum of n is only equal to 2.

In this section, a non-volatile and locally active memris-

tor with three stable pinched hysteresis loops, namely

n=3, will be presented. An accurate model for the lo-

cally active memristor can be derived by modifying the

generic memristor model [49]. According to the theory

of memristors, a voltage-controlled generic memristor

can be defined as

State-dependent ohm’s law :

i = W (x)v (1)

State equation:

dx/dt = F (x, v) (2)

where W (x) is memductance, and v, i, x denote the in-

put voltage, output current, and state variable, respec-
tively. Now, we propose a hypothetical voltage-controlled

generic memristor model based on Equations (1) and
(2), namely

i = W (x)v = xv (3)

dx/dt = F (x, v) = αf(x) + βv (4)

where

f(x) = sgn(x+ 1) + sgn(x− 1)− x (5)

α, β are two memristive parameters, and f(x) is the ex-
act equation of the five-segment curve. To prove the pre-

sented mathematic model to be a non-volatile and lo-

cally active memristor, the prominent characteristics in-

cluding frequency-dependent pinched hysteresis loops,

non-volatile and local activity are analyzed by using the

methods of theoretical analysis and numerical simula-

tions.
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Fig. 1 Amplitude/Frequency-dependent pinched hysteresis
loops of the locally active memristor. (a) F=0.5, x(0)=2 and
different amplitudes. (b) A=4, x(0)=2 and different frequen-
cies.

2.1 Pinched Hysteresis Loop

Keeping the parameters α=1, β=1, the dynamical be-

haviors of the locally active memristor are explored un-

der different signal frequencies, signal amplitudes and

initial states, when a sinusoidal voltage signal v=Asin(2
πFt) with amplitude A and frequency F is chosen as

the driving source. When the frequency F=0.5 and ini-

tial state x(0)=2 are fixed with different values of the

amplitude A, and the amplitude A=4 and initial state

x(0)=2 are fixed with different values of the frequency

F, the frequency-dependent pinched hysteresis loops of

the locally active memristor are numerically simulated

and plotted in Fig.1(a) and Fig.1(b), respectively. As

can be seen from the Fig.1, six pinched hysteresis loops

pass through the origin in the voltage-current plane

when driven by sinusoidal signal with different ampli-

tudes and frequencies. And in Fig.1(b), as the excita-

tion frequency increases from 0.5 to 2, the hysteresis
lobe area is gradually decreased. Furthermore, it is ob-
vious that when the frequency increases to infinity the

pinched hysteresis loop will tend to a single-valued func-

tion. Evidently, the proposed mathematical model ex-

hibits memristor peculiarities [42], which implies the

model described by Equations (3)-(5) is a memristor

device.

Additionally, with A=4, F=0.8 unchanged, three

stable pinched hysteresis loops can be obtained from
the proposed locally active memristor model as shown
in Fig.2(a) under different initial states, and two critical

points which divide three pinched hysteresis loops are

-0.3521 and -1.1609, respectively. It should be pointed

out that with the decreasing of the signal frequency,

three distinct pinched hysteresis loops of the memristor

will tend to synthesize a stable pinched hysteresis loop,
as shown in Fig.2(b). Obviously, the presented mem-

ristor is a tri-stable locally active memristor, which has

not been reported in the previous studies. Additionally,

the memductance of the locally active memristor can be
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Fig. 2 Initial state-dependent pinched hysteresis loops of the
locally active memristor. (a) A=4, F=0.8 and different initial
values. (b) A=4, F=0.3 and different initial values.
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Fig. 3 Voltage-dependent memductance of the locally active
memristor. (a) A=4, x(0)=-1 and different frequencies. (b)
A=4, F=0.8 and different initial states.

modulated by controlling voltage through it, as shown

in Fig.3 with different frequencies and initial states.

Such feature is similar to the function of a biological

neural synapse. Consequently, using the locally active

memristor as a synapse in neuromorphic system can

efficiently imitate synaptic functions.

2.2 Non-volatile Memory

It is noted that not all memristors have non-volatility

memories [49]. The property of non-volatile can be proved

by using power-off plot (POP), that is, a curve in the

F (x, 0) versus x plane. According to the non-volatile

memristor theorem, the POP curve of the non-volatile

memristor has two or more negative slope intersections

with x-axis in the dx/dt versus x plane. Here, Let v=0,
the state equation of the locally active memristor re-

duces to

dx/dt = F (x, 0) = sgn(x+ 1) + sgn(x− 1)− x (6)

The dynamic route of the nonlinear dynamical function

Equation 6, namely POP, is shown in Fig.4. In Fig.4,

when dx/dt=0, there are a total of five intersections

with x-axis located at Q1(−2, 0), Q2(−1, 0), Q3(0, 0),

Q4(1, 0) and Q5(2, 0), respectively. It should be stressed

that each intersection of POP with the x-axis is de-

fined as an equilibrium point of the memristor due to
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Fig. 4 POP of the tri-stable locally active memristor.

dx/dt=0 under this case. According to the judgment

method of Ref. [49], the equilibrium points Q1, Q3 and

Q5 are asymptotically stable, while the equilibrium points

Q2 and Q4 are unstable. Thus, three stable equilibrium
states exist in the non-volatile memristor under differ-

ent initial state x(0), that is to say,

X = x(Q1) = −2, (x(0) < −1) (7)

X = x(Q3) = 0, (−1 < x(0) < 1) (8)

X = x(Q5) = 2, (x(0) > 1) (9)

Furthermore, the corresponding stable small-signal con-

ductance can be calculated as

W (x(Q1)) = x(Q1) = −2, (x(0) < −1) (10)

W (x(Q3)) = x(Q3) = 0, (−1 < x(0) < 1) (11)

W (x(Q5)) = x(Q5) = 2, (x(0) > 1) (12)

Obviously, Equaitons (7)-(12) show that the state x(t)

is different with initial state x(0). Therefore, the pre-
sented locally active memristor is a non-volatile mem-

ristor.

2.3 Local Activity

It is noted that not all non-volatile memristors are lo-

cally active [49]. The property of local activity can be

inferred by observing DC V -I plot. To measure the DC

V -I loci of the locally active memristor, its equilibrium

equation can be calculated by setting dx/dt=0, as fol-

lows

V = X − sgn(X + 1)− sgn(X − 1) (13)
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where V denotes DC voltage, and X is a variable equi-

librium state satisfying dx/dt(x=X)=0. Then substitut-
ing Equation (13) into Equation (3), the DC current I

can be described by

I = XV = X(X − sgn(X + 1)− sgn(X − 1)) (14)

Considering the Equations (13) and (14), the DC V -I

plot of the tri-stable locally active memristor is drawn
with the input DC voltage V value varying from -1V

to 1V and the variable X value varying within (-2.2,

2.2), as shown in Fig.5. In Fig.5, when the DC volt-

age V=0, the memristor has five different memduc-

tances which are respectivelyW (X1)=-2 (the royal blue
curve), W (X2)=-1 (the dark yellow curve), W (X3)=0

(the cyan curve), W (X4)=1 (the purple curve) and
W (X5)=2 (the dark green curve). And when the DC

voltage V 6=0, five intervals of equilibrium states X1=(-

2.2, -1.01), X2=(-1.01, -0.9988), X3=(-0.9988, 0.9988)

and X4=(0.9988, 1.002) and X5=(1.002, 2.2) are co-
incident with the corresponding five segment curves in

Fig.4, and corresponding POP curve are colored in royal
blue, dark yellow, cyan, purple and dark green. It can be

seen from Fig.5 that the royal blue curve, the dark yel-

low curve and part of the cyan curve are negative slope,

and the corresponding equilibrium state values X are

(-2.2, -1.01), (-1.01, -0.9988) and (-0.9988, 0), respec-
tively. Therefore, the tri-stable non-volatile memristor

is locally active.
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Fig. 5 DC V −I loci of the tri-stable locally active memristor
associated with the equilibrium state on interval −2.2 < X <

2.2.

3 Dynamics of the locally active memristive

neuron

3.1 Model Establishment

As it is well known, a neuron is made up of the nucleus

encoding information, the dendrite collecting electri-
cal signals, and the axon propagating electrical signals.

Synapse is an important bridge for connecting the axon
and the dendrite of different neurons, which plays a key
role for receiving and transferring electrical signals be-

tween neurons. Based on some mathematical and bio-

logical neuron models [45, 46], the patterns in electri-

cal activities can be modulated by the synapse current.

Autapse can connect the axon and the dendrite of the

same neuron by a close loop, which is a type of spe-

cial synapse. As reported in [57, 58], the autapse can

regulate the neuronal activity by a negative feedback

autapse current. Therefore, it is significant and neces-

sary to consider autapse as a part of a neuronal sys-

tem. Numerous experiments show that the nonvolatile

nature of memristors makes them an attractive candi-

date for the simulated autapse [56, 57]. Furthermore,

the effect of electromagnetic induction current on elec-

trical activities in neuron can be described by using

memristor coupling [20–22, 25, 41]. Under this strat-

egy, a reduced diagram is plotted for a new neuronal

model with a memristive autaptse connection in Fig.6.

Since the memristive autapse is considered by adding

memristive induction current on the neuron, a neuron

model accompanying autapse current can be considered

to generate complex firing patterns in biological neu-

rons. Generally, autapse is thought as the locally ac-

tive memristor, which is emulated by a locally active

and non-volatile memristor considered in this paper. It

should be pointed out that such locally active memris-

tive neuron model is distinguished from the memristive

neuron model in [25] and [41] due to different con-

structing approach. Compared with [25] and [41], we

mainly focus the influence of autapse current on the

firing patterns of neuron, while both [25] and [41] in-
vestigate the electromagnetic induction effects triggered

by external electromagnetic radiation in biological neu-

rons.

Fig. 6 Structure of a neuron with memristive autapse.

The 2D HR neuron model is regarded by many schol-
ars as the idealistic one in the study of actual neuron
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firing. Its mathematical expression is
{

dx/dt = y − ax3 + bx2 + I

dy/dt = c− dx2 − y
(15)

where x and y denote membrane potential and recovery

variable of the neuron, a, b, c and d are system parame-

ters, and I is the external current. Since the fluctuation

of electrical activities in neurons can generate dynamic

electromagnetic field. According to the Maxwell’s equa-

tion, the induction current following through the au-

tapse can be occurred. When the locally active mem-

ristor in (3)-(5) is considered to emulate the autapse, a

locally active memristive induction current IM , namely,
autapse current can be added on the neuron. As a re-

sult, a novel locally active memristive neuron model can

be built. Based on the equations (3)-(5), a locally active

memristive induction current can be described by
{

IM = −kW (z)VM = −kzVM

dz/dt = α(sgn(z + 1) + sgn(z − 1)− z) + βVM

(16)

where z represents an inner state variable of the mem-
ristor synapse, k represents the coupling strength of the

locally active memristor, and VM represents the mem-

brane potential of the neuron. W (z)=z is a memduc-

tance function, which stands for the synapse weight. It

should be noted that the autapse current is often re-

garded as a negative feedback current [57, 58], namely

−IM . When the autapse current −IM in (16) is consid-

ered in the HR neuron model in (15), the locally active

memristive neuron model can be established and writ-

ten as






dx/dt = y − ax3 + bx2 + I + kxz
dy/dt = c− dx2 − y

dz/dt = α(sgn(z + 1) + sgn(z − 1)− z) + βx

(17)

where a=1, b=3, c=1, d=5, I = 0, and α, β are consid-

ered as two memristor synapse parameters.

3.2 Stability Analysis

By setting the left-hand side of Equation (17) to zero,

its equilibrium equation can be given by






y = x3 − 3x2 − kxz

y = 1− 5x2

βx = α(z − sgn(z + 1)− sgn(z − 1))
(18)

And the equilibrium points of the locally active mem-

ristive neuron can be numerically solved by solving the

Equation (18), namely






x∗

y∗ = 1− 5(x∗)
2

z∗
(19)
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z
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Fig. 7 Two function curves and their intersection, where
k=0.9, α=0.1 and β=0.42.

where the values of x∗ and z∗ are the intersection points
of the two following function curves
{

f1(x, z) = 1− x3 − 2x2 + kxz

f2(x, z) = α(sgn(z + 1) + sgn(z − 1)− z) + βx
(20)

The values of x∗ and z∗ can be determined through
graphic analytic method. For example, when k=0.9,
α=0.1 and β=0.42, the two function curves given by
Equation (20) can be plotted in Fig.7, from which the
only solution is gotten as x∗=2.6143 and z∗=12.9801.
Correspondingly, the equilibrium point can be easily
obtained from Equation (19), namely (x∗, y∗, z∗)=(2.6143,
-33.1728, 12.9801). Correspondingly, the Jacobian ma-
trix of the neuron model Equation (17) at equilibrium
point (x∗, y∗, z∗) can be given by

J =









∂
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−3(x∗)2

+6x∗+kz∗
1 kx∗

−10x∗ −1 0

β 0
α(106(1−tanh2(106(z∗+1)))
+106(1−tanh2(106(z∗−1)))
−1)















(21)

Corresponding eigenvalues of the equilibrium point (x∗,

y∗, z∗) can be solved by using MATLAB numerical
methods. Based on the above methods, when the pa-

rameters k and α are fixed as 0.9 and 0.1 respectively,

for different parameter β, the equilibrium points P ∗,

their corresponding eigenvalues, and the stability are

given in Table 1. It can be seen form Table 1 that the
potential types of P ∗ include unstable saddle-focus with

index 2, stable focus-nodes and stable saddle-nodes.
According to the results given in Table 1, the β-

parameter bifurcation diagram is depicted by Fig.8(a)

under the initial conditions (0, 0, -0.1), where xmax is

the maxima of the x variable. In Fig.8(a), when the

model parameter β increases from 0.3, the orbit of the
locally active memristive neuron model begins with period-

1 spiking firing pattern, and evolves to period-2 spiking
firing pattern at β=0.34 by forward period doubling
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Table 1 Equilibrium points and their corresponding eigenvalues and stabilities

β Equilibrium points (P∗) Eigenvalues Stabilities
0.3 (1.1913, -6.0960, 7.7403) -0.0597, 3.2115±j0.7598 Unstable saddle-focus

0.42 (2.6143, -33.1728, 12.9801) -0.0522, 2.9082±j3.0903 Unstable saddle-focus
0.58 (3.7669, -69.9477, 23.8482) -0.0483, 0.2222±j5.8420 Unstable saddle-focus
0.59 (3.8445, -72.9010, 24.6826) -0.0482, -0.0555±j5.9549 Stable focus-node
0.75 (5.1372, -130.954, 40.5293) -0.0473, -6.4628±j4.3227 Stable focus-node
0.78 (5.3875, -144.1258, 44.0234) -0.0472, -8.0911±j0.7782 Stable focus-node
0.79 (5.4714, -148.6811, 45.2246) -0.0472, -6.005, -11.3260 Stable saddle-node
0.9 (6.4025, -203.9600, 59.6227) -0.0472, -3.1614, -28.7764 Stable saddle-node
1.1 (8.1359, -229.9643, 91.4953) -0.0473, -2.1771, -66.2930 Stable saddle-node
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Fig. 8 The β-dependent dynamics with k=0.9, α=0.1. (a) bifurcation diagram, (b) Lyapunov exponent spectra.

bifurcation (FPDB) rout. Thereafter, the orbits break

into chaotic bursting firing at β=0.4 until β=0.46 via

crisis scenario (CS). As β increases further, the chaotic
bursting is degenerated to periodic bursting pattern via

tangent bifurcation (TB) rout. Interestingly, when β
increases to 0.75, the orbit enters into hidden chaos

firing pattern and finally ends at β=0.96. What fol-

lows is period-1 spiking pattern in the interval β∈(0.97,

1.1) again. It is noting that the wider chaotic band of

β∈(0.4, 0.46) and β∈(0.75, 0.96) contains multiple nar-
row periodic windows, such as β=0.44, β=0.84, and

β=0.94. The corresponding Lyapunov exponents in Fig.8

(b) are basically consistent with the dynamical phenom-

ena on the bifurcation diagram in Fig.8(a). Note that

the third Lyapunov exponent L3 is much less than L2

colored in blue and out of the picture. To systemati-

cally exhibit the complex dynamics in Equation (17),
the corresponding types of equilibrium points are su-

perimposed on the bifurcation diagram in Fig.8(a). It
can be seen from Fig.8(a) that there exists a smooth

transition from a unstable equilibrium point to a sta-

ble equilibrium point in β∈(0.3,1.1), which essentially

leads to the emergence of firing multistability.

3.3 Multistability With Coexisting Multiple Firings

Before exploring the firing multistability of the locally

active memristive neuron, it is necessary to introduce

basic definition of various firing patterns [11–13, 24].

Generally, firing pattern mainly includes spiking and

bursting patterns. If the trajectory of a firing pattern

of the neuronal system only circles around the spik-

ing, the firing pattern is said to be spiking pattern. If

the trajectory alternates between a quiescent state and

repetitive spiking, the firing pattern is considered burst-

ing pattern. The spiking patterns include periodic spik-

ing and chaotic spiking, whereas the bursting patterns

contained periodic bursting, chaotic bursting, stochas-

tic bursting, transient stochastic bursting and transient

chaotic bursting. Among them, periodic spiking con-

taining m spikes per spiking is said to be period-m

spiking (m ∈ N∗). For the chaotic spiking, except for

the period-m spiking, there exist other kinds of spiking

with different numbers or amplitudes of spikes. Peri-

odic bursting containing m spikes per burst is said to

be period-m bursting. For the stochastic bursting, the

trajectory is stochastic transition between bursting and

spiking. For the chaotic bursting, except for the period-

m bursts, there exist other kinds of bursts with differ-

ent numbers or amplitudes of spikes. Transient stochas-
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Fig. 9 Numerical bifurcation diagrams for the parameter β with k=0.9, α=0.1, and four sets of different initial states. (a)
bifurcation diagram for β under the initial states (0, 0, 0.1). (b) bifurcation diagram for β under the initial states (0, 0, -0.1).
(c) bifurcation diagram for β under the initial states (0.2, -0.1, 0). (d) bifurcation diagram for β under the initial states (-0.1,
0, 0).

tic bursting is an especial behavior that the existence

of stochastic bursting is on finite time. Similarly, for

the transient chaotic bursting, the behavior of chaotic

bursting only exists on finite time. In general, the phase

trajectory of the transient firing pattern is a transient

chaos attractor [33].

In our next work, the multistable dynamics of the

locally active memristive neuron model is revealed in
which two model parameters are kept unchanged as

k=0.9, α=0.1, and the model parameter β and ini-
tial conditions (x0, y0, z0) are taken to be adjustable.

In addition, MATLAB ODE45 algorithm is used, and

the start time, the time step △t and the time length

are 500, 0.01 and 4000, respectively. Considering the

model parameter β in the range [0.32, 0.48] and four
sets of different initial conditions (0, 0, 0.1), (0, 0, -

0.1), (0.2, -0.1, 0) and (-0.1, 0, 0), four β-parameter
bifurcation diagrams are depicted by Fig.9(a), (b), (c)

and (d), respectively. It can be seen from Fig.9 that the

locally active memristive neuron model produces differ-

ent dynamical states under different initial conditions.

That is to say, diverse types of firing patterns can be

observed in the locally active memristive neuron with

different initial states.

According to the bifurcation plots shown in Fig.9,

when the parameter β is selected as 0.39, and four sets

of initial conditions (0, 0, 0.1), (0, 0, -0.1), (1.5, 0.1,

0) and (0.2, -0.1, 0) are used, the multistability with
coexisting of periodic bursting firing pattern, period-2

spiking firing pattern, chaotic bursting firing pattern,

and transient chaotic bursting firing pattern can be de-

tected in the presented locally active memristive neu-

ron model. Correspondingly, Fig.10 and Fig.11 show
the time sequences of membrane potential x and phase

plane plots in the x-z plane, respectively. Noted that in
Fig.10(d) time series of membrane potential x presents

a chaotic bursting firing in the time interval t∈(0, 1400ms)

colored in royal blue, and then it turns to peirodic spik-

ing firing colored in purple. Similarly, when the param-

eter β is fixed as 0.4, with four sets of different initial
values (0, 0, -0.1), (2, -2, -2), (-0.1, 0, 0) and (0.2, -0.1,
0), four types of firing patterns including chaotic spik-

ing, periodic bursting, chaotic bursting, and transient

chaotic bursting in the locally active memristive neuron

model are depicted in Fig.12 and Fig.13, where Fig.12

exhibits their time sequences of the membrane poten-
tial x, and Fig.13 shows corresponding coexisting at-

tractors including periodic attractor, chaotic attractors
with different topologies, and transient chaos attractor
in the x-z plane. In Fig.12(d), time series of membrane

potential x exhibits a chaotic bursting state in the time

interval t∈(0, 1480ms) colored in royal blue, and then
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Fig. 10 The time sequences of the membrane potential in the locally active memristive neuron under different initial states.
k=0.9, α=0.1, β=0.39. (a) periodic bursting firing for (x0, y0, z0)=(0, 0, 0.1). (b) periodic spiking firing for (x0, y0, z0)=(0, 0,
-0.1). (c) chaotic bursting firing for (x0, y0, z0)=(1.5, 0.1, 0). (d) transient chaotic bursting firing for (x0, y0, z0)=(0.2, -0.1, 0).

(a) (b) (c) (d)

Fig. 11 The corresponding phase plane plots under different initial states. k=0.9, α=0.1, β=0.39. (a) periodic attractor for
(x0, y0, z0)=(0, 0, 0.1). (b) periodic attractor for (x0, y0, z0)=(0, 0, -0.1). (c) chaotic attractor for (x0, y0, z0)=(1.5, 0.1, 0). (d)
transient chaotic attractor for (x0, y0, z0)=(0.2, -0.1, 0).
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Fig. 12 The time sequences of the membrane potential in the locally active memristive neuron under different initial states.
k=0.9, α=0.1, β=0.4. (a) chaotic spiking firing for (x0, y0, z0)=(0, 0, -0.1). (b) periodic bursting firing for (x0, y0, z0)=(2, -2,
-2). (c) chaotic bursting firing for (x0, y0, z0)=(-0.1, 0, 0). (d) transient chaotic bursting firing for (x0, y0, z0)=(0.2, -0.1, 0).

it turns to periodic spiking state colored in purple. In

addition, under four sets of initial states (0, 0, 0.1), (0,

0, -1.8), (0, 0, -1.6) and (0, -1.5, 0), four firing patterns

which contain periodic bursting firing, stochastic burst-

ing firing, transient chaotic bursting firing, and tran-

sient stochastic bursting firing can be discovered when

the adjustable parameter β is chosen as 0.46. Their

time sequences of the membrane potential x, and cor-

responding phase plane plots are shown in Fig.14 and

Fig.15, respectively. Where in Fig.14(c), the dynam-

ical behavior of the locally active memristive neuron

begins with chaotic bursting firing pattern, and evolves

to periodic bursting firing pattern at t=1400ms. And in
Fig.14(d) the neuron first generates stochastic bursting

firing pattern within 2000ms, afterwards the stochastic

bursting is degenerated to periodic bursting pattern.

As is clear from the above analysis, the locally active
memristive neuron generate multiple firing patterns and
firing multistability with coexisting four types of firing

patterns. And the form of multistability of the locally

active memristive neuron can be changed by choosing

different model parameters.

In addition, considering the aforementioned param-
eters and performing a measurement of initial condi-

tions, the attraction basin defined as the domain of ini-

tial conditions can be depicted, in which different types

of firing patterns are marked by different colors. When

the adjustable parameter β and the initial state z0 is

chosen as 0.39 and 0, as well as the measureable ini-

tial conditions x0 and y0 are scanned in the regions of
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(a) (b)

Fig. 13 The corresponding phase plane plots under different initial states. k=0.9, α=0.1, β=0.4. (a) chaotic attractor for
(x0, y0, z0)=(0, 0, -0.1) colored in royal blue, periodic attractor for (x0, y0, z0)=(2, -2, -2) colored in purple, chaotic attractor
for (x0, y0, z0)=(-0.1, 0, 0) colored in olive drab. (b) transient chaotic attractor for (x0, y0, z0)=(0.2, -0.1, 0).
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Fig. 14 The time sequences of the membrane potential in the locally active memristive neuron under different initial states.
k=0.9, α=0.1, β=0.46. (a) periodic bursting firing for (x0, y0, z0)=(0, 0, 0.1). (b) stochastic bursting firing for (x0, y0, z0)=(0, 0,
-1.8). (c) transient chaotic bursting firing for (x0, y0, z0)=(0, 0, -1.6). (d) transient stochastic bursting firing for (x0, y0, z0)=(0,
-1.5, 0).

(a) (b) (c) (d)

Fig. 15 The corresponding phase plane plots under different initial states. k=0.9, α=0.1, β=0.46. (a) periodic attractor for
(x0, y0, z0)=(0, 0, 0.1). (b) chaotic attractor for (x0, y0, z0)=(0, 0, -1.8). (c) transient chaotic attractor for (x0, y0, z0)=(0, 0,
-1.6). (d) transient chaotic attractor for (x0, y0, z0)=(0, -1.5, 0).

[-4, 4] and [-4, 4] respectively, the attraction basin in
the x0-y0 initial plane is plotted in Fig.16(a), where the

yellow, royal blue, orange and cyan regions stand for

periodic spiking firing pattern, chaotic bursting firing

pattern, periodic bursting firing pattern, and transient

chaotic bursting firing pattern, respectively. When the

adjustable parameter is selected as β=0.4, and the ini-

tial condition y0 is fixed as 0, the attraction basin in the
x0-z0 initial plane is drawn in Fig.16(b), where the yel-

low, royal blue, orange and cyan regions denote chaotic
spiking firing, periodic bursting firing, transient chaotic
bursting firing, and chaotic bursting firing, respectively.

Similarly, when β=0.46, z0=0.1, the attraction basin

in the y0-z0 initial plane is given in Fig.16(c), where

the yellow, royal blue, orange and cyan regions repre-

sent stochastic bursting firing, peirodic bursting firing,

transient chaotic bursting firing and transient stochas-

tic bursting firing, respectively. It is obvious that the
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(a) (b) (c)

Fig. 16 For different β, local basins of attraction in two initial planes, where yellow, loyal blue, orange and cyan stand for
different firing states. (a) With β=0.39, the four colore regions stand for periodic spiking , chaotic bursting, periodic bursting,
and transient chaotic bursting, respectively. (b) With β=0.4, the four colore regions stand for chaotic spiking, periodic bursting,
transient chaotic bursting, and chaotic bursting, respectively. (c) With β=0.46, the four colore regions stand for stochastic
bursting, peirodic bursting, transient chaotic bursting and transient stochastic bursting, respectively.

proposed locally active memristive neuron exhibits mul-
tistability with coexisting four kinds of different firing
patterns.

To better exhibit the characteristics of the proposed

neuron model, a performance comparison with other

memristive neuron models are given in Table 2. Obvi-

ously, the locally active memristive neuron can generate

more complex firing patterns, such as stochastic burst-

ing, transient chaotic bursting, and transient stochas-

tic bursting. More importantly, the presented locally

active memristive neuron exhibits firing multistability

with coexisting four firing patterns, which has never
been reported in isolated neuron model.

4 Circuit design and hardware experiments

From the view of practical engineering applications, it

is significant and necessary to the hardware circuit real-

ization of mathematical models [59,60]. Generally, non-
linear dynamical equations can be physically realized

by adopting commercially available analog electric ele-

ments, such as operational amplifiers, analog multipli-

ers, capacitors and resistors [61–63]. Thus, the hard-

ware circuit of the locally active memristive neuron

model can be designed and implemented by employ-

ing already-existing electronic elements, which is help-
ful to promote the rapid development of neuromorphic
circuits.

4.1 Circuit Implementation

Before realizing the locally active memristive neuron

circuit, based on operational amplifiers and analog mul-

tipliers, a circuit of the locally active memristor de-

scribed by Equations (3)-(5) is designed, as plotted in

Fig.17. It can be seen from Fig.17 that the locally active
memristor circuit is composed of one capacitor C, one

analog multiplier M , six operational amplifiers U1-U6,

and eleven passive resistors, which means that the neu-

ron circuit can be easily realized by adopting common

electric components. According to the Kirchhoff’s law,

the circuit equations of the locally active memristor cir-

cuit can be given as

RB U2

RL

C

M

R

R

U1

v

U3

U4

RS

RS

RF

U5

R

RC

R

U6

RA

i

e

-e

v i

W(x)

x

Fig. 17 Circuit configuration of the locally active memristor
emulator.

i = W (vz)v =
gvz
RL

v (22)

C
dvz

dt
=

RF

RA

(
13.5sgn(vz + e)

RS

+
13.5sgn(vz − e)

RS

−
vz

RC

)+
v

RB

(23)

where vz represents inner state, RC is the integral time
constant, v and i are the input voltage and output cur-
rent of the locally active memristor, respectively. The
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Table 2 Comparison of different memristive neuron models

References Memristor Periodic spiking Chaotic spiking Periodic bursting Chaotic bursting Stochastic bursting Transient chaotic bursting Transient stochastic bursting Multistability

[25] Active memristor Yes Yes No No No No No No
[41] Active threshold memristor No No Yes Yes No No No No
This paper locally active memristor Yes Yes Yes Yes Yes Yes Yes Yes
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U2R

R

W

R6

U3 -vy

vy

CR5

R4

U4R

R

Fig. 18 Circuit configuration of the locally active memristive
neuron model.

model described by Equations (22) and (23) agrees with
the definition of the locally active memristor in Equa-
tions (3)-(5). Assuming that RC=1ms, the resistance
R=10kΩ, then the C can be chosen as 100nF. Some
resistances in Equations (22) and (23) are calculated
from the Equations (3)-(5) as RS=13.5kΩ, RC=1kΩ,
RF /RA=0.1α, RB=R/β. Based on the locally active
memristor circuit in Fig.17, the circuit of the locally
active memristive neuron is implemented and shown in
Fig.18. The corresponding circuit state equations are
expressed by















C dvx

dt
=

vy

R1
+ gvx

2

R2
−

g2vx
3

R3
+ gvxvz

RL

C
dvy

dt
= e

RS
−

gvx
2

R4
−

vy

R6

C dvz

dt
= RF

RA

(

13.5sgn(vz+e)

RS
+ 13.5sgn(vz−e)

RS
−

vz

RC

)

+ vx

RB

(24)

According to Equation (17), the resistances in Fig.18

are derived asR1=10kΩ,R2=333Ω,R3=100Ω,R4=200Ω,

R5=10kΩ and R6=10kΩ. Moreover, the resistances of

RL, RF , RA and RB can be determined by RL=gR/k,

RF /RA=0.1α, RB=R/β, where g=0.1 is the multiplier
gain.

4.2 Hardware Experiments

Based on the circuit topology given in Fig.18, the cir-

cuit of the locally active memristive neruon model in

Equation (18) is realized on the experimental bread-

board by using electronic elements of R/metal resis-
tors and precision potentiometers, C/ceramic capaci-

tors,M/AD633 and U/TL082CP. In experimental mea-

surements, the time series and phase trajectories of the

membrane potential in the memristive neuron are cap-

tured by 2 channel analog oscilloscope. Firstly, the cir-

cuit of the locally active memristor is demonstrated in

the hardware experiments. When the RA=10kΩ,RF=1

kΩ, RB=10kΩ and e=0.8V, that is, α=1, β=1, three

stable pinched hysteresis loops can be obtained from

the hardware circuit of the locally active memristor, as

shown in Fig.19. Secondly, the coexisting behavior of

multiple firing patterns is verified by using the neuron

circuit shown in Fig.18. When the parameters k=0.9,
α=0.1 and β is set to 0.39, 0.4 and 0.46, the time

series and corresponding phase trajectories were nu-

merically simulated by MATLAB, as shown in Fig.10-

Fig.15. Accordingly, in the hardware experiments, the

values of resistors RL, RF and RA are fixed as 1.11kΩ,
1kΩ, and 100kΩ, respectively. When the resistance RB

is set to 25.58kΩ (β=0.39), the periodic bursting fir-
ing, periodic spiking firing, chaotic bursting firing, and

transient chaotic bursting firing can be captured by

turning on and off the driven voltage source, and the

corresponding time sequences and phase trajectories

are shown in Fig.20 and Fig.21, respectively. Using the

same method, when RB=24.99kΩ(β=0.4), the experi-

mental results shown in Fig.22 are good for verifying
the numerical results shown in Fig.12. Similarly, when

RB=21.74kΩ(β=0.46), the numerical simulation results

in Fig.14(a),(b) and Fig.15(c),(d) are verified by the

experimental results in Fig.23(a),(b) and Fig.23(c),(d).

Obviously, the experimental results are basically con-

sistent with the numerical simulation results. However,

it should be pointed out that it is extremely difficult

to determine an ideal initial value in the hardware ex-

periments. Thus the experimental results are slightly

different from the simulation results.

5 Conclusion

In this article, we presented a novel locally active mem-

ristive neuron model based on a new locally active and

non-volatile memristor with three stable pinched hys-

teresis loops. The dynamics of electrical activity of the

locally active memristive neuron model is numerically

and experimentally investigated. The results show the

proposed locally active memristive neuron generates three
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(a) (b) (c)

Fig. 19 The experimental results of three stable pinched hysteresis loops of the locally active memristor.

(a) (b) (c) (d)

Fig. 20 Experimentally captured coexisting firing patterns with RB=25.58kΩ. (a) periodic bursting firing. (b) periodic spiking
firing. (c) chaotic bursting firing. (d) transient chaotic bursting firing.

(a) (b) (c) (d)

Fig. 21 Experimentally captured corresponding coexisting attractors with RB=25.58kΩ. (a) periodic attractor. (b) periodic
attractor. (c) chaotic attractor. (d) transient chaotic attractor

multistable phenomena of coexisting four firing pat-

terns, which are the phenomenon of coexistence of pe-

riodic bursting, chaotic bursting, periodic spiking and

transient chaotic bursting, the phenomenon of coex-

istence of chaotic spiking, periodic bursting, chaotic

bursting and transient chaotic bursting, and the phe-
nomenon of coexistence of stochastic bursting, peri-
odic bursting, transient stochastic bursting and tran-
sient chaotic bursting. The firing multistability is prac-

tically demonstrated in the hardware experiments. The

phenomenon of firing multistability observed in the sin-

gle neuron model is useful to understand the function of

biological neuron. Moreover, the hardware circuit of the
locally active memristive neuron model is implemented
by using common circuit elements, which is very impor-
tant to the application in the area of artificial intelli-

gence.
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