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Abstract

Recurrently coupled networks of inhibitory neurons robustly generate oscillations in the

gamma band. Nonetheless, the corresponding Wilson-Cowan type firing rate equation for

such an inhibitory population does not generate such oscillations without an explicit time

delay. We show that this discrepancy is due to a voltage-dependent spike-synchronization

mechanism inherent in networks of spiking neurons which is not captured by standard firing

rate equations. Here we investigate an exact low-dimensional description for a network

of heterogeneous canonical Class 1 inhibitory neurons which includes the sub-threshold

dynamics crucial for generating synchronous states. In the limit of slow synaptic kinetics the

spike-synchrony mechanism is suppressed and the standard Wilson-Cowan equations are

formally recovered as long as external inputs are also slow. However, even in this limit syn-

chronous spiking can be elicited by inputs which fluctuate on a time-scale of the membrane

time-constant of the neurons. Our meanfield equations therefore represent an extension of

the standard Wilson-Cowan equations in which spike synchrony is also correctly described.

Author summary

Population models describing the average activity of large neuronal ensembles are a pow-

erful mathematical tool to investigate the principles underlying cooperative function of

large neuronal systems. However, these models do not properly describe the phenomenon

of spike synchrony in networks of neurons. In particular, they fail to capture the onset of

synchronous oscillations in networks of inhibitory neurons. We show that this limitation

is due to a voltage-dependent synchronization mechanism which is naturally present in

spiking neuron models but not captured by traditional firing rate equations. Here we

investigate a novel set of macroscopic equations which incorporate both firing rate and

membrane potential dynamics, and that correctly generate fast inhibition-based synchro-

nous oscillations. In the limit of slow-synaptic processing oscillations are suppressed, and

the model reduces to an equation formally equivalent to the Wilson-Cowan model.
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Introduction

Since the seminal work of Wilson and Cowan [1], population models of neuronal activity have

become a standard tool of analysis in computational neuroscience. Rather than focus on the

microscopic dynamics of neurons, these models describe the collective properties of large

numbers of neurons, typically in terms of the mean firing rate of a neuronal ensemble. In gen-

eral, such population models, often called firing rate equations, cannot be exactly derived from

the equations of a network of spiking neurons, but are obtained using heuristic mean-field

arguments, see e.g. [2–6]. Despite their heuristic nature, heuristic firing rate equations (which

we call H-FRE) often show remarkable qualitative agreement with the dynamics in equivalent

networks of spiking neurons [7–10], and constitute an extremely useful modeling tool, see e.g.

[11–28]. Nonetheless, this agreement can break down once a significant fraction of the neu-

rons in the population fires spikes synchronously, see e.g. [29]. Such synchronous firing may

come about due to external drive, but also occurs to some degree during spontaneously gener-

ated network states.

As a case in point, here we focus on partially synchronized states in networks of heteroge-

neous inhibitory neurons. Inhibitory networks are able to generate robust macroscopic

oscillations due to the interplay of external excitatory inputs with the inhibitory mean

field produced by the population itself. Fast synaptic processing coupled with subthreshold

integration of inputs introduces an effective delay in the negative feedback facilitating the

emergence of what is often called Inter-Neuronal Gamma (ING) oscillations [30–38].

Modeling studies with networks of spiking neurons demonstrate that, in heterogeneous

inhibitory networks, large fractions of neurons become frequency-entrained during these

oscillatory episodes, and that the oscillations persist for weak levels of heterogeneity [30, 32,

34]. Traditional H-FRE (also referred to as Wilson-Cowan equations) fail to describe such

fast oscillations. To overcome this limitation, explicit fixed time delays have been considered

in H-FRE as a heuristic proxy for the combined effects of synaptic and subthreshold integra-

tion [9, 10, 36, 39].

Here we show that fast oscillations in inhibitory networks are correctly described by a

recently derived set of exact macroscopic equations for quadratic integrate-and-fire neurons

(that we call QIF-FRE) which explicitly take into account subthreshold integration [40]. Specif-

ically, the QIF-FRE reveal how oscillations arise via a voltage-dependent spike synchronization

mechanism, missing in H-FRE, as long as the recurrent synaptic kinetics are sufficiently fast.

In the limit of slow recurrent synaptic kinetics intrinsically generated oscillations are sup-

pressed, and the QIF-FRE reduce to an equation formally identical to the Wilson-Cowan equa-

tion for an inhibitory population. However, even in this limit, fast fluctuations in external

inputs can drive transient spike synchrony in the network, and the slow synaptic approxima-

tion of the QIF-FRE breaks down. This suggests that, in general, a correct macroscopic

description of spiking networks requires keeping track of the mean subthreshold voltage along

with the mean firing rate.

Additionally, the QIF-FRE describe the disappearance of oscillations for sufficiently strong

heterogeneity which is robustly observed in simulations of spiking networks. Finally, we also

show that the phase diagrams of oscillatory states found in the QIF-FRE qualitatively match

those observed in simulations of populations of more biophysically inspired Wang-Buzsáki

neurons [30]. This shows that not only are the QIF-FRE an exact mean-field description of

networks of heterogeneous QIF neurons, but that they also provide a qualitatively accurate

description of dynamical states in networks of spiking neurons more generally, including

states with significant spike synchrony.

Firing rate equations for inhibition-based oscillations
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Results

Recurrent networks of spiking neurons with inhibitory interactions readily generate fast oscil-

lations. Fig 1 shows an illustration of such oscillations in a network of globally coupled Wang-

Buzsáki (WB) neurons [30]. Panels (a,c) show the results of a numerical simulation of the net-

work for fast synapses (time constant τd = 5 ms), compared to the membrane time constant of

the neuron model (τm = 10 ms). Although the neurons have different intrinsic frequencies due

to a distribution in external input currents, the raster plot reveals that fast inhibitory coupling

produces the frequency entrainment of a large fraction of the neurons in the ensemble. This

collective synchronization is reflected at the macroscopic scale as an oscillation with the fre-

quency of the synchronous cluster of neurons [41, 42]. Indeed, panel (a) shows the time series

of both the mean synaptic activation variable S, and the mean firing rate R, which display ING

oscillations. Panels (b,d) of Fig 1 show the disappearance of the synchronous state when the

synaptic kinetics is slow (τd = 50 ms).

A heuristic firing rate equation

A heuristic firing rate description of the spiking network simulated in Fig 1 takes the form [1,

5]

tm
_R ¼ �Rþ Fð�JtmSþYÞ; ð1aÞ

td
_S ¼ �Sþ R: ð1bÞ

where R represents the mean firing rate in the population, S is the synaptic activation, and the

time constants τm and τd are the neuronal and synaptic time constants respectively [39, 43].

The input-output function F, also known as the f-I curve, is a nonlinear function, the form of

which depends on the details of the neuronal model and on network parameters. Finally, J� 0

is the synaptic strength and Θ is the mean external input current compared to threshold. In

contrast with the network model, the H-FRE Eq (1) cannot generate sustained oscillations.

In fact, a linear stability analysis of steady state solutions in Eq (1) shows that the resulting

Fig 1. Networks of heterogeneous inhibitory neurons with fast synaptic kinetics (τd = 5 ms) display macroscopic
oscillations in the gamma range (ING oscillations) due to collective synchronization. Panels (a) and (c) show the
time series of the synaptic variable S (red) and mean firing rate R (blue), and the raster plot of a population of N = 1000
inhibitoryWang-Buzsáki neurons [30] with first order fast synaptic kinetics. The oscillations are suppressed
considering slow inhibitory synapses (τd = 50 ms), as shown in Panels (b) and (d). See Materials and methods for
details on the numerical simulations.

https://doi.org/10.1371/journal.pcbi.1005881.g001
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eigenvalues are

l ¼ �að1�
ffiffiffiffiffiffiffiffiffiffiffi

1� b
p

Þ; ð2Þ

where the parameter α = (τm + τd)/(2τm τd) is always positive. Additionally, the parameter

β = [4τm τd(1 + JτmF0)]/(τm + τd)
2 is also positive, since the f-I curve F(x) is an increasing

function, and its derivative evaluated at the steady state is then F0 > 0. Therefore the real part

of the eigenvalue λ is always negative and hence steady states are always stable, although

damped oscillations are possible, e.g. for strong enough coupling J. Introducing an explicit

fixed time delay in Eq (1) can lead to the generation of oscillations with a period on the order

of about twice the delay [9, 10, 36]. Nonetheless, inhibitory networks of spiking neurons

robustly show oscillations even in the absence of explicit delays, as seen in Fig 1. This suggests

that there is an additional mechanism in the network dynamics, key for driving oscillatory

behavior, which H-FRE do not capture.

An exact firing rate equation which captures spike synchrony

Here we show that the mechanism responsible for the generation of the oscillations shown in

Fig 1 is the interplay between the mean firing rate and membrane potential, the dynamics of

which reflect the degree of spike synchrony in the network. To do this, we use a set of exact

macroscopic equations which have been recently derived from a population of heterogeneous

quadratic integrate-and-fire (QIF) neurons [40]. We refer to these equations as the QIF-FRE.

The QIF-FRE with exponential synapses have the form

tm
_R ¼ D

ptm
þ 2RV ; ð3aÞ

tm
_V ¼ V2 � ðptmRÞ

2 � JtmSþY; ð3bÞ

td
_S ¼ �Sþ R: ð3cÞ

where Δ is a parameter measuring the degree of heterogeneity in the network and the other

parameters are as in the H-FRE Eq (1). Eq (3) are an exact macroscopic description of the

dynamics in a large network of heterogeneous QIF neurons with inhibitory coupling. In con-

trast with the traditional firing rate equations Eq (1), they contain an explicit dependence on

the subthreshold state of the network, and hence capture not only macroscopic variations in

firing rate, but also in spike synchrony. Specifically, a transient depolarizing input which drives

the voltage to positive values (the voltage has been normalized such that positive values are

suprathrehsold, see Materials and methods) will lead to a sharp growth in the firing rate

through the bilinear term in Eq (3a). Simulations in the corresponding network model reveal

that this increase is due to the synchronous spiking of a subset of neurons [40]. This increase

in firing rate leads to a hyperpolarization of the mean voltage through the quadratic term in R

in Eq (3b). This term describes the effect of the neuronal reset. This decrease in voltage in turn

drives down the mean firing rate, and the process can repeat. Therefore the interplay between

mean firing rate and mean voltage in Eq (3) can generate oscillatory behavior; this behavior

corresponds to transient bouts of spike synchrony in the spiking network model.

It is precisely the latency inherent in this interplay which provides the effective delay, which

when coupled with synaptic kinetics, generates self-sustained fast oscillations. In fact, in the

limit of instantaneous synapses (τd! 0), Eq (3) robustly display damped oscillations due to

the spike generation and reset mechanism described in the preceding paragraph [40]. Contrast

Firing rate equations for inhibition-based oscillations
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this with the dynamics in Eq (1) in the same limit: the resulting H-FRE is one dimensional and

hence cannot oscillate.

On the face of things the Eq (3) appear to have an utterly distinct functional form from the

traditional Wilson-Cowan Eq (1). In particular, the f-I curve in H-FRE traditionally exhibits

an expansive nonlinearity at low rates and a linearization or saturation at high rates, e.g. a

sigmoid. There is no such function visible in the QIF-FRE which have only quadratic nonline-

arities. However, this seeming inconsistency is simply due to the explicit dependence of the

steady-state f-I curve on the subthreshold voltage in Eq (3). In fact, the steady-state f-I curve in

the QIF-FRE is “typical” in the qualitative sense described above. Specifically, solving for the

steady state value of the firing rate in Eq (3) yields

R� ¼ Fð�JtmR� þYÞ; ð4Þ

where

FðIÞ ¼ 1
ffiffiffi

2
p

ptm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2 þ D
2

p

q

: ð5Þ

The f-I curve Eq (5) is shown in Fig 2 for several values of the parameter Δ, which measures

the degree of heterogeneity in the network. Therefore, the steady-state firing rate in Eq (3),

which corresponds exactly to that in a network of heterogeneous QIF neurons, could easily be

captured in a heuristic model such as Eq (1) by taking the function F to have the form as in Eq

(5). On the other hand, the non-steady behavior in Eq (3), and hence in spiking networks as

well, can be quite different from that in the heuristic Eq (1).

Fast oscillations in the QIF-FRE. We have seen that decreasing the time constant of syn-

aptic decay τd in a network of inhibitory spiking neurons lead to sustained fast oscillations,

while such a transition to oscillations is not found in the heuristic rate equations, in which the

synaptic dynamics are taken into account Eq (1). The exact QIF-FRE, on the other hand, do

generate oscillations in this regime. Fig 3 shows a comparison of the firing rate R and synaptic

variable S from simulations of the QIF-FRE Eq (3), with that of the H-FRE Eq (1), for two dif-

ferent values of the synaptic time constants. Additionally, we also performed simulations of a

network of N = 5 × 104 QIF neurons. The mean firing rate of the network is shown in red, and

perfectly agrees with the firing rate of the low dimensional QIF-FRE (solid black lines). The

function F in Eq (1) is chosen to be that from Eq (5), which is why the firing rate from both

models converges to the same steady state value when oscillations are not present (panels (b,d)

for τd = 50 ms). We will study the transition to fast oscillations in Eq (3) in greater details in

the following sections.

Linear stability analysis of the QIF-FRE

We can investigate the emergence of sustained oscillations in Eq (3) by considering small

amplitude perturbations of the steady-state solution. If we take R = R� + δReλt, V = V� + δVeλt

and S = S� + δSeλt, where δR, δV, δS� 1, then the sign of the real part of the eigenvalue λ deter-

mines whether the perturbation grows or not. Plugging this ansatz into Eq (3) yields three cou-

pled linear equations which are solvable if the following characteristic equation also has a

solution

�2JtmR� ¼ ð1þ tdlÞ ð2ptmR�Þ
2 þ tmlþ D

ptmR�

� �2
" #

: ð6Þ

The left hand side of Eq (6) is always negative and, for τd = 0, this implies that the solutions λ

Firing rate equations for inhibition-based oscillations
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are necessarily complex. Hence, for instantaneous synapses, the fixed point of the QIF-FRE is

always of focus type, reflecting transient episodes of spike synchrony in the neuronal ensemble

[40]. In contrast, setting τd = 0 in the H-FRE, the system becomes first order and oscillations

are not possible. This is the critical difference between the two firing rate models. In fact, and

in contrast with the eigenvalues Eq (2) corresponding to the growth rate of small perturbations

in the H-FRE, here oscillatory instabilities may occur for nonvanishing values of τd. Fig 4

Fig 2. The f-I curveF(I), Eq (5), for several values of the heterogeneity parameter Δ. The membrane time constant
is τm = 10ms.

https://doi.org/10.1371/journal.pcbi.1005881.g002

Fig 3. Heuristic FRE Eq (1) do not display inhibition-based fast oscillations. In contrast, networks of QIF neurons
(red) and their corresponding QIF-FRE Eq (3) (solid black) do show ING oscillations for fast synaptic kinetics (τd = 5
ms). These oscillations are suppressed for slow synaptic kinetics (τd = 50 ms), as in theWang-Buzsáki model shown in
Fig 1. Panels (a,b) show the times series of the Firing Rate variable R of the FRE models, as well as the mean firing rate
of a population ofN = 5 × 104QIF neurons (red). Panels (c,d) show the time series of the synaptic S variables for the
H-FRE (dashed line) and QIF-FRE (solid line). Parameters: τm = 10 ms, J = 21, Θ = 4, Δ = 0.3. Initial values: R(0) = S(0)
= 5 Hz, V(0) = 0.

https://doi.org/10.1371/journal.pcbi.1005881.g003
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shows the Hopf boundaries obtained from Eq (6), as a function of the normalized synaptic

strength j ¼ J=
ffiffiffiffi

Y
p

and the ratio of the synaptic and neuronal time constants t ¼
ffiffiffiffi

Y
p

td=tm,

and for different values of the ratio δ = Δ/Θ —see Materials and methods, Eqs (19)–(21).

The shaded regions correspond to parameter values where the QIF-FRE display oscillatory

solutions.

Identical neurons. In the simplest case of identical neurons we find the boundaries of

oscillatory instabilities explicitly. Indeed, substituting λ = ν + iω in Eq (6) we find that, near

criticality (|ν|� 1), the real part of the eigenvalue is

n � Jt
R�

1þ ð2ptdR�Þ
2
: ð7Þ

Thus, the fixed point (4) is unstable for Jτ> 0, and changes its stability for either J = 0, or τ = 0.

In particular, given a non-zero synaptic time constant there is an oscillatory instability as the

sign of the synaptic coupling J changes from positive to negative. Therefore oscillations occur

only for inhibitory coupling [44–46]. The frequency along this Hopf bifurcation line is deter-

mined entirely by the intrinsic firing rate of individual cells ωc = 2πR�.

On the other hand, in the limit of fast synaptic kinetics, i.e. τd = 0 in Eq (6), we find another

Hopf bifurcation with oc ¼ 1

tm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2tmR�ðJ þ 2p2tmR�Þ
p

. This reflects the fact that oscillations

cannot be induced if the synaptic interactions are instantaneous. The left panel of Fig 4 shows

the phase diagram with the Hopf boundaries depicted in Red, reflecting that oscillations are

found for all values of inhibitory coupling and for non-instantaneous synaptic kinetics.

Heterogeneous neurons. Once heterogeneity is added to the network the region of sus-

tained oscillatory behavior shrinks, see Fig 4, center and right. The red closed curves corre-

spond to the Hopf bifurcations, which have been obtained in parametric form from the

characteristic eq (6), see Materials and methods. Note that for small levels of δ, oscillations are
present in a closed region of the phase diagram, and disappear for large enough values of τ (the

synaptic time constant relative to the neuronal time constant). Further increases in δ gradually
reduce the region of oscillations until it fully disappears at the critical value

dc ¼
D

Y

� �

c

¼ 1

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5� 2
ffiffiffi

5
pq

¼ 0:1453 . . . ; ð8Þ

which has been obtained analytically from the characteristic Eq (6), see Materials and methods.

This result is consistent with numerical studies investigating oscillations in heterogeneous

Fig 4. The ratio of the width to the center of the distribution of currents Eq (14), δ = Δ/Θ, determines the presence
of fast oscillations in the QIF-FRE.Oscillations disappear above the critical value given by Eq (8). The panels show
the Hopf boundaries of QIF-FRE with first-order synapses, for different values of δ, obtained solving the characteristic
Eq (6) with Re(λ) = 0, see Materials and methods. Shaded regions are regions of oscillations. Symbols in the right panel
correspond to the parameters used in Fig 3.

https://doi.org/10.1371/journal.pcbi.1005881.g004
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inhibitory networks which indicate that gamma oscillations are fragile against the presence of

quenched heterogeneity [30, 32, 34].

In the following, we compare the phase diagrams of Fig 4 with numerical results using het-

erogeneous ensembles of Wang-Buzsáki neurons with first order synapses. Instead of using

the population mean firing rate or mean synaptic activation, in Fig 5 we computed the ampli-

tude of the population mean membrane potential. This variable is less affected by finite-size

fluctuations and hence the regions of oscillations are more easily distinguishable. The results

are summarized in Fig 5 for different values of δ and have been obtained by systematically

increasing the coupling strength k for fixed values of τd. The resulting phase diagrams qualita-

tively agree with those shown in Fig 4. As predicted by the QIF-FRE, oscillations are found in a

closed region in the (τd, k) parameter space, and disappear for large enough values of δ. Here,

the critical value of d ¼ s=�I is about 6%, smaller than the critical value given by Eq (8). This is

due to the steep f-I curve of the WBmodel, which implies a larger dispersion in the firing rates

of the neurons even for small heterogeneities in the input currents.

Additionally, for small τd (fast synaptic kinetics) and strong coupling k, we observed small

regions where the oscillations coexist with the asynchronous state —not shown. Numerical

simulations indicate that this bistability is not present in the QIF-FRE. For strong coupling,

and coexisting with the asynchronous state, we also observed various clustering states, already

reported in the original paper of Wang & Buzsáki [30]. Clustering in inhibitory networks has

also been observed in populations of conductance-based neurons with spike adaptation [47]

or time delays [48]. The fact that such states do not emerge in the model Eq (12) may be due to

the purely sinusoidal shape of the phase resetting curve of the QIF model [49–54].

Firing rate equations in the limit of slow synapses

We have seen that the oscillations which emerge in inhibitory networks for sufficiently fast

synaptic kinetics are correctly described by the firing rate equations Eq (3), but not by the heu-

ristic Eq (1). The reason for this is that the oscillations crucially depend on the interaction

between the population firing rate and the subthreshold membrane potential during spike ini-

tiation and reset; this interaction manifests itself at the network level through spike synchrony.

Therefore, if one could suppress the spike synchrony mechanism, and hence the dependence

on the subthreshold membrane potential, in Eq (3), the resulting equations ought to bear

resemblance to Eq (1). In fact, as we saw in Fig 3, the two firing rate models become more sim-

ilar when the synaptic kinetics become slower.

Fig 5. Amplitude of the oscillations of the mean membrane potential for a population of N = 1000WB neurons. From left to right: d ¼ s=�I ¼ 0, 0.05 and 0.06.
Central and Right panels have σ = 0.01 μA/cm2. See Materials and methods for details.

https://doi.org/10.1371/journal.pcbi.1005881.g005
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Next we show that the two models become identical, formally, in the limit of slow synaptic

kinetics. To show this, we assume the synaptic time constant is slow, namely td ¼ �td=� where

0< �� 1, and rescale time as �t ¼ �t. In this limit we are tracking the slow synaptic dynamics

in while the neuronal dynamics are stationary to leading order, i.e.

R� ¼ Fð�JtmSþYÞ: ð9Þ

Therefore, the dynamics reduce to the first order equation

td
_S ¼ �Sþ Fð�JtmSþYÞ: ð10Þ

Notably, this shows that the QIF-FRE Eq (3), and the H-FRE (1), do actually have the same

dynamics in the limit of slow synapses. In other words, Eq (10) is formally equivalent to the

Wilson-Cowan equations for a single inhibitory population, and this establishes a mathemati-

cal link between the QIF-FRE and Heuristic firing rate descriptions. Additionally, considering

slow second order synaptic kinetics (not shown), allows one to reduce the QIF-FRE with either

alpha or double exponential synapses to a second-order system that formally corresponds to

the so-called neural mass models largely used for modeling EEG data, see e.g. [6, 55–58].

External inputs and breakdown of the slow-synaptic limit Eq (10). It is important to

note that, in the derivation of Eq (10) we considered external inputs Θ to be constant. Then, if

synapses are slow, the neuronal variables (R in the case of Eq (1) and R and V in the case of Eq

(3)) decay rapidly to their fixed point values. However even in the limit of slow synapses, such

reduction can break down if external inputs are time-varying Θ = Θ(t), with a time-scale

which itself is not sufficiently slow.

To demonstrate this, in Fig 6, we compared the dynamics of the QIF-FRE and H-FRE with

the approximation Eq (10), for periodic stimuli of various periods —panels (g-i)—, and always

considering slow synapses, τd = 100 ms. As expected, the models show good agreement for

very slow external inputs —see panels (a,d)—, but this discrepancy is strongly magnified for

fast external inputs Specifically, for fast inputs —see panels (c,f)—, the dynamics of the S and R

variables of the QIF-FRE are clearly different form those of the other models. This illustrates

that even in the limit of slow synapses, the response of spiking networks to arbitrary time-vary-

ing inputs will always generate some degree of spike synchrony.

Discussion

Firing rate models, describing the average activity of large neuronal ensembles are broadly

used in computational neuroscience. However, these models fail to describe inhibition-based

rhythms, typically observed in networks of inhibitory neurons with synaptic kinetics [30–38].

To overcome this limitation, some authors heuristically included explicit delays in traditional

FRE, and found qualitative agreement with the oscillatory dynamics observed in simulations

of spiking neurons with both synaptic kinetics and fixed time delays [9, 10, 36, 39]. Nonethe-

less it remains unclear why traditional H-FRE with first order synaptic kinetics do not generate

inhibition-based oscillations.

Here we have investigated a novel class of FRE which can be rigorously derived from pop-

ulations of spiking (QIF) neurons [40]. Networks of globally coupled QIF neurons with fast

inhibitory synapses readily generate fast self-sustained oscillations. The corresponding exact

FRE, which we call the QIF-FRE, therefore also generates oscillations. The benefit of having

a simple macroscopic description for the network dynamics is its amenability to analysis. In

particular, the nonlinearities in Eq (3), which arise due to the spike initiation and reset mech-

anism in the QIF model, conspire to generate damped oscillations which reflect transient

spike synchrony in the network. This oscillatory mode can be driven by sufficiently fast

Firing rate equations for inhibition-based oscillations
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recurrent inhibitory synaptic activation, leading to sustained oscillations. This suggests that

any mean-field description of network activity which neglects subthreshold integration will

not properly capture spike-synchrony-dependent dynamical behaviors, including fast inhibi-

tory oscillations.

The QIF-FRE have also allowed us to generate a phase diagram for oscillatory behavior in a

network of QIF neurons with ease via a standard linear stability analysis, see Fig 4. This phase

diagram agrees qualitatively with that of an equivalent network of Wang-Buzsáki neurons,

suggesting that the QIF-FRE not only provide an exact description of QIF networks, but also a

qualitatively accurate description of macroscopic behaviors in networks of Class I neurons in

general. In particular, the QIF-FRE capture the fragility of oscillations to quenched variability

in the network, a feature that seems to be particularly pronounced for Class 1 neuronal models

compared to neural models with so-called Class 2 excitability [59].

Finally we have shown that the QIF-FRE and the heuristic H-FRE are formally equivalent

in the limit of slow synapses. In this limit the neuronal dynamics is slaved to the synaptic acti-

vation and well-described by Eq (10), as long as external inputs are stationary. In fact, in the

absence of quenched heterogeneity (Δ = 0), the approximation for slow synapses Eq (10) is

also fully equivalent to the reduction for slow synapses in networks of Class 1 neurons derived

by Ermentrout in [60]. This further indicates that the QIF-FRE are likely valid for networks of

Class 1 neurons in general. However, we also show that in the more biologically plausible sce-

nario of time-varying external drive some degree of neuronal synchronization is generically

observed, as in (Fig 6), and the slow-synapse reduction Eq (10) is not valid.

Fig 6. The reduction of the QIF-FRE to Eq (10) breaks down when neurons receive time-varying inputs. Panels (a-c): S-variable time series for QIF-FRE (solid
Black), H-FRE (dashed Black) and Eq (10) (Blue), for decreasing values of the period TΘ of the external periodic forcing Θ(t) = 4 + [1 + sin(2πt/Tθ)]

3—shown in panels
(g-i). In all cases, the synaptic time constant is slow τd = 100 ms, compared to the membrane time constant τm = 10 ms. Panels (d-f): R-variable time series. In the case
of model Eq (10), the firing rate has been evaluated using Eq (9). Other parameters are J = 21, Δ = 0.3.

https://doi.org/10.1371/journal.pcbi.1005881.g006
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The results presented here are obtained under two important assumptions that need to be

taken into account when comparing our work to the existing literature on fast oscillations in

inhibitory networks. (i) A derivation of an exact firing rate model for a spiking neuron net-

work is only possible for ensembles of QIF neurons, which are the canonical model for Class 1

excitability [45, 61]. Although many relevant computational studies on fast inhibitory oscilla-

tions also consider Class 1 neurons [30, 32, 34, 39, 62–64], experimental evidence indicates

that fast spiking interneurons are highly heterogeneous in their minimal firing rates in

response to steady currents, and that a significant fraction of them are Class 2 [65–68] —but

see also [69]. (ii) Our derivation of the QIF-FRE is valid for networks of globally coupled QIF

neurons, with Lorentzian-distributed currents. In this system inhibition-based oscillations are

only possible when the majority of the neurons are self-sustained oscillators, i.e. for Θ > 0 in

Eq (14), and are due to the frequency locking of a fraction of the oscillators in the population

[41, 42] —as it can be seen in the raster plot of Fig 1(c). In this state, the frequency of the clus-

ter of synchronized oscillators coincides with the frequency of the mean field. The value of the

frequency itself is determined through an interplay between single-cell resonance and network

effects. Specifically, the synchronized neurons have intrinsic spiking frequencies near that of

the mean-field oscillation and hence are driven resonantly. This collective synchronization dif-

fers from the so-called sparse synchronization observed in inhibitory networks of identical

Class 1 neurons under the influence of noise [34, 36, 62, 63]. In the sparsely synchronized state

neurons fire stochastically at very low rates, while the population firing rate displays the fast

oscillations as the ones reported here.

Oscillatory phenomena arising from single-cell resonances, and which reflect spike syn-

chrony at the population level, are ubiquitous in networks of spiking neurons. Mean-field

theory for noise-driven networks leading to a Fokker-Planck formalism, allows for a linear

analysis of the response of the network to weak stimuli when the network is in an asynchro-

nous state [43, 70]. Resonances can appear in the linear response when firing rates are suffi-

ciently high or noise strength sufficiently low. Recent work has sought to extend H-FRE in this

regime by extracting the complex eigenvalue corresponding to the resonance and using it to

construct the linear operator of a complex-valued differential equation, the real part of which

is the firing rate [29]. Other work has developed an expression for the response of spiking net-

works to external drive, which often generates resonance-related damped oscillations, through

an eigenfunction expansion of the Fokker-Planck equation [71]. Our approach is similar in

spirit to such studies in that we also work with a low dimensional description of the network

response. In contrast to previous work our equations are an exact description of the macro-

scopic behavior, although they are only valid for networks of heterogeneous QIF neurons.

Nonetheless, the QIF-FRE are simple enough to allow for an intuitive understanding of the

origin of fast oscillations in inhibitory networks, and in particular, of why these oscillations are

not properly captured by H-FRE.

Materials andmethods

Populations of inhibitory quadratic integrate and fire neurons

Wemodel fast-spiking interneurons, the dynamics of which are well-described by the Hodg-

kin-Huxley equations with only standard spiking currents. Many models of inhibitory neurons

are Class 1 excitable [72], including for example the Wang-Buszáki (WB) [30], and the Morris-

Lecar models [73]. Class 1 models are characterized by the presence of a saddle-node bifurca-

tion on an invariant circle at the transition from quiescence to spiking. One consequence of

this bifurcation structure is the fact the spiking frequency can be arbitrarily low near threshold.

Additionally, near threshold the spiking dynamics are dominated by the time spent in the

Firing rate equations for inhibition-based oscillations
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vicinity of the saddle-node itself, allowing for a formal reduction in dimensionality from the

full neuron model to a reduced normal form equation for a saddle-node bifurcation [2, 45,

61]. This normal form, which is valid for any Class 1 model near threshold, is known as the

quadratic integrate-and-fire model (QIF). Using a change of variables, the QIF model can be

transformed to a phase model, called Theta-Neuron model [74], which has an strictly positive

Phase Resetting Curve (PRC). Neuron models with strictly positive PRC are called Type 1 neu-

rons, indicating that perturbations always produce an advance (and not a delay) of their phase.

In general, Class 1 neurons have a Type 1 PRC [45], but see [75, 76].

In a network of QIF neurons, the neuronal membrane potentials are f~V igi¼1;...;N , which

obey the following ordinary differential equations [7, 64, 74]:

C
d ~V i

dt
¼ gL

ð ~V i � VtÞð~V i � VrÞ
ðVt � VrÞ

þ I
0;i

ð11Þ

where C is the cell capacitance, gL is the leak conductance and I0,i are external currents. Addi-

tionally, Vr and Vt represent the resting potential and threshold of the neuron, respectively.

Using the change of variables ~V 0
i ¼ ~V i � ðVt þ VrÞ=2, and then rescaling the shifted voltages

as Vi ¼ ~V 0
i=ðVt � VrÞ, the QIF model (11) reduces to

tm
_V i ¼ V2

i þ Ii ð12Þ

where τm = C/gL is the membrane time constant, Ii = I0,i/(gL(Vt−Vr))−1/4 and the overdot rep-

resents derivation with respect to time t. Note that in the model (12) the voltage variables Vi

and the inputs Ii do not have dimensions. Thereafter we work with QIF model its simplest

form Eq (12). We assume that the inputs are

Ii ¼ Zi � JtmS; ð13Þ

where J is the inhibitory synaptic strength, and S is the synaptic gating variable. Finally, the

currents ηi are constants taken from some prescribed distribution that here we consider it is a

Lorentzian of half-width Δ, centered at Θ

gðZÞ ¼ 1

p

D

ðZ�YÞ2 þ D
2
: ð14Þ

In numerical simulations the currents were selected deterministically to represent the Lorent-

zian distribution as: ηi = Θ + Δtan(π/2(2i − N − 1)/(N + 1)), for i = 1, . . ., N. In the absence of

synaptic input, the QIF model Eqs (12) and (13) exhibits two possible dynamical regimes,

depending on the sign of ηi. If ηi< 0, the neuron is excitable, and an initial condition

Við0Þ <
ffiffiffiffiffiffiffiffi�Zi

p
, asymptotically approaches the resting potential� ffiffiffiffiffiffiffiffi�Zi

p
. For initial conditions

above the excitability threshold, Við0Þ >
ffiffiffiffiffiffiffiffi�Zi

p
, the membrane potential grows without

bound. In this case, once the neuron reaches a certain threshold value Vθ� 1, it is reset to a

new value −Vθ after a refractory period 2τm/Vθ (in numerical simulations, we choose Vθ =

100). On the other hand, if ηj> 0, the neuron behaves as an oscillator and, if Vθ!1, it fires

regularly with a period T ¼ ptm=
ffiffiffiffi

Zi
p

. The instantaneous population mean firing rate is

R ¼ lim
ts!0

1

N

1

ts

X

N

j¼1

X

k

Z t

t�ts

dt0dðt0 � tkj Þ; ð15Þ

where tkj is the time of the kth spike of jth neuron, and δ(t) is the Dirac delta function. Finally,
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the dynamics of the synaptic variable obeys the first order ordinary differential equation

td
_S ¼ �Sþ R: ð16Þ

For the numerical implementation of Eqs (15) and (16), we set τs = 10−2 τm. To obtain a

smoother time series, the firing rate plotted in Fig 3 was computed according to Eq (15) with

τs = 3 � 10−2 τm.

Firing rate equations for populations of quadratic integrate and fire
neurons

Recently Luke et al. derived the exact macroscopic equations for a pulse-coupled ensemble of

Theta-Neurons [77], and this has motivated a considerable number of recent papers [78–86,

88]. This work applies the so-called Ott-Antonsen theory [89–91] to obtain a low-dimensional

description of the network in terms of the complex Kuramoto order parameter. Nevertheless,

it is is not obvious how these macroscopic descriptions relate to traditional H-FRE.

As we already mentioned, the Theta-neuron model exactly transforms to the Quadratic

Integrate and Fire (QIF) model by a nonlinear change of variables [45, 61, 74]. This transfor-

mation establishes a map between the phase variable θi 2 (−π, π] of a Theta neuron i, and the

membrane potential variable Vi 2 (−1, +1) of the QIF model Eq (12). Recently it was shown

that, under some circumstances, a change of variables also exists at the population level [40].

In this case, the complex Kuramoto order parameter transforms into a novel order parameter,

composed of two macroscopic variables: The population-mean membrane potential V, and

the population-mean firing rate R. As a consequence of that, the Ott-Antonsen theory becomes

a unique method for deriving exact firing rate equations for ensembles of heterogeneous spik-

ing neurons —see also [92–94] for recent alternative approaches.

Thus far, the FRE for QIF neurons (QIF-FRE) have been successfully applied to investigate

the collective dynamics of populations of QIF neurons with instantaneous [40, 86, 87], time

delayed [95] and excitatory synapses with fast synaptic kinetics [96]. However, to date the

QIF-FRE have not been used to explore the dynamics of populations of inhibitory neurons

with synaptic kinetics —but see [83] for a numerical investigation using the low-dimensional

Kuramoto order parameter description. The method for deriving the QIF-FRE corresponding

to a population of QIF neurons Eq (12) is exact in the thermodynamic limit N!1, and,

under the assumption that neurons are all-to-all coupled. Additionally, if the parameters ηi in
Eq (13) (which in the thermodynamic limit become a continuous variable) are assumed to be

distributed according to the Lorentzian distribution Eq (14), the resulting QIF-FRE become

two dimensional. For instantaneous synapses, the macroscopic dynamics of the population of

QIF neurons (12) is exactly described by the system of QIF-FRE [40]

tm
_R ¼ D

ptm
þ 2RV ; ð17aÞ

tm
_V ¼ V2 � ðptmRÞ

2 � JtmRþY; ð17bÞ

where R is the mean firing rate and V the mean membrane potential in the network. With

exponentially decaying synaptic kinetics the QIF-FRE Eq (17) become Eq (3). In our study, we

consider Θ > 0, so that the majority of the neurons are oscillatory —see Eq (14).

Fixed points. The fixed points of the QIF-FRE (3) are obtained imposing _R ¼ _V ¼ _S ¼ 0.

Substituting this into Eq (3), we obtain the fixed point equation V� = −Δ/(2πτm R�), the firing

rate given by Eq (4) and S� = R�. Note that for homogeneous populations, Δ = 0, the f-I curve

Firing rate equations for inhibition-based oscillations
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Eq (5) reduces to

FðIÞ ¼ 1

p

ffiffiffiffiffiffiffi

jIjþ
q

;

which displays a clear threshold at I = 0 (Here, |I|+ = I if I� 0, and vanishes for I< 0.) This

function coincides with the squashing function found by Ermentrout for homogeneous net-

works of Class 1 neurons [60]. As expected, for heterogeneous networks, the well-defined

threshold ofF(I) for Δ = 0 is lost and the transfer function becomes increasingly smoother.

Nondimensionalized QIF-FRE. The QIF-FRE (3) have five parameters. It is possible to

non-dimensionalize the equations so that the system can be written solely in terms of 3 param-

eters. Generally, we adopt the following notation: we use capital letters to refer to the original

variables and parameters of the QIF-FRE, and lower case letters for non-dimensional quanti-

ties. A possible non-dimensionalization, valid for Θ > 0, is

_r ¼ d=pþ 2rv; ð18aÞ

_v ¼ v2 � p2r2 � jsþ 1; ð18bÞ

t_s ¼ �sþ r; ð18cÞ

where the overdot here means differentiation with respect to the non-dimensional time

~t ¼
ffiffiffiffi

Y
p

tm
t:

The other variables are defined as

r ¼ tm
ffiffiffiffi

Y
p R; v ¼ V

ffiffiffiffi

Y
p ; s ¼ tm

ffiffiffiffi

Y
p S:

On the other hand, the new coupling parameter is defined as

j ¼ J
ffiffiffiffi

Y
p : ð19Þ

and the parameter

d ¼ D

Y
; ð20Þ

describes the effect of the Lorentzian heterogeneity (14) into the collective dynamics of the

FRE (17). Though the Lorentzian distribution does not have finite moments, for the sake of

comparison of our results with those of studies investigating the dynamics of heterogeneous

networks of inhibitory neurons, e.g. [30, 32], the quantity δ can be compared to the coefficient

of variation, which measures the ratio of the standard deviation to the mean of a probability

density function. Finally, the non-dimensional time

t ¼
ffiffiffiffi

Y
p

tm
td; ð21Þ

measures the ratio of the synaptic time constant to the most-likely period of the neurons
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(times π),

�T ¼ p
tm
ffiffiffiffi

Y
p :

In numerical simulations we will use the original QIF-FRE (3), with Θ = 4, and τm = 10ms.

Thus �T ¼ 10p=3 � 15:71ms, so that the most likely value of the neurons’ intrinsic frequency

is �f � 63:66Hz. However, our results are expressed in a more compact form in terms of the

quantities j, δ, τ, and we will use them in some of our calculations and figures.

Parametric formula for the Hopf boundaries

To investigate the existence of oscillatory instabilities we use Eq (6) written in terms of the

non-dimensional variables and parameters defined previously, which is

�2jr� ¼ ð1þ ~ltÞ ð2pr�Þ
2 þ ~l þ d

pr�

� �2
" #

: ð22Þ

Imposing the condition of marginal stability ~l ¼ i~o in Eq (22) gives the system of equations

0 ¼ 2jr� þ 4p2r2� þ 4v2� � ð1� 4v�tÞ~o2 ð23aÞ

0 ¼ ~oð4v� � 4p2r2�t� 4v2�tþ t~o2Þ ð23bÞ

where the fixed points are obtained from Eq (4) solving

0 ¼ v2� � p2r2� � jr� þ 1; ð24Þ

with

v� ¼ � d

2pr�

Eq (23b) gives the critical frequency

~o ¼ 2

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðptr�Þ
2 þ tv�ðtv� � 1Þ

q

:

The Hopf boundaries can be plotted in parametric form solving Eq (24) for j, and substituting

j and ~o into Eq (23a). Then solving Eq (23a) for τ gives the Hopf bifurcation boundaries

t�ðr�Þ ¼
p2r2� � 1þ 7v2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp2r2� � 1Þ2 � ð14þ 50p2r2�Þv2� � 15v4�

q

16v�ðp2r2� þ v2�Þ
: ð25Þ

Using the parametric formula

ðjðr�Þ; t�ðr�ÞÞ
� ¼ ðv2�=r� þ 1=r� � p2r�; t

�ðr�ÞÞ:

we can be plot the Hopf boundaries for particular values of the parameter δ, as r� is changed.
Fig 4 shows these curves in red, for δ = 0.05 and δ = 0.075. They define a closed region in

parameter space (shaded region) where oscillations are observed.

Calculation of the critical value δc, Eq (8). The functions τ±meet at two points, when the

argument of the square root in Eq (25) is zero. This gives four different roots for δ, and only
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one of them is positive and real

d
�ðr�Þ ¼

2pr�
ffiffiffiffiffi

15
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 5p2r2� þ 10p4r4�
p

� 7� 25p2r2�

q

:

This function has two positive zeros, one at r�min = 0, and one at r�max = 1/π, corresponding,

respectively, to the minimal (j!1) and maximal (j = 0) values of the firing rate for identi-

cal neurons (δ = 0). Between these two points the function attains a maximum, where

r�min = r�max = r�c, with

r�c ¼
1
ffiffiffiffiffiffiffiffiffi

2
ffiffiffi

5
pp

p
¼ 0:1505 . . .

The function δ�(r�) evaluated at its local maximum r� = r�c gives Eq (8).

Populations of Wang-Buzsáki neurons

We perform numerical simulations using the the Wang-Buzsáki (WB) neuron [30], and com-

pare them with our results using networks of QIF neurons. The onset of oscillatory behavior in

the WBmodel is via a saddle node on the invariant circle (SNIC) bifurcation. Therefore, the

populations of WB neurons near this bifurcation are expected to be well described by the

theta-neuron/QIF model, the canonical model for Class 1 neural excitability [45, 74].

We numerically simulated a network of N all-to-all coupled WB neurons, where the

dynamics of each neuron is described by the time evolution of its membrane potential [30]

Cm
_Vi ¼ �INa;i � IK;i � IL;i � Isyn þ Iapp;i þ I

0
:

The cell capacitance is Cm = 1 μF/cm2. The inputs Iapp (in μA/cm2) are distributed according

to a Lorentzian distribution with half width σ and center �I . In numerical simulations these

currents were selected deterministically to represent the Lorentzian distribution as

Iapp;i ¼ �I þ s tan ðp=2ð2i� N � 1Þ=ðN þ 1ÞÞ, for i = 1, . . ., N. The constant input I0 = 0.1601

μA/cm2 sets the neuron at the SNIC bifurcation when Iapp = 0. The leak current is

IL;i ¼ gLðVi � ELÞ;

with gL = 0.1 mS/cm2, so that the passive time constant τm = Cm/gL = 10 ms. The sodium

current is

INa;i ¼ gNam
3

1hðVi � ENaÞ;

where gNa = 35 mS/cm2, ENa = 55 mV,m1 = αm/(αm + βm) with αm(Vi) = −0.1(Vi + 35)/

(exp(−0.1(Vi + 35) − 1)), βm(Vi) = 4exp(−(Vi + 60)/18). The inactivation variable h obeys the dif-

ferential equation

_h ¼ �ðahð1� hÞ � bhhÞ;

with ϕ = 5, αh(Vi) = 0.07exp(−(Vi + 58)/20) and βh(Vi) = 1/(exp(−0.1(Vi + 28)) + 1). The potas-

sium current follows

IK;i ¼ gKn
4ðVi � EKÞ;

with gK = 9 mS/cm2, EK = −90 mV. The activation variable n obeys

_n ¼ �ðanð1� nÞ � bnnÞ;

where αn(Vi) = −0.01(Vi + 34)/(exp(−0.1(Vi + 34)) − 1) and βn(Vi) = 0.125exp(−(Vi + 44)/80).
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The synaptic current is Isyn = kCm S, where the synaptic activation variable S obeys the first

order kinetics Eq (16) and k is the coupling strength (expressed in mV). The factor Cm ensures

that the effect of an incoming spike to the neuron is independent from its passive time con-

stant. The neuron is defined to emit a spike when its membrane potential crosses 0 mV. The

population firing rate is then computed according to Eq (15), with τs = 10−2ms. In numerical

simulations we considered N = 1000 all-to-all coupled WB neurons, using the Euler method

with time step dt = 0.001 ms. In Fig 1, the membrane potentials were initially randomly distrib-

uted according to a Lorentzian function with half width 5 mV and center −62 mV. Close to the

bifurcation point, this is equivalent to uniformly distribute the phases of the corresponding

Theta-Neurons in [−π, π] [2, 7, 61, 74]. The parameters were chosen as �I ¼ 0:5 mA=cm2,

σ = 0.01 μA/cm2 and k = 6 mV. The population firing rate was smoothed setting τs = 2 ms in

Eq (15).

In Fig 5, we systematically varied the coupling strength and the synaptic time decay con-

stant to determine the range of parameters displaying oscillatory behavior. For each fixed

value of τd we varied the coupling strength k; we performed two series of simulations, for

increasing and decreasing coupling strength. In Fig 5 we only show results for increasing k.

All quantities were measured after a transient of 1000 ms. To obtain the amplitude of

the oscillations of the mean membrane potential, we computed the maximal amplitude
�Vmax � �Vmin over time windows of 200 ms for 1000 ms, and then averaged over the five

windows.
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