
PHYSICAL REVIEW E 67, 051916 ~2003!
Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance
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Neurons that exhibit a peak at finite frequency in their membrane potential response to oscillatory inputs are
widespread in the nervous system. However, the influence of this subthreshold resonance on spiking properties
has not yet been thoroughly analyzed. To this end, generalized integrate-and-fire models are introduced that
reproduce at the linear level the subthreshold behavior of any given conductance-based model. A detailed
analysis is presented of the simplest resonant model of this kind that has two variables: the membrane potential
and a supplementary voltage-gated resonant variable. The firing-rate modulation created by a noisy weak
oscillatory drive, mimicking anin vivo environment, is computed numerically and analytically when the
dynamics of the resonant variable is slow compared to that of the membrane potential. The results show that
the firing-rate modulation is shaped by the subthreshold resonance. For weak noise, the firing-rate modulation
has aminimumnear the preferred subthreshold frequency. For higher noise, such as that prevailingin vivo, the
firing-rate modulationpeaksnear the preferred subthreshold frequency.

DOI: 10.1103/PhysRevE.67.051916 PACS number~s!: 87.19.La, 05.40.2a, 87.19.Nn
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I. INTRODUCTION

Advances in recordings, in visualization techniques, a
in computational modeling capabilities@1,2# have made no-
table progress possible towards the understanding of the
namics of neural assemblies. Neuronal synchronization
oscillations have been studiedin vivo andin vitro in slices of
neural tissues and analyzed theoretically with the help
computer simulations@3#. The properties of the single ce
and of the synaptic couplings between different cells are b
thought to play a role in the observed dynamics. In parti
lar, it has been found that the subthreshold membrane po
tial response of neurons subjected to a small oscillatory d
depends on the drive frequency and can be peaked at pa
lar frequencies. Examples include trigeminal root gangl
neurons@4#, neocortical neurons@5,6#, hippocampal pyrami-
dal cells@7,8# and interneurons@8#, and others@9#. It has long
been known that this resonance phenomenon can be re
to the neuronal ionic channel characteristics and can be
curately modeled using the classic Hodgkin-Huxl
conductance-based description@10,11#. In order to assess th
functional significance of this subthreshold resonance, i
important to determine its relation to spike emission, a
particularly to examine the case of a neuron embedded
neural structure under heavy synaptic bombardment, as i
casein vivo. In a previous paper@12#, numerical simulations
of conductance-based models under noisy oscillatory d
were performed to address this question. It was found t
for a sufficient level of noise, the modulation of the spi
rate at the driving frequency was related to the subthresh
resonance curve. The classic Lapicque or leaky integr
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and-fire~IF! model@13,14# has been useful for understandin
in simple terms the properties of more detailed spiking n
ron models and of real neurons and neuronal networks@15–
17#. However, the leaky integrate-and-fire model cannot
scribe subthreshold resonance. This motivated
introduction@12,18# of a generalized integrate-and-fire~GIF!
model to describe more accurately these types of subthr
old properties. As for conductance-based models, the s
rate resonance curve of the GIF model was found to
peaked at the firing-rate frequency for low noise and arou
the subthreshold resonance for stronger noise regimes.

The aim of the present work is to present an analy
computation of the spike rate modulation and phase for
GIF model and a detailed analysis of the findings of R
@12#. The GIF model and its relation to linearize
conductance-based models are first recalled in Sec. II.
main characteristics of the model for constant input or we
oscillatory drive without noise are given in Sec. III. Th
general perturbative framework of the computation for no
inputs and the main results are then described in Sec.
They are first explained using a simple but representa
case in Sec. IV A. The general lowest-order computation
then dealt with in Sec. IV B. It is found here that a sufficie
level of noise is necessary for the subthreshold resonanc
be seen in the firing-rate modulation. This interplay of no
and oscillations is reminiscent of stochastic resonance@19#.
However, as discussed in Sec. IV C, the two phenomena
quite different since, for instance, the usual leaky IF mo
displays stochastic resonance@20# but not the subthreshold
and firing-rate resonance studied here. A discussion of
results and some perspectives of the present work are
vided in the concluding section. The results of some high
order computations are described in the Appendix.
©2003 The American Physical Society16-1
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II. SUBTHRESHOLD DYNAMICS AND THE GIF MODEL

A. Subthreshold response of conductance-based models

The response of neurons to a small oscillatory current
been tested in a number of experiments. In several cas
peak response has been observed at a frequency that de
on the particular neuron type under examination. This re
nance phenomenon is well accounted for by
conductance-based description of a single compartment
ron. In this classic Hodgkin-Huxley description@10,11#, with
an injected currentI app(t), the potential difference across th
cell membraneV5Vin2Vout is given by

C
dV

dt
5gL~EL2V!2(

j
I j~V,$xk%!1I app~ t !, ~1!

whereC denotes the membrane capacity,gL andEL are the
conductance and reversal potential of a passive leak cur
the I j ’s are a set of ionic currents associated with act
conductances~by convention, positive values are associa
with outward currents!, and I app is the externally applied
current. TheI j ’s are generally taken to be functions of th
potential and ofN additional activation and inactivation var
ables$xk ,k51,•••,N%, with time course

dxk

dt
5

xk
`~V!2xk

tk~V!
, ~2!

where both the relaxation timestk(V) and the steady-stat
valuesxk

` depend onV. For a small injected currentI app(t),
the departurev(t) of the membrane potential from its restin
value V0 is described by the linearized version of Eqs.~1!
and ~2!

C
dv
dt

52gv2(
k

gkwk1I app~ t !,

tk

dwk

dt
5v2wk , k51, . . . ,N, ~3!

whereg is the sum of all the steady-state conductances,tk is
the relaxation time ofxk at the resting potential,tk
5tk(V0), and gk measures the strength of the steady-st
current flow change due to thexk variation following a small
modification of the steady-state potential value,

g5gL1(
j

]I j /]VuV0
,

gk5(
j

]I j

]xk
` U

V0

dxk
`

dV
U

V0

. ~4!

Variablewk measures the departure of the activation or in
tivation variablexk from its value at the steady-state pote
tial,
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wk5
xk2xk

`~V0!

dxk
`

dV
U

V0

. ~5!

Without variableswk , Eq. ~3! is equivalent to a simple
electricRCcircuit. In this case, the amplitude of the potent
oscillation induced by an injected alternating current d
creases monotonically with the frequency of the curre
Variableswk add effective inductances into this electric c
cuit analogy and can give rise to a nonmonotonic freque
response curve. Adding a singlewk is already sufficient to
produce a peak response@9#, a resonance, at a particula
frequency and more complex responses can be obtained
several variables@12#.

B. The GIF model

The effect of a subthreshold resonance on the spike
can be directly examined by supplementing the subthresh
dynamics~3! with a threshold for spike emission in the spir
of the usual leaky integrate-and-fire neuron descript
@14,2#. That is, a GIF model is defined by using Eq.~3! as
long as the potentialv is below a thresholdu. When v
reachesu, a spike emission is registered,v is reset to a lower
valueVr and the linear evolution~3! resumes@18#. In prin-
ciple, the supplementary variableswk could also be reset a
the spike emission time whenv5u. For simplicity, it is cho-
sen here to leave them unaffected. This is appropriate
variables that have slow dynamics relative to the spike du
tion and it has also the advantage of keeping to a minim
the number of parameters in the model. In neural structu
a neuron receives a continuous barrage of inputs arriving
large number of synapses. This is modeled here as a con
mean injected currentI 0 plus a fluctuating Gaussian pa
h(t) of amplitude D, ^h(t)h(t8)&5Dd(t2t8). We thus
consider the following two-variable GIF model:

C
dv
dt

52gv2g1w1I 01h~ t !1I osc~ t !, v,u ~6!

t1

dw

dt
5v2w, ~7!

where I osc(t) is a small oscillating test current. Whenv
reachesu, it is instantaneously reset toVr,u. The noise
strength is more intuitively measured by the amplitudesV of
membrane potential fluctuations than byD. Without the
threshold condition, the two are easily related

sV
25Š~v2^v&!2

‹5
D

2C

C1gt11g1t1

~g1g1!~C1gt1!
. ~8!

An example of the dynamics is shown in Fig. 1.
The present study focuses on computing the spike rat

this model with the particular aim of analyzing the influen
of the subthreshold resonance on the input-output tran
function for this neuron. In the presence of a small oscill
ing input current I osc(t)5 Î /2 exp(ivt)1c.c., the instanta-
6-2
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FIRING-RATE RESONANCE IN A GENERALIZED . . . PHYSICAL REVIEW E67, 051916 ~2003!
neous firing-rater (t), averaged over a population of inde
pendent neurons or over many trials for a single neur
shows a weak modulation

r ~ t !5r s1
1

2
@ r̂ ~v! Îexp~ ivt !1c.c.#, ~9!

wherer s is the time-independent spike rate in the absenc
the weak drive~c.c. stands for the complex conjugate term!.
Modulation r̂ (v), or signal gain~e.g., Ref.@21#!, measures
the amplification of the frequencyv in the output signal and
its phase. It is one of the main factors determining synch
nization at the network level@17#. It will be computed in the
following sections under various conditions, in order to d
termine when and how it is modified by subthreshold re
nance.

Before considering the effect of noise, the main char
teristics of the deterministic two-variable GIF model are d
scribed.

III. THE DETERMINISTIC GIF MODEL

A. Subthreshold dynamics of the two-variable model

The subthreshold dynamics of the two-variable mode
identical to the dynamics of a general two-variab
conductance-based model for small excursions around s
holding voltage.

FIG. 1. An example of the variation of voltagev and auxiliary
variablew as a function of time for a GIF neuron@C/g1510 ms,
g1 /g510, t1510 ms, I 0 /g151 mV, andD/Cg155(mV)2]. ~a!
Evolution in thev versusw plane for time 500 to 550 ms.~b!
Evolution in thev versusw plane for time 550–600 ms.~c! Voltage
v as a function of time. Spikes are indicated by vertical lines
clarity. ~d! Auxiliary variablew as a function of time. For illustra-
tive purposes, all voltages have been shifted by260 mV, such that
for this case the rest and reset~dotted line! are at260 mV (Vr

50 mV) and the threshold for spike emission is at255 mV (u
55 mV).
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1. Steady-state stability

In the two-variable case, the dynamics depends on
dimensionless ratiosa5t1g/C andb5t1g1 /C. For a con-
stant injected currentI app5I 0, one can rewrite Eq.~3! by
usingt1 as the time unit as

dv
dt

52av2bw1I 0t1 /C, ~10!

dw

dt
5v2w. ~11!

The steady-statev5w5I 0 /(g1g1) exists for I 0,(g
1g1)u. The exponential relaxation~or growth! of perturba-
tions is controlled by the two eigenvaluesj6 , which obey

j21~a11!j1a1b50. ~12!

The steady state is therefore stable when both eigenva
have a real negative part, i.e., whena11.0 and a1b
.0.

2. Subthreshold resonance

In this parameter domain where the resting state is sta
the injection of a small alternating currentI osc(t)
5 Î /2 exp(ivt)1c.c. induces oscillations around the resti
membrane potential, v(t)5I 0 /(g1g1)11/2@V̂exp(ivt)
1c.c.#. An elementary computation givesV̂5Z(v) Î with

Z~v!5
t1

C

11 iv

b1~11 iv!~a1 iv!
. ~13!

FIG. 2. Several subthreshold resonance curves. The magn
of the impedanceuZu is displayed as a function of frequency. Th
four different curves correspond to the four parameter po
marked with the corresponding symbols in Fig. 3. The inset sho
the impedance magnitude after normalization by its value at z
frequency. Fora50, the relative strength of the resonance pe
increases withb, as seen by comparing the curves marked
squares and diamonds.

r
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BRUNEL, HAKIM, AND RICHARDSON PHYSICAL REVIEW E67, 051916 ~2003!
The response amplitudeuZ(v)u displays a peak at a finite
nonzero frequencyvp ~Fig. 2! whenb212b12ab.1 with

vp5A~b212b12ab!1/221. ~14!

The parameter domain whereuZ(v)u displays a peak at finite
frequency overlaps with domainb.(a21)2/4, where Eq.
~12! has complex roots but the two are different~see Fig. 3!,
as noted previously@12#.

An especially simple case is obtained for zero leakg
50 or a50). The model then only depends on the dime
sionless ratiob5t1g1 /C. The steady state is stable forb
.0 and Eq.~12! has complex eigenvalues forb.1/4. A
resonant response occurs in the more restricted case, w
the time scale of the supplementary variablew is sufficiently
slow, for b.A221. The resonant peak grows withb. In
particular, for b@1, the maximal response amplificatio
Q5uZ(vp)/Z(0)u, is equal tob at the peak frequencyvp

;Ab and the peak width is of order 1!vp .

3. Periodic firing regimes

In order to analyze the GIF-neuron firing rate and its d
pendence on currentI 0, periodic firing regimes~i.e., limit
cycles! are now considered. Between a reset of the poten
at v5Vr and the next spike emission whenv reachesu a
period T later, the dynamics is a simple superposition
exponentials controlled by the two eigenvaluesj6 ,

v5
I 0

g1g1
1a exp~j1t !1b exp~j2t !,

FIG. 3. The phase diagram of the GIF model in thea
5gt1 /C,b5g1t1 /C parameter plane. Models in the black regio
have no stable rest state. Models represented by parameters
the dotted line have a subthreshold resonance. Those abov
dashed-dotted line have complex eigenvaluesj6 . As explained in
the text, models in the gray region are of type I, whereas thos
the white region are of type II. The subthreshold resonance cu
of the models corresponding to the points marked by the diffe
symbols~circle, triangle, square, diamond! are drawn in Fig. 2.
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w5
I 0

g1g1
1

a

11j1
exp~j1t !1

b

11j2
exp~j2t !. ~15!

The constantsa, b are determined by requiring thatv starts
from Vr at t50 and ends atu at t5T. They are given in
term of periodT as

a5
1

exp~j1T!2exp~j2T! F S u2
I 0

g1g1
D

2ej2TS Vr2
I 0

g1g1
D G ,

b5
21

exp~j1T!2exp~j2T! F S u2
I 0

g1g1
D

2ej1TS Vr2
I 0

g1g1
D G . ~16!

Sincew is not modified when a spike is emitted, the p
riod T is obtained by the periodicity conditionw(0)
5w(T), which gives

I 0

g1g1
5Vr1

u2Vr

j12j2
H 11j1

12exp~j1T!
2

11j2

12exp~j2T!J .

~17!

The solutions of Eq.~17! correspond to periodic solution
wherev goes fromVr to u during periodT, that is to neurons
periodically emitting spikes at a rater s(I 0)51/(t1T) in di-

ove
the

in
es
nt

FIG. 4. Firing ratesr s(I ) as a function of the normalized in

jected currentĪ 5(I 0 /g12u)/(u2Vr) for two zero-leak GIF mod-
els (g50) with differentb parameters. The full lines correspond
the exact firing rates as given by Eq.~17!. Top panel: type-I model
with b50.1. The low frequency approximation of Eq.~18! ~dotted
line! is shown as well as the high frequency approximationr st1

5b( Ī 11/2) ~dashed line!. Bottom panel: type-II model withb
55. The dotted line corresponds to the largeb approximation Eq.
~20! and the shaded area is the region in which a quiescent a
firing state coexist.
6-4
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FIRING-RATE RESONANCE IN A GENERALIZED . . . PHYSICAL REVIEW E67, 051916 ~2003!
mensional units. However, the condition thatv(t) should
remain belowu during its motion has not been taken in
account in Eq.~17!. Among the solutions of Eq.~17!, only
those which satisfy this condition correspond to real so
tions. The simpler zero-leak case is analyzed first.

~a! The zero-leak case (a50). In the parameter rang
0,b,1/4, the two eigenvaluesj6 are real and negative
j2,21/2,j1,0. For T→1`, the slower relaxation
dominates and Eq.~17! can be approximately written as

I 0

g1
2u.

u2Vr

j12j2
~11j1!exp~j1T!. ~18!

The right-hand-side~rhs! of Eq. ~18! is positive, so a peri-
odic state appears above the thresholdI 0 /g15u with a loga-
rithmically long periodT;u ln(I0 /g12u)u. This is a kind of
type-I behavior, analogous to that of the usual IF neuron

The situation is different forb.1/4 when the two eigen
values are complexj6521/26 i j2. Then, Eq.~17! reads,
for T→1`,

I 0

g1
2u.~u2Vr !exp~2T/2!Fcos~j2T!1

sin~j2T!

2j2
G .

~19!

The rhs in Eq.~19! oscillates and takes both positive an
negative signs forT large while decaying to zero. Thus, s
lutions to Eq.~17! exist belowI 0 /g15u. The smallest solu-
tion T of Eq. ~17! gives a potentialv(t) that remains belowu
and corresponds to a real periodic regime. So, forb.1/4, a
steady and a periodically firing state coexist in a range
applied currents: a type-II behavior. The firing rate as a fu
tion of applied current is displayed in Fig. 4, for seve
values ofb. The domain of coexistence and the firing-ra
are easily estimated forb@1. Thenj2;Ab,T;1/Ab, and
expansion of Eq.~17! in inverse powers ofb gives

I 0

g1
5

u1Vr

2
1

u2Vr

4j2
Fcot~j2T/2!1

j2T/2

sin2~j2T/2!
G . ~20!

The expression within square brackets on the rhs of Eq.~20!
attains its minimum forj2T5p. So, for largeb, the steady
periodically firing state coexists with the steady-state in
interval

Vr1u

2
1

~u2Vr !p

8Ab
1•••<

I 0

g1
<u. ~21!

It appears at the lower end of the interval with the fin
period T.p/Ab. The lower bound (Vr1u)/2 in Eq. ~21!
can easily be understood. Whenb→1`, the dynamics of
the w variable is much slower than the dynamics of the p
tential andw simply relaxes to the average ofv. For a con-
stantw, the dynamics ofv is linear in time and the mean o
v in a periodically firing state is simply the average betwe
the reset and threshold potentials. Puttingw5(u1Vr)/2 in
Eq. ~10! immediately gives that a periodically firing sta
05191
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exists only if I 0 /g1 is larger than (u1Vr)/2. The period
~with t1 as the time unit! in the same limit is simply obtained
as

T.
C~u2Vr !

t1@ I 02g1~u1Vr !/2#
for b@1, ~22!

which corresponds to Eq.~20! for Tj2!1.
~b! The general non-zero-leak case (aÞ0). WhenaÞ0, a

similar analysis can be performed and is briefly summari
here. WhenT→1`, Eq. ~17! gives back the thresholdI 0
5(g1g1)u. Two types of behavior can be distinguished
considering howI 0 departs from (g1g1)u for T@1: ~1! the
periodic state exists only forI 0.(g1g1)u and starts with
infinite period at the thresholdI 05(g1g1)u, i.e., a type-I
behavior, or~2! a periodic state coexists with the steady st
for some range of current below the thresholdI 05(g
1g1)u, i.e., a type-II behavior. In the parameter rangea
21)2.4b, j1,2 are real and negative~with j2,j1). For
large T, the slower relaxationj1 dominates and Eq.~17!
gives

I 0

g1g1
2u.

u2Vr

j12j2
~11j1!exp~j1T!. ~23!

The neuron is of type I when the prefactor of the exponen
in Eq. ~23! is positive whereas it is of type II when th
prefactor is negative.

The prefactor has the same sign as 11j1 . It is positive
for b,0 as well as forb.0 anda,1 and negative forb
.0, a.1.

In the parameter range (a21)2,4b, j1 and j2 are
complex conjugates and the obtained correction in the an
of Eq. ~17! is oscillatory. This indicates the existence of p
riodic firing regimes belowI 0 /(g1g1) and correspond to
type-II behavior.

The region of type-II behavior exactly corresponds to t
parameter region delimited in Ref.@12#, where after a curren
step, the membrane potential overshoots before relaxin
the new holding potential. The different regions are d
played in Fig. 3. It should be noted that in general the type
behavior does not necessarily correspond to the existenc
complex roots: a difference of exponentials can provide
overshoot leading to type-II behavior.

4. Firing-rate resonance

In this section, the firing-rate modulation by a small tim
varying current is considered. The analysis is limited to
computation of the linear response. It amounts to genera
ing the well-known analysis for the IF neuron@22# to the
slightly more complicated two-variable GIF model. The a
is to investigate how the subthreshold resonance modifies
rate response function.

The neuron is submitted to the injected currentI 0
1I osc(t). The constant currentI 0 is sufficiently large, so that
in the absence ofI osc(t) the neuron emits spikes periodical
at timest5nT1t0 ,n5 . . . ,21,0,1, . . . . For acollection of
6-5
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BRUNEL, HAKIM, AND RICHARDSON PHYSICAL REVIEW E67, 051916 ~2003!
neurons,t0 varies independently from neuron to neuron a
the spike emission probability per unit time,r s , is time in-
dependent. The effect of the small time-varying compon
is to slightly displace the spike times fromt to t1d(t).1 This
produces a modulation in time of the spike rate,

r ~ t !5r s@12d8~ t !#. ~24!

In order to obtain the rate modulation, it remains to det
mine d(t) for the two-variable GIF model. With an injecte
current with a small time-varying component, Eq.~10! be-
comes

dv
dt

52av2bw1@ I 01I osc~ t !#t1 /C. ~25!

At the linear level, the time-varying current can be deco
posed in Fourier components and it is sufficient to consi

@ I osc(t)5 Î /2 exp(ivt)1c.c#. A particular solution to Eqs
~25! and ~11! is given by

„v51/2 @~ Î t1 /C!vpexp~ iv t!1c.c#,

w51/2@~ Î t1 /C!wpexp~ iv t!1c.c.#…,

with

vp~v!5
11 iv

~11 iv!~a1 iv!1b
,

wp~v!5
1

~11 iv!~a1 iv!1b
. ~26!

Functionvp5Z(v)C/t1 is a dimensionless form of the im
pedanceZ(v). Between thenth spike at timetn and the (n
11)th spike at timetn11, the complete solution can be wri
ten as

v5
I 0

g1g1
1anexp@j1~ t2tn!#1bnexp@j2~ t2tn!#

1
1

2
@~ Î t1 /C!vpexp~ ivt !1c.c.#, ~27!

1At this linear level, locking phenomena, which exist for any fin
amplitude around resonances, are neglected. This limits the a
cability of the linear response in this purely deterministic setti
The obtained response curve is nevertheless useful to describ
spike rate modulation as shown by Fig. 5 and to understand
small noise limit of Eq.~6!.
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w5
I 0

g1g1
1

an

11j1
exp@j1~ t2tn!#

1
bn

11j2
exp@j2~ t2tn!#

1
1

2
@~ Î t1 /C!wp exp~ ivt !1c.c.#. ~28!

The forcing perturbsan ,bn ,tn112tn andw(tn), the value of
w(t) at the spike time, away from their steady limit cyc
values. At linear order, one can write

an5a11/2 @~ Î t1 /C!âexp~ ivtn!1c.c.#,

bn5b11/2@~ Î t1 /C!b̂exp~ ivtn!1c.c.#,

w~ tn!5w011/2@~ Î t1 /C!ŵexp~ ivtn!1c.c.#,

and

tn112tn5T11/2@~ Î t1 /C!T̂exp~ ivtn!1c.c.#.

The nth spike timetn and the value ofw at tn determine the
constantsan andbn in the time interval@ tn ,tn11#, i.e., they
give â andb̂ as linear functions ofŵ andT̂. The knowledge
of an andbn in turn determines the (n11)th spike time and
the valuew(tn11). This provides two supplementary equ
tions that determineŵ and T̂.

Explicitly, one obtains

â5
1

j22j1
@~11j1!vp1~11j1!~11j2!~ŵ2wp!#,

~29!

b̂5
1

j12j2
@~11j2!vp1~11j1!~11j2!~ŵ2wp!#.

~30!

Then T̂ is determined by the condition that the (n11)th
spike occurs whenv reachesu,

T̂52
âexp~j1T!1b̂exp~j2T!1vpexp~ ivT!

aj1exp~j1T!1bj2exp~j2T!

5k1~ŵ2wp!1k2vp , ~31!

where the two constantsk1 andk2 are given by

li-
.
the
e
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k15
~11j1!~11j2!@exp~j2T!2exp~j1T!#

@aj1exp~j1T!1bj2exp~j2T!#@j22j1#
, ~32!

k25
~11j2!exp~j2T!2~11j1!exp~j1T!1~j12j2!exp~ ivT!

@aj1exp~j1T!1bj2exp~j2T!#@j22j1#
. ~33!

This gives the evolution ofw from one spike to the next,

ŵexp~ ivT!5lLŵ1mvp1@exp~ ivT!2lL#wp, ~34!

with

lL5
~aj11bj2!exp@~j11j2!T#

aj1exp~j1T!1bj2exp~j2T!
, ~35!

m5

aj1

11j1
exp~j1T!@exp~j2T!2exp~ ivT!#1

bj2

11j2
exp~j2T!@exp~j1T!2exp~ ivT!#

aj1exp~j1T!1bj2exp~j2T!
. ~36!
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Equation~34! expressesw(tn11) ~its lhs! as a function of
w(tn) and the effective forcing onw, @mvp1(12lL)wp#,
coming from the imposed oscillating current~its rhs!. In the
absence of forcing, constantlL controls the free evolution o
small perturbations around the limit cycle: it is the discre
Lyapunov exponent giving the~unforced! limit cycle stabil-
ity. Equation~34! determinesŵ as

ŵ5
mvp1@exp~ ivT!2lL#wp

exp~ ivT!2lL
. ~37!

Substituting this expression back in Eq.~31! with formulas
~32!–~36! for the constants, gives the simple express
of T̂,

T̂5vp~v!F aj1exp~j1T!

exp~j1T!2exp~ ivT!

1
bj2exp~j2T!

exp~j2T!2exp~ ivT!G
21

, ~38!

whereT is given by Eq.~17! anda andb are given by Eq.
~16! or by the equivalent formulas

a52
~u2Vr !~11j1!

@j12j2#@12exp~j1T!#
,

b52
~u2Vr !~11j2!

@j22j1#@12exp~j2T!#
. ~39!

These expressions permit a comparison of the zero frequ
limit of Eq. ~38! with a direct differentiation of Eq.~17! and
a check that

T̂~v50!5
C

t1

dT

dI0
. ~40!
05191
n
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After determining the variationT̂ of the interspike inter-
val, the time displacement of thenth spike at linear order
follows by summation,

d~ tn!5
Î t1

2C (
m52`

n21

$T̂exp@ iv~mT1t0!#1c.c.#%

5
Î t1

2C
F T̂

exp~ ivT!21
exp~ ivtn!1c.c.G . ~41!

As usual, the summation is performed by supposing that
perturbation is created slowly, that is, by adding a sm
negative imaginary part to the forcing frequencyv.

Finally, when the spike rate is written asr s

11/2@ Î r̂exp(ivt)1c.c.# @Eq. ~9!#, the modulation amplitude
r̂ is obtained as

r̂

r s
52

t1

C S iv

exp~ ivT!21D T̂, ~42!

whereT̂ is explicitly given by Eq.~38!. Expressions~38! and
~42! generalize to the two-variable GIF model, the we
known formula@22# for the usual IF model. It is recovere
for b50 when the additional variable has no influence
the membrane potential dynamics. In this case, one hasj1

52a and j2521 so thatb50 @Eq. ~39!#. Equation~38!

with vp51/(a1 iv), then readsT̂}„12exp@(a1iv)T#…/(a
1 iv), which gives back Knight’s formula@22#.

Equation~42! is plotted in Fig. 5 together with the result
of direct numerical simulations for two cases where the G
model displays subthreshold resonance. As for the us
leaky IF model, sharp resonance peaks are seen for freq
cies that are multiples of the firing-rate. They arise from t
vanishing of the denominator in formula~42!. However, in
this deterministic case, the GIF firing-rate resonance cu
6-7
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FIG. 5. Firing-rate resonance curves for the deterministic two-variable GIF model withu510 mV, Vr55 mV. The amplitudeuCr̂/t1r su
and phase ofr̂ are plotted for~a! a55, b55, T50.4 and~b! a50, b510, T50.5 ~which, respectively, correspond to firing rates of 25 H
and 20 Hz fort15100 ms). The solid lines represent the analytic result of Eq.~42!. The diamonds show the results of numerical simulatio
of Eqs. ~25! and ~11! with a simple Euler code (dt51.031024t1) and different forcing frequenciesv @~a! I 0t1 /C595.5325 mV,
I 1t1 /C50.2 mV and~b! I 0t1 /C585.0975 mV, I 1t1 /C50.2 mV]. For each frequency, the dynamics was simulated for a total tim

t553104t1. The modulationr̂ /r s was obtained as the averager̂ /r s52C/(I 1t1)^exp(2ivtn)& computed over all occurring spike timestn .

The plotted amplitude and phase correspond to those ofr̂ /r s . The modulus of the subthreshold resonance curveCuZ(v)/t1u5uvpu is also
shown for comparison~dashed lines!.
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has no peak at the subthreshold resonance frequency. Fg
Þ0, it exhibits instead a suppression around the subthr
old resonance frequency.

For comparison with the following sections, the limitin
form of r̂ when t1 is long in comparison with other time
scales is worth noting. Then, the dynamics ofw does not
play a significant role in most of the driving frequency rang
Explicit expressions can be obtained by taking the limits
the above expressions whena,b→1`,T→0 with a/b and
bT fixed. ForgÞ0, one obtains the expression for a usual
neuron with leak conductanceg and a resonance peak o
well-defined limiting form around the firing-rate frequenc
The limit is not uniform in a low frequency range that ten
to zero witht1 ~where the slow dynamics ofw does play a
role!. The zero-leak case is special in that the firing-rate re
nance curve of the allied zero-leak IF model has no pea
the firing-rate frequency@22#. For g50, one obtains, in the
05191
r
h-

.
f
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limit t1→1` with vT fixed,

r̂

r s
5

Tt1

C~u2Vr !
H 11

bT2

@12exp~ ivT!#2J . ~43!

For any finite 1/t1, the firing-rate response exhibits res
nance peaks centered on the firing-rate frequency and its
monics. However, the firing-rate response is modified
these resonances only in frequency intervals of width tend
to zero such asAg1 /t1C ~in dimensional units! as t1→
1` ~i.e., for uvT22pnu;AbT).

IV. STEADY AND MODULATED SPIKE RATES
WITH NOISY INPUTS

In a number of previous studies@14,16,17,23–25# on neu-
ron firing-rates and modulation using the IF model w
6-8
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FIRING-RATE RESONANCE IN A GENERALIZED . . . PHYSICAL REVIEW E67, 051916 ~2003!
noise, it has been found convenient to transform the stoc
tic description of neuron dynamics into a Fokker-Plan
equation for the distribution of its membrane potential. In t
present case, Eqs.~6! and~7! give a Fokker-Planck equatio
for the distributionP(v,w,t) of the membrane potential an
the supplementary variablew,

] tP5
1

C
]v@~gv1g1w2I 02I osc~ t !!P#

1
1

t1
]w@~w2v !P#1

D

2C2
]v

2P, ~44!

with an absorbing boundary condition at thresho
P(u,w,t)50. At the reset potentialv5Vr the distribution is
continuous, but it has a discontinuous first derivative aris
from the reinjected probability current

]vP~v,w,t !uv5V
r
12]vP~v,w,t !uv5V

r
25]vP~v,w,t !uv5u .

~45!

The instantaneous firing-rater (t) is simply related to the
total probability current through the threshold,

r ~ t !52
D

2C2E2`

1`

dw]vP~u,w,t !. ~46!

Without the threshold condition, the stationary soluti
@ I osc(t)50# of Eq. ~44! is a simple Gaussian,

P~v,w!5
C1gt1

pD
A~g1g1!C/t1expH 2

C1gt1

D F ~g1g1!

3S w2
I 0

g1g1
D 2

1
C

t1
~w2v !2G J . ~47!

Finding the solution to Eq.~44! with the threshold and rein
jection boundary conditions is less easy. In the usual cas
the IF model, the problem is similar to Kramer’s well-know
computation of the thermal escape from a one-dimensio
potential well@26# and reduces to solving an ordinary diffe
ential equation. In the present two-dimensional nonpoten
case, obtaining an exact solution to Eq.~44! appears to be a
difficult task even in the stationary case. Instead of attem
ing this, a perturbative approach is developed here in
limit where the supplementary variablew evolves on a long
time scale. This is a limit where subthreshold resonanc
well developed. It is also relevant for subthreshold resona
in real cells@12# since most of them show preferred freque
cies of a few Hertz@5–9,27–31#. Whenw evolves slowly as
compared to the membrane potentialv, it stays near the
time-averaged potential^v& and the analysis of Eq.~44! can
be reduced to that of an effective one-variable model. T
analysis is first illustrated using a simple self-consistent
proach in the zero-leak case (g50). The general case is the
dealt with in Sec. IV B using a direct expansion of th
Fokker-Planck Eq.~44!, which also provides a systemat
means of computing higher perturbative orders as show
the Appendix.
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A. The zero-leak case

The GIF model of Eq.~6,7! with zero leak (g50) is
analyzed in this section in the limitt1→1`.

1. Steady firing-rate

The steady firing-rate is considered first~with I osc(t)
50). Whent1→1`, the relaxation of the supplementar
variablew is driven by the time average of potential and
the steady statew5^v&. The membrane potential dynamic
reduces to the single Eq.~6! with w replaced bŷ v&. The
steady-state distribution of the membrane potentialPs(v)
thus obeys

~g1^v&2I 0!]vPs1
D

2C
]v

2Ps50, ~48!

with the absorbing boundary condition at the threshold
tential (Ps(u)50) and the reinjection condition at the res
potentialVr . Multiplication of Eq.~48! by v and integration
from v52` to the thresholdv5u directly relates the mean
steady spike rater s and the average potential^v&,

r s5
I 02g1^v&
C~u2Vr !

, ~49!

where expression~46! for r s and boundary condition~45!
have been used to evaluate the boundary terms.

The full solution to Eq.~48! is also easily obtained an
reads

Ps~v !5
1

u2Vr
H 12expF2C~g1^v&2I 0!

D
~u2v !G J ,

Vr,v,u

Ps~v !5
1

u2Vr
H 12expF2C~g1^v&2I 0!

D
~u2Vr !G J

3expF2C~g1^v&2I 0!

D
~Vr2v !G ,

v,Vr . ~50!

The membrane potential distributionPs(v) depends on
the average membrane potential^v&, which remains to be
determined. It is obtained in a self-consistent way by writi

^v&5E
2`

1`

dv v Ps~v !5
u1Vr

2
1

D

2C~g1^v&2I 0!
.

~51!

The last equality can be derived by integrating the ex
expression~50! or again directly from Eq.~48!, by multiply-
ing it by v2 and integrating fromv52` to the threshold
v5u. The simple self-consistent quadratic equation~51! has
two roots, one larger and one smaller thanI 0 /g1. Only the
smaller one is compatible with a normalizablePs(v) @Eq.
~50!# and with a positive spike rate@Eq. ~49!#. One, there-
fore, obtains
6-9
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BRUNEL, HAKIM, AND RICHARDSON PHYSICAL REVIEW E67, 051916 ~2003!
FIG. 6. Steady-state firing-rate for the zero-leak (g50) GIF
model with noisy inputs. The model parameters areu55 mV, Vr

50 mV. Panels~a! and~b! show the variation of the firing rate with
t1 when all other parameters are fixed (b5t1g1 /C). ~a! C/g1

55 ms, I 0 /g1521.5 mV, D/(Cg1)510(mV)2 ~a high noise,
low current case!. ~b! C/g1510 ms, I 0 /g154 mV, D/(Cg1)
51(mV)2 ~a low noise, high current case!. The symbols are the
results of direct simulations. The larget1 result of Eq.~53! and its
first correction, Eq.~A14!, are shown for comparison~dashed
lines!. The firing rate of a classic IF neuron with leakg1 gives the
small t1 approximation~dotted lines!. ~c! shows the firing rate as a

function of the normalized injected currentĪ 5(I 0 /g12u)/(u
2Vr) for four noise levels. The symbols are the results of dir
numerical simulation and the lines show the analytic result of
~53!. No noise, bold line;D/(Cg1)51(mV)2, triangles and dash
dotted line; D/(Cg1)55(mV)2, stars and dashed line;D/(Cg1)
510(mV)2, circles and dotted line@t15100 ms and other mode
parameters as in~a!#.
05191
^v&5
1

2g1
H I 01g1

u1Vr

2
2AF I 02g1

u1Vr

2 G2

1
2g1D

C J ,

~52!

r s5
1

2C~u2Vr !
HAF I 02g1

u1Vr

2 G2

1
2g1D

C

1I 02g1

u1Vr

2 J . ~53!

WhenD50, Eqs.~52! and ~53! reduce to the simple noise
less expressions,^v&5I 0 /g1 ,r s50 for I 0,g1(u1Vr)/2 and
^v&5(u1Vr)/2,r s5@ I 02g1(u1Vr)/2#/C(u2Vr) for
I 0 /g1.(u1Vr)/2. One obtains again that the noiseless n
ron has a periodically firing state whenI 0 /g1.(u1Vr)/2,
namely, for a smaller injected current than that which is
quired to bring its resting potential above the threshold~i.e.,
I 0 /g1.u). Moreover, fort1→1`, Eq. ~53! shows that as
soon as this periodic firing regime exists, it is selected by
infinitesimal noise.2

As shown in Fig. 6, results of direct simulations of th
stochastic GIF model~6,7! tend toward the limiting values
~52! and~53! whent1 increases. Higher order corrections
these lowest order estimates are obtained in the Appe
and are also plotted in Fig. 6.

2. Spike rate modulation by a small oscillatory current:
Direct linearization

When the neuron is submitted to an additional small
cillatory current injection,@ I osc(t)5 Î /2 exp(ivt)1c.c.# in
Eq. ~44!, its spike rate acquires a small modulation at t
forcing frequencyr (t)5r s11/2@ Î r̂ exp(ivt)1c.c.#. The aim
here is to compute this modulation and to determine whe
and under which conditions it displays a peak at the s
threshold resonance frequency. We first proceed straigh
wardly and obtain the result for a fixed driving frequencyv
in the limit t1→1`. It is then shown that the procedur
needs some refinement to capture the subthreshold reson
for v;Ag1 /t1C.

As discussed above, whent1→1`, the relaxation of the
supplementary variablew is driven by the time average o
the potentialw5^v& and Eq. ~6! reduces to the single
variable Fokker-Planck equation for the potential distrib
tion,

] tP5
1

C
@g1^v&2I 02I osc~ t !#]vP1

D

2C2
]v

2P. ~54!

The modulation due to the small oscillatory currentI osc(t) is
obtained by linearizing Eq.~54! around the steady-state so

2For finite t1, this is presumably not the case. Determining
which part of the coexistence interval, the quiescent or the peri
cally firing regime is preferred in the low noise limit, would requi
computing and comparing the escape actions of these two attra
@37#.

t
.
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FIRING-RATE RESONANCE IN A GENERALIZED . . . PHYSICAL REVIEW E67, 051916 ~2003!
lution, seeking a probability distribution that has a small o
cillating component at the injected current frequen
P(v,t)5Ps(v)11/2@ Î P̂(v)exp(ivt)1c.c.#1•••. The mod-
ulation amplitudeP̂(v) obeys

2 iv P̂1
1

C
~g1^v&2I 0!]vP̂] 1

D

2C2
]v

2P̂5
1

C
]vPs .

~55!

The solution to Eq.~55! is easily obtained. First, compariso
with the steady-state Eq.~48! provides a particular solution
to the linear inhomogeneous Eq.~55! equal toi ]vPs /(Cv).
Second, in the present zero-leak case, the linear Eq.~55! has
constant coefficients and its solution is therefore simply
tained as a superposition of exponentials exp(l6v) with

l65
C

D
@ I 02g1^v&6A~g1^v&2I 0!212iDv#, Re~l6!,

.0.

~56!

Taking into account the boundary conditions~45! and match-
ing the function expressions in the two intervalsv,Vr ,Vr
,v,u, one obtains

P̂~v !5
i

v H 2Crs

D
exp@l1~v2u!#1

1

C
]vPsJ , Vr,v,u

P̂~v !5
i

v H 2Crs

D
$211exp@l1~Vr2u!#%exp@l1~v2Vr !#

1
1

C
]vPsJ , v,Vr . ~57!

The corresponding spike rate modulation 1/2@ r̂ IF Îexp(ivt)
1c.c.# and mean voltage amplitude are simply

r̂ IF52 i
C~u2Vr !

D

r s
2

v FA112 i
Dv

C2~u2Vr !
2r s

2
21G ,

~58!

v̂1
IF5E

2`

u

dv v P̂~v !

5
i

v F ~u2Vr ! r̂
IF2

1

CG
5H C~u2Vr !

2

D

r s
2

v2 FA112 i
Dv

C2~u2Vr !
2r s

2
21G

2
i

CvJ . ~59!

The superscript IF has been added to emphasize tha
results are identical to what would have been obtained fo
simple zero-leak IF model with injected current@ I 02g1^v&
5C(u2Vr)r s#. Therefore, modulationr̂ IF(v) is a mono-
05191
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tonically decreasing function of frequencyv and does not
display any sign of the subthreshold resonance, as show
Fig. 7.

It can be noted that the deterministic peak at the firin
rate frequency, which exists for small noise for any finitet1
@Eq. ~43!#, is also missed by the lowest-ordert15` approxi-
mation. This is peculiar to theg50 case and comes from th
fact that the firing-rate resonance curve of the allied ze
leak IF model itself is special in not having a peak at t
firing-rate frequency@22# as recalled previously.

The characteristic frequencyr s /K appears in Eq.~58!,
whereK denotes the dimensionless ratio

K5
D

2C2~u2Vr !
2r s

. ~60!

For further use below, we note the spike rate and mean v
age expansions for frequencies small compared tor s /K,

r̂ IF5
1

C~u2Vr !
F12 iK

v

r s
22S K

v

r s
D 2

1•••G ,
v̂1

IF5
K

Crs
F12 i2K

v

r s
1•••G . ~61!

The corresponding expansions in the opposite freque
rangev@r s /K read

r̂ IF5
e2 ip/4

C~u2Vr !
A r s

vK
1•••,

v̂1
IF5

1

Cv S 2 i 1eip/4A r s

vK
1••• D . ~62!

3. Spike rate modulation by a small oscillatory current:
The low frequency regime

Considering the zero frequency limit provides a hint th
the perturbative result of Eq.~58! does, however, not entirely
describe the spike rate modulation dependence on freque
On one hand, whenv→0, Eq. ~58! gives the limiting be-
havior

lim
v→0

r̂ IF5
1

C~u2Vr !
. ~63!

On the other hand, the spike rate modulation induced b
very slowly changing injected current should be given by
variation of the steady-state firing-rate with a change in
constantcurrent fromI 0 to I 01I osc(t),

lim
v→0

r̂ 5
drs

dI0
5

1

C~u2Vr !
S 12g1

d^v&
dI0

D ~64!

5
1

2C~u2Vr !
S 11

I 02g1~u1Vr !/2

A@ I 02g1~u1Vr !/2#212g1D/C
D ,

~65!
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FIG. 7. Firing-rate resonance curves in the zero-leak case.~A! Modulus of the firing-rate modulationÎ r̂ 1(v). ~B! Phase of the firing-rate
modulation. The triangles are the results of direct numerical simulation; the lines correspond to the analytic formula~73!. ~C! Samples of
membrane potential traces. In~A! and~B!, symbols are the results of direct numerical simulations, the dotted lines show the larget1 analytic
expression~58!, and the thick lines show the refined expression~73!. The zero-noise result~42! is also shown for comparison~dashed lines!.

Three different noise and injected current conditions are shown.Î 50.02 with ~a! D50.01, I 050.35; ~b! D50.1, I 050.31; and~c! D
50.5, I 050.14. The other model parameters areC51, g150.1, t15100 ~units as in Fig. 6!. As noise increases, the peak shifts from t
firing-rate frequency around 20 Hz in~a! to the subthreshold resonance frequency of about 5 Hz in~c!.
en
it
where the last two equalities follow from Eqs.~49! and~58!.
Since the average membrane potential^v& depends on the
injected currentI 0, results~63! and ~64! are different. The
origin of the discrepancy is that they correspond to differ
05191
t

limiting procedures~see Fig. 7!. The perturbative result~63!

is obtained by first computing the limit ofr̂ (v) whent1→
1` at a fixed nonzero frequency and then taking the lim
v→0. Contrary to this, Eq.~64! corresponds to first setting
6-12
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FIRING-RATE RESONANCE IN A GENERALIZED . . . PHYSICAL REVIEW E67, 051916 ~2003!
v50 and then evaluating the limit ofr̂ (0) whent1→1`.
The two results differ becauser̂ (v) has a rapid variation
nearv50 in a small frequency range that tends to zero wh
t1→1`, as a consequence of the fact that the subthres
resonance;Ag1 /t1C also tends to zero in this limit.

This being noted, the previous calculation can be refin
so that it correctly interpolates between the two freque
regimesv!Ag1 /t1C andv@Ag1 /t1C. A simple approach
is presented here. A more systematic way of proceedin
presented in Sec. IV B.

As previously, we consider the limitt1@1 with a weak
driving term but at frequencyv that is arbitrarily slow. In
this case, the potentialv has short time fluctuations but als
slow oscillations at frequencyv. Averaging on a time that is
long for the random fluctuations but short compared to
period 2p/v of the oscillation gives

^v&5v01 1
2 @ Î v̂1exp~ ivt !1c.c.#. ~66!

Integration of Eq.~7! provides the corresponding expressi
for w,

w~ t !5v01
1

2
F Î v̂1

11 ivt1
exp~ ivt !1c.c.G . ~67!

Sincew is no longer a fluctuating variable, Eq.~6! reduces as
before to a single-variable Fokker-Planck equation

] tP5
1

C
@g1w~ t !2I 02I osc~ t !#]vP1

D

2C2
]v

2P, ~68!

where w(t) is given by Eq. ~67!. ExpandingP(v,t), as
above, under the formP(v,t)5Ps(v)11/2@ Î P̂(v)exp(ivt)
1c.c.#1•••, gives a modified equation forP̂,

2 iv P̂1
1

C
~g1^v&2I 0!]vP̂1

D

2C2
]v

2P̂

5
1

C
F12

g1v̂1

11 ivt1
G]vPs . ~69!

Equation~69! is identical to Eq.~55! except that the inho-
mogeneous rhs of these two linear equations differ by a c
stant proportionality factor. The solution to Eq.~69! is there-
fore obtained by multiplying the solution to Eq.~55! by the
same factor~this is also consistent with the boundary con
tions at threshold and reset!. In particular, this gives the two
relations

v̂15E
2`

u

dv v P̂~v !5F12
g1v̂1

11 ivt1
G v̂1

IF , ~70!

r̂ 52
D

2C2
]vP̂~v !uu5F12

g1v̂1

11 ivt1
G r̂ IF , ~71!
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where v̂1
IF is the previously computed oscillation amplitud

@Eq. ~59!#. Equation ~70! self-consistently determines th
amplitude of the average potential oscillations

v̂15
11 ivt1

11 ivt11g1v̂1
IF

v̂1
IF . ~72!

Together with Eq.~72!, this also completes the determinatio
of the spike rate modulation amplitude~to lowest order!

r̂ 5
11 ivt1

11 ivt11g1v̂1
IF

r̂ IF

5
11 ivt1

11 ivt11g1@12~u2Vr ! r̂
IF #/~ iCv!

r̂ IF , ~73!

where Eq.~59! has been used to obtain the second equa
Equation~73! gives that the firing-rate modulation amplitud
is maximal at a nonzero frequencyvp f r . It is compared with
the results of direct numerical simulations in Fig. 7. T
analytic longt1 result misses the resonance at the firing f
quency that is captured by the noiseless expression, Eq.~42!.
For low noise, this resonance is dominant and the appr
mation poorly describes the numerics in this frequen
range. For higher noise, the resonance at the firing freque
disappears and the dominant modulation lies around the
threshold resonance frequency. Equation~73! then describes
the numerical data quite well~see Fig. 7 lower panels!.

The frequencyvp f r corresponding to the maximal spik
rate modulation can be estimated simply when the subthr
old frequency is much smaller than the characteristic f
quencyr s /K ~which approximately corresponds to the p
rameters chosen in Fig. 7! or in the opposite case when it i
much larger. In the first case, we consider the freque
range 1/t1!v!r s /K, where the different terms of Eq.~73!
can be expanded as follows@Eq. ~61!#:

u r̂ u25u r̂ IF~0!u2F11
1

v2t1
2G

3F11
4K2g1

r s
2t1C

2
~11Kg1 /r sC!2

v2t1
2

1•••G
3F123S K

v

r s
D 2

1•••G ~74!

5u r̂ IF~0!u2F11
4K2g1

r s
2t1C

2
~2r sC/g11K !K

v2t1
2 S g1

Crs
D 2

23S K
v

r s
D 2

1•••G . ~75!

This gives the peak frequency

vp f r.F2r sC/g11K

3K G1/4A g1

t1C
. ~76!
6-13
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BRUNEL, HAKIM, AND RICHARDSON PHYSICAL REVIEW E67, 051916 ~2003!
Therefore, apart from a numerical factor, the peak modu
tion of the spike rate coincides with the resonant subthre
old frequencyAg1 /t1C. In the limit considered here, th
spike rate resonance is, however, broader than the subth
old one. As shown by Eq.~75!, its width is comparable to
vp f r while the subthreshold resonance peak is much sha
with a width ;1/t1. The phase ofr̂ can be similarly ana-
lyzed. In the frequency range 1/t1!v!r s /K, the expansion
of r̂ reads

r̂ ~v!5
1

C~u2Vr !
F11 i

Kg1

r sC
S 1

vt1
2vC/g1D1•••G .

~77!

So, the phase ofr̂ decreases monotonically in this frequen
range andvanishesat the resonant subthreshold frequen
vp;Ag1 /t1C. The maximum of the phase stands at a low
frequency, which is only determined, fort1→1`, by the
prefactor of r̂ IF in Eq. ~73!. In the low frequency rangev
;1/t1, the phase ofr̂ IF coincides with the phase of@1
1 ivt1#/@11 ivt11g1v̂1

IF(v50)#. Its maximum stands at

v5@11g1v̂1
IF~v50!#1/2

1

t1
5F11

g1K

Crs
G1/2 1

t1
. ~78!

The opposite case when the subthreshold frequencyvp is
larger than the characteristic frequencyr s /K can be analyzed
in a similar way. Forv;vp , the firing modulation can be
approximately written as@Eq. ~62!#

r̂ 5
e2 ip/4

C~u2Vr !
A r s

vK

11 ivt1

11 i ~vt12g1 /Cv!
. ~79!

It is maximal at the resonant subthreshold frequency. Thi
also the frequency where the phase ofr̂ (v) vanishes. The
phase maximum stands at the smaller frequencyvp /A3.

B. The general two-variable case

It is conceptually not more difficult to analyze the gene
two-variable GIF model case than the previousg50 case.
We restrict ourselves tog.0 so that the model is stabl
whent1@t ~i.e., so thata5t1g/C.21 in this limit!. The
computation, however, involves more complicated functio
and less explicit expressions. Instead of simply repeating
previous analysis, here the appropriate generalized exp
sions are obtained from a direct expansion of the Fokk
Planck equation~44! in the larget1 limit. We find it conve-
nient to introduce s5AD/Cg, which measures the
amplitude of the fluctuations in voltage units, the time co
stant t5C/g, and the conductance ratiog5g1 /g. With
these notations, the limit considered is that of largeb
5t1g1 /C at fixeds andg.

1. Steady firing rate

With a steady noisy injected current@i.e., I osc(t)50], the
membrane potential distribution obeys the time-independ
05191
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version of the Fokker-Planck equation~44!. Anticipating that
w does not fluctuate in the limitb→1`, we introduce the
new variablez with

w5w̄1zsba, ~80!

where the constant valuew̄ and the powera,0 remain to be
determined. With this new variable, the steady-state pr
ability distributionPs obeys

]v@~gv1g1w̄2I 0!Ps#1
s2

2t
]v

2P

52g1H sbaz]vPs1s21b2a21]z@~w̄2v !Ps#

1
1

b
]z@zPs#J . ~81!

The first two subdominant terms on the rhs of Eq.~81! are of
same order whenba;b2a21, i.e., for a521/2 that we
choose. In order to simplify further expressions, we find
convenient to also replacev by the dimensionless variabley
with

y5
gv1g1w̄2I 0

gs
. ~82!

In these notations, the time-independent Fokker-Pla
equation finally reads

1

2

]2Ps

]y2
1

]

]y
~yPs!52gH 1

Ab
S z

]Ps

]y
1~ ȳ2y!

]Ps

]z D
1

1

b

]

]z
~zPs!J , ~83!

where g5g1 /g and we have definedȳ5@(g1g1)w̄
2I 0#/(gs). With variablesy andz, the boundary conditions
are imposed at the thresholdyu and at the reset potentialyr ,

yu5
1

gs
~g u1g1w̄2I 0!, yr5

1

gs
~g Vr1g1w̄2I 0!.

~84!

The boundary conditions read

P~yu ,z!5@P~y,z!#
y

r
2

yr
1

50,

1

2

]P

]y
~yu ,z!5

1

2 F]P

]y
~y,z!G

y
r
2

yr
1

52r ~z!, ~85!

where the square brackets denotes the discontinuity of

bracketed quantity@ f (y)#
y

r
2

yr
1

5 lime→0$ f (yr1e)2 f (yr2e)%.

The firing-rate is equal to the total rate of threshold crossi
6-14
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FIRING-RATE RESONANCE IN A GENERALIZED . . . PHYSICAL REVIEW E67, 051916 ~2003!
With the new variables and the normalization ofP chosen as
*

2`
yu dy*2`

1`dzP(y,z)51, it reads

r 5
1

tE2`

1`

dz r~z!. ~86!

Whenb is large, the solution to Eq.~83! can be obtained
by series expansion,

Ps~y,z!5P0~y,z!1b21/2P1~y,z!1b21P2~y,z!1•••,

r s~z!5r 0~z!1b21/2r 1~z!1b21r 2~z!1•••. ~87!

The zeroth-order solution is obtained by neglecting the rh
Eq. ~83!,

P0~y,z!52r 0~z!Q0~y!, ~88!

Q0~y!5e2y2E
y

yu
eu2

Q~u2yr !du, ~89!

where Q is the usual Heaviside function,Q(u)51 for x
>0 and 0 otherwise. It is identical to the steady-state pr
ability distribution for the usual leaky integrate-and-fi
model~see, e.g., Ref.@17#! except that the prefactorr 0(z) is
a function of the supplementary variablez instead of a con-
stant and remains to be obtained as well as the boundsyu and
yr that depend on the unknownw̄ @see Eqs.~80! and ~84!#.
These unknowns are determined by solvability conditions
higher-order equations.

The first-order correctionP1(y,z) obeys

1

2

]2P1

]y2
1

]

]y
~yP1!52gS z

]P0

]y
1~ ȳ2y!

]P0

]z D . ~90!

The integral overy on the lhs of Eq.~90! from y52` to
y5yu is seen to vanish after using boundary conditions~85!.
Therefore, this needs to be also true for the rhs of Eq.~90! if
the equation is to be solvable. That is,

E
2`

yu
dy~ ȳ2y!Q0~y!50. ~91!

This solvability condition determinesw̄ ~and, therefore,
yu ,yr and ȳ). It is equivalent to the previous self-consiste
equation~51!, which was obtained on a more intuitive bas

Oncew̄ is determined, the normalization condition giv
the steady-state rate to lowest order in 1/b,

1

r 0t
52E

2`

yu
Q0~y!5E

0

1`

due2u2 exp~2yuu!2exp~2yru!

u
.

~92!

When condition~91! is satisfied, Eq.~90! can be solved
without difficulty. As can be seen from the rhs of Eq.~90!
and explicitly given in the Appendix, the resultingP1(y,z) is
obtained as a linear combination ofr 08(z) andzr0(z) multi-
plied by determined functions ofy. The solvability condition
05191
f

-
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on P1 at second order, analogous to Eq.~91!, imposes that
r 08(z) is proportional tozr0(z) and shows thatr 0(z) is a
Gaussian. The explicit expression of^z2&0 as well as the first
nontrivial correction tor 0 are determined in the Appendi
@see Eqs.~A28!–~A30!#. A comparison between direct nu
merical simulation results and the perturbative estimates
the steady-state rate is provided in Fig. 8. The larget1 result
~92! is seen to describe quite accurately the numerical res
already fort1 /t55.

2. Spike rate modulation: Direct linearization

In order to obtain the instantaneous spike rate modula
induced by a small oscillatory current (I osc(t)
51/2Îexp(ivt)1c.c.), we consider the direct linearization o
the time-dependent Fokker-Planck equation~44! around the
steady-state distribution.

In variablesy,z, Eq. ~44! reads

2t] tP1
1

2

]2P

]y2
1

]

]y
~yP!

52gH 1

Ab
S z

]P

]y
1~ ȳ2y!

]P

]z D1
1

b

]

]z
~zP!J

1
I osc~ t !

gs
]yP, ~93!

with boundary conditions ~85! @with a time-
dependent r (z,t)]. P(y,z,t) and r (z,t) are sought
in the form P(y,z,t)5Ps(y,z)1(2gs)21@ Î P̂(y,z)exp(ivt)
1c.c.#, r (z,t)5r s(z)1(2gs)21@ Î r̂ (z,v)exp(ivt)1c.c.#.
The firing rate@Eq. ~86!# and its modulation are obtained b
integration overz ~and division byt) and are written as

FIG. 8. Steady-state firing rater 0 for a leaky GIF model with
g51, t5C/g520 ms, u520 mV, andVr514 mV. Left panel:
dependence ofr 0 on the ratio of time constants, fors51 mV and
I 0 /g537 mV ~curves at low firing rates! andI 0 /g538 mV ~curves
at higher firing rates!. Circles, numerical simulations; dashed lin
analytical expression for the firing rate including the first correct
in the larget1 expansion, Eqs.~92! and ~A31!; dotted line, the
analytical expression for the firing rate in the limitt150, which is
that of a usual IF model with a leak equal tog1g1. Right panel:r 0

as a function of the injected currentI 0 /g for t15100 ms for zero
noise,s51 mV ands55 mV. Solid lines, zero-order analytic ca
culations; circles, simulations.
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r ~ t !5r s1~2gs!21@ Î r̂ ~v!exp~ ivt !1c.c.#. ~94!

Note that the normalization of the current in this secti
makes the normalization ofr̂ (v) differ by a factorgs from
the normalization in Eq.~9!. Modulation P̂ obeys at lowest
order in 1/Ab,

2 i tv P̂01
1

2

]2P̂0

]y2
1

]

]y
~yP̂0!5]yP0 . ~95!

At this order, thez dependence ofP̂0 factors out and it can
be written as

P̂052r 0~z!Q̂0
IF , ~96!

whereQ̂0
IF is identical to the response of a classic IF neur

under oscillatory drive. The functionQ̂0
IF can be written

@17,25# as a linear combination of a particular solution to E
~95! plus two independent solutionsf1 andf2 of the allied
homogeneous equation. The particular solution of Eq.~95!,
]yQ0 /@11 ivt#, is obtained by differentiating the stead
state equation to lowest order@i.e., Eq.~83! with rhs equal to
zero# with respect toy. Introducing Kummer’s function
M (a,b,x) @32#, functionsf1(y) andf2(y) can be taken as
th
c

o

o
f

Eq
in

05191
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.

independent linear combinations of the confluent hyperg
metric functions M @(12 ivt)/2,1/2,2y2# and yM@1
2 ivt/2,3/2,2y2#. It is convenient to choosef2(y) propor-
tional to the combination that has a fast decrease aty5
2`,

f2~y!5
1

GS 11 ivt

2 D M S 12 ivt

2
,
1

2
,2y2D

1
2y

GS ivt

2 D M S 12 i
vt

2
,
3

2
,2y2D . ~97!

This gives the zeroth-order estimate ofr̂ (v) @Eq. ~94!#,

Q̂0
IF~y!52

1

11 ivt

dQ0

dy
1H â0f2~y!, y,yr

b̂0f1~y!1ĝ0f2~y!, y.yr .
~98!

The three boundary conditions~85! determine the three un
known coefficientsâ0(v), b̂0(v), and ĝ0(v) and give the
firing-rate modulation
r̂ 0
IF~v!5

r 0

11 ivt S @f28~yu!12yuf2~yu!#exp~yu
2!2@f28~yr !12yrf2~yr !#exp~yr

2!

f2~yu!exp~yu
2!2f2~yr !exp~yr

2!
D . ~99!
il-
ns

-
r-
ld
w-

e
of

be

r

ug-
Again, we have added the superscript IF to emphasize
the rate modulation~99! is identical to the result for a classi
IF model with an injected currentI 02g1w̄. For further use
below, we also note that integration of Eq.~95! over y pro-
vides the identity

Y~v![2tr 0E
2`

yu
dy yQ̂0

IF5
12~yu2yr ! r̂ 0

IF~v!t

11 ivt
,

~100!

where functionY(v) is defined by the first equality.
The obtained firing-rate modulationr̂ 0

IF(v) is plotted and
compared to the results of a direct numerical simulation
the GIF model in Fig. 9.

The agreement is rather good at high frequency but d
not capture the resonance at low frequency. Moreover, as
the previous zero-leak case, the zero frequency limit of
~99! does not correspond to the result obtained by vary
the injected current in the steady-state rate~92!. That is,

r̂ 0
IF~v50!52tr 0

2S eyu
2E

2`

yu
e2u2

du2eyr
2E

2`

yr
e2u2

duD .

~101!
at

f

es
or
.

g

This differs from the expected formula for very slow osc
lations, which should be given by the adiabatic oscillatio
of the steady-state rate. Namely, from Eq.~92! one obtains

lim
v→0

r 0̂~v!5gs
dr0

dI0
5 r̂ 0

IF~0!F12g1

dw̄

dI0
G , ~102!

where w̄ is determined by Eq.~91! and depends onI 0 be-
causeyu and yr do. As before, the two formulas differ be
cause the variation ofw̄ due to the injected current is ove
looked in the direct linearization. The approach shou
therefore be refined at low frequency as shown in the follo
ing section.

3. Spike rate modulation: The low frequency regime

In the low frequency regime, the terms coming from tim
differentiation become small and comparable to the terms
first order in 1/Ab. Thus, the perturbation series has to
reordered.

The adiabatic result atv50 lead us to anticipate that, fo
a slow oscillating currentI osc(t)51/2 @ Îexp(ivt)1c.c.#, w is
peaked around a time-dependent oscillating value. This s
gests a change of variables fromw to z with
6-16
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FIRING-RATE RESONANCE IN A GENERALIZED . . . PHYSICAL REVIEW E67, 051916 ~2003!
w5w̄11/2@ Î ŵ1exp~ ivt !1c.c.#1zsb21/2. ~103!

This transforms the Fokker-Planck equation~44! into

2t] tP1
1

2

]2P

]y2
1

]

]y
~yP!

52gH 1

Ab
S z

]P

]y
1~ ȳ2y!

]P

]z D1
1

b

]

]z
~zP!J

1
1

2gs H F ~12g1ŵ1!]yP2
11 ivt1

Ab
g1ŵ1]zPG Î

3exp~ ivt !1c.c.J , ~104!

where, as before, we have also introducedy5@(gv1g1w̄

2I 0#/(gs) and defined the corresponding constantȳ5@(g
1g1)w̄2I 0#/(gs).

FIG. 9. Relative firing-rate modulation as a function of fr
quencyf 5v/2p for the leaky GIF model. The amplitude~left! and

phase~right! of r̂ Î /(gs r s) are shown for two different values oft1

~indicated above each panel! in the strong noise regime. The pea
of the amplitude stands around the subthreshold resonance
quency~about 3.5 Hz for the top panels and 5 Hz for the botto
panels!. Parameters of the input:I 0 /g529 mV, s55 mV yielding
a steady firing rate of about 12 Hz,g51. Other parameters are as

Fig. 8. Symbols, numerical simulations withÎ 50.05I 0; thick line,
analytical expression, Eq.~116!; thin line, firing-rate modulation
and phase of the IF neuron, Eq.~99!. It can be noted that the linea
approximation still gives a good fit to the data for a modulation
about 50%, as seen here.
05191
Again, the solution to~104! is sought of the form
P(y,z,t)5Ps(y,z)1(2gs)21@ Î P̂(y,z)exp(ivt)1c.c.#. For
low frequenciesv;1/Att1 ~or smaller!, the linear probabil-
ity modulation obeys to lowest order in 1/Ab,

1

2

]2P̂0

]y2
1

]

]y
~yP̂0!5~12g1ŵ1!]yP0 . ~105!

Equation~105! only differs from the previously solved Eq
~95!, in that it is evaluated atv50 and that the rhs of the
two equations differ by a constant proportionality facto
Therefore, one has

P̂052r 0~z!@12g1ŵ1#Q̂0
IF~y;v50!, ~106!

r̂ 05@12g1ŵ1# r̂ 0
IF~v50!, ~107!

with

Q̂0
IF~y;v50!52

]Q0

]y
1

r̂ 0
IF~v50!

r 0
Q0~y!1exp~2y2!

3@2exp~yu
2!1Q~yr2y!exp~yr

2!#, ~108!

where r 0 and r̂ 0(v50) are given by Eqs.~92! and ~101!.
Formula~108! can be obtained by taking the limitv→0 of
general expression~98! or more simply by directly solving
Eq. ~95! with v50. In this case, the normalization conditio
to the solution of the homogeneous equation can be obta
by imposing the condition

E
2`

yu
dy Q̂0

IF~y!50, ~109!

which directly follows from Eq.~95! for vÞ0.
The unknown constantŵ1 is determined by a solvability

condition at next order. The 1/Ab correctionP̂1 to P̂0 obeys

1

2

]2P̂1

]y2
1

]

]y
~yP̂1!52gFz

] P̂0

]y
1~ ȳ2y!

] P̂0

]z
G

1~12g1ŵ1!]yP12~11 ivt1!

3~g1ŵ1!]zP01 ivtAb P̂0 . ~110!

The solvability condition, obtained by integrating Eq.~110!
over y together with Eq.~106! and ~109!, reads

E
2`

yu
dy$g~ ȳ2y!P̂01~11 ivt1!g1ŵ1P0%50. ~111!

With the previous expressions~106! and ~108!, Eq. ~111! is
found to be equivalent to the following self-consistent equ
tion for ŵ1:

g1ŵ15g
~12g1ŵ1!

11 ivt1
2tr 0E

2`

yu
dy yQ̂0

IF~y,v50!.

~112!

re-

f
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BRUNEL, HAKIM, AND RICHARDSON PHYSICAL REVIEW E67, 051916 ~2003!
Using Y(v) defined in Eq.~100!, one obtains

g1ŵ15
gY~0!

11 ivt11gY~0!
, ~113!

where

Y~0!512~yu2yr ! t r̂ 0
IF~v50! ~114!

and r̂ 0
IF(v50) is given explicitly in Eq.~101!. The firing-

rate modulation in the low frequency regime is given by E
~107! and ~113!

r̂ 0~v!5
11 ivt1

11 ivt11gY~0!
r̂ 0

IF~v50!. ~115!

An expression that interpolates between the low and h
frequency regimes is simply

r̂ 0~v!5
11 ivt1

11 ivt11gY~0!
r̂ 0

IF~v!. ~116!

A slightly different interpolating expression was propos
in Sec. IV A 2. It is obtained by keeping the2 iv P̂0t term
in Eq. ~105!. This simply replacesQ̂0

IF(y;v50) by

Q̂0
IF(y;v) in each step from Eq.~105! to Eq. ~116! and it

leads to the alternative formula

r̂ 0
sc~v!5

11 ivt1

11 ivt11gY~v!
r̂ 0

IF~v!, ~117!

with Y(v) defined by Eq.~100! and r̂ 0
IF(w) given by Eq.

~99!.
The analytical formulas are compared to results of dir

numerical simulations in Figs. 9 and 10. For these param
values, the two formulas of Eq.~116! and~117! are numeri-
cally very close and describe quite well the numerical resu

FIG. 10. Firing-rate resonance curve in the low noise regim
Same parameters as in Fig. 9, except thatI 0 /g540 mV, s
51 mV, giving a background firing rate of about 42 Hz. Simu
tions are performed withI 150.025I 0. The symbols correspond t
the results of direct numerical simulations, the thick line to E

~117!. r̂ 0
IF @Eq. ~99!# is also plotted~dashed line! and in this low

noise regime almost coincides with Eq.~117! except in a very small
region at low frequency~see insets!.
05191
.

h

t
er

s.

C. Unmasking of the subthreshold resonance by noise

In high noise conditions, the firing-rate resonance curve
peaked around the subthreshold frequency as seen in
7~C! and 9. The corresponding resonance curves in low no
conditions with the same average firing-rate~obtained by
increasing the injected currentI 0) are shown in Figs. 7~A!
and 10. They display a strong resonance peak at the fir
rate frequency and peaks of lower amplitude at its harm
ics, attenuated but recognizable features of the firing-r
resonance curves in the deterministic limit~compare with
Fig. 5!. Figures 9 and 10 also show that the GIF respo
r̂ 0(v) at low frequencies can be either smaller than the le
IF responser̂ 0

IF ~hence creation of a peak around subthre
old frequency, see Fig. 9! or higher than the leaky IF re
sponse~hence a trough around subthreshold frequency,
inset in Fig. 10!. The condition that determines whether
peak or a trough is present can be obtained from Eq.~117!. A
peak is found forY(0).0, while a trough is found for
Y(0),0. Alternatively, this condition can be obtained fro
the slope of thef -I curve, sinceY(0) is linearly related to
r̂ 0

IF(v50). For a slope larger than 1/@C(u2Vr)#, a peak is
obtained in the firing-rate response, and a trough otherw
Note that 1/@C(u2Vr)# is the slope that is obtained in th
high firing-rate limit in the absence of a refractory perio
Thus, the qualitative behavior of the firing-rate response
low frequency can be obtained by an inspection of thef -I
curves shown in Fig. 8. For low noise levels, the slope
small at low firing-rates~hence a peak at subthreshold fr
quency!, then increases above its asymptotic value~hence a
trough at subthreshold frequency!, and then decreases to
wards its asymptotic value~the trough becomes less and le
pronounced as firing-rates increase!. For high noise levels,
the slope is always smaller than its asymptotic value, wh
means that a peak at subthreshold frequency is alw
present, but the peak should vanish at very large rates.

For the parameter values of Figs. 9 and 10, the peak of
firing-rate resonance curve is plotted in Fig. 11 as a funct
of the noise intensity. This clearly illustrates the peak sh
from the firing-rate frequency to the subthreshold prefer
frequency with increasing noise. Thus, noise helps to
cover a resonant peak at the subthreshold preferred
quency in the firing-rate response. In some sense, this m
be considered as a form of stochastic resonance@19#. How-
ever, this phenomenon is very different from previously d
cussed stochastic resonance phenomena in neurons~see, e.g.,
Ref. @27#!. These studies considered the spectrum of the
terspike interval distribution~ISI! of a neuron subjected to
noisy sinusoidal current as the quantity of interest. What w
shown in a variety of models, including the leaky integra
and-fire neuron, is that the signal-to-noise ratio~SNR! of the
transmitted frequency exhibits a peak at some positive n
level. Here, we have considered a very different quantity,
linear response of the instantaneous firing-rate. This mea
is more appropriate in the context of the transmission of
oscillatory signal at the network level. It is also one of t
main quantities that determines whether a network is as
chronous or not~see, e.g., Ref.@17#!. The behavior of this
measure is quite different from the SNR of the ISI distrib

.

.
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FIRING-RATE RESONANCE IN A GENERALIZED . . . PHYSICAL REVIEW E67, 051916 ~2003!
tion. In the suprathreshold firing regime, noise decreases
relative size of the resonant peak at the firing frequency
both IF and GIF neurons, in a monotonic way. In the su
threshold firing regime, noise enhances in a monotonic w
the relative size of the resonant peak at the subthres
preferred frequency, if the firing rate is kept constant as no
is varied. This behavior occurs in GIF neurons with su
threshold resonance, but not in IF neurons that have no
threshold preferred frequency.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, a generalized integrate-and-fire model
been studied in order to shed light on the relation betw
subthreshold resonance and firing-rate modulation.

It had been shown in a previous study@12# using both the
GIF model and conductance-based modeling that a s
ciently large amount of noise was necessary for the s
threshold resonance to be able to create a firing-rate r
nance. The present study provides a detailed analysis of
phenomenon for the two-variable GIF model. For noisel
and weak noise inputs, the results of Secs. II and IV sh
that the firing-rate modulation is strongest at the firing-r
frequency~and its harmonics! and that there is atrough in
the response at frequencies around the subthreshold
quency. Contrary to this, for sufficiently noisy inputs, th
results of Sec. IV show that the resonance of the firing-r
stands around the subthreshold frequency and the pertu
tive results describe well the numerical data. In the pres
paper, we have illustrated in Figs. 5, 7, 9, and 10 the situa
in which the background firing rate is larger than the su
threshold preferred frequency. The two variable resonant
neurons are type II and their minimal firing rate in the a
sence of noise cannot be much smaller than the subthres
resonant frequency. Hence, the situation in which the fir

FIG. 11. Dependence on noise of locationvp f r of the peak of
firing-rate response, for three values of the background rate, 10
and 50 Hz. At each noise levels, currentI 0 is adjusted to leave the
firing rate constant at the desired value, using Eq.~92! ~other pa-
rameters as in Fig. 9!. The left panel shows the rather abrupt tra
sition of the peak from the firing-rate frequency to the subthresh
resonance frequency~about 5 Hz here! as noise is increased an
current I 0 is decreased. The right panel shows theQ value of the
resonance defined as the ratio of the modulation at the peak

quencyvp f r over the modulation at zero frequency.u r̂ (vp f r)/ r̂ (0)u.
For r 0510 Hz, Q is less than 1 when curveu r̂ (v)u has a large
negative slope at the origin@due to the high slope of ther s(I 0)
curve#.
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rate is smaller than the subthreshold frequency can
achieved, in practice, only with noise and, in this regime,
firing-rate amplifies preferentially inputs at the subthresh
resonant frequency@12#.

As regards the mathematical treatment of the two-varia
GIF model, the main results have been obtained pertu
tively in the limit where the supplementary variable is slo
as compared to the membrane potential dynamics. It is w
emphasizing that this is relevant for the description of ma
real cells. From the multiple cell types that exhibit resonan
in the nervous system, most show resonance at frequen
of a few Hertz. Neurons in the inferior olive@28,29# and in
the thalamus@30,31# show resonance at about 4 Hz. Pyram
dal cells in the neocortex can show resonance at 1–2 H
hyperpolarized levels@5# or 5–20 Hz at more depolarize
levels @6#. Finally, pyramidal cells in the hippocampus als
show resonance at low frequencies in theu band~2–7 Hz,
@7,8#!. Such frequencies can be obtained with a time cons
of the ‘‘activation variable’’w aroundt1;100 ms. It is in-
teresting to note that for such values oft1, the smallt/t1
expansion gives a very good approximation of the redu
model behavior~see Figs. 9 and 10!. The reduced mode
itself often gives a very good approximation of the behav
of more realistic conductance-based cells@12#.

Other approximate treatments can probably be develo
to describe different parameter regimes. Several cells s
resonance at higher frequencies. For instance, interneu
of the hippocampus show resonance in theg band ~30–50
Hz, @8#!. Such frequencies are obtained with smaller tim
constantst1 and hence the smallt/t1 expansion gives less
accurate results. However, the difference between sim
tions and analytical data seem to be accounted well b
frequency-independent multiplicative factor. It thus see
that no qualitatively new phenomenon arises from
higher-order terms, at least in the range of the values ot1
investigated here~10–200 ms!. Obtaining the exact solution
of the problem would nevertheless be interesting but app
rather difficult.

The main features observed in simulations of more re
istic models@12# are similar to those obtained with the GI
model and can thus be described by the present anal
Several simplifying assumptions made in the formulation
the GIF model should, however, be noted. The most obvi
ones are that the GIF model subthreshold properties are
dependent of the membrane potential and that sp
generating dynamics is absent. Numerical results us
conductance-based models@12# show that the basic phenom
enon is independent of these simplifications. It could no
theless be worthwhile to try and develop a direct analysis
these more realistic models.

A second set of simplifications pertains not to the neu
dynamics itself but to the modeling of its inputs. It has be
chosen here for simplicity to consider a white noise curr
source. While this could be studied in an experiment in i
lated cells or in a slice, this certainly greatly simplifies sy
aptic inputs in at least two important respects. They are b
ter modeled as conductance modifications and, furtherm
noise is colored on the time scale of the synaptic dynam
@33#. It is known that the replacement of white noise b

0,

ld
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BRUNEL, HAKIM, AND RICHARDSON PHYSICAL REVIEW E67, 051916 ~2003!
colored noise can modify the response of neurons at h
frequency@25#. Again, the numerical results of Ref.@12# in-
dicate that the qualitative phenomenon is preserved in
more complicated case, but a more quantitative anal
might be worth pursuing.

It is certainly of great interest to understand how the pr
erties of individual cells affect the collective properties
networks of cells. The present study may help in two ways
make progress in this direction. First, at a purely numer
level, the IF neuron has proven very useful as the simp
spiking neuron model and it has been widely used as
elementary component of large network simulations. T
GIF neuron should provide the appropriate substitute
permit the incorporation of key features of the subthresh
response. In networks of inhibitory leaky integrate-and-fi
neurons, noise has previously been shown to give rise
oscillatory modes in which neurons fire irregularly at lo
rates, while the population activity oscillates at a frequen
determined by the synaptic time constants@17,34,35#. It will
be interesting to investigate whether networks of cells w
more realistic subthreshold dynamics, such as the GIF m
studied here, can give rise to new oscillatory modes. A
more theoretical level, the linear firing-rate response of
neuron that was determined here is a key quantity in
analysis of this question and the determination of the con
tions of network oscillations, as was shown for networks
leaky integrate-and-fire neurons@17,35# and for networks of
excitatory neurons with adaptation currents@36#. The results
of the present paper show that noise will potentially play
strong role in shaping the synchronization properties of n
works of neurons with subthreshold resonance. This sho
allow for an analysis of the respective roles of intrinsic a
synaptic dynamics in the collective behavior of large n
works and allow for an assessment of the functional role
subthreshold resonance in neural systems.
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APPENDIX: FIRST CORRECTION TO THE
FIRING RATE IN THE LARGE t1 EXPANSION

The formalism of Sec. IV B can be used to obtain high
order corrections to the lowest-order results given in
main text in a systematic way. This is illustrated here
deriving the first correction to the steady firing-rate both
the zero-leak case and for the generalgÞ0 case. The zero
leak case is treated separately because much more ex
expressions can be obtained. This also serves to illustra
method of calculation that avoids the explicit computation
the probability distribution by focusing on its moments.

1. The zero-leak case and the moment method

The aim is to calculate the first higher-order correction
the firing-rate for the simple case ofg50. The regime of
interest is that for whichb is large and, therefore, the co
05191
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rections will be sought in the form of a series of inver
powers ofAb. The time-independent Fokker-Planck equ
tion ~44! for this case is

05
D

2C2

]2P

]v2
1

1

C

]

]v
@~g1w2I 0!P#1

1

t1

]

]w
@~w2v !P#.

The substitutions v5w̄1xAD/Cg1 and w5w̄
1zb21/2AD/Cg1 are made, yielding the reduced-variab
Fokker-Planck equation:

05
1

2

]2P

]x2
1

z

2

]P

]x
1

1

Ab
S z

]P

]x
2x

]P

]z D1
1

b

]

]z
~zP!,

~A1!

with z defined by

z52A C

Dg1
~g1w̄2I 0!.

Note that in this section, the normalization ofz is different by
a factor ofAg/g1 from that chosen in the rest of this pap
~which is not compatible withg50).

The first correction to the firing-rate can be convenien
obtained by taking various moments of Eq.~A1!. To this end,
multiplying by a factorxmzn and integrating over the spac
of the x andz variables gives

r~zn!~x0
m2xr

m!1m~m21!^xm22zn&5mz^xm21zn&

1
2m

Ab
^xm21zn11&2

2n

Ab
^xm11zn21&1

2n

b
^xmzn&,

~A2!

where the following definitions have been used:

^A&5E
2`

`

dzE
2`

x0
dxAP,

r~zn!5E
2`

`

dzzn
]P

]x U
x0

with r5r~1!,

x05ACg1

D
~u2w̄! and xr5ACg1

D
~Vr2w̄!. ~A3!

Puttingm50 in Eq. ~A2! gives

^xzn21&5
1

Ab
^zn& for n>1. ~A4!

This equation~with n51) states that, to leading order,^x&
;1/Ab. For n50, with m51 andm52, Eq.~A2! becomes

~x02xr !r5z1
2

Ab
^z&, ~A5!
6-20
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~x0
22xr

2!r1252z^x&1
4

Ab
^xz&, ~A6!

respectively. On substituting forr, these two equations giv
to zero order

z52
2

~x01xr !
. ~A7!

Using the definitions ofz, x0, and xr , Eq. ~A7! gives a
quadratic equation forw̄. The root that is consistent with th
normalization condition on the probability density can
shown to bew̄5^v& @Eq. ~52!#. As expected, this zero-orde
result is equivalent to the self-consistent replacementw
→^v&. The choice is made to enforce relation~A7! to all
orders~this can be taken as a definition of shiftw̄).

From the moment equation withm51 andn50, constant
r ~which is related to the firing-rate! is given by

r5
z

x02xr
S 11

2

Ab

^z&
z D .

It remains only to obtain̂z& to leading order. This can b
achieved by using the moment equation~A2! with m51 and
m52:

r~zn!~x02xr !5z^zn&1
2

Ab
^zn11&

2
2n

Ab
^x2zn21&1

2n

b
^xzn&, ~A8!

r~zn!~x0
22xr

2!12^zn&52z^xzn&1
4

Ab
^xzn11&

2
2n

Ab
^x3zn21&1

2n

b
^x2zn&.

~A9!

On multiplying Eq.~A8! by 2 and Eq.~A9! by z and adding
them to eliminater(zn) using Eq. ~A7!, the following is
obtained:

nz^x3zn21&12n^x2zn21&5S 21z21
2n

b D ^zn11&

1
2z

Ab
^zn12&1

nz

Ab
^x2zn&,

~A10!

where relation~A4! has also been used. Withn50, this
equation yields

^z&52
1

Ab

2z^z2&

~21z2!
~A11!
05191
and withn51,

S 21z21
2

b D ^z2&5z^x3&12^x2&2
2z

Ab
^z3&2

z

Ab
^x2z&.

~A12!

The last result implies that, to zero order,

^z2&05
~z^x3&012^x2&0!

~21z2!
. ~A13!

The zero-order forms of Eq.~A2! with m51,2,3,4 andn
50 can be used to obtain̂x2&0 and ^x3&0:

^x2&05
1

3 S x0
32xr

3

x02xr
D 5

1

3
~x0

21x0xr1xr
2!

^x3&05
1

4 S x0
42xr

4

x02xr
D 1

1

z S x0
32xr

3

x02xr
D 52

1

4
~x01xr !

3.

Combining these results and noting the relation betweer
and the firing-rater 52g1r/2C gives

r 5r 0S 12
1

b

4^z2&0

~21z2!
D 5r 0S 12

4

b

~z^x3&012^x2&0!

~21z2!2 D
~A14!

as the order 1/b correction to the firing-rate. The zero-orde
firing-rate r 05g1 /@C(x0

22xr
2)# is equivalent to the resul

given in Eq.~53!.

2. The first-order correction in the general case

The starting point is the Fokker-Planck equation~83!. In-
serting the series expansion, Eq.~92!, in Eq. ~83!, gives the
successive orders inP,

LP050, ~A15!

LP152gS z
]P0

]y
1~ ȳ2y!

]P0

]z D , ~A16!

LP252gS z
]P1

]y
1~ ȳ2y!

]P1

]z
1

]

]z
~zP0! D , ~A17!

LP352gS z
]P2

]y
1~ ȳ2y!

]P2

]z
1

]

]z
~zP1! D , ~A18!

where the linear operatorL is defined by

LP5
1

2

]2P

]y2
1

]

]y
~yP!. ~A19!

We note that functionsPi must be even~odd! in z for even
~odd! ordersi. This implies that the corrections to the firin
rate at odd orders are zero, since the firing rate is obtaine
integratingP over z at y5yu @Eq. ~46!#.

The solution to equation~A15! that satisfies the boundar
conditions is given by Eq.~89!,
6-21
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P0~y,z!52r 0~z!Q0~y!, ~A20!

Q0~y!5e2y2E
y

yu
eu2

Q~u2yr !du, ~A21!

r 0t5E
2`

1`

r 0~z!dz5S 2E
2`

yu
Q0~y!dyD 21

, ~A22!

wherer 0(z) is determined by a solvability condition@see Eq.
~A28! below# for the second-order Eq.~A17!.

The solution to Eq.~A16! that satisfies the boundary con
ditions is

P1~y,z!52r 1~z!Q0~y!14g@zr0~z!JQ0~y!

2r 08~z!JKQ0~y!#, ~A23!

whereJ andK are operators defined by

J f~x!5exp~2x2!E
x

yu
exp~u2! f ~u!du, ~A24!

K f ~x!5E
2`

x

~u2 ȳ! f ~u!du, ~A25!

and r 1(z) is defined by Eq.~87! and is determined by a
solvability condition on the third-order Eq.~A18! @Eq. ~A33!
below#.

The solution to Eq.~A16! that satisfies the boundary con
ditions is

P2~y,z!52r 2~z!Q0~y!14g$zr1~z!JQ0~y!

2r 18~z!JKQ0~y!1@zr0~z!#8JIQ0~y!%

18g2$z2r 0~z!J2Q0~y!2zr08~z!J2KQ0~y!

2@zr0~z!#8JKJQ0~y!%18g2r 09JKJKQ0~y!,

~A26!

where

I f ~x!5E
2`

x

f ~u!du ~A27!

and an additional condition must be imposed onr 0(z) to
satisfy the boundary conditions:

4gKJKQ0~yu!
]2r 0

]z2 1S 1

r 0t
24gKJQ0~yu! D ]

]z
~zr0!50.

~A28!

This condition givesr 0(z):

r 0~z!5
r 0t

A2p^z2&0

expS 2
z2

2^z2&0
D , ~A29!
05191
^z2&05
4gKJKQ0~yu!

1

r 0t
24gKJQ0~yu!

. ~A30!

Condition*
2`
yu dy*2`

1`dz P2(y,z)50 givesr 2,

r 2524gr 0S IJQ0~yu!E
2`

1`

dzzr1~z!12gr 0tIJ2KQ0~yu!

12gr 0t^z2&0IJ2Q0~yu! D . ~A31!

Thus, we still need to determine*2`
1`dzzr1(z) to obtain

the first nonzero correction to the firing-rater 2. Integrating
both sides of Eq.~A18! provides the solvability condition a
third order,

E
2`

yu
dyS ~ ȳ2y!

]P2

]z
1

]

]z
~zP1! D50. ~A32!

With the previous expressions~A23! and ~A26! for P1 and
P2, this gives an inhomogeneous second-order ordinary
ferential equation, which determinesr 1(z),

4gKJKQ0~yu!
]2r 1

]z2 1S 1

r 0t
24gKJQ0~yu! D ]

]z
~zr1!

5r 0-$8g2KJKJKQ0~yu!14g^z2&0@2gKJKJQ0~yu!

2KJIQ0~yu!#%1~z2r 0!8F2g~4gKJ2Q0~yu!

22IJQ0~yu!!14g
2gKJ2KQ0~yu!2IJKQ0~yu!

^z2&0
G .

~A33!

Solution r 1(z) is equal to r 0(z) times a polynomial inz
containing only terms inz3 and z. The first moment is di-
rectly obtained by integrating Eq.~A33! twice overz,

E
2`

1`

dzzr1~z!5^z2&0F 2gS 4gKJ2Q022IJQ0

1

r 0t
24gKJQ0

D
1S 2gKJ2KQ02IJKQ0

KJKQ0
D G

y5yu

.

~A34!
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