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1 Introduction

Product diversiÞcation is a dominant feature of Þrms in advanced countries. In

particular, by using various indicators, empirical evidence for the manufacturing

sector strongly suggests that there is a positive relationship between the size of

Þrms/establishments and diversiÞcation, particularly regarding the number of prod-

ucts offered (e.g., Amey, 1964; Utton, 1977; Gollop and Monahan, 1991).1 However,

so far there is no appropriate theoretical analysis in the literature to explain the

underlying forces of this important empirical regularity. In fact, due to the analyt-

ical complexity of oligopoly models with multiproduct Þrms, existing multiproduct

models have focussed on the analysis of symmetric Þrms.2 However, this modelling

strategy does not allow to address the observed relationship between product diver-

siÞcation and Þrm size.

In contrast, this paper analyzes a simple multiproduct oligopoly model in which

Þrms are asymmetric with respect to their production technology and consumers�

valuation of varieties within a Þrm�s product line. Firms produce differentiated

goods, facing linear demand, and are engaged in a two-stage decision process. At

stage 1, Þrms choose the number of products offered to the market. At stage 2, they

enter Cournot competition.3

The main contribution of the paper is twofold. First, it derives basic properties of

proÞt functions of multiproduct Þrms for the widely-used linear-demand model with
1For the U.S., Gollop and Monahan (1991, p. 327) conclude that �[q]uite clearly, large enter-

prises are more diversiÞed than small ones�. Moreover, their evidence suggests that a similarly

strong result also holds at the establishment-level. In a recent study on Taiwanese Þrms, Aw and

Batra (1998, p. 313) suggest that �[t]he positive relation between Þrm size and product diversiÞ-

cation typically found in developed countries is limited to large exporting Þrms�.
2For a theoretical analysis of various aspects of multiproduct Þrms, see, e.g., Raubitschek (1987),

Shaked and Sutton (1990), Anderson and de Palma (1992), Anderson et al. (1992, ch. 7), Sutton

(1998, ch. 2), and Ottaviano and Thisse (1999).
3For a similar modelling strategy, see, e.g., Raubitschek (1987), Sutton (1998), Ottaviano and

Thisse (1999).
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differentiated goods under Cournot competition, for given conÞgurations of both the

number of products and Þrm-speciÞc characteristics (i.e., at stage 2 equilibrium).

Second, from these properties, the analysis provides for the Þrst time a rigorous

theoretical explanation for the observation that size and product diversiÞcation of

a Þrm are positively related. Both variables, Þrm size, measured by total sales of a

Þrm, and its number of products are determined by Þrm-speciÞc characteristics, i.e.,

by marginal costs and perceived quality of a Þrm�s products. Thus, comparative-

static analysis suggests that intangible assets of Þrms, like basic organizational or

technological knowledge (affecting marginal costs) as well as consumer loyalty or

trademarks (affecting perceived quality of a Þrm�s products), play a key role for the

empirical regularity that larger Þrms offer more diversiÞed product lines.4

As well-known, applicability of standard tools for comparative-static analysis is

very limited in the presence of strategic interactions of more than two players (e.g.,

Takayama, 1985; Dixit, 1986; Vives, 1999). However, focussing on the duopoly

case is not very satisfying, as extension to the case of many Þrms adds complex

interactions which need to be addressed. Fortunately, the structure of the model

allows to apply a tool for comparative-statics in games with strategic substitutes

which has recently been developed by Athey and Schmutzler (2001). By doing so, it

is possible to derive a positive relationship between size and diversiÞcation for the

I−Þrm model. Moreover, contrary to the common practice of ignoring the integer

problem regarding the number of products, comparative-static results derived in this

paper do not hinge on the treatment of product ranges as continuous variables.

The paper is organized as follows. Section 2 presents the basic model. Section

3 proves existence of a (pure-strategy) equilibrium and provides comparative-static
4Notably, in an informal way, Gorecki (1975) has already discussed the role of intangible assets

for diversiÞcation, pointing out that �Þndings suggest that speciÞc assets of a technological nature

formed the basis of much diversiÞcation� (p. 134). For other motives of corporate diversiÞcation,

see, e.g., the literature review by Montgomery (1994). Aydemir and Schmutzler (2002) provide a

formal model in which mergers between big and small Þrms are driven by the motive of big Þrms

to expand their product space, among other reasons.
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results. Section 4 discusses the integer problem, allows for heterogeneity among

Þrms also with respect to diversiÞcation costs, and brießy addresses the empirical

regularity of an upward trend of corporate diversiÞcation in the last decades. More-

over, testable hypotheses emerging from the analysis are discussed in more detail.

Section 5 provides concluding remarks. Some proofs are relegated to an appendix.

2 The Basic Model

Consider a market for differentiated goods with a Þnite set I = {1, ..., I} of Þrms,
indexed by i. Let Ni be the set of goods produced by Þrm i, in (endogenous) number

Ni, and let K be the set of all varieties in the market. For the sake of tractability

(allowing for closed-form solutions) and its familiarity, the inverse demand function

for variety k ∈ K has the simple linear form

pk = Ak − βxk − γ
X
l 6=k
xl, (1)

Ak > 0, β > γ > 0, where pk and xk denote the price and quantity of product k,

respectively.5 Moreover, marginal production costs of each variety k are constant

and denoted by ck ≥ 0. Let αk ≡ Ak − ck > 0, k ∈ K. The parameter αk

summarizes the relationship between perceived quality of variety k, reßected by Ak,

and unit production costs, ck. It is assumed that for all varieties offered by the same

multiproduct Þrm, this relationship is identical. Formally, this means the following.

A1. (Firm-speciÞc characteristics). αk = αi > 0 for all k ∈ Ni, i ∈ I.

Assumption A1 implies that there is a positive relationship between perceived

quality and unit production costs for all varieties supplied by a single Þrm. Moreover,
5That is, there is a representative consumer with quasi-linear preferences which are reßected by

the utility function U =
P
k∈K

¡
Akxk − (β/2)x2k

¢− γP
k

P
l<k

xkxl + Y , where Y is the quantity of the

numeriare commodity. As a caveat, however, the linear demand model is not capable to address

the notion that products offered by a single Þrm are closer substitutes for each other than for

products sold by different Þrms (Anderson and de Palma, 1992).
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Þrms are characterized by a single index αi. For instance, the view of consumers

regarding the quality of a Þrm�s products is affected by the trademark associated

with a product line. Firms may also differ in their organizational know-how or

their internal human capital stock, affecting productivity and thus marginal costs.

In other words, Þrms may differ in their intangible assets, which is reßected by

differences in αi in the model.6 Consequently, αi is called quality of intangible assets

of Þrm i. The I−tuple α = (α1,α2, ...,αI) is called a conÞguration of intangible

asset qualities.

There are two stages, with decisions at each stage made non-cooperatively and

simultaneously. At stage 1, Þrms choose their number of products Ni (�product

range�). Let C : [1, N̄ ]→ R+ be an increasing, twice continuously differentiable and

convex function, N̄ <∞. C(Ni) denote the costs of Þrm i to introduce Ni ∈ [1, N̄ ]
products in the market. (In section 4, choice sets at stage 1 are restricted to positive

integers {1, 2, ..., N̄}.) For instance, these include costs for marketing or designing
products.7 The I−tuple N = (N1, N2, ..., NI) is called a conÞguration of product

ranges. At stage 2, Þrms enter Cournot competition. This timing of events follows

some existing literature on multiproduct Þrms (e.g., Raubitschek, 1987; Sutton,

1998; Ottaviano and Thisse, 1999). However, in contrast to this literature, the

present set up allows for asymmetry of Þrms ex ante.
6The argument that a superior production technology or consumer loyality applies to any variety

a Þrm offers also Þts well into the common notion in the literature on multinational enterprises

that intangible assets are of public good nature from the perspective of a single Þrm (see, e.g.,

Caves, 1971; Markusen, 2002).
7Assuming convexity of C(·) does not deny that there are economies of scope (or �subadditive

costs�) in marketing, designing or manufacturing multiple products within a Þrm (see, e.g., Baumol,

1977). However, one may think of increasing (Coasian) bureaucracy costs of product proliferation

as a counteracting force. In fact, all that is needed is that C(·) is not �too concave� in the relevant
range. For instance, Anderson and de Palma (1992) and Ottaviano and Thisse (1999) consider

the special case of C(N) = gN , g > 0, which is included in the present analysis. Also restricting

the choice set of Þrms at stage 1 to the closed interval [1, N̄ ], rather than to [1,∞) (relevant for
proving existence of equilibrium) serves a purely technical purpose, as N̄ can be arbitrarily large.
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3 Equilibrium Analysis

In this section, the equilibrium of the model is derived by backwards induction.

Moreover, it is examined whether there exists a systematic relationship between size

and product diversiÞcation of a Þrm, and, if yes, what determines this relationship.

3.1 Cournot Competition (Stage 2)

First, consider the decision problem of Þrms at stage 2, for a given conÞguration N.

Taking output levels of rival Þrms as given, each Þrm i ∈ I solves

max
xk≥0,k∈Ni

πi =
X
k∈Ni

(pk − ck)xk s.t. (1). (2)

Observing αi = Ak − ck for all k ∈ Ni, according to A1, the following Þrst result is

obtained.

Proposition 1. (Equilibrium at stage 2). Under A1. In an interior Cournot-

Nash equilibrium at stage 2, each Þrm i ∈ I produces output level �xk ≡ �xi for all

k ∈ Ni with

�xi =
Λi

(1 +
P

i Γi) [2(β − γ) + γNi]
≡ Xi(N,α) (3)

and earns proÞts

�πi = Ni(β − γ + γNi)Xi(N,α)2 ≡ Πi(N,α), (4)

where Γi ≡ γNi/ [2(β − γ) + γNi] ∈ (0, 1) and Λi ≡ αi
³
1 +

P
j 6=i Γj

´
−Pj 6=i αjΓj.

Proof. See appendix.

The analysis focusses on conÞgurations of intangible asset qualities, α, such that

Λi > 0, and thus, �xi > 0 for all i. According to Proposition 1, a multi-product Þrm

i produces equal output levels for all varieties k ∈ Ni which it offers. This is due to

the symmetry of varieties in demand schedules (1), together with assumption A1.

Moreover, output levels of single products (i.e., sales per variety) of Þrm i, �xi, are
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positively related to the intangible asset quality αi, for any given conÞguration of

product ranges N.

Apart from own αi, output levels and proÞts of a Þrm i depend on other Þrms�

intangible asset qualities αj, j 6= i, and on conÞgurationN. The following corollaries
characterize proÞt functions �πi = Πi(N,α) in equilibrium at stage 2. In particu-

lar, these results will prove helpful for the comparative-static analysis of the next

subsection, in which the Þrms� choice of product ranges (stage 1) is considered.

Corollary 1. (Properties of stage 2 proÞt functions). Consider the set of proÞt

functions Πi : [1, N̄ ]I ×RI+ → R+, i ∈ I. For all i, j ∈ I, j 6= i, we have
(i) ∂Πi(N,α)/∂Ni > 0 and ∂2Πi(N,α)/∂N2

i < 0,

(ii) ∂Πi(N,α)/∂Nj < 0,

(iii) ∂Πi(N,α)/∂αi > 0 and ∂Πi(N,α)/∂αj < 0,

(iv) ∂2Πi(N,α)/∂Ni∂αi > 0 and ∂2Πi(N,α)/∂Ni∂αj < 0;

(v) if αi ≤ αj or if (αi − αj) sufficiently small, then ∂2Πi(N,α)/∂Ni∂Nj < 0.
Proof. See appendix.

To gain insight into Corollary 1, it is helpful to decompose Πi(N,α) into the

product of total demand (or sales) of Þrm i in equilibrium at stage 2, Di(N,α) ≡
NiXi(N,α), and its price-cost difference (�mark-up�),Mi(N,α) ≡ (β−γ+γNi)Xi(N,α).
That is, Πi(N,α) = Di(N,α)Mi(N,α), implying

∂Πi
∂Nj

=
∂Di
∂Nj

Mi +Di
∂Mi

∂Nj
, (5)

∂2Πi
∂Nj∂Ni

=
∂2Di
∂Nj∂Ni

Mi +
∂Di
∂Nj

∂Mi

∂Ni
+
∂Di
∂Ni

∂Mi

∂Nj
+Di

∂2Mi

∂Nj∂Ni
. (6)

i, j ∈ I. Total sales Di of a Þrm are used as measure of Þrm size for the discussion

of results below. The properties of the functions Di(N,α) andMi(N,α), which are

used in the following discussion of Corollary 1, are formally derived in an appendix

available from the author upon request.

First, according to part (i) of Corollary 1, the impact of an increase in product

range Ni on both equilibrium demand, Di, and on equilibrium mark-up, Mi, is
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positive.8 Thus, ∂Πi/∂Ni > 0, according to (5) (for i = j), whenever varieties are

imperfect substitutes (i.e., β > γ).9 Moreover, strict concavity of proÞts at stage

2, Πi, as function of product range Ni means that a Þrm�s incentive to launch new

varieties is weaker, the more diversiÞed the Þrm is. Using (6) (for i = j) and the

deÞnitions of Di and Mi, one can show that the underlying reason for this result is

that the marginal gain of an increase in Ni regarding both Di and Mi is decreasing,

i.e., ∂2Di/∂N2
i < 0 and ∂

2Mi/∂N
2
i < 0.

Part (ii) of Corollary 1 means that a Þrm�s proÞts at stage 2, �πi, decline if

any rival offers additional products, which reßects a conventional �business-stealing

effect�. In fact, an increase in Nj reduces both Di and Mi of a Þrm i 6= j. Also

unsurprisingly, part (iii) says that �πi increases with its own intangible asset quality,

αi, but decreases with other Þrms� intangible asset qualities, αj, j 6= i, holding the
conÞguration of product ranges N constant. Again, the effects regarding both Di

and Mi go in the same direction.

According to part (iv), the proÞt gain of Þrm i from introducing additional

varieties increases with αi, but decreases with the strength of rivals αj, j 6= i, all

other things equal. It is easy to conÞrm that an increase in αi raises the impact of

an increase in product range Ni on both equilibrium demand Di and on equilibrium
8The latter effect may be somewhat surprising at the Þrst glance, but can easily understood

as follows. Note that (1), together with A1, implies that, in stage 2 equilibrium, pk − ck =
αi − (β − γ)�xi − γ �Q ≡ Mi for all k ∈ Ni, i ∈ I, where �Q ≡

P
l∈K
�xl is total equilibrium output in

the market in stage 2 equilibrium. On the one hand, it is easy to check that an increase in Ni

raises �Q, all other things equal (see appendix). This has a negative effect on Mi. On the other

hand, however, Þrm i reduces equilibrium output per variety, �xi, when increasing Ni, which has a

positive effect on Mi. The second effect dominates the Þrst one.
9Under the linear-demand structure (1), it is common to interpret the ratio β/γ as the degree

of substitution between goods. Note that for γ → β, i.e., if varieties are perfect substitutes, the

limiting proÞt function of a Þrm i at stage 2 is given by lim
γ→β

�πi =
h³
Iαi −

P
j 6=i αj

´
/(1 + I)

i2
/γ,

according to (3) and (4). Obviously, it does not pay for Þrms to supply more than one variety in

this limit case. In contrast, with imperfect substitutes, i.e., if β > γ, it may be optimal for Þrms

to introduce more than one variety into the market, as will become apparent below.
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mark-up Mi (i.e., ∂2Di/∂Ni∂αi > 0 and ∂2Mi/∂Ni∂αi > 0), whereas an increase in

αj, j 6= i, has the opposite effect on ∂Di/∂Ni and ∂Mi/∂Ni, respectively.

As will become apparent below, the impact of an increase in a rival�s product

range Nj on the incentive of a Þrm i 6= j to launch new varieties (i.e., how ∂Πi/∂Ni
changes with Nj, j 6= i) is of particular importance for the subsequent analysis.

From the previous discussion of parts (i) and (ii), for j 6= i, one can conclude that
the second and third summand of the right-hand side of (6) are both negative.

However, one can also show that the Þrst and last summand have ambiguous sign,

i.e., an increase in Nj may increase or decrease both effects ∂Di/∂Ni and ∂Mi/∂Ni,

j 6= i. Part (v) of Corollary 1 says that the proÞt gain of a Þrm i from increasing

product diversiÞcation is reduced by an increase in a rival�s product range Nj, j 6= i,
if αi ≤ αj or if (αi − αj) is sufficiently small, i.e., whenever Þrms are not �too
heterogeneous� with respect to their quality of intangible assets. As will become

apparent, in this case, the optimal response at stage 1 to an increase in a rival�s

product number is to decrease the own number of varieties, i.e., product ranges of

Þrms are strategic substitutes. The subsequent analysis exclusively focusses on this

case.

A2. (Strategic substitutes). For all i, j ∈ I, j 6= i, let ∂2Πi(N,α)/∂Ni∂Nj < 0.

It can be shown that, for some conÞgurations N, assumption A2 holds for all

conÞgurations α, i.e., even if Þrms are very heterogeneous. (See Remark 1 in ap-

pendix for a sufficient condition.)

Proposition 1 also implies the following useful result.

Corollary 2. (Exchangeability). Under A1. Let (�N, �α) be a permutation of

(N,α) so that, for any pair i, j ∈ I, j 6= i, ( �Ni, �αi) = (Nj ,αj), ( �Nj, �αj) = (Ni,αi)
and ( �Nh, �αh) = (Nh,αh) for all h ∈ I\{i, j}. Then, we have Πi(�N, �α) = Πj(N,α)
and Πh(�N, �α) = Πh(N,α) for all h ∈ I\{i, j}.

Corollary 2 is directly implied by the fact that proÞts at stage 2 are exclusively
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determined by conÞgurationsN andα. Thus, exchanging both intangible asset qual-

ities and product ranges of two Þrms also leads to an exchange of these Þrms� proÞts

at stage 2, without affecting other Þrms� proÞts. Following Athey and Schmutzler

(2001) (AS hereafter), we say that proÞt functions Πi are �exchangeable� as func-

tions of (N,α). Exchangeability also plays a crucial role for the comparative-statics

of the I−player case below.

3.2 Firms� Choice of Number of Products (Stage 1)

By analyzing the Þrms� choice of number of products (stage 1), this subsection

characterizes the equilibrium conÞguration of product ranges, denoted N∗, given

the conÞguration of intangible asset qualities, α.

Given α, the proÞt maximization problem for each Þrm i ∈ I at stage 1 is to
solve

max
Ni∈[1,N̄ ]

Ψi(N,α) ≡ Πi(N,α)− C(Ni). (7)

Strategic interactions of Þrms at stage 1 are represented by the game
©
([1, N̄ ],Ψi), i ∈ I

ª
.

Concavity of stage 2 proÞts, Πi, as function of Ni (part (i) of Corollary 1) ensures

existence of equilibrium.

Proposition 2. (Existence of equilibrium). Under A1. For any given α ∈ RI+,
a pure-strategy Nash equilibrium of the game

©
([1, N̄ ],Ψi), i ∈ I

ª
) exists. Thus, a

subgame-perfect equilibrium of the two-stage game exists.

Proof. See appendix.

Let N∗
i (α) be an equilibrium product range offered by Þrm i ∈ I. Without loss

of generality (as N̄ can be arbitrarily large), the analysis focusses on N∗
i < N̄ for

all i. Using (7), an equilibrium conÞguration of product ranges N∗ = (N∗
1 , ..., N

∗
I )

is then given by the following set of Þrst-order conditions:

∂Πi(N
∗,α)

∂Ni
≤ C 0(N∗

i ), i ∈ I, (8)

with strict equality if N∗
i > 1.
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3.2.1 The Duopoly Case

We are now ready to address the question how differences in equilibrium product

ranges, N∗
i , among Þrms (i.e., equilibrium diversiÞcation) depend on differences in

intangible asset qualities, αi. First, consider the duopoly case, I = 2.

Proposition 3. (Product range in duopoly). Under A1 and A2. If I = {1, 2}
and the equilibrium is unique, then αi > αj implies N∗

i (α) > N
∗
j (α).

As will become apparent below, Proposition 3 is a special case of Proposition 4.

Therefore, no formal proof of the two-player case is provided. Rather, the result is

illustrated graphically in Fig. 1. Note from (8) and strict concavity of Ψi(N,α) as

function of Ni that reaction functions are downward sloping under A2, i.e., N1 and

N2 are strategic substitutes. Uniqueness of equilibrium requires that the reaction

function of Þrm 1 is steeper than that of Þrm 2.10 According to part (iv) of Corollary

1, an increase in, say, α1 shifts the reaction function of Þrm 1 rightward and that of

Þrm 2 downward, as shown in Fig. 1. That is, the marginal gain of Þrm 1 to extend

its product range increases and the marginal gain of Þrm 2 decreases.

<Please insert Figure 1 about here>

Fig. 1 depicts two kinds of a unique equilibrium (observing restriction Ni ≥ 1,
i ∈ I). In panel (a), the equilibrium is interior, whereas N∗

2 = 1 in panel (b). In

panel (a), an increase in α1 leads to an increase in N∗
1 and a decrease in N

∗
2 .
11 In

10Note that any unique equilibrium is also �stable� if reaction functions are interpreted as de-

scribing dynamic behavior with alternate-period decisions. Using (8), it is easy to check that the

reaction function of Þrm 1 is stepper than that of Þrm 2 ifµ¯̄̄̄
∂2Π1
∂N2

1

¯̄̄̄
+C00(N1)

¶µ¯̄̄̄
∂2Π2
∂N2

2

¯̄̄̄
+C00(N2)

¶
>

¯̄̄̄
∂2Π1(N,α)

∂N1∂N2

¯̄̄̄ ¯̄̄̄
∂2Π1(N,α)

∂N1∂N2

¯̄̄̄
.

11In contrast, if the reaction function of Þrm 2 in N1 − N2 space is steeper than that of Þrm
1 (implying multiple equilibria), it is easy to check that for an interior equilibrium the opposite

holds. See below for more discussion on the uniqueness requirement.
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(a)

(b)

Figure 1: The impact of an increase in 1α  on *
1N  and *

2N  in the duopoly case.
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panel (b), only N∗
1 increases.

12

3.2.2 The Case I > 2

In view of the duopoly case, it seems intuitive that Þrms with higher intangible asset

qualities have more diversiÞed product lines. However, as it is well-known from

oligopoly theory, in general, comparative-static analysis of asymmetric equilibria

with more than two players can be very messy and may require strong assumptions

(e.g., Takayama, 1985; Dixit, 1986; Vives, 1999). To see the economic reason for this

in the present context, consider, again, an increase in α1. Recall that, in response to

an increase in α1, Þrm 1 has an incentive to increase N1 and Þrm 2 has an incentive

to decrease N2. On the one hand, if product ranges are strategic substitutes, an

actual rise in N1 would have a negative impact on the marginal gain of a Þrm 3 (or

higher) of increasing its product range. However, an actual decrease of N2 would

have the opposite effect on the behavior of Þrm 3. A priori, it is not clear which

effect dominates. In fact, an analogous argument holds for Þrm 2 as well. If Þrm

3 decreases N3 in response to an increase in α1, Þrm 2 has an incentive to increase

N2. This even leaves the behavioral response of Þrm 1 ambiguous. Due to these

complexities, generalization of the comparative-static results from the duopoly case

to the case I > 2 is not straightforward.

Moreover, multiplicity of equilibria may create problems for comparative-static

analysis. To ensure uniqueness of equilibrium, one could invoke standard �dominant-

diagonal� conditions (see, e.g., Vives, 1999). In the present analysis,¯̄̄̄
∂2Πi(N,α)

∂N2
i

¯̄̄̄
>
X
j 6=i

¯̄̄̄
∂2Πi(N,α)

∂Ni∂Nj

¯̄̄̄
for all i ∈ I, (9)

would be sufficient. However, (9) may be a strong assumption if the number of

players is high. Rather, following AS, it is assumed that the set of equilibrium

strategies at stage 1 satisÞes �conditional uniqueness�. Formally, this means the

following.
12Qualitatively, a decrease in α2 has the same effects as an increase in α1.
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A3. (Conditional uniqueness). For each i, j ∈ I and each α ∈ RI+, if there exist
two equilibrium conÞgurations of product ranges N∗(α) and N∗∗(α) which fulÞll

N∗
h(α) = N

∗∗
h (α) for all h ∈ I\{i, j}, then N∗

i (α) = N
∗∗
i (α) and N

∗
j (α) = N

∗∗
j (α).

For I = 2, conditional uniqueness reduces to uniqueness of equilibrium. How-

ever, if I > 2, the requirement of conditional uniqueness is considerably weaker.

For instance, as argued in AS, a sufficient condition for conditional uniqueness of

equilibria is ¯̄̄̄
∂2Πi(N,α)

∂N2
i

¯̄̄̄
>

¯̄̄̄
∂2Πi(N,α)

∂Ni∂Nj

¯̄̄̄
for all i, j ∈ I, j 6= i. (10)

In the present context, condition (10) is a fairly weak requirement, as can be seen

from the expressions for ∂2Πi(N,α)/∂N2
i and ∂

2Πi(N,α)/∂Ni∂Nj, j 6= i, in appen-
dix.

We are now ready to analyze comparative-statics for the I−player case. The
next result is derived by applying a recent tool for comparative-static analysis of

games with strategic substitutes, due to AS.

Proposition 4. (Product range in I−player case). Under A1-A3. For all

i, j ∈ I, if αi > αj then N∗
i (α) > N

∗
j (α).

Proof. Let N−i denote (N1, ..., Ni−1, Ni+1, ...,NI) and write N = (Ni,N−i).

Now consider the following deÞnition.

DeÞnition 1. (E.g., Vives, 1999). Ψi(Ni,N−i,α) has (strictly) increasing dif-

ferences in (Ni,αj) if, for all Ni > N 0
i , Ψi(Ni,N−i,α)−Ψi(N 0

i ,N−i,α) is (strictly)

increasing in αj, i, j ∈ I; (strictly) decreasing differences are deÞned replacing �in-
creasing� by �decreasing�.

If Ψi(N,α) is smooth and ∂2Ψi(N,α)/∂Ni∂αj > 0, then Ψi(N,α) has strictly

increasing differences in (Ni,αj). (See, e.g., Vives, 1999). As a next step, note that

the following holds.

Lemma 1. (Athey and Schmutzler, 2001). Let Ni ∈ Si be a one-dimensional
choice variable for player i ∈ I. Suppose the set of equilibria of the game {(Si,Ψi), i ∈ I}

13



is non-empty and fulÞlls conditional uniqueness. Suppose further that (i) the play-

ers� choices are strategic substitutes, (ii) Ψi(N,α) is exchangeable in (N,α), and

(iii) for all i, j ∈ I, j 6= i, Ψi(N,α) has increasing differences in (Ni,αi) and

decreasing differences in (Ni,αj). Let N∗ be an equilibrium conÞguration. Then

αi > αj implies N∗
i (α) ≥ N∗

j (α).

In the present context, an equilibrium exists, according to Proposition 2, and

the set of equilibria fulÞlls conditional uniqueness by assumption A3. It is now

argued that conditions (i)-(iii) of Lemma 1 hold. Recalling Ψi(N,α) = Πi(N,α)−
C(Ni), condition (i) holds by A2. Condition (ii) of Lemma 1 follows from Corollary

2, applying the same deÞnition of �exchangeability� as in AS. Finally, note that

∂2Ψi(N,α)/∂Ni∂αi > 0 and ∂2Ψi(N,α)/∂Ni∂αj < 0, j 6= i, according to part (iv)
of Corollary 1. Thus, also condition (iii) of Lemma 1 is fulÞlled. Hence, αi > αj

implies N∗
i (α) ≥ N∗

j (α), according to Lemma 1.

However, in order to prove that αi > αj indeed implies N∗
i (α) > N∗

j (α) (i.e.,

Þrm i has a strictly larger product range than Þrm j), Lemma 1 has to be mod-

iÞed slightly. In fact, the following can be deducted from the analysis of AS in a

straightforward way.

Lemma 2. Presume the same as in Lemma 1. Suppose further that Ψi(N,α) is

smooth and for all i, j ∈ I, j 6= i, ∂2Ψi(N,α)/∂Ni∂αi > 0 and ∂2Ψi(N,α)/∂Ni∂αj <
0. Then αi > αj implies N∗

i (α) > N
∗
j (α).

As Ψi(N,α) are smooth and, as argued above, also all other presumptions of

Lemma 2 hold, Proposition 4 is conÞrmed.

According to Proposition 4, the comparative-statics from the duopoly case carry

over to the case I > 2. This is rather surprising in view of the complex additional

interactions among Þrms (as outlined above) when there are more than two Þrms.

One reason is that Þrms are symmetric in the sense that, ex ante, Þrms can be

characterized by their intangible asset quality, αi, only (recall the exchangeability

property in Corollary 2). For instance, it does not matter for Þrm 3 (and higher) if

14



Þrm 1 has α1 and Þrm 2 has α2 or if Þrm 1 has α2 and Þrm 2 has α1. As argued by AS

(p. 10), such a situation allows �to hold Þxed the behavior of players 3 and higher

and focus on a two-player game�. The preceding analysis has used this argument

to examine the behavior of asymmetric multiproduct Þrms in the linear-demand

Cournot model regarding the choice of the number of products.

3.3 Firm Size and DiversiÞcation

We are now ready to derive the relationship between Þrm size and equilibrium diver-

siÞcation. Equilibrium Þrm size is measured by total sales of a Þrm in equilibrium,

i.e., by equilibrium demand D∗
i (α) ≡ Di(N∗,α), i ∈ I. By making use of Proposi-

tion 4, one can show the following.

Proposition 5. (Firm size). Under A1-A3. For all i, j ∈ I, if αi > αj then
D∗
i (α) > D

∗
j (α).

Proof. See appendix.

As a corollary of Propositions 4 and 5, the following theorem emerges.

Theorem 1. (Firm size and diversiÞcation). Under A1-A3. Firm size, measured

by total equilibrium sales, and product diversiÞcation are positively related. The

underlying determinant of both variables is the quality of intangible assets of a Þrm.

Testable hypotheses implied by Theorem 1 as well as some modiÞcations of the

analysis are discussed in the next section.

4 Discussion

4.1 Testable Hypotheses

According to the preceding analysis, heterogeneity of Þrms in marginal production

costs or perceived quality of goods within product lines account for differences of
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Þrms in both total sales (i.e., Þrm size) and product diversiÞcation. This suggests

that intangible assets of Þrms are a key to understand the long-standing stylized

fact of a positive size-diversiÞcation relationship (Theorem 1).

Interestingly, as far as differences in marginal production costs among Þrms are

concerned, empirical evidence is also consistent with Proposition 5. For instance,

Roberts and Supina (2000) report a negative correlation between Þrm size and mar-

ginal costs among U.S. manufacturing Þrms. Moreover, using micro-level data from

the �Longitudinal Research Database� (developed by the U.S. Bureau of the Cen-

sus), Baily et al. (1992) Þnd that the size of U.S. manufacturing Þrms is positively

related to total factor productivity (see their Tab. 8 and 9). However, whereas

in this literature productivity is the dependent variable in regression analysis, the

theory developed in this paper suggests that productivity jointly determines both

size and diversiÞcation.13

Moreover, the analysis suggests that consumer loyalty, which may be determined

and thus proxied by past advertising effort, is not only related to sales of a Þrm

but also to its product diversiÞcation. However, as pointed out by Gorecki (1975,

footnote 16), one has to distinguish between advertising on brand names of single

products and advertising which, in addition, refers to the name (or trademark) of an

enterprise (as, e.g., in the automobile industry). Only the latter kind of advertising

affects consumers� views on other products supplied by a Þrm, and thus, is related

to consumers� valuation of a Þrms� trademark.

4.2 The Integer Problem

Existence of a pure-strategy equilibrium (Proposition 2) is ensured by the continuous

choice sets at stage 1, [1, N̄ ]. Obviously, however, the common practice in the theo-

retical literature on multiproduct Þrms of treating the Ni�s as continuous variables is
13In fact, Baily et al. (1992, p. 223) carefully point out that their results should not be inter-

preted as causal effects but rather reßect correlations. See Bartelsman and Doms (2000) for an

excellent survey of the empirical literature on productivity differences among Þrms.
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problematic. Fortunately, in the present context, comparative-static analysis is also

possible when choice sets at stage 1 are restricted to positive integers {1, 2, ..., N̄}.
(That is, differentiability of proÞts Ψi(N,α) is not required.) However, there is an

important caveat. Although every Þnite normal form game has at least one Nash

equilibrium, existence of a pure-strategy equilibrium may not be guaranteed in the

present context. If it exists, the following can be stated.

Proposition 6. (Integer choice sets). Under A1-A3. Let strategy sets of Þrms at

stage 1 be given by Si ≡ {1, 2, ..., N̄}, i ∈ I. Suppose that a pure-strategy equilibrium
for the game {(Si,Ψi), i ∈ I} exists. Then, αi > αj implies both N∗

i (α) ≥ N∗
j (α)

and D∗
i (α) > D

∗
j (α). Thus, if anything, larger Þrms are more diversiÞed.

Proof. Note that DeÞnition 1 and Lemma 1 (see the proof of Proposition 4)

do not rely on differentiability of Ψi(N,α), i ∈ I. Thus, the result that αi > αj

implies N∗
i (α) ≥ N∗

j (α) directly follows from Lemma 1, as it has already been

established that all presumptions of Lemma 1 hold. Moreover, using N∗
i ≥ N∗

j , the

result that αi > αj implies D∗
i (α) > D

∗
j (α) can directly be deducted from the proof

of Proposition 5. This concludes the proof.

With choice sets at stage 1 being restricted to positive integers, it is now possible

that N∗
i = N

∗
j if αi > αj. Moreover, note that even in this case total sales of Þrm i

are strictly larger than those of Þrm j, i.e., D∗
i > D

∗
j if αi > αj.

4.3 Heterogeneity in DiversiÞcation Costs

In the preceding analysis, the sunk cost schedule at stage 1, C(·), for introducing
products in the market is identical among Þrms. This is a strong assumption. For

instance, Þrms with higher perceived product quality may have lower marketing costs

to introduce new varieties in the market, e.g., if their trademark is well recognized.

Moreover, Þrms with low marginal production costs may be more efficient also in

introducing additional products to the market, i.e., in marginal costs of designing

or marketing. In order to capture these possibilities, replace C(Ni) by K(Ni,αi),
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assuming that ∂2K(Ni,αi)/∂Ni∂αi ≤ 0. In this case, Proposition 4 remains valid,
as implied by its proof. (Thus, both Proposition 5 and Theorem 1 still hold.) The

same is true even if ∂2K(Ni,αi)/∂Ni∂αi > 0, as long as ∂2Πi(N,α)/∂Ni∂αi ≥
∂2K(Ni,αi)/∂Ni∂αi.

4.4 Increasing Average DiversiÞcation

The main focus in this paper is the role of intangible assets for explaining cross-

section evidence regarding the relationship between Þrm size and product diversi-

Þcation. This subsection brießy discusses another empirical regularity, namely a

steady upward trend in product diversiÞcation of Þrms in the last decades. For

instance, Goto (1981) presents evidence from large Japanese Þrms in various indus-

tries between 1963 and 1975 which suggests that Þrms became considerably more

diversiÞed with respect to their commodities over time. Gollop and Monahan (1991)

analyze data from manufacturing Þrms for Þve points in time in the period between

1963 and 1982, concluding that �[d]iversiÞcation has replaced horizontal growth�

(p. 318). In more recent times, the emergence of computer-aided design (CAD)

has reduced costs of product design and development. Moreover, computer-aided

manufacturing (CAM) has reduced production costs. As argued by Milgrom and

Roberts (1990), these developments have increased the Þrms� incentives to extend

product lines.

It is straightforward to capture these trends in the present context. As asymme-

try of Þrms is not crucial for these arguments, for simplicity, suppose αi = �α for all

i ∈ I. DeÞne the I−tuple �α ≡ (�α, ..., �α) and let N∗
i (�α) ≡ �N∗ ∈ (1, N̄), i ∈ I. Also

deÞne the I−tuple �N∗ ≡ ( �N∗, ..., �N∗).

Let us start with a decrease in marginal production costs (e.g., due to the emer-

gence of CAM), implying an increase in �α. According to (8), if �N∗ > 1 (which is

presumed here), the equilibrium product range, �N∗, is given by ∂Πi(�N∗, �α)/∂Ni =

18



C 0( �N∗). Applying the implicit function theorem to this condition, one obtains

∂ �N∗

∂�α
= − I∂2Πi(�N

∗, �α)/∂Ni∂�α

∂2Πi(�N∗, �α)/∂N2
i +

P
j 6=i
∂2Πi(�N∗, �α)/∂Ni∂Nj − C 00( �N∗)

. (11)

Using parts (i) and (iv) of Corollary 1, and observing both A2 and C 00(·) ≥ 0,

∂ �N∗/∂�α > 0 is implied. That is, if intangible asset qualities improve, then product

ranges of Þrms increase. In an analogous way, a downward shift in the marginal

sunk cost schedule C 0 (e.g., due to the emergence of CAD) leads to an increase in

�N∗.

5 Concluding Remarks

This paper has analyzed an oligopoly model with asymmetric multiproduct Þrms,

which is consistent with the long-standing empirical regularity that larger Þrms

offer more diversiÞed product lines. The analysis suggests that heterogeneity of

enterprises with respect to intangible assets is a driving force behind a positive re-

lationship between Þrm size, measured by total sales, and product diversiÞcation.

This result has been derived for the familiar speciÞcation of linear demand sched-

ules and differentiated goods under Cournot competition (under weak additional

assumptions), by applying a recently developed tool for comparative-static analysis

of games with strategic substitutes.

Admittedly, the focus of the present analysis on the number of products as mea-

sure of product diversiÞcation is quite narrow. For instance, Gollop and Monahan

(1991) construct a diversiÞcation index which, in addition to the number of prod-

ucts supplied by an enterprise, also accounts for the distribution of sales from these

products within a Þrm and differences in the heterogeneity of products. Applying

this index to a large data set of U.S. manufacturing Þrms and establishments, they

Þnd that �[t]he number component is the dominant force� in explaining corporate

diversiÞcation (p. 327). This gives some justiÞcation for focussing the theoreti-

cal analysis on the number of products, exogenously Þxing the degree of product
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differentiation, and thus, leading to a uniform sales distribution within a Þrm.

Appendix

Proof of Proposition 1: First, note that πi =
P

k∈Ni(pk − ck)xk implies
∂πi
∂xk

= pk − ck +
X
l∈Ni

∂pl
∂xk

xl, (A.1)

where ∂pl/∂xl = −β and ∂pl/∂xk = −γ for l 6= k, according to demand structure
(1). Thus, optimal behavior of Þrm i ∈ I at stage 2 is given by the following set of
Þrst-order conditions (presuming an interior solution): αi − 2βxk − γ

P
l∈K\{k} xl −

γ
P

l∈Ni\{k} xl = 0, k ∈ Ni, where αi = Ak − ck for all k ∈ Ni has been used
(assumption A1). Adding and subtracting 2γxk implies

αi − 2(β − γ)xk − γQ− γ
X
l∈Ni

xl = 0, (A.2)

where Q ≡ P
l∈K xl is total output in the market. Thus, xk = xi for all k ∈ Ni,

which implies
P

l∈Ni xl = Nixi. Hence, (A.2) can be rewritten as

xi =
αi − γQ

2(β − γ) + γNi . (A.3)

Note that Q =
P

iNixi. Multiplying both sides of (A.3) by Ni and summing over all

i ∈ I, one obtains the total output level �Q =PiNi�xi in Cournot-Nash equilibrium,

given by

γ �Q =

P
i αiΓi

1 +
P

i Γi
, (A.4)

where Γi = γNi/ [2(β − γ) + γNi]. (A.4) implies

αi − γ �Q = Λi
1 +

P
i Γi
, (A.5)

where Λi is deÞned in Proposition 1. Using (A.3) and (A.5) yields (3).14

14Also note from (A.5), and the deÞnitions of both Λi and Γi, that �Q is decreasing in Ni, i ∈ I,
as claimed in footnote 8.
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To obtain (4), Þrst, note that pk−ck = αi−(β−γ)xk−γQ for all k ∈ Ni, according

to (1) and αi = Ak− ck. Since �xk = �xi for all k ∈ Ni, (A.3) then implies equilibrium

price-cost differences (or mark up�s, respectively) �pk − ck = (β − γ + γNi)�xi ≡ Mi

for all k ∈ Ni. Finally, noting that �πi = Ni�xiMi conÞrms (4). This concludes the

proof. ¤

Proof of Corollary 1: First, let us write
P

h∈I Γh = 1 + Φ−i + Γi, where

Φ−i ≡
P

h6=i Γh. Thus, using Γi = γNi/ [2(β − γ) + γNi], we have

�xi =
Λi

(1 + Φ−i) (2(β − γ) + γNi) + γNi , (A.6)

according to (3). By substituting (A.6) into (4), we obtain

�πi =
Ni(β − γ + γNi)Λ2i

[(1 + Φ−i) (2(β − γ) + γNi) + γNi]2
. (A.7)

Very tedious derivations reveal that

∂�πi
∂Ni

=
(β − γ) [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]Λ2i

[(1 + Φ−i) (2(β − γ) + γNi) + γNi]3
> 0, (A.8)

and

∂2�πi
∂N2

i

=
−2γ(β − γ)Λ2i

[(1 + Φ−i) (2(β − γ) + γNi) + γNi]4
× (A.9)£

β − γ + γNi + (β − γ + 5γNi)Φ−i + 3γNiΦ2−i
¤
< 0,

respectively. Moreover, for j 6= i,
∂�πi
∂Nj

=
−4γ(β − γ)Ni (β − γ + γNi) (2(β − γ) + γNi)ΛiΛj
[2(β − γ) + γNj]2 [(1 + Φ−i) (2(β − γ) + γNi) + γNi]3

< 0, (A.10)

and

∂2�πi
∂Ni∂Nj

= − 4γ(β − γ)2Λi
[(1 + Φ−i) (2(β − γ) + γNi) + γNi]4 [2(β − γ) + γNj]2

× (A.11)

{(αi − αj) [2 (β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]×
[2 (β − γ + γNi) + (2(β − γ) + γNi)Φ−i]−
Λi [(2(β − γ) + γNi) (2(β − γ) + 3γNi)Φ−i + 4(β − γ)(β − γ + γNi)]},
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respectively. (A.8) and (A.9) conÞrm part (i) of Corollary 1 and (A.10) conÞrms

part (ii), respectively (recall that Λi,Λj > 0 in interior equilibrium). Moreover,

note that for all i, j ∈ I, j 6= i, ∂Λi/∂αi > 0 and ∂Λi/∂αj < 0 (recall Λi =

αi
³
1 +

P
j 6=i Γj

´
−Pj 6=i αjΓj). Thus, (A.7) and (A.8) also conÞrm parts (iii) and

(iv), respectively. Part (v) follows from (A.11). This concludes the proof. ¤
Remark 1. Full derivations of (A.8)-(A.11) can be found in supplementary

material to this paper, which is available from the author upon request. There, it

is also shown that in order to obtain ∂2�πi/∂Ni∂Nj > 0, j 6= i, it is necessary that
both αi > αj and Φ−i > 2(β − γ)/ [2(β − γ) + γNi] simultaneously hold. Thus, as
claimed in the main text, even if Þrms are very heterogenous, assumption A2 may

still be fulÞlled. Φ−i ≤ 2(β − γ)/ [2(β − γ) + γNi] is a sufficient condition for A2 to
hold for all conÞgurations α.

Proof of Proposition 2: Existence of equilibrium is proven by applying the

following classical existence result.

Lemma A.1. (Debreu, 1952). Let Si ⊆ Rm denote the the set of feasible

strategies of player i ∈ I, with a typical element si. Moreover, let Ui : ×iSi → R

be the payoff function of player i. If, for all i ∈ I, Si is non-empty, compact and
convex and Ui is continuous in (s1, s2, ..., sI) as well as quasiconcave in si, the game

{(Si, Ui), i ∈ I} possesses a pure-strategy Nash equilibrium.
First, note that strategy sets [1, N̄ ] for the Þrms� choice at stage 1 (i.e., in max-

imization problem (7)), are nonempty, compact and convex subsets of R. Sec-

ond, note that objective functions of Þrms in (7), Ψi(N,α), are continuous in

(N1,N2, ..., NI). Third, according to part (i) of Corollary 1 and the convexity of

C(·), Ψi(N,α) = Πi(N,α) − C(Ni) is strictly concave in Ni (and, thus, quasi-
concave in Ni). Applying Lemma A.1, this proves existence of a Nash equilibrium

for the Þrms� decision of product ranges. Existence of equilibrium for the entire

two-stage game is directly implied. ¤
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Proof of Proposition 5: DeÞne Γ∗i ≡ γNi/ [2(β − γ) + γNi] and

Λ∗i ≡ αi
Ã
1 +

X
j 6=i
Γ∗j

!
−
X
j 6=i
αjΓ

∗
j , (A.12)

i ∈ I. Thus, one can write

D∗
i (α) = N

∗
i Xi(N,α) =

N∗
i Λ

∗
i

(1 +
P

i Γ
∗
i ) [2(β − γ) + γN∗

i ]
, (A.13)

according to (3). Hence, we have D∗
i (α) > D

∗
j (α) if and only if

N∗
i Λ

∗
i

2(β − γ) + γN∗
i

>
N∗
j Λ

∗
j

2(β − γ) + γN∗
j

. (A.14)

Recall from Proposition 4 that N∗
i > N

∗
j if αi > αj. Thus, using (A.14), Proposition

5 is conÞrmed if, for instance, αi > αj implies Λ∗i > Λ
∗
j . To see that this is indeed

the case, Þrst, rewrite (A.12) as

Λ∗i = αi

Ã
1 +

X
h6=i,j

Γ∗h

!
+ (αi − αj)Γ∗j −

X
h6=i,j

αhΓ
∗
h, (A.15)

i, j ∈ I. (A.15) then implies that

Λ∗i − Λ∗j = (αi − αj)
Ã
1 +

X
h6=i,j

Γ∗h

!
+ (αi − αj)Γ∗j − (αi − αj)Γ∗i

= (αi − αj)
Ã
1 +

X
i∈I
Γ∗i

!
, (A.16)

i.e., Λ∗i > Λ
∗
j if αi > αj. This concludes the proof. ¤
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Abstract

This supplement contains three parts. First, details of derivations of equations
(A.8)-(A.11) in appendix (proof of Corollary 1) are provided. Second, the claim in
Remark 1 (implying that assumption A2 may hold even if Þrms are very heteroge-
neous) is proven. Third, basic properties of the functions Di (total sales in stage
2 equilibrium) and Mi (mark-up in stage 2 equilibrium), which are used for the
discussion of Corollary 1, are derived.
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Derivation of (A.8): From (A.7),

�πi =
Ni(β − γ + γNi)Λ2i

Z2i
, (B.1)

where

Zi ≡ 2(β − γ + γNi) + [2(β − γ) + γNi]Φ−i. (B.2)

Note that

Λi = (1+ Φ−i)αi −
X
j 6=i
αjΓj (B.3)

and

Φ−i =
X
h6=i
Γh =

X
h6=i

γNh
2(β − γ) + γNh (B.4)

are independent of Ni. Also note that ∂Zi/∂Ni = γ(2 + Φ−i). Thus,

∂�πi
∂Ni

=
Λ2i
Z4i

½
(β − γ + 2γNi)Z2i −Ni(β − γ + γNi)2Zi

∂Zi
∂Ni

¾
=

Λ2i
Z3i
{(β − γ + 2γNi) [2(β − γ + γNi) + (2(β − γ) + γNi)Φ−i]−

2γNi(β − γ + γNi)(2 + Φ−i)}
=

Λ2i
Z3i
{2(β − γ + 2γNi)(β − γ + γNi)− 4γNi(β − γ + γNi) +

[(β − γ + 2γNi)(2(β − γ) + γNi)− 2γNi(β − γ + γNi)]Φ−i}
=

Λ2i (β − γ)
Z3i

{2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i} > 0. (B.5)

Substituting (B.2) into (B.5) conÞrms (A.8). ¤

Derivation of (A.9): Using (A.8), one obtains
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∂2�πi
∂N2

i

=
Λ2i (β − γ)

Z6i

½
(2γ + 3γΦ−i)Z3i − [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i] 3Z2i

∂Zi
∂Ni

¾
=

Λ2i (β − γ)γ
Z4i

{(2 + 3Φ−i)(2(β − γ + γNi) + (2(β − γ) + γNi)Φ−i)−
3 [2(β − γ + γNi) + [2(β − γ) + 3γNi]Φ−i(2 + Φ−i)]}

=
Λ2i (β − γ)γ

Z4i
{−2(β − γ + γNi) + Φ−i[6(β − γ + γNi) + 2(2(β − γ) + γNi)−

6(2(β − γ) + 3γNi)] + Φ2−i[3(2(β − γ) + γNi)− 3(2(β − γ) + 3γNi)]}
= −2Λ

2
i (β − γ)γ
Z4i

{β − γ + γNi + (β − γ + 5γNi)Φ−i + 3γNiΦ2−i} < 0. (B.6)

Substituting (B.2) into (B.6) conÞrms (A.9). ¤

Derivation of (A.10): First, note that, for all i, j ∈ I, j 6= i,

∂Λi
∂Nj

=
2(β − γ)γ(αi − αj)
[2 (β − γ) + γNj ]2

(B.7)

and
∂Φ−i
∂Nj

=
∂Γj
∂Nj

=
2(β − γ)γ

[2 (β − γ) + γNj ]2
, (B.8)

according to (B.3) and (B.4), respectively; moreover, we have

∂Zi
∂Nj

=
2(β − γ)γ[2(β − γ) + γNi]

[2 (β − γ) + γNj]2
, (B.9)

according to (B.2) and (B.8). Hence, using

�πi =
Ni(β − γ + γNi)Λ2i

Z2i
, (B.10)

one obtains, for j 6= i,

∂�πi
∂Nj

=
Ni(β − γ + γNi)

Z4i

½
2Λi

∂Λi
∂Nj

Z2i − Λ2i 2Zi
∂Zi
∂Nj

¾
=

4Ni(β − γ + γNi)Λi(β − γ)γQi,j
[2(β − γ) + γNj ]2Z3i

, (B.11)

where
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Qi,j ≡ (αi − αj) [2(β − γ + γNi) + (2(β − γ) + γNi)Φ−i]− (2(β − γ) + γNi)Λi
= 2(αi − αj)(β − γ + γNi) + [2(β − γ) + γNi][(αi − αj)Φ−i − Λi]. (B.12)

Using (B.3), one Þnds

Qi,j = 2(αi − αj)(β − γ + γNi)− [2(β − γ) + γNi](αjΦ−i + αi −
X
j 6=i
αjΓj)

= γNi(αi − αj)− [2(β − γ) + γNi]
Ã
αj(1+ Φ−i)−

X
j 6=i
αjΓj

!

= −[2(β − γ) + γNi]
"
(αj − αi)Γi + αj

Ã
1+ Γj +

X
h6=i,j

Γh

!
− αjΓj −

X
h6=i,j

αhΓh

#

= −[2(β − γ) + γNi]
"
αj

Ã
1+

X
h6=j
Γh

!
−
X
h6=j
αhΓh

#
= −[2(β − γ) + γNi]Λj . (B.13)

Substituting (B.2) and (B.13) into (B.12) conÞrms (A.10). ¤

Derivation of (A.11): From (A.8), by making use of (B.7) and (B.9), one obtains,

for j 6= i,

∂2�πi
∂Ni∂Nj

=
β − γ
Z6i

{{(2(β − γ) + 3γNi)(∂Φ−i/∂Nj)Λ2i +

[2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]2Λi ∂Λi
∂Nj

}Z3i −

Λ2i [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]3Z2i
∂Zi
∂Nj

}

=
2(β − γ)2γΛi

Z4i [2(β − γ) + γNj ]2
{2 (αi − αj) [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]Zi +

ΛiZi(2(β − γ) + 3γNi)−
3Λi[2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i](2(β − γ) + γNi)}

=
2(β − γ)2γΛi

Z4i [2(β − γ) + γNj ]2
×

{2 (αi − αj) [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]Zi + ΛiTi,j} , (B.15)
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where

Ti,j ≡ [2(β − γ + γNi) + (2(β − γ) + γNi)Φ−i](2(β − γ) + 3γNi)− 3(2(β − γ) + γNi)×
[2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]

= −2 [(2(β − γ) + γNi)(2(β − γ) + 3γNi)Φ−i + 4(β − γ + γNi)(β − γ)] , (B.16)

i.e., Ti,j < 0. Substituting (B.16) into (B.15) yields (A.11). Hence, if αi ≤ αj, then

∂2�πi/∂Ni∂Nj < 0, j 6= i. In fact, if Þrms are not �too heterogeneous�, then assumption
A2 holds. ¤

Proof of claim in Remark 1: As will be shown in the following, even if αi À αj,

A2 holds for some conÞgurationsN. To derive a sufficient condition, Þrst, note that, from

the deÞnition of Λi (and Λj) in (B.3), the following fact can easily be derived (see also

(A.16) in appendix): For j 6= i,

(αi − αj)(1+
X
h∈I

Γh)− Λi = −Λj . (B.17)

(B.17) can be used in order to rewrite (A.11) in the following way:

∂2�πi
∂Ni∂Nj

=
4(β − γ)2γΛi

Z4i [2(β − γ) + γNj ]2
Vi,j, (B.18)

where
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Vi,j ≡ [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i][2(β − γ + γNi) + (2(β − γ) + γNi)Φ−i]×
(αi − αj)− Λi[(2(β − γ) + γNi)(2(β − γ) + 3γNi)Φ−i + 4(β − γ)(β − γ + γNi)]

= (2(β − γ) + 3γNi)Φ−i(2(β − γ) + γNi)[(αi − αj)Φ−i − Λi] + 2(β − γ + γNi)×
{(αi − αj)[2(β − γ + γNi) + (2(β − γ) + γNi)Φ−i +
(2(β − γ) + 3γNi)Φ−i]− 2(β − γ)Λi}

= (2(β − γ) + 3γNi)Φ−i(2(β − γ) + γNi)×
[(αi − αj)(1+

P
h

Γh)− Λi − (αi − αj)(1+ Γi)] +
4(β − γ + γNi) {(αi − αj)(β − γ + γNi)(1+ 2Φ−i)− (β − γ)Λi}

= (2(β − γ) + 3γNi)Φ−i(2(β − γ) + γNi)[−Λj − (αi − αj)(1+ Γi)] +
4(β − γ + γNi) {(β − γ)[(αi − αj)(1+ Φ−i)− Λi] + (β − γ + 2γNi)Φ−i(αi − αj)}

= −Λj(2(β − γ) + 3γNi)Φ−i(2(β − γ) + γNi) +
4(β − γ + γNi)(β − γ)[−Λj − (αi − αj)Γi] +
(αi − αj)[4(β − γ + γNi)(β − γ + 2γNi)Φ−i −
(1+ Γi)(2(β − γ) + 3γNi)Φ−i(2(β − γ) + γNi)]

= −Λj[(2(β − γ) + 3γNi)Φ−i(2(β − γ) + γNi) + 4(β − γ + γNi)(β − γ)]−
(αi − αj){Φ−i[(2(β − γ) + 3γNi)2(β − γ + γNi)− 4(β − γ + γNi)(β − γ + 2γNi)]
+4(β − γ + γNi)(β − γ)Γi}

= −Λj[(2(β − γ) + 3γNi)Φ−i(2(β − γ) + γNi) + 4(β − γ + γNi)(β − γ)] +
(αi − αj)(β − γ + γNi)2[γNiΦ−i − 2(β − γ)Γi] (B.19)

Thus, if αi > αj and γNiΦ−i > 2(β−γ)Γi, which, using Γi = γNi
2(β − γ) + γNi , is equivalent

to Φ−i >
2(β − γ)

2(β − γ) + γNi , then
∂2�πi

∂Ni∂Nj
> 0, j 6= i, is possible. However, if

Φ−i ≤ 2(β − γ)
2(β − γ) + γNi ,

then A2 holds for all conÞgurations α. (Recall that A2 always holds if αi ≤ αj, according
to part (v) of Corollary 1.) This conÞrms the claims made in Remark 1. ¤
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Properties of Di(N,α) and Mi(N,α): In section 3, we decomposed proÞts of a

Þrm i in stage 2 equilibrium, Πi(N,α), into the product between equilibrium demand,

Di(N,α) = NiXi(N,α), and equilibrium mark-up, Mi(N,α) = (β − γ + γNi)Xi(N,α).
The remainder of this supplement formally derives the properties of these two functions,

Di(N,α) andMi(N,α), which have been used in the discussion of Corollary 1. We obtain

the following results.

Corollary B.1. (Properties of Di(N,α)). For all i, j ∈ I, j 6= i, we have
(i) ∂Di/∂Ni > 0 and ∂2Di/∂N2

i < 0,

(ii) ∂Di/∂Nj < 0,

(iii) ∂Di/∂αi > 0, ∂Di/∂αj < 0,

(iv) ∂2Di/∂Ni∂αi > 0 and ∂2Di/∂Ni∂αj < 0, and

(v) if αi ≤ αj or if (αi − αj) sufficiently small, then ∂2Di/∂Ni∂Nj < 0.
Proof. First, note from (A.6) that ∂�xi/∂Ni = −λi,j�xi/Ni, and thus, ∂Di/∂Ni =

�xi +Ni∂�xi/∂Ni = (1− λi,j)�xi, where

λi,j ≡ γNi (2 + Φ−i)
2(β − γ) (1+ Φ−i) + γNi (2 + Φ−i) . (B.20)

Since λi,j ∈ (0, 1), we have ∂Di/∂Ni > 0. Moreover, ∂2Di/∂N2
i = (1 − λi,j)∂�xi/∂Ni −

�xi∂λi,j/∂Ni < 0, since ∂�xi/∂Ni < 0, λi,j ∈ (0, 1) and ∂λi,j/∂Ni > 0, according to (B.20).
This proves part (i) of Corollary B.1. To prove part (ii), note that ∂Di/∂Nj = Ni∂�xi/∂Nj,

j 6= i. Using (A.6), (B.7) and (B.8), it is straightforward to show that this implies
∂Di
∂Nj

= − 2γ(β − γ)NiQi,j
[2(β − γ) + γNj ]2 Z2i

, (B.21)

j 6= i, where Zi and Qi,j are given by (B.2) and (B.12), respectively. According to (B.13),
we have Qi,j < 0, thus, conÞrming ∂Di/∂Nj < 0, j 6= i. To prove part (iii) of Corollary
B.1, Þrst, note that �xi = Λi/Zi, according to (A.6) and (B.2). Thus, part (iii) directly

follows from ∂Λi/αi > 0 and ∂Λi/αj < 0, j 6= i, according to (B.3), and the fact that

∂Di/∂αj = Ni∂�xi/∂αj. Recalling ∂Di/∂Ni = (1 − λi,j)�xi, part (iv) follows by similar
considerations, together with the fact that λi,j is independent of αi or αj, respectively,

according to (B.20). To prove part (v), Þrst, note that ∂Di/∂Ni = 2(β−γ)Λi(1+Φ−i)/Z2i ,
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according to (B.2), (B.20) and �xi = Λi/Zi. Using this together with (B.7)-(B.9), one

obtains, after some manipulations, that, for j 6= i,
∂2Di
∂Ni∂Nj

=
4γ(β − γ)2Ni {(αi − αj)(1+ Φ−i)Zi − Λi [Φ−i(2(β − γ) + γNi) + 2(β − γ)]}

[2(β − γ) + γNj]2 Z3i
.

(B.22)

Recalling that Λi > 0 in interior equilibrium conÞrms part (v). This concludes the proof

of Corollary B.1.

Corollary B.2. (Properties of Mi(N,α)). For all i, j ∈ I, j 6= i, we have
(i) ∂Mi/∂Ni > 0 and ∂2Mi/∂N

2
i < 0,

(ii) ∂Mi/∂Nj < 0,

(iii) ∂Mi/∂αi > 0, ∂Mi/∂αj < 0,

(iv) ∂2Mi/∂Ni∂αi > 0 and ∂2Mi/∂Ni∂αj < 0, and

(v) the sign of ∂2Mi/∂Ni∂Nj is ambiguous.

Proof. First, note that we can writeMi = (β−γ+γNi)Λi/Zi since �xi = Λi/Zi. Thus,
using (B.2)-(B.4) leads to

∂Mi

∂Ni
=
γΛi(β − γ)Φ−i

Z2i
> 0. (B.23)

Moreover, since ∂Zi/∂Ni > 0, according to (B.2), (B.23) implies ∂2Mi/∂N
2
i < 0. This

conÞrms part (i) of Corollary B.2. In a similar fashion as in the proof of part (ii) of

Corollary B.1, one can also show that

∂Mi

∂Nj
= −2γ(β − γ)(β − γ + γNi)Qi,j

[2(β − γ) + γNj]2 Z2i
< 0, (B.24)

j 6= i. Part (iii) follows directly from recalling ∂Λi/αi > 0 and ∂Λi/αj < 0, j 6= i, together
with ∂Mi/∂αj = (β − γ + γNi)∂�xi/∂αj and �xi = Λi/Zi. Part (iv) follows from (B.23),

and, again, ∂Λi/αi > 0 and ∂Λi/αj < 0, j 6= i. Finally, using (B.23), together with

(B.7)-(B.9), one can show that, for j 6= i,
∂2Mi

∂Ni∂Nj
=
2γ2(β − γ)2 {(αi − αj)Φ−iZi + Λi [2(β − γ + γNi)− Φ−i(2(β − γ) + γNi)]}

[2(β − γ) + γNj]2 Z3i
.

(B.25)

Unfortunately, for j 6= i, the sign of ∂2Mi/∂Ni∂Nj is ambiguous even for αi = αj. This

concludes the proof of Corollary B.2.
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