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FIRMLY NONEXPANSIVE MAPPINGS IN CLASSES

OF GEODESIC SPACES

DAVID ARIZA-RUIZ, LAURENŢIU LEUŞTEAN, AND GENARO LÓPEZ-ACEDO

Abstract. Firmly nonexpansive mappings play an important role in metric
fixed point theory and optimization due to their correspondence with maximal
monotone operators. In this paper we do a thorough study of fixed point theory
and the asymptotic behaviour of Picard iterates of these mappings in different
classes of geodesic spaces, such as (uniformly convex) W -hyperbolic spaces,
Busemann spaces and CAT(0) spaces. Furthermore, we apply methods of
proof mining to obtain effective rates of asymptotic regularity for the Picard
iterations.

1. Introduction

Let C be a closed convex subset of a Hilbert space H. Firmly contractive map-
pings were defined by Browder [5] as mappings T : C → H satisfying the following
inequality for all x, y ∈ C:

(1) ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉.
As Browder points out, these mappings play an important role in the study of
(weak) convergence for sequences of nonlinear operators. An example of a firmly
contractive mapping is the metric projection PC : H → H, defined by PC(x) =
argminy∈C{‖x− y‖}. One can easily see that any firmly contractive mapping T is
nonexpansive, i.e. satisfies ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. The converse is
not true, as one can see by taking T = −Id.

In his study of nonexpansive projections on subsets of Banach spaces, Bruck [6]
defined a firmly nonexpansive mapping T : C → E, where C is a closed convex
subset of a real Banach space E, to be a mapping with the property that for all
x, y ∈ C and t ≥ 0,

(2) ‖Tx− Ty‖ ≤ ‖(1− t)(Tx− Ty) + t(x− y)‖.
In Hilbert spaces these mappings coincide with the firmly contractive ones intro-
duced by Browder. As Bruck shows, to any nonexpansive selfmapping T : C → C
that has fixed points, one can associate a ‘large’ family of firmly nonexpansive
mappings having the same fixed point set with T . Hence, from the point of view
of the existence of fixed points on convex closed sets, firmly nonexpansive map-
pings exhibit a similar behaviour with the nonexpansive ones. However, this is no
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longer true if we consider nonconvex domains [43]. Firmly nonexpansive mappings
in Banach spaces have also been studied in [7] and [39].

If T is firmly nonexpansive and has fixed points, it is well known [5] that the
Picard iterate (Tnx) converges weakly to a fixed point of T for any starting point
x, while this is not true for nonexpansive mappings (take again T = −Id). This is
a first reason for the importance of firmly nonexpansive mappings.

A second reason for the importance of this class of mappings is their correspon-
dence with maximal monotone operators, due to Minty [34].

The resolvent of a monotone operator was introduced by Minty [34] in Hilbert
spaces and by Brézis, Crandall and Pazy [3] in Banach spaces. Among other ap-
plications, the resolvent has proved to be very useful in the study of the asymp-
totic behaviour of the solutions of the Cauchy abstract problem governed by a
monotone operator; see for instance [16, 36, 47]. Given a maximal monotone op-
erator A : H → 2H and μ > 0, its associated resolvent of order μ, defined by
JA
μ := (Id+ μA)−1, is a firmly nonexpansive mapping from H to H and the set of

fixed points of JA
μ coincides with the set of zeros of A. We refer to [2] for a very

nice presentation of this correspondence. Rockafellar’s [42] proximal point algo-
rithm uses the resolvent to approximate the zeros of maximal monotone operators.

The subdifferential of a proper, convex and lower semicontinuous function F :
H → (−∞,∞] is a maximal monotone operator. Hence the resolvent associated
to the subdifferential is a firmly nonexpansive mapping that coincides with the
proximal map introduced by Moreau [35]. The proximal point algorithm for ap-
proximating the minimizers of F is based on the weak convergence towards a fixed
point of the Picard iterate of the resolvent and the fact that the minimizers of F
are the fixed points of the resolvent.

During the last 20 years there has been a fruitful direction of research that
consists of extending techniques and results obtained in normed spaces to metric
spaces without linear structure. For instance, minimization problems associated
to convex functionals have been solved in the setting of Riemannian manifolds
[15, 31], while some problems have been modelled as abstract Cauchy equations
in the framework of nonpositive curvature geodesic metric spaces (see [33, 45] and
the references therein). Although apparently the framework and the conceptual
approach in the previous problems are quite different, it is possible, as in the case
of normed spaces, to find a bridge between them through firmly nonexpansive
mappings.

The goal of our work is twofold. First we generalize known results on firmly
nonexpansive mappings in Hilbert or Banach spaces to suitable classes of geodesic
spaces. Second we obtain effective results on the asymptotic behaviour of Picard
iterations.

In Section 2 we give basic definitions and properties of the classes of geodesic
spaces we consider in this paper: W -hyperbolic spaces, UCW -hyperbolic spaces,
Busemann spaces and CAT(0) spaces. We recall properties of asymptotic centers
in such spaces that are essential for our results.

Firmly nonexpansive mappings in the Hilbert ball and, more generally, in hy-
perbolic spaces, have already been studied in [18, 40, 41] and, more recently, in the
paper by Kopecká and Reich [27]. In Section 3 we extend Bruck’s definition of a
firmly nonexpansive mapping to our class of W -hyperbolic spaces. We show that,
in the setting of CAT(0) spaces, the metric projection on a closed convex set and
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the resolvent of a proper, convex and lower semicontinuous mapping are firmly
nonexpansive. Furthermore, Bruck’s association of a family of firmly nonexpansive
mappings to any nonexpansive mapping is adapted to Busemann spaces.

Section 4 contains a fixed point theorem for firmly nonexpansive mappings de-
fined on finite unions of closed convex subsets of a complete UCW -hyperbolic space.
Our result generalizes and strengthens Smarzewski’s [43] fixed point theorem for
uniformly convex Banach spaces. In this section we also obtain new results about
periodic points of (firmly) nonexpansive mappings.

In the next section we study the asymptotic behaviour of Picard iterates of firmly
nonexpansive mappings, extending to W -hyperbolic spaces the results of Reich and
Shafrir [40,41]. As a consequence, we obtain that any firmly nonexpansive mapping
with bounded orbits is asymptotically regular.

A concept of weak convergence in geodesic spaces is the so-called Δ-convergence,
defined by Lim [32]. Applying our asymptotic regularity result and general proper-
ties of Fejér monotone sequences, we prove in Section 6, in the setting of complete
UCW -hyperbolic spaces, the Δ-convergence of Picard iterates of a firmly nonex-
pansive mapping to a fixed point. As a consequence, one gets the Δ-convergence
of a proximal point like algorithm to a minimizer of a proper, convex and lower
semicontinuous mapping defined on a CAT(0) space.

In the final section of the paper we obtain effective rates of asymptotic regularity
for Picard iterations, applying methods of proof mining, similar to the ones used
for Krasnoselski-Mann iterations of nonexpansive mappings by Kohlenbach [23] in
Banach spaces and the second author [29] in UCW -hyperbolic spaces. We point
out that our results are new even for uniformly convex Banach spaces. In the
case of CAT(0) spaces we obtain a quadratic rate of asymptotic regularity. Proof
mining is a paradigm of research concerned with the extraction, using tools from
mathematical logic, of hidden finitary and combinatorial content, such as algorithms
and effective bounds, from proofs that make use of highly infinitary principles. We
refer to Kohlenbach’s book [25] for details.

2. Classes of geodesic spaces - definitions and properties

AW -hyperbolic space (X, d,W ) is a metric space (X, d) together with a convexity
mapping W : X ×X × [0, 1] → X satisfying

d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y),(W1)

d(W (x, y, λ),W (x, y, λ̃)) = |λ− λ̃| · d(x, y),(W2)

W (x, y, λ) = W (y, x, 1− λ),(W3)

d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w).(W4)

The convexity mapping W was first considered by Takahashi in [46], where a triple
(X, d,W ) satisfying (W1) is called a convex metric space. W -hyperbolic spaces
were introduced by Kohlenbach [24], and we refer to [25, p. 384] for a comparison
between them and other notions of ‘hyperbolic space’ that can be found in the
literature (see for example [17, 21, 41]). The class of W -hyperbolic spaces includes
(convex subsets of) normed spaces, the Hilbert ball (see [18] for a book treatment),
as well as CAT(0) spaces [4].
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We shall denote a W -hyperbolic space simply by X when the metric d and the
mapping W are clear from the context. One can easily see that

(3) d(x,W (x, y, λ)) = λd(x, y) and d(y,W (x, y, λ)) = (1− λ)d(x, y).

Furthermore, W (x, y, 0) = x, W (x, y, 1) = y and W (x, x, λ) = x.
Let us recall now some notions concerning geodesics. Let (X, d) be a metric

space. A geodesic path in X (geodesic in X for short) is a map γ : [a, b] → X
satisfying

(4) d(γ(s), γ(t)) = |s− t| for all s, t ∈ [a, b].

A geodesic segment in X is the image of a geodesic in X. If γ : [a, b] → X is a
geodesic in X, γ(a) = x and γ(b) = y, we say that the geodesic γ joins x and y
or that the geodesic segment γ([a, b]) joins x and y ; x and y are also called the
endpoints of γ.

A metric space (X, d) is said to be a (uniquely) geodesic space if every two distinct
points are joined by a (unique) geodesic segment.

If γ([a, b]) is a geodesic segment joining x and y and λ ∈ [0, 1], z := γ((1−λ)a+λb)
is the unique point in γ([a, b]) satisfying

(5) d(z, x) = λd(x, y) and d(z, y) = (1− λ)d(x, y).

In the sequel, we shall use the notation [x, y] for the geodesic segment γ([a, b]) and
we shall denote this z by (1−λ)x⊕λy, provided that there is no possible ambiguity.

Given three points x, y, z in a metric space (X, d), we say that y lies between
x and z if these points are pairwise distinct and if we have d(x, z) = d(x, y) +
d(y, z). Obviously, if y lies between x and z, then y also lies between z and x.
Furthermore, the relation of betweenness also satisfies a transitivity property (see,
e.g., [38, Proposition 2.2.13]):

Proposition 2.1. Let X be a metric space and x, y, z, w be pairwise distinct points
of X. The following statements are equivalent:

(i) y lies between x and z and z lies between x and w.
(ii) y lies between x and w and z lies between y and w.

The following betweenness property expresses another form of ‘transitivity’,
which is not true in general metric spaces:

for all x, y, z, w ∈ X, if y lies between x and z and z lies between y and w,(6)

then y and z both lie between x and w.

By induction one gets

Lemma 2.2. Let X be a metric space satisfying (6). For all n ≥ 2 and all
x0, x1, . . . , xn ∈ X, we have that

(7)
if for all k = 1, . . . , n− 1, xk lies between xk−1 and xk+1,
then for all k = 1, . . . , n− 1, xk lies between x0 and xk+1.

The next lemma collects some well-known properties of geodesic spaces. We
refer to [38] for details.

Lemma 2.3. Let (X, d) be a geodesic space.

(i) For every pairwise distinct points x, y, z in X, y lies between x and z if
and only if there exists a geodesic segment [x, z] containing y.
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(ii) For every points x, y, z, w and any geodesic segment [x, y], if z, w ∈ [x, y],
then either d(x, z) + d(z, w) = d(x,w) or d(w, z) + d(z, y) = d(w, y).

(iii) For every geodesic segment [x, y] in X and λ, λ̃ ∈ [0, 1],

d
(
(1− λ)x⊕ λy, (1− λ̃)x⊕ λ̃y

)
= |λ− λ̃|d(x, y).

(iv) Let γ : [a, b] → X be a geodesic that joins x and y. Define

γ− : [a, b] → X, γ−(s) = γ(a+ b− s).

Then γ− is a geodesic that joins y and x such that γ−([a, b]) = γ([a, b]).
(v) Let γ, η : [a, b] → X be geodesics. If γ([a, b]) = η([a, b]) and γ(a) = η(a)

(or γ(b) = η(b)), then γ = η.
(vi) The following statements are equivalent:

(a) X is uniquely geodesic.
(b) For any x �= y ∈ X and any λ ∈ [0, 1] there exists a unique element

z ∈ X such that

d(x, z) = λd(x, y) and d(y, z) = (1− λ)d(x, y).

Lemma 2.4. Let X be a uniquely geodesic space.

(i) For all x, y ∈ X, [x, y] = {(1− λ)x⊕ λy | λ ∈ [0, 1]}.
(ii) For every pairwise distinct points x, y, z in X, y lies between x and z if

and only if y ∈ [x, z].
(iii) Let x, y, z, w be pairwise distinct points in X such that y = (1− λ)x⊕ λz

and z = (1 − α)x ⊕ αw for some λ, α ∈ (0, 1). Then z = (1 − μ)y ⊕ μw,

where μ =
(1− λ)α

1− αλ
.

Proof. (i) and (ii) are obvious.
(iii) Applying (ii), Lemma 2.3.(i) and Proposition 2.1, one gets that z ∈ [y, w].

Thus, z = (1− μ)y ⊕ μw for some μ ∈ (0, 1). Furthermore,

d(z, y) = (1− λ)d(x, z) = (1− λ)αd(x,w) =
(1− λ)α

1− α
d(z, w)

=
(1− λ)α

1− α
· (1− μ)d(y, w) =

(1− λ)α

1− α
· 1− μ

μ
d(z, y).

Thus,
(1− λ)α

1− α
· 1− μ

μ
= 1, and the conclusion follows immediately. �

Let (X, d,W ) be a W -hyperbolic space. For all x, y ∈ X, let us define

(8) [x, y]W := {W (x, y, λ) | λ ∈ [0, 1]}.
Then [x, x]W = {x} for all x ∈ X. A subset C ⊆ X is convex if [x, y]W ⊆ C for all
x, y ∈ C. Open and closed balls are convex sets. A nice feature of our setting is
that any convex subset is itself a W -hyperbolic space.

Following [46], we call a W -hyperbolic space strictly convex if for any x �= y ∈ X
and any λ ∈ (0, 1) there exists a unique element z ∈ X (namely z = W (x, y, λ))
such that

(9) d(x, z) = λd(x, y) and d(y, z) = (1− λ)d(x, y).
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Proposition 2.5. Let (X, d,W ) be a W -hyperbolic space. Then

(i) X is a geodesic space and for all x �= y ∈ X, [x, y]W is a geodesic segment
joining x and y.

(ii) X is a uniquely geodesic space if and only if it is strictly convex.
(iii) If X is uniquely geodesic, then

(a) W is the unique convexity mapping that makes (X, d,W ) a W -hyper-
bolic space.

(b) For all x, y ∈ X and λ ∈ [0, 1], W (x, y, λ) = (1− λ)x⊕ λy.

Proof. (i) For x �= y ∈ X, the map we should have Wxy : [0, d(x, y)] → X,

(10) Wxy(α) = W

(
x, y,

α

d(x, y)

)
.

is a geodesic satisfying Wxy([0, d(x, y)]) = [x,w]W .
(ii) By Lemma 2.3(vi).
(iii) (b) is obvious. In the sequel we prove (a). Let W ′ : X×X× [0, 1] → X be

another convexity mapping such that (X, d,W ′) is a W -hyperbolic space.
For λ ∈ [0, 1] and x ∈ X one has W (x, x, λ) = W ′(x, x, λ) = x. Let x, y ∈
X, x �= y. Then [x, y]W and [x, y]W ′ are geodesic segments that join x and
y. Hence we must have that [x, y]W = [x, y]W ′ , that is Wxy([0, d(x, y)]) =
W ′

xy([0, d(x, y)]). SinceWxy(0) = W ′
xy(0) = x, we can apply Lemma 2.3(v)

to get that Wxy = W ′
xy, so that W (x, y, λ) = W ′(x, y, λ). �

An important class of W -hyperbolic spaces are the so-called Busemann spaces,
used by Busemann [9, 10] to define a notion of ‘nonpositively curved space’. We
refer to [38] for an extensive study. Let us recall that a map γ : [a, b] → X is an
affinely reparametrized geodesic if γ is a constant path or there exist an interval
[c, d] and a geodesic γ′ : [c, d] → X such that γ = γ′ ◦ ψ, where ψ : [a, b] → [c, d] is
the unique affine homeomorphism between the intervals [a, b] and [c, d].

A geodesic space (X, d) is a Busemann space if for any two affinely reparametrized
geodesics γ : [a, b] → X and γ′ : [c, d] → X, the map

(11) Dγ,γ′ : [a, b]× [c, d] → R, Dγ,γ′(s, t) = d(γ(s), γ′(t))

is convex. Examples of Busemann spaces are strictly convex normed spaces. In
fact, a normed space is a Busemann space if and only if it is strictly convex.

Proposition 2.6. Let (X, d) be a metric space. The following two statements are
equivalent:

(i) X is a Busemann space.
(ii) There exists a (unique) convexity mapping W such that (X, d,W ) is a

uniquely geodesic W -hyperbolic space.

Proof. (i) ⇒ (ii) Assume that X is Busemann. By [38, Proposition 8.1.4], any
Busemann space is uniquely geodesic. For any x, y ∈ X, let [x, y] be the unique
geodesic segment that joins x and y and define

(12) W : X ×X × [0, 1] → X, W (x, y, λ) = (1− λ)x⊕ λy.

Let us verify (W1)-(W4): (W4) follows from [38, Proposition 8.1.2(ii)]; (W2) follows
from Lemma 2.3(iii); (W1) follows from (W4) applied with z = x and the fact that
W (x, x, λ) = x; (W3) follows by Lemma 2.3(iv).

(ii) ⇒ (i) Apply [38, Proposition 8.1.2(ii)] and (W4). �
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A very useful feature of Busemann spaces is the following (see [38, Proposition
8.2.4])

Lemma 2.7. Every Busemann space satisfies the betweenness property (6). Hence,
Lemma 2.2 holds in Busemann spaces.

CAT(0) spaces are another very important class of W -hyperbolic spaces. A
CAT(0) space is a geodesic space satisfying the CN inequality of Bruhat-Tits [8]:

for all x, y, z ∈ X and all m ∈ X with d(x,m) = d(y,m) =
1

2
d(x, y),

(13) d(z,m)2 ≤ 1

2
d(z, x)2 +

1

2
d(z, y)2 − 1

4
d(x, y)2.

We refer to [4, p. 163] for a proof that the above definition is equivalent with the
one using geodesic triangles. In the setting of W -hyperbolic spaces, we consider
the following reformulation of the CN inequality: for all x, y, z ∈ X,

(14) CN− : d

(
z,W

(
x, y,

1

2

))2

≤ 1

2
d(z, x)2 +

1

2
d(z, y)2 − 1

4
d(x, y)2.

We refer to [25, pp. 386-388] for the proof of the following result.

Proposition 2.8. Let (X, d) be a metric space. The following statements are
equivalent:

(i) X is a CAT(0) space.
(ii) There exists a (unique) convexity mapping W such that (X, d,W ) is a

W -hyperbolic space satisfying the CN− inequality (14).

Convention. Given a W-hyperbolic space (X, d,W ) and x, y ∈ X, λ ∈ [0, 1], we
shall use from now on the notation (1− λ)x⊕ λy for W (x, y, λ).

2.1. UCW-hyperbolic spaces. We define uniform convexity in the setting of W -
hyperbolic spaces, following [18, p. 105]. Thus, a W -hyperbolic space (X, d,W ) is
uniformly convex [29] if for any r > 0 and any ε ∈ (0, 2] there exists δ ∈ (0, 1] such
that for all a, x, y ∈ X,

d(x, a) ≤ r
d(y, a) ≤ r
d(x, y) ≥ εr

⎫⎬
⎭ ⇒ d

(
1

2
x⊕ 1

2
y, a

)
≤ (1− δ)r.(15)

A mapping η : (0,∞)× (0, 2] → (0, 1] providing such a δ := η(r, ε) for given r > 0
and ε ∈ (0, 2] is called a modulus of uniform convexity. We call η monotone if it
decreases with r (for a fixed ε).

Proposition 2.9. Any uniformly convex W -hyperbolic space is a Busemann space.

Proof. Apply [29, Proposition 5], Proposition 2.5(ii) and Proposition 2.6. �
Following [30], we shall refer to uniformly convex W -hyperbolic spaces with a

monotone modulus of uniform convexity as UCW -hyperbolic spaces. Furthermore,
we shall also use the notation (X, d,W, η) for a UCW -hyperbolic space having η as
a monotone modulus of uniform convexity.

As it was proved in [29], CAT(0) spaces are UCW -hyperbolic spaces with a mod-

ulus of uniform convexity η(r, ε) =
ε2

8
that does not depend on r and is quadratic

in ε. In particular, any CAT(0) space is also a Busemann space.
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The following lemma collects some useful properties of UCW -hyperbolic spaces.
We refer to [29, 30] for the proofs.

Lemma 2.10. Let (X, d,W, η) be a UCW -hyperbolic space. Assume that r > 0,
ε ∈ (0, 2] and a, x, y ∈ X are such that

d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ εr.

Let λ ∈ [0, 1] be arbitrary.

(i) d((1− λ)x⊕ λy, a) ≤
(
1− 2λ(1− λ)η(r, ε)

)
r.

(ii) For any 0 < ψ ≤ ε,

d((1− λ)x⊕ λy, a) ≤
(
1− 2λ(1− λ)η(r, ψ)

)
r .

(iii) For any s ≥ r,

d((1− λ)x⊕ λy, a) ≤ (1− 2λ(1− λ)η (s, ε)) r .

2.2. Asymptotic centers. One of the most useful tools in metric fixed point
theory is the asymptotic center technique, introduced by Edelstein [11, 12].

Let (X, d) be a metric space, (xn) be a bounded sequence in X and C ⊆ X be
a nonempty subset of X. We define the following functional:

r(·, (xn)) : X → [0,∞), r(y, (xn)) = lim sup
n→∞

d(y, xn).

The asymptotic radius of (xn) with respect to C is given by

r(C, (xn)) = inf{r(y, (xn)) | y ∈ C}.
A point c ∈ C is said to be an asymptotic center of (xn) with respect to C if

r(c, (xn)) = r(C, (xn)) = min{r(y, (xn)) | y ∈ C}.
We denote with A(C, (xn)) the set of asymptotic centers of (xn) with respect to
C. When C = X, we call c an asymptotic center of (xn) and we use the notation
A((xn)) for A(X, (xn)).

The following lemma will be very useful in the sequel.

Lemma 2.11 ([30]). Let (xn) be a bounded sequence in X with A(C, (xn)) = {c}
and let (αn), (βn) be real sequences such that αn ≥ 0 for all n ∈ N, lim sup

n→∞
αn ≤ 1

and lim sup
n→∞

βn ≤ 0.

Assume that y ∈ C is such that there exist p,N ∈ N satisfying

∀n ≥ N

(
d(y, xn+p) ≤ αnd(c, xn) + βn

)
.

Then y = c.

A classical result is the fact that in uniformly convex Banach spaces, bounded
sequences have unique asymptotic centers with respect to closed convex subsets.
For the Hilbert ball, this was proved in [18, Proposition 21.1]. The following result
shows that the same is true for complete UCW -hyperbolic spaces.

Proposition 2.12 ([30]). Let (X, d,W ) be a complete UCW -hyperbolic space. Ev-
ery bounded sequence (xn) in X has a unique asymptotic center with respect to any
nonempty closed convex subset C of X.
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2.3. Convex functions. Let (X, d) be a geodesic space and F : X → (−∞,∞].
The mapping F is said to be convex if, for any geodesic γ in X, the function F ◦ γ
is convex. Let us recall that the effective domain of F is the set domF := {x ∈ X |
F (x) < ∞} and that F is proper if domF is nonempty.

For the rest of this section F is a proper convex function.
If x ∈ domF and γ : [0, c] → X is a geodesic starting at x, the directional

derivative DγF (x) of F at x in the direction γ is defined by

DγF (x) := lim
t→0+

F (γ(t))− F (x)

t
.

As F is convex, the above limit (possibly infinite) always exists. Indeed, one can

easily see that DγF (x) = inf
t>0

F (γ(t))− F (x)

t
.

Proposition 2.13. Let x ∈ domF . The following statements are equivalent:

(i) x is a local minimum of F .
(ii) x is a global minimum of F .
(iii) DγF (x) ≥ 0 for any geodesic γ : [0, c] → X starting at x.

Proof. (i) ⇒ (ii) Let ε > 0 be such that F (x) ≤ F (x) for all x ∈ B(x, ε). Let z �= x
be arbitrary and γ : [0, d(x, z)] → X be a geodesic in X that joins x and z. For all
t < min{ε, d(x, z)} we have that d(γ(t), x) = t < ε, so that

F (x) ≤ F (γ(t)) = (F ◦ γ)
((

1− t

d(x, z)

)
0 +

t

d(x, z)
d(x, z)

)

≤
(
1− t

d(x, z)

)
F (x) +

t

d(x, z)
F (z).

Hence F (x) ≤ F (z).
(ii) ⇒ (i) and (ii) ⇒ (iii) are immediate.
(iii) ⇒ (ii) Let z �= x be arbitrary. We shall prove that F (z) ≥ F (x). If

F (z) = ∞, the conclusion is obvious, so we can assume that z ∈ domF . Let
γ : [0, d(x, z)] → X be a geodesic that joins x and z. As F is convex, one gets that
for all t ∈ [0, d(x, z)],

F (γ(t)) ≤
(
1− t

d(x, z)

)
F (x) +

t

d(x, z)
F (z) < ∞.

Thus, F◦γ : [0, d(x, z)] → R is a convex real function satisfying (F◦γ)′(0) =
DγF (x) ≥ 0. One gets that F (x) = (F◦γ)(0) ≤ (F◦γ)(d(x, z)) = F (z). �

3. Firmly nonexpansive mappings

Firmly nonexpansive mappings were introduced by Bruck [6] in the context of
Banach spaces and by Browder [5], under the name firmly contractive, in the setting
of Hilbert spaces. We refer to [18, Section 24] for a study of this class of mappings
in the Hilbert ball.

Bruck’s definition can be extended to W -hyperbolic spaces. Let (X, d,W ) be a
W -hyperbolic space, C ⊆ X and T : C → X. Given λ ∈ (0, 1), we say that T is
λ-firmly nonexpansive if for all x, y ∈ C,

(16) d(Tx, Ty) ≤ d((1− λ)x⊕ λTx, (1− λ)y ⊕ λTy) for all x, y ∈ C.

If (16) holds for all λ ∈ (0, 1), then T is said to be firmly nonexpansive.
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Applying (W4) one gets that any λ-firmly nonexpansive mapping is nonexpan-
sive, i.e. it satisfies d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C.

The first example of a firmly nonexpansive mapping is the metric projection in
a CAT(0) space. Let us recall that a subset C of a metric space (X, d) is called a
Chebyshev set if to each point x ∈ X there corresponds a unique point z ∈ C such
that d(x, z) = d(x,C), where d(x,C) = inf{d(x, y) | y ∈ C}. If C is a Chebyshev
set, the metric projection PC : X → C can be defined by assigning z to x.

By [4, Proposition II.2.4], any closed convex subset C of a CAT(0) space is a
Chebyshev set, the metric projection PC is nonexpansive and PC((1−λ)x⊕λPCx) =
PC(x) for all x ∈ X and all λ ∈ (0, 1). It is well known that in the setting of Hilbert
spaces the metric projection is firmly nonexpansive. We remark that for the Hilbert
ball this was proved in [18, p. 111]. The following result shows that the same holds
in general CAT(0) spaces.

Proposition 3.1. Let C be a nonempty closed convex subset of a CAT(0) space
(X, d). The metric projection PC onto C is a firmly nonexpansive mapping.

Proof. Let x, y ∈ X and λ ∈ (0, 1). One gets that

d(PCx, PCy) = d
(
PC((1− λ)x⊕ λPCx), PC((1− λ)y ⊕ λPCy)

)
≤ d((1− λ)x⊕ λPCx, (1− λ)y ⊕ λPCy).

�

Bruck [6] showed for Banach spaces that one can associate to any nonexpansive
mapping a family of firmly nonexpansive mappings having the same fixed points.
Goebel and Reich [18] obtained the same result for the Hilbert ball. We show in
the sequel that Bruck’s construction can also be adapted to Busemann spaces.

Let C be a nonempty closed convex subset of a complete Busemann space X
and let T : C → C be nonexpansive. For t ∈ (0, 1) and x ∈ C define

(17) T x
t : C → C, T x

t (y) = (1− t)x⊕ tT (y).

Using (W4), one can easily see that T x
t is a contraction, so it has a unique fixed

point zxt ∈ C, by Banach’s Contraction Mapping Principle. Let

(18) Ut : C → C, Ut(x) = zxt .

Then Ut(x) = (1− t)x⊕ tT (Ut(x)) for all x ∈ C.

Proposition 3.2. Ut is a firmly nonexpansive mapping having the same set of fixed
points as T .

Proof. Let λ ∈ (0, 1) and x, y ∈ C. Denote u := (1 − λ)x ⊕ λUt(x) and v :=
(1− λ)y ⊕ λUt(y). We can apply Lemma 2.4(iii) twice to get that

Ut(x)=(1− μ)u⊕ μT (Ut(x)), Ut(y)=(1− μ)v ⊕ μT (Ut(y)), where μ =
(1− λ)t

1− λt
.

It follows that

d(Ut(x), Ut(y)) = d((1− μ)u⊕ μT (Ut(x)), (1− μ)v ⊕ μT (Ut(y)))

≤ (1− μ)d(u, v) + μd(T (Ut(x)), T (Ut(y)))

≤ (1− μ)d(u, v) + μd(Ut(x), Ut(y)).

Thus, d(Ut(x), Ut(y)) ≤ d(u, v), so Ut is λ-firmly nonexpansive.
The fact that Ut and T have the same set of fixed points is immediate. �
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A third example of a firmly nonexpansive mapping is the resolvent of a proper,
convex and lower semicontinuous mapping in a CAT(0) space.

Let (X, d) be a CAT(0) space, F : X → (−∞,∞] and μ > 0. Following Jost
[20], the Moreau-Yosida approximation Fμ of F is defined by

(19) Fμ(x) := inf
y∈X

{
μF (y) + d(x, y)2

}
.

We refer to [1,45] for applications of the Moreau-Yosida approximation in CAT(0)
spaces.

Jost proved [20, Lemma 2] that if F : X → (−∞,∞] is proper, convex and lower
semicontinuous, then for every x ∈ X and μ > 0 there exists a unique yμ ∈ X such
that

Fμ(x) = μF (yμ) + d(x, yμ)
2.

We denote this yμ with Jμ(x) and call Jμ the resolvent of F of order μ.
In the same paper, Jost shows that for all μ > 0 the resolvent Jμ is nonexpansive

[20, Lemma 4] and, furthermore, that for all λ ∈ [0, 1],

(20) J(1−λ)μ

(
(1− λ)x⊕ λJμ(x)

)
= Jμ(x) (see [20, Corollary 1]).

Proposition 3.3. Let F : X → (−∞,∞] be proper, convex and lower semicontin-
uous. Then for every μ > 0, its resolvent Jμ is a firmly nonexpansive mapping.

Proof. Let x, y ∈ X and λ ∈ (0, 1). Then

d(Jμ(x), Jμ(y)) = d(J(1−λ)μ

(
(1− λ)x⊕ λJμ(x)

)
, J(1−λ)μ

(
(1− λ)y ⊕ λJμ(y)

)
)

≤ d
(
(1− λ)x⊕ λJμ(x), (1− λ)y ⊕ λJμ(y)

)
.

�

Another example of a firmly nonexpansive mapping, given by Kopecká and Reich
[27, Lemma 2.2], is the resolvent of a coaccretive operator in the Hilbert ball.

4. A fixed point theorem

Given a subset C of a metric space (X, d), a nonexpansive mapping T : C → C
and x ∈ C, the orbit O(x) of x under T is defined by O(x) = {Tnx | n = 0, 1, 2, . . .}.
As an immediate consequence of the nonexpansiveness of T , if O(x) is bounded for
some x ∈ C, then all other orbits O(y), y ∈ C, are bounded. If this is the case,
we say that T has bounded orbits. Obviously, if T has fixed points, then T has
bounded orbits.

In this section we prove the following fixed point theorem.

Theorem 4.1. Let (X, d,W ) be a complete UCW -hyperbolic space, C =

p⋃
k=1

Ck be

a union of nonempty closed convex subsets Ck of X, and T : C → C be λ-firmly
nonexpansive for some λ ∈ (0, 1). The following two statements are equivalent:

(i) T has bounded orbits.
(ii) T has fixed points.

Let us remark that fixed points are not guaranteed if T is merely nonexpansive,
as the following trivial example shows. Let x �= y ∈ X, take C1 = {x}, C2 =
{y}, C = C1 ∪ C2 and T : C → C, T (x) = y, T (y) = x. Then T is fixed point free
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and nonexpansive. If T were λ-firmly nonexpansive for some λ ∈ (0, 1), we would
get

0 < d(x, y) = d(Tx, Ty) ≤ d((1− λ)x⊕ λTx, (1− λ)y ⊕ λTy)

= d((1− λ)x⊕ λy, λx⊕ (1− λ)y) = |2λ− 1|d(x, y) by (W2)

< d(x, y),

that is a contradiction.
As an immediate consequence, we get a strengthening of Smarzewski’s fixed

point theorem for uniformly convex Banach spaces [43], obtained by weakening the
hypothesis of Ck being bounded for all k = 1, . . . , p to T having bounded orbits.

Corollary 4.2. Let X be a uniformly convex Banach space, C =

p⋃
k=1

Ck be a

union of nonempty closed convex subsets Ck of X, and T : C → C be λ-firmly
nonexpansive for some λ ∈ (0, 1).

Then T has fixed points if and only if T has bounded orbits.

Theorem 4.1 follows from the following Propositions 4.5 and 4.3.

Proposition 4.3. Let X be a Busemann space, C ⊆ X be nonempty and T : C →
C be λ-firmly nonexpansive for some λ ∈ (0, 1). Then any periodic point of T is a
fixed point of T .

Proof. Let x be a periodic point of T and m ≥ 0 be minimal with the property
that Tm+1x = x. If m = 0, then x is a fixed point of T , hence we can assume that
m ≥ 1. Since T is nonexpansive, we have

d(x, Tmx) = d(Tm+1x, Tmx) ≤ d(Tmx, Tm−1x) ≤ . . . ≤ d(Tx, x)

= d(Tx, Tm+1x) ≤ d(x, Tmx);

hence we must have equality everywhere, that is,

(21) d(Tx, x) = d(T 2x, Tx) = . . . = d(Tmx, Tm−1x) = d(x, Tmx) := γ > 0,

since Tmx �= x, by the hypothesis on m. Now applying the fact that T is λ-firmly
nonexpansive, we get for all k = 1, . . . ,m

γ = d(T k+1x, T kx) ≤ d((1− λ)T kx⊕ λT k+1x, (1− λ)T k−1x⊕ λT kx)

≤ d((1− λ)T kx⊕ λT k+1x, T kx) + d(T kx, (1− λ)T k−1x⊕ λT kx)

= λd(T kx, T k+1x) + (1− λ)d(T k−1x, T kx) = λγ + (1− λ)γ = γ.

Hence, we must have

(22) γ = d(αk, βk) = d(αk, T
kx) + d(T kx, βk),

where

αk := (1− λ)T kx⊕ λT k+1x,

βk := (1− λ)T k−1x⊕ λT kx = λT kx⊕ (1− λ)T k−1x.

We have the following cases:

(i) m = 1, hence k = 1. Then Tm−1x = x and

α1 = (1− λ)Tx⊕ λx, β1 = λTx⊕ (1− λ)x.
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It follows by (W2) that

γ = d(α1, β1) = |λ− (1− λ)|d(x, Tx) = |2λ− 1|γ,
hence |2λ− 1| = 1, which is impossible, since λ ∈ (0, 1).

(ii) m ≥ 2, hence m − 1 ≥ 1. Since T kx lies between βk and αk and, fur-
thermore, αk lies between T kx and T k+1x, we can apply Lemma 2.7 twice
to get first that T kx lies between βk and T k+1x and second, since βk lies
between T k−1x and T kx, that T kx lies between T k−1x and T k+1x for all
k = 1, . . . ,m.

Now apply Lemma 2.2 to conclude that Tm−1x lies between x and Tmx,
hence

γ = d(x, Tmx) = d(Tm−1x, Tmx) + d(Tm−1x, x) = γ + d(Tm−1x, x) > γ,

since Tm−1x �= x. We have a contradiction. �
We remark that Proposition 4.3 holds for strictly convex Banach spaces too, as

they are Busemann spaces.

Lemma 4.4. Let (X, d) be a metric space, C =

p⋃
k=1

Ck be a union of nonempty

subsets Ck of X, and T : C → C be nonexpansive. Assume that T has bounded
orbits and that for some z ∈ C, the orbit (Tnz) of T has a unique asymptotic center
xk with respect to every Ck, k = 1, . . . , p.

Then one of xk, k = 1, . . . , p, is a periodic point of T .

Proof. Since T is nonexpansive, we have that

d(Txk, T
n+1z) ≤ d(xk, T

nz) for all n ≥ 0, k = 1, . . . , p, hence(23)

r(Txk, (T
nz)) ≤ r(xk, (T

nz)) for all k = 1, . . . , p.(24)

If there exists k0 ∈ {1, . . . , p} such that Txk0
∈ Ck0

, then applying Lemma 2.11
with y = Txk0

, p = 1, αn = 1, βn = 0 and xn = Tnz, we have that Txk0
= xk0

,
that is, xk0

is a fixed point of T . In particular, xk0
is a periodic point of T .

Otherwise, assume that Txk �∈ Ck for all 1 ≤ k ≤ p. It is easy to see that there
exist integers {n1, n2, . . . , nm} ⊆ {1, 2, . . . , p}, with m ≥ 2, such that Txnk

∈ Cnk+1

for all k = 1, . . . ,m− 1 and Txnm
∈ Cn1

.
Applying (24) repeatedly, and the fact that xnk

is the unique asymptotic center
of (Tnz) with respect to Cnk

, we get that

r(xn1
, (Tnz)) ≤ r(Txnm

, (Tnz)) ≤ r(xnm
, (Tnz)) ≤ . . . ≤ r(Txn1

, (Tnz))

≤ r(xn1
, (Tnz)).

Thus, we must have equality everywhere. We obtain r(xn1
, (Tnz))=r(Txnm

, (Tnz))
and r(Txnk

, (Tnz)) = r(xnk+1
, (Tnz)) for all k = 1, . . . ,m − 1. By the uniqueness

of the asymptotic centers, we get that

(25) xn1
= Txnm

and Txnk
= xnk+1

for all k = 1, . . . ,m− 1.

It follows that Tmxn1
= xn1

, hence xn1
is a periodic point of T . �

Proposition 4.5. Let (X, d,W ) be a complete UCW -hyperbolic space, C =

p⋃
k=1

Ck

be a union of nonempty closed convex subsets Ck of X, and T : C → C be a
nonexpansive mapping having bounded orbits.
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Then T has periodic points.

Proof. By Proposition 2.12, for all z ∈ C and for all k = 1, . . . , p, the orbit (Tnz)
has a unique asymptotic center xk with respect to Ck. Apply Lemma 4.4 to get
that one of the asymptotic centers xk, k = 1, . . . , p, is a periodic point of T . �

5. Asymptotic behaviour of Picard iterations

The second main result of the paper is a theorem on the asymptotic behaviour
of Picard iterations of λ-firmly nonexpansive mappings, which generalizes results
obtained by Reich and Shafrir [40] for firmly nonexpansive mappings in Banach
spaces and the Hilbert ball.

Theorem 5.1. Let C be a subset of a W-hyperbolic space X and T : C → C be a
λ-firmly nonexpansive mapping with λ ∈ (0, 1).Then for all x ∈ X and k ∈ Z+,

lim
n→∞

d(Tn+1x, Tnx) =
1

k
lim
n→∞

d(Tn+kx, Tnx) = lim
n→∞

d(Tnx, x)

n
= rC(T ),

where rC(T ) := inf{d(x, Tx) | x ∈ C} is the minimal displacement of T .

The mapping T is said to be asymptotically regular at x∈C if lim
n→∞

d(Tnx, Tn+1x)

= 0. If this is true for all x ∈ C, we say that T is asymptotically regular.
Before proving Theorem 5.1, we give the following immediate consequences.

Corollary 5.2. The following statements are equivalent:

(i) T is asymptotically regular at some x ∈ C.
(ii) rC(T ) = 0.
(iii) T is asymptotically regular.

Corollary 5.3. If T has bounded orbits, then T is asymptotically regular.

Remark 5.4. As Adriana Nicolae pointed out to us in a private communication,
one can easily see that Proposition 4.3 is an immediate consequence of the above
corollary. However, our proof of this proposition also holds (with small adaptations)
in more general spaces like geodesic spaces with the betweenness property (see [37]),
for which it is not known whether Corollary 5.3 is true.

5.1. Proof of Theorem 5.1. In the sequel, X is a W -hyperbolic space, C ⊆ X
and T : C → C.

Lemma 5.5. Assume that T is nonexpansive and x ∈ C.

(i) For all k ≥ 1, Rk := lim
n→∞

d(Tn+kx, Tnx) exists and Rk ≤ kR1.

(ii) L := lim
n→∞

d(Tnx, x)

n
exists and equals inf

n≥1

d(Tnx, x)

n
. Moreover, L is

independent of x.
(iii) L ≤ rC(T ) ≤ R1.

Proof. (i) Since the sequence (d(Tn+kx, Tnx))n is nonincreasing, obviously
Rk exists. Remark that

d(Tn+kx, Tnx) ≤
k−1∑
i=0

d(Tn+ix, Tn+i+1x) ≤ kd(Tn+1x, Tnx)

and let n → ∞ to conclude that Rk ≤ kR1.
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(ii) One has that for all m,n ≥ 1,

d(Tm+nx, x) ≤ d(Tm+nx, Tnx) + d(Tnx, x) ≤ d(Tmx, x) + d(Tnx, x);

hence the sequence (d(Tnx, x)) is subadditive. Now apply Fekete’s suba-

dittive lemma [14] to get that L = inf
n≥1

d(Tnx, x)

n
. The independence of x

follows from the fact that for all x, y ∈ C,

d(Tnx, x)− d(Tny, y) ≤ d(Tnx, Tny) + d(x, y) ≤ 2d(x, y).

(iii) Obviously, R1 = inf
n≥1

d(Tnx, Tn+1x) ≥ rC(T ). Given ε > 0, there is a

point y ∈ C such that rC(T ) ≤ d(y, Ty) < rC(T ) + ε. It follows that

L = lim
n→∞

d(Tnx, x)

n
= lim

n→∞

d(Tny, y)

n
= inf

n≥1

d(Tny, y)

n
≤ d(Ty, y)

< rC(T ) + ε.

As ε > 0 was arbitrary, we get that L ≤ rC(T ). �

Lemma 5.6. Let T be λ-firmly nonexpansive for some λ ∈ (0, 1). Then for all
x, y ∈ C,

(26) d(Tx, Ty) ≤ 1− λ

1 + λ
d(x, y) +

λ

1 + λ
(d(Tx, y) + d(x, Ty)).

Proof. Apply (W1) additional times to get that

d(Tx, Ty) ≤ d((1− λ)x⊕ λTx, (1− λ)y ⊕ λTy)

≤ (1− λ)d((1− λ)x⊕ λTx, y) + λd((1− λ)x⊕ λTx, Ty)

≤ (1− λ)2d(x, y) + λ(1− λ)
(
d(Tx, y) + d(x, Ty)

)
+ λ2d(Tx, Ty).

�

Proof of Theorem 5.1. We prove that Rk = kR1 for all k ≥ 1 by induction on k.
Assume that Rj = jR1 for all j = 1, . . . , k and let ε > 0. Since (d(Tn+jx, Tnx)) is
nonincreasing, we get Nε ≥ 1 such that for any j = 1, . . . , k and for all n ≥ Nε,

(27) R1 ≤ 1

j
d(Tn+jx, Tnx) ≤ R1 + ε.

Let n ≥ Nε. By (26), we get that

d(Tn+1x, Tn+k+1x) ≤ 1− λ

1 + λ
d(Tnx, Tn+kx)

+
λ

1 + λ

(
d(Tn+1x, Tn+kx) + d(Tnx, Tn+k+1x)

)
;

hence

d(Tnx, Tn+k+1x) ≥ 1 + λ

λ
d(Tn+1x, Tn+k+1x)− 1− λ

λ
d(Tn+kx, Tnx)

−d(Tn+1x, Tn+kx)

≥ 1 + λ

λ
k R1 −

1− λ

λ
k (R1 + ε)− (k − 1)(R1 + ε)

= (k + 1)R1 +

(
1− k

λ

)
ε.
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By letting n → ∞, it follows that Rk+1 ≥ (k + 1)R1, as ε > 0 is arbitrary. Now
apply Lemma 5.5(i) to conclude that Rk+1 = (k + 1)R1.

Since d(Tn+kx, Tnx) ≤ d(T kx, x) for all k, n ≥ 1, let n → ∞ to get that R1 ≤
d(T kx, x)

k
for all k ≥ 1 and, as a consequence, R1 ≤ L. Apply now Lemma 5.5(iii)

to conclude that L = R1 = rC(T ). �

6. Δ-convergence of Picard iterates

In 1976, Lim [32] introduced a concept of convergence in the general setting of
metric spaces, which is known as Δ-convergence. Kuczumow [28] introduced an
identical notion of convergence in Banach spaces, which he called almost conver-
gence. As shown in [22], Δ-convergence could be regarded, at least for CAT(0)
spaces, as an analogue to the usual weak convergence in Banach spaces. Jost [19]
introduced a notion of weak convergence in CAT(0) spaces, which was rediscov-
ered by Esṕınola and Fernández-León [13], who also proved that it is equivalent to
Δ-convergence. We refer to [44] for other notions of weak convergence in geodesic
spaces.

Let (xn) be a bounded sequence of a metric space (X, d). We say that (xn)
Δ-converges to x if x is the unique asymptotic center of (un) for every subsequence

(un) of (xn). In this case, we write xn
Δ−−→ x or Δ− lim

n→∞
xn = x and we call x the

Δ-limit of (xn).
Let (X, d) be a metric space and F ⊆ X be a nonempty subset. A sequence (xn)

in X is said to be Fejér monotone with respect to F if

(28) d(p, xn+1) ≤ d(p, xn) for all p ∈ F and n ≥ 0.

Thus each point in the sequence is not further from any point in F than its pre-
decessor. Obviously, any Fejér monotone sequence (xn) is bounded, and moreover
(d(xn, p)) converges for every p ∈ F .

The following lemma is very easy to prove.

Lemma 6.1. Let (X, d) be a metric space, F ⊆ X be a nonempty subset and (xn)
be Fejér monotone with respect to F . Then

(i) For all p ∈ F , (d(p, xn)) converges and r(p, (xn)) = lim
n→∞

d(p, xn).

(ii) Every subsequence (un) of (xn) is Fejér monotone with respect to F , and
for all p ∈ F , r(p, (un)) = r(p, (xn)). Hence, r(F, (un)) = r(F, (xn)) and
A(F, (un)) = A(F, (xn)).

(iii) If A(F, (xn)) = {x} and A((un)) ⊆ F for every subsequence (un) of (xn),
then (xn) Δ-converges to x ∈ F .

Furthermore, one has the following result, whose proof is very similar to the one
in strictly convex Banach spaces. For the sake of completeness, we give it here.

Lemma 6.2. Let C be a nonempty closed convex subset of a uniquely geodesic
space (X, d) and T : C → C be nonexpansive. Then the set Fix(T ) of fixed points
of T is closed and convex.

Proof. The fact that Fix(T ) is closed is immediate from the continuity of T . We
shall prove its convexity. Let x, y ∈ Fix(T ) be distinct and z ∈ [x, y]. Then

d(x, y) ≤ d(x, Tz) + d(Tz, y) = d(Tx, Tz) + d(Tz, Ty) ≤ d(x, z) + d(z, y) = d(x, y).
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Thus, d(x, Tz) + d(Tz, y) = d(x, y), so that Tz ∈ [x, y]. We apply now Lemma
2.3(ii) to get the following cases:

(i) d(x, z) + d(z, Tz) = d(x, Tz) = d(Tx, Tz) ≤ d(x, z),

(ii) d(y, z) + d(z, Tz) = d(y, Tz) = d(Ty, Tz) ≤ d(y, z).

In both cases, it follows that Tz = z. �

Proposition 6.3. Let (X, d,W ) be a complete UCW -hyperbolic space, C ⊆ X be
nonempty closed convex and T : C → C be a nonexpansive mapping with Fix(T ) �=
∅. If T is asymptotically regular at x ∈ C, then the Picard iterate (Tnx) Δ-converges
to a fixed point of T .

Proof. By Lemma 6.2, the nonempty set F := Fix(T ) is closed and convex. Fur-
thermore, one can see easily that (Tnx) is Fejér monotone with respect to F and,
by Proposition 2.12, (Tnx) has a unique asymptotic center with respect to F . Let
(un) be a subsequence of (Tnx) and u be its unique asymptotic center. Then

d(Tu, un) ≤ d(Tu, Tun) + d(Tun, un) ≤ d(u, un) + d(un, Tun),

so we can use Lemma 2.11 to obtain that Tu = u, i.e. u ∈ F . Apply Lemma 6.1(iii)
to get the conclusion. �

By [30, Theorem 3.5] one can replace in the above theorem the assumption that
T has fixed points with the equivalent one that T has bounded orbits.

We get the following Δ-convergence result for the Picard iteration of a firmly
nonexpansive mapping.

Theorem 6.4. Let (X, d,W ) be a complete UCW -hyperbolic space, C ⊆ X be
nonempty closed convex and T : C → C be a λ-firmly nonexpansive mapping for
some λ ∈ (0, 1). Assume that Fix(T ) �= ∅. Then for all x in C, (Tnx) Δ-converges
to a fixed point of T .

Proof. Since Fix(T ) �= ∅, we get that rC(T ) = 0, so, by Corollary 5.2, we get that
T is asymptotically regular. Now apply Proposition 6.3. �

6.1. An application to a minimization problem. Let (X, d) be a complete
CAT(0) space and F : X → (−∞,∞] be a proper, convex and lower semicontinuous
mapping. We shall apply Theorem 6.4 to approximate the minimizers of F , that
is, the solutions of the minimization problem min

x∈X
F (x).

Let argmin
y∈X

F (y) = {x ∈ X | F (x) ≤ F (y) for all y ∈ X} be the set of minimizers

of F . The following result is a consequence of the definition of the resolvent and
Proposition 2.13.

Proposition 6.5. For all μ > 0, the set Fix(Jμ) of fixed points of the resolvent
associated with F coincides with the set argmin

y∈X
F (y) of minimizers of F .

Proof. Let μ > 0.
“⊇” If x̄ is a minimizer of F , one gets that μF (x̄) ≤ μF (y) + d(x̄, y)2. It

follows that x̄ ∈ argmin
y∈X

{
μF (y) + d(x̄, y)2

}
. By the definition of Jμ, it follows that

Jμ(x̄) = x̄.
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“⊆” Assume that Jμ(x̄) = x̄, so μF (x̄) ≤ μF (y) + d(x̄, y)2 for all y ∈ X. Let
γ : [0, c] → X be a geodesic starting with x̄. Then for all t ∈ [0, c], one has that

F (γ(t))− F (x̄)

t
≥ −d(x̄, γ(t))2

μt
= − t2

μ
.

It follows that DγF (x̄) ≥ 0, hence we can apply Proposition 2.13 to conclude that
F (x̄) ≤ F (y) for all y ∈ X. �

As the resolvent is a firmly nonexpansive mapping, one can apply Theorem 6.4
and the above result to obtain

Corollary 6.6. Assume that F has a minimizer. Then for all μ > 0 and all x ∈ X,
the Picard iterate (Jn

μ (x)) Δ-converges to a minimizer of F .

We remark that a more general result was recently obtained by Bačák [1] using
different methods. Thus, Bačák obtained in the setting of CAT(0) spaces the
following proximal point algorithm: if F has minimizers, then for all x0 ∈ X and
all sequences (λn) divergent in sum, the sequence

xn+1 := argmin
y∈X

(
F (y) +

1

2λn
d(y, xn)

2

)

Δ-converges to a minimizer of F .

7. Effective rates of asymptotic regularity

As we have proved in Section 5, any λ-firmly nonexpansive mapping T : C → C
defined on a nonempty subset C of a W -hyperbolic space X is asymptotically
regular, provided T has bounded orbits.

In this section we shall obtain, for UCW -hyperbolic spaces, a rate of asymp-
totic regularity of T , that is, a rate of convergence of the sequence (d(Tnx, Tn+1))
towards 0. The methods of proof are inspired by those used by Kohlenbach [23]
and the second author [29] for computing rates of asymptotic regularity for the
Krasnoselski-Mann iterations of nonexpansive mappings in uniformly convex Ba-
nach spaces and UCW -hyperbolic spaces.

For x ∈ C and b, ε > 0, let us denote

Fixε(T, x, b) := {y ∈ C | d(y, x) ≤ b and d(y, Ty) < ε}.

If Fixε(T, x, b) �= ∅ for all ε > 0, we say that T has approximate fixed points in a
b-neighborhood of x.

Theorem 7.1. Let b > 0, λ ∈ (0, 1) and η : (0,∞) × (0, 2] → (0, 1] be a mapping
that decreases with r for fixed ε. Then for all UCW-hyperbolic spaces (X, d,W, η),
nonempty subsets C ⊆ X, λ-firmly nonexpansive mappings T : C → C and all
x ∈ C such that T has approximate fixed points in a b-neighborhood of x, the
following holds:

(29) ∀ε > 0 ∀n ≥ Φ(ε, η, λ, b)
(
d(Tnx, Tn+1x) ≤ ε

)
,
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where

(30) Φ(ε, η, λ, b) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣ b+ 1

ε λ (1− λ) η

(
b+ 1,

ε

b+ 1

)
⎤
⎥⎥⎦ for ε < 2b,

0 otherwise.

Remark 7.2. If, moreover, η(r, ε) can be written as η(r, ε) = ε · η̃(r, ε) such that
η̃ increases with ε (for a fixed r), then the bound Φ(ε, η, λ, b) can be replaced for
ε < 2b by

(31) Φ̃(ε, η, λ, b) =

⎡
⎢⎢⎣ b+ 1

ε λ (1− λ) η̃

(
b+ 1,

ε

b+ 1

)
⎤
⎥⎥⎦ .

Before proving the above results, let us give two consequences.

Corollary 7.3. Let b, λ, η be as in the hypothesis of Theorem 7.1. Then for all
UCW-hyperbolic spaces (X, d,W, η), bounded subsets C ⊆ X with diameter dC ≤ b,
λ-firmly nonexpansive mappings T : C → C and all x ∈ C,

∀ε > 0 ∀n ≥ Φ(ε, η, λ, b)
(
d(Tnx, Tn+1x) ≤ ε

)
,

where Φ(ε, η, λ, b) is given by (30).

Proof. If C is bounded, then T is asymptotically regular by Corollary 5.3. Hence,
for all b ≥ dC , T has approximate fixed points in a b-neighborhood of x for all
x ∈ C. �

Thus, for bounded C, we get that T is asymptotically regular with a rate
Φ(ε, η, λ, b) that only depends on ε, on X via the monotone modulus of uniform
convexity η, on C via an upper bound b on its diameter dC and on the mapping T
via λ. The rate of asymptotic regularity is uniform in the starting point x ∈ C of
the iteration and other data related with X,C and T .

As we have remarked in Section 2, CAT(0) spaces are UCW -hyperbolic spaces

with a quadratic (in ε) modulus of uniform convexity η(ε) =
ε2

8
, which has the

form required in Remark 7.2. As an immediate consequence, we get a quadratic (in
1/ε) rate of asymptotic regularity in the case of CAT(0) spaces.

Corollary 7.4. Let b > 0 and λ ∈ (0, 1). Then for all CAT(0) spaces X, bounded
subsets C ⊆ X with diameter dC ≤ b, λ-firmly nonexpansive mappings T : C → C
and x ∈ C, the following holds:

∀ε > 0 ∀n ≥ Ψ(ε, λ, b)
(
d(Tnx, Tn+1x) ≤ ε

)
,

where

Ψ(ε, λ, b) :=

⎧⎨
⎩
[
8(b+ 1)

λ (1− λ)
· 1

ε2

]
for ε < 2b,

0 otherwise.
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7.1. Proof of Theorem 7.1 and Remark 7.2. One can easily see that d(Tnx,
Tn+1x) ≤ 2b for all n ∈ N; hence the case ε ≥ 2b follows.

Assume now that ε < 2b and denote

(32) N := Φ(ε, η, λ, b) =

⎡
⎢⎢⎣ b+ 1

ε λ (1− λ) η

(
b+ 1,

ε

b+ 1

)
⎤
⎥⎥⎦ .

Let δ > 0 be such that δ <
1

4(N + 1)
, so that (N + 1)δ <

1

4
< 1. By hypothesis,

there exists y ∈ C satisfying

(33) d(x, y) ≤ b and d(y, Ty) < δ.

We shall prove that there exists n ≤ N such that d(Tnx, Tn+1x) ≤ ε and apply
the fact that (d(Tnx, Tn+1x)) is nonincreasing to get the conclusion. Assume by
contradiction that d(Tnx, Tn+1x) > ε for all n = 0, . . . , N . In the sequel, we fix
such an n. For simplicity we shall use the notation

(34) rn := d(Tnx, y) + d(y, Ty).

One gets by an easy induction that

rn ≤ d(x, y) + (n+ 1) d(y, Ty) ≤ b+ (N + 1)δ < b+ 1.

Since

d(Tn+1x, y) ≤ d(Tn+1x, Ty) + d(Ty, y) ≤ rn, d(Tnx, y) ≤ rn,

d(Tnx, Ty) ≤ d(Tnx, y) + d(y, Ty) = rn, d(Tn+1x, Ty) ≤ rn

and d(Tnx, Tn+1x) > ε, we can twice apply Lemma 2.10(iii) with r := rn and
s := b+ 1 to get that

d((1− λ)Tnx⊕ λTn+1x, y) ≤
(
1− 2λ(1− λ)η

(
b+ 1,

ε

b+ 1

))
rn,

d((1− λ)Tnx⊕ λTn+1x, Ty) ≤
(
1− 2λ(1− λ)η

(
b+ 1,

ε

b+ 1

))
rn.

As T is λ-firmly nonexpansive, it follows that

d(Tn+1x, Ty) ≤ d((1− λ)Tnx⊕ λTn+1x, (1− λ)y ⊕ λTy)

≤ (1− λ) d((1− λ)Tnx⊕ λTn+1x, y)

+λ d((1− λ)Tnx⊕ λTn+1x, Ty) by (W1)

≤
(
1− 2λ(1− λ)η

(
b+ 1,

ε

b+ 1

))
rn

= d(Tnx, y) + d(y, Ty)− 2rnλ(1− λ)η

(
b+ 1,

ε

b+ 1

)

≤ d(Tnx, y) + δ − ελ(1− λ)η

(
b+ 1,

ε

b+ 1

)
,

since d(y, Ty) ≤ δ and

ε

2
<

1

2
d(Tnx, Tn+1x) ≤ 1

2

(
d(Tnx, y) + d(y, Ty) + d(Ty, Tn+1x)

)
≤ rn.
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Now using the fact that d(Tn+1x, y) ≤ d(Tn+1x, Ty) + d(y, Ty), we get that

(35) d(Tn+1x, y) ≤ d(Tnx, y) + 2δ − ελ(1− λ)η

(
b+ 1,

ε

b+ 1

)
.

Adding (35) for n = 0, . . . , N , it follows that

d(TN+1x, y) ≤ d(x, y) + 2(N + 1)δ − (N + 1)ελ(1− λ)η

(
b+ 1,

ε

b+ 1

)

≤ b+
1

2
− (N + 1)ελ(1− λ)η

(
b+ 1,

ε

b+ 1

)

≤ b+
1

2
− (b+ 1) < 0,

a contradiction. �
To prove Remark 7.2, observe that by denoting

N := Φ̃(ε, η, λ, b) =

⎡
⎢⎢⎣ b+ 1

ε λ (1− λ) η̃

(
b+ 1,

ε

b+ 1

)
⎤
⎥⎥⎦

and following the proof above with rn instead of b+ 1, we obtain

d(Tn+1x, Ty) ≤ d(Tnx, y) + δ − rnλ(1− λ)η

(
rn,

ε

rn

)

≤ d(Tnx, y) + δ − rnλ(1− λ)η

(
b+ 1,

ε

rn

)

since η is monotone

= d(Tnx, y) + δ − ελ(1− λ)η̃

(
b+ 1,

ε

rn

)

≤ d(Tnx, y) + δ − ελ(1− λ)η̃

(
b+ 1,

ε

b+ 1

)

since η̃ increases with ε.

Now follow the proof above to get the conclusion. �
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[27] Eva Kopecká and Simeon Reich, Asymptotic behavior of resolvents of coaccretive operators in
the Hilbert ball, Nonlinear Anal. 70 (2009), no. 9, 3187–3194, DOI 10.1016/j.na.2008.04.023.
MR2503064 (2010d:47095)

[28] Tadeusz Kuczumow, An almost convergence and its applications (English, with Russian and
Polish summaries), Ann. Univ. Mariae Curie-Sk�lodowska Sect. A 32 (1978), 79–88 (1980).
MR687863 (84f:47066)

[29] L. Leustean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math.
Anal. Appl. 325 (2007), no. 1, 386–399, DOI 10.1016/j.jmaa.2006.01.081. MR2273533
(2008a:54048)
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