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First all-sky upper limits from LIGO on the strength of periodic gravitational waves using

the Hough transform
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We perform a wide parameter-space search for continuous gravitational waves over the whole sky and
over a large range of values of the frequency and the first spin-down parameter. Our search method is
based on the Hough transform, which is a semicoherent, computationally efficient, and robust pattern
recognition technique. We apply this technique to data from the second science run of the LIGO detectors
and our final results are all-sky upper limits on the strength of gravitational waves emitted by unknown
isolated spinning neutron stars on a set of narrow frequency bands in the range 200–400 Hz. The best
upper limit on the gravitational-wave strain amplitude that we obtain in this frequency range is 4:43�
10�23.

DOI: 10.1103/PhysRevD.72.102004 PACS numbers: 04.80.Nn, 07.05.Kf, 95.55.Ym, 97.60.Gb

B. ABBOTT et al. PHYSICAL REVIEW D 72, 102004 (2005)

102004-2

http://dx.doi.org/10.1103/PhysRevD.72.102004


I. INTRODUCTION

Continuous gravitational signals emitted by rotating
neutron stars are promising sources for interferometric
gravitational-wave detectors such as GEO 600 [1,2], the
Laser Interferometer Gravitational-Wave Observatory
(LIGO) [3,4], TAMA 300 [5] and VIRGO [6]. There are
several physical mechanisms which might cause a neutron
star to emit periodic gravitational waves. The main possi-
bilities considered in the literature are (i) nonaxisymmetric
distortions of the solid part of the star [7–10], (ii) unstable
r modes in the fluid [7,11,12], and (iii) free precession (or
‘‘wobble’’) [13,14]. The detectability of a signal depends
on the detector sensitivity, the intrinsic emission strength,

the source distance and its orientation. If the source is not
known, the detectability also depends on the available
computational resources. For some search methods the
detectability of a signal also depends on the source model
used, but an all-sky wide-band search such as detailed here
can detect any of the sources described above.

Previous searches for gravitational waves from rotating
neutron stars have been of two kinds. The first is a search
targeting pulsars whose parameters are known through
radio observations. These searches typically use matched
filtering techniques and are not very computationally ex-
pensive. Examples of such searches are [15,16] which
targeted known radio pulsars, at twice the pulsar frequency,
using data from the first and second science runs of the
GEO 600 and LIGO detectors [17]. No signals were de-
tected and the end results were upper limits on the strength
of the gravitational waves emitted by these pulsars and
therefore on their ellipticity.

The second kind of search looks for as yet undiscovered
rotating neutron stars. An example of such a search is [18]
in which a two-day long data stretch from the Explorer bar
detector is used to perform an all-sky search in a narrow
frequency band around the resonant frequency of the de-
tector. Another example is [19] which uses data from the
LIGO detectors to perform an all-sky search in a wide
frequency band using 10 h of data. The same paper also
describes a search for a gravitational-wave signal from the
compact companion to Sco X-1 in a large orbital parameter
space using 6 h of data. The key issue in these wide
parameter-space searches is that a fully coherent all-sky
search over a large frequency band using a significant
amount of data is computationally limited. This is because
looking for weak continuous wave signals requires long
observation times to build up sufficient signal-to-noise
ratio; the amplitude signal-to-noise ratio increases as the
square root of the observation time. On the other hand, the
number of templates that must be considered, and therefore
the computational requirements, scale much faster than
linearly with the observation time. We therefore need
methods which are suboptimal but computationally less
expensive [20–24]. Such methods typically involve semi-
coherent combinations of the signal power in short
stretches of data, and the Hough transform is an example
of such a method.

The Hough transform is a pattern recognition algorithm
which was originally invented to analyze bubble chamber
pictures from CERN [25]. It was later patented by IBM
[26], and it has found many applications in the analysis of
digital images [27]. A detailed discussion of the Hough
transform as applied to the search for continuous gravita-
tional waves can be found in [23,28]. In this paper, we
apply this technique to perform an all-sky search for iso-
lated spinning neutron stars using two months of data
collected in early 2003 from the second science run of
the LIGO detectors (henceforth denoted as the S2 run). The
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main results of this paper are all-sky upper limits on a set of
narrow frequency bands within the range 200–400 Hz and
including one spin-down parameter.

Our best 95% frequentist upper limit on the
gravitational-wave strain amplitude for this frequency
range is 4:43� 10�23. As discussed below in Sec. III,
based on the statistics of the neutron star population with
optimistic assumptions, this upper limit is about 1 order of
magnitude larger than the amplitude of the strongest ex-
pected signal. For this reason, the present search is unlikely
to discover any neutron stars, and we focus here on setting
upper limits. As we shall see later, with 1 yr of data at
design sensitivity for initial LIGO, we should gain about 1
order of magnitude in sensitivity, thus enabling us to detect
signals smaller than what is predicted by the statistical
argument mentioned above. Substantial improvements in
the detector noise have been achieved since the S2 obser-
vations. A third science run (S3) took place at the end of
2003 and a fourth science run (S4) at the beginning of
2005. In these later runs LIGO instruments collected data
of improved sensitivity, but still less sensitive than the
instruments’ design goal. Several searches for various
types of gravitational-wave signals have been completed
or are under way using data from the S2 and S3 runs
[16,19,29–35]. We expect that the method presented
here, applied as part of a hierarchical scheme and used
on a much larger data set, will eventually enable the direct
detection of periodic gravitational waves.

This paper is organized as follows: Sec. II describes the
second science run of the LIGO detectors; Sec. III summa-
rizes the current understanding of the astrophysical targets;
Sec. IV reviews the waveform from an isolated spinning
neutron star; Sec. V presents the general idea of our search
method, the Hough transform, and summarizes its statisti-
cal properties; Sec. VI describes its implementation and
results on short Fourier transformed data. The upper limits
are given in Sec. VII. Section VIII presents a validation of
our search method using hardware injected signals, and
finally Sec. IX concludes with a summary of our results
and suggestions for further work.

II. THE SECOND SCIENCE RUN

The LIGO detector network consists of a 4 km interfer-
ometer in Livingston, Louisiana (L1), and two interfer-
ometers in Hanford, Washington, one 4 km and the other
2 km (H1 and H2). Each detector is a power-recycled
Michelson interferometer with long Fabry-Perot cavities
in each of its orthogonal arms. These interferometers are
sensitive to quadrupolar oscillations in the space-time met-
ric due to a passing gravitational wave, measuring directly
the gravitational-wave strain amplitude.

The data analyzed in this paper were produced during
LIGO’s 59 d second science run. This run started on
February 14 and ended April 14, 2003. Although the GEO
detector was not operating at the time, all three LIGO

detectors were functioning at a significantly better sensi-
tivity than during S1, the first science run [17], and had

displacement spectral amplitudes near 10�18 m-Hz�1=2

between 200 and 400 Hz. The strain sensitivities in this
science run were within an order of magnitude of the
design sensitivity for the LIGO detectors. For a description
of the detector configurations for S2 we refer the reader to
[29] Sec. IV and [30] Sec. II.

The reconstruction of the strain signal from the error
signal of the feedback loop, used to control the differential
length of the interferometer arms, is referred to as the
calibration. Changes in the calibration were tracked by
injecting continuous, fixed-amplitude sinusoidal excita-
tions into the end test mass control systems, and monitor-
ing the amplitude of these signals at the measurement error
point. Calibration uncertainties at the three LIGO detectors
during S2 were estimated to be smaller than 11% [36].

The data were acquired and digitized at a rate of
16 384 Hz. The duty cycle for the interferometers, defined
as the fraction of the total run time when the interferometer
was locked (i.e., all interferometer control servos operating
in their linear regime) and in its low noise configuration,
were similar to those of the previous science run, approxi-
mately 37% for L1, 74% for H1 and 58% for H2. The
longest continuous locked stretch for any interferometer
during S2 was 66 h for H1. The smaller duty cycle for L1
was due to anthropogenic diurnal low-frequency seismic
noise which prevented operations during the day on week-
days. Recently installed active feedback seismic isolation
has successfully addressed this problem.

Figure 1 shows the expected sensitivity for the Hough
search by the three LIGO detectors during S2. Those h0
values correspond to the amplitudes detectable from a
generic continuous gravitational-wave source, if we were
performing a targeted search, with a 1% false alarm rate
and 10% false dismissal rate, as given by Eq. (17). The
differences among the three interferometers reflect differ-
ences in the operating parameters, hardware implementa-
tion of the three instruments, and the duty cycles. Figure 1
also shows the expected sensitivity (at the same false alarm
and false dismissal rates) for initial LIGO 4 km interfer-
ometers running at design sensitivity assuming an obser-
vation time of 1 yr. These false alarm and false dismissal
values are chosen in agreement with [15,19] only for
comparison purposes. Because of the large parameter
search we perform here, it would be more meaningful to
consider a lower false alarm rate, say of 10�10 and then the
sensitivity for a targeted search would get worse by a factor
1:5. The search described in this paper is not targeted and
this degrades the sensitivity even further. This will be
discussed in Sec. VII.

At the end of the S2 run, two fake artificial pulsar signals
were injected for a 12 h period into all three LIGO inter-
ferometers. These hardware injections were done by mod-
ulating the mirror positions via the actuation control

B. ABBOTT et al. PHYSICAL REVIEW D 72, 102004 (2005)

102004-4



signals. These injections were designed to give an end-to-
end validations of the search pipelines starting from as far
up the observing chain as possible. See Sec. VIII for
details.

III. ASTROPHYSICAL TARGETS

The target population of this search consists of isolated
rotating neutron stars that are not observed in electromag-
netic waves. Current models of stellar evolution suggest
that our Galaxy contains of order 109 neutron stars and that
of order 105 are active pulsars [37]. Up to now, only of
order 103 objects have been identified as neutron stars,
either by observation as pulsars, or through their x-ray
emission, of which about 90% are isolated [38–41].
Most neutron stars will remain unobserved electromagneti-
cally for many reasons such as the nonpulsed emission
being faint or the pulses being emitted in a beam which
does not sweep across the Earth. Therefore, there are many
more neutron stars in the target population than have al-
ready been observed.

Although there is great uncertainty in the physics of the
emission mechanism and the strength of an individual
source, we can argue for a robust upper limit on the
strength of the strongest source in the galactic population
that is almost independent of individual source physics.
The details of the argument and an overview of emission
mechanisms can be found in a forthcoming paper [19].
Here we do not repeat the details but merely summarize the

result. For an upper limit we make optimistic assump-
tions—that neutron stars are born rapidly rotating and
spinning down due to gravitational waves, and that they
are distributed uniformly throughout the galactic disc—
and the plausible assumption that the overall galactic
birthrate 1=�b is steady. By converting these assumptions
to a distribution of neutron stars with respect to
gravitational-wave strain and frequency, we find there is
a 50% chance that the strongest signal between frequencies
fmin and fmax has an amplitude of at least

h0 � 4� 10�24

��
30 yr

�b

�

ln
fmax

fmin

�
1=2
: (1)

Of course, with less optimistic assumptions this value
would be smaller.

Comparing Eq. (1) to Fig. 1, a search of S2 data is not
expected to result in a discovery. However, it is still pos-
sible that the closest neutron star is closer than the typical
distance expected from a random distribution of super-
novae (for example due to recent star formation in the
Gould belt as considered in Ref. [42]). It is also possible
that a ‘‘blind’’ search of this sort may discover some
previously unknown class of compact objects not born in
supernovae. More importantly, future searches for previ-
ously undiscovered rotating neutron stars using the meth-
ods presented here will be much more sensitive. The goal
of initial LIGO is to take a year of data at design sensitivity,
which means a factor 10 decrease in the amplitude strain
noise relative to S2, and a factor 10 increase in the length of
the data set. These combine to reduce h0 to somewhat
below the value in Eq. (1), and thus initial LIGO at full
sensitivity will have some chance of observing a periodic
signal.

IV. THE EXPECTED WAVEFORM

In order to describe the expected signal waveform we
will use the same notation as [15]. We will briefly summa-
rize it in the next paragraphs for convenience. The form of
the gravitational wave emitted by an isolated spinning
neutron star, as seen by a gravitational-wave detector, is

h�t� � F��t;  �h��t� � F��t;  �h��t�; (2)

where t is time in the detector frame,  is the polarization
angle of the wave, and F�;� are the detector antenna

pattern functions for the two polarizations. If we assume
the emission mechanism is due to deviations of the pulsar’s
shape from perfect axial symmetry, then the gravitational
waves are emitted at a frequency which is exactly twice the
rotational rate fr. Under this assumption, the waveforms
for the two polarizations h�;� are given by

h� � h0
1� cos2�

2
cos��t�; (3)

h� � h0 cos� sin��t�; (4)
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FIG. 1 (color online). Characteristic amplitude detectable from
a known generic source with a 1% false alarm rate and 10% false
dismissal rate, as given by Eq. (17). All curves use typical
sensitivities of the three LIGO detectors during S2 and observa-
tion times corresponding to the up-time of the detectors during
S2. The thin line is the expected characteristic amplitude for the
same false alarm and false dismissal rates, but using the initial
LIGO design goal for the 4 km instruments and an effective
observation time of 1 yr.
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where � is the angle between the neutron star’s spin axis
and the direction of propagation of the waves, and h0 is the
amplitude:

h0 �
16�2G

c4
Izz�f

2
r

d
; (5)

where G is Newton’s gravitational constant, c the speed of
light, Izz is the principal moment with the z axis being its
spin axis, � :� �Ixx � Iyy�=Izz is the equatorial ellipticity of

the star, and d is the distance to the star.
The phase ��t� takes its simplest form in the Solar

System Barycenter (SSB) frame where it can be expanded
in a Taylor series up to second order:

��t� � �0 � 2��f0�T � T0� � 1
2
_f�T � T0�2�: (6)

Here T is time in the SSB frame and T0 is a fiducial start
time. The phase �0, frequency f0 and spin-down parame-

ter _f are defined at this fiducial start time. In this paper, we
include only one spin-down parameter in our search; as we
shall see later in Sec. VI B, our frequency resolution is too
coarse for the higher spin-down parameters to have any
significant effect on the frequency evolution of the signal
(for the spin-down ages we consider).

Modulo relativistic effects which are unimportant for
this search, the relation between the time of arrival T of the
wave in the SSB frame and in the detector frame t is

T � t� n � r
c

; (7)

where n is the unit vector from the detector to the neutron
star, and r is the detector position in the SSB frame.

The instantaneous frequency f�t� of the wave as ob-
served by the detector is given, to a very good approxima-
tion, by the familiar nonrelativistic Doppler formula:

f�t� � f̂�t� � f̂�t� v�t� � n
c

; (8)

where f̂�t� is the instantaneous signal frequency in the SSB
frame at time t:

f̂�t� � f0 � _f

�

t� t0 �
�r�t� � n

c

�

; (9)

where t0 is the fiducial detector time at the start of the
observation and �r�t� � r�t� � r�t0�. It is easy to see that
the �r � n=c term can safely be ignored so that, to an
excellent approximation

f̂�t� � f0 � _f�t� t0�: (10)

V. THE HOUGH TRANSFORM

In this paper, we use the Hough transform to find the
pattern produced by the Doppler shift (8) and the spin
down (10) of a gravitational-wave signal in the time-
frequency plane of our data. This pattern is independent

of the source model used and therefore of the emission
mechanisms. We only assume that the gravitational-wave
signal is emitted by an isolated spinning neutron star.

The starting point for our search is a set of data seg-
ments, each corresponding to a time interval Tcoh. Each of
these data segments is Fourier transformed to produce a set
of N short time-baseline Fourier transforms (SFTs). From
this set of SFTs, calculating the periodograms (the square
modulus of the Fourier transform) and selecting frequency
bins (peaks) above a certain threshold, we obtain a time-
frequency map of our data. In the absence of a signal the
peaks in the time-frequency plane are distributed in a
random way; if signal is present, with high enough
signal-to-noise ratio, some of these peaks will be distrib-
uted along the trajectory of the received frequency of the
signal.

The Hough transform maps points of the time-frequency

plane into the space of the source parameters �f0; _f;n�. The
result of the Hough transform is a histogram, i.e., a collec-
tion of integer numbers, each representing the detection
statistic for each point in parameter space. We shall refer to
these integers as the number count. The number counts are
computed in the following way: For each selected bin in
the SFTs, we find which points in parameter space are
consistent with it, according to Eq. (8), and the number
count in all such points is increased by unity. This is
repeated for all the selected bins in all the SFTs to obtain
the final histogram.

To illustrate this, let us assume the source parameters are
only the coordinates of the source in the sky, and this
source is emitting a signal at a frequency f0. Moreover
we assume that at a given time t a peak at frequency f has
been selected in the corresponding SFT. The Hough trans-
form maps this peak into the loci of points, on the celestial
sphere, where a source emitting a signal with frequency f0
could be located in order in order to produce at the detector
a peak at f. By repeating this for all the selected peaks in
our data we will obtain the final Hough map. If the peaks in
the time-frequency plane were due only to signal, all the
corresponding loci would intersect in a region of the
Hough map identifying the source position.

An advantage of the Hough transform is that a large
region in parameter space can be analyzed in a single pass.
By dropping the amplitude information of the selected
peaks, the Hough search is expected to be computationally
efficient, but at the cost of being somewhat less sensitive
than others semicoherent methods, e.g., the stack-slide
search [21]. On the other hand, discarding this extra infor-
mation makes the Hough transform more robust against
transient spectral disturbances because no matter how large
a spectral disturbance is in a single SFT, it will contribute at
the most �1 to the number count. This is not surprising
since the optimal statistic for the detection of weak signals
in the presence of a Gaussian background with large non
Gaussian outliers is effectively cut off above some value
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[43,44]. This is, in practice, what the Hough transform
does to large spectral outliers.

With the above short summary at hand, we now give the
relevant notation and equations that will be used later. For
further details and derivations of the equations below, we
refer the reader to [23].

Frequency bins are selected by setting a threshold �th on
the normalized power �k defined as

�k �
2j~xkj2

TcohSn�fk�
; (11)

where ~xk is the discrete Fourier transform of the data, the
frequency index k corresponds to a physical frequency of
fk � k=Tcoh, and Sn�fk� is the single sided power spectral
density of the detector noise. The kth frequency bin is
selected if �k 	 �th, and rejected otherwise. In this way,
each SFT is replaced by a collection of zeros and ones
called a peak-gram.

Let n be the number count at a point in parameter space,
obtained after performing the Hough transform on our
data. Let p�n� be the probability distribution of n in the
absence of a signal, and p�njh� the distribution in the
presence of a signal h�t�. It is clear that 0 
 n 
 N, and
it can be shown that for stationary Gaussian noise, p�n� is a
binomial distribution with mean Nq where q is the proba-
bility that any frequency bin is selected:

p�n� � N
n

� �

qn�1� q�N�n: (12)

For Gaussian noise in the absence of a signal, it is easy to
show that �k follows an exponential distribution so that
q � e��th . In the presence of a signal, the distribution is
ideally also a binomial but with a slightly larger mean N�
where, for weak signals, � is given by

� � q

�

1� �th

2
��O��2�

�

: (13)

� is the signal-to-noise ratio within a single SFT, and for
the case when there is no mismatch between the signal and
the template:

� � 4j~h�fk�j2
TcohSn�fk�

; (14)

with ~h�f� being the Fourier transform of the signal h�t�.
The approximation that the distribution in the presence of a
signal is binomial breaks down for reasonably strong sig-
nals. This is due to possible nonstationarities in the noise,
and the amplitude modulation of the signal which causes �
to vary from one SFT to another.

Candidates in parameter space are selected by setting a
threshold nth on the number count. The false alarm and
false dismissal rates for this threshold are defined, respec-
tively, in the usual way:

� �
XN

n�nth
p�n�; 	 �

Xnth�1

n�0

p�njh�: (15)

We choose the thresholds �nth; �th� based on the Neyman-
Pearson criterion of minimizing 	 for a given value of �. It
can be shown [23] that this criteria leads, in the case of
weak signals, large N, and Gaussian stationary noise, to
�th � 1:6. This corresponds to q � 0:20, i.e., we select
about 20% of the frequency bins from each SFT. This value
of �th turns out to be independent of the choice of � and
signal strength. Furthermore, nth is also independent of the
signal strength and is given by

nth � Nq�
�������������������������

2Nq�1� q�
q

erfc�1�2��; (16)

where erfc�1 is the inverse of the complementary error
function. These values of the thresholds lead to a false
dismissal rate 	 which is given in [23]. The value of 	 of
course depends on the signal strength, and on the average,
the weakest signal which will cross the above thresholds at
a false alarm rate � and false dismissal 	 is given by

h0 � 5:34
S1=2

N1=4

���������

Sn
Tcoh

s

; (17)

where

S � erfc�1�2�� � erfc�1�2	�: (18)

Equation (17) gives the smallest signal which can be
detected by the search, and is therefore a measure of the
sensitivity of the search.

VI. THE SEARCH

A. The SFT data

The input data to our search is a collection of calibrated
SFTs with a time baseline Tcoh of 30 min. While a larger
value of Tcoh leads to better sensitivity, this time baseline
cannot be made arbitrarily large because of the frequency
drift caused by the Doppler effect (and also the spin down);
we would like the signal power of a putative signal to be
concentrated in less than half the frequency resolution
1=Tcoh. It is shown in [23] that at 300 Hz, we could ideally
choose Tcoh up to �60 min. On the other hand, we should
be able to find a significant number of such data stretches
during which the interferometers are in lock, the noise is
stationary, and the data are labeled satisfactory according
to certain data quality requirements. Given the duty cycles
of the interferometers during S2 and the nonstationarity of
the noise floor, it turns out that Tcoh � 30 min is a good
compromise which satisfies these constraints. By demand-
ing the data in each 30 min stretch to be continuous
(although there could be gaps in between the SFTs) the
number N of SFTs available for L1 data is 687, 1761 for
H1 and 1384 for H2, reducing the nominal duty cycle for
this search.
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The SFT data are calibrated in the frequency domain by
constructing a response function R�f; t� that acts on the
error signal of the feedback loop used to control the
differential length of the interferometer arms. The response
function R�f; t� varies in time, primarily due to changes in
the amount of light stored in the Fabry-Perot cavities of the
interferometers. During S2, changes in the response were
computed every 60 sec, and an averaging procedure was
used to estimate the response function used on each SFT.
The SFTs are windowed and high-pass filtered as described
in Sec. IV C 1 of [15]. No further data conditioning is
applied, although the data are known to contain many
spectral disturbances, including the 60 Hz power line har-
monics and the thermally excited violin modes of test mass
suspension wires.

B. The parameter space

This section describes the portion of parameter space

�f0; _f;n� we search over, and the resolution of our grid.
Our template grid is not based on a metric calculation (as in
e.g. [20,21]), but rather on a cubic grid which covers the
parameter space as described below. Particular features of
this grid are used to increase computational efficiency as
described in Sec. VI C.

We analyze the full data set from the S2 run with a total
observation time Tobs � 5:1� 106 sec . The exact value of
Tobs is different for the three LIGO interferometers [45].
We search for isolated neutron star signals in the frequency
range 200–400 Hz with a frequency resolution


f � 1

Tcoh
� 5:556� 10�4 Hz: (19)

The choice of the range 200–400 Hz for the analysis is
motivated by the low noise level, and therefore our ability
to set the best upper limits for h0, as seen from Fig. 1.

The resolution 
 _f in the space of first spin-down pa-

rameters is given by the smallest value of _f for which the
intrinsic signal frequency does not drift by more than a
single frequency bin during the total observation time [46]:


 _f � 
f

Tobs
� 1

TobsTcoh
� 1:1� 10�10 Hz-s�1: (20)

We choose the range of values � _fmax 
 _f 
 0, where the

largest spin-down parameter _fmax is about 1:1�
10�9Hz-s�1. This yields 11 spin-down values for each
intrinsic frequency. In other words, we look for neutron

stars whose spin-down age is at least �min � f̂= _fmax. This
corresponds to a minimum spin-down age of 5:75� 103 yr
at 200 Hz, and 1:15� 104 yr at 400 Hz. These values of
_fmax and �min are such that all known pulsars have a

smaller spin-down rate than _fmax and, except for a few
supernova remnants, all of them have a spin-down age
significantly greater than the numbers quoted above.
With these values of �min, it is easy to see that the second

spin-down parameter can be safely neglected; it would take
about 10 yr for the largest second spin-down parameter to
cause a frequency drift of half a frequency bin.

As described in [23], for every given time, value of the

intrinsic frequency f0 and spin down _f, the set of sky
locations n consistent with a selected frequency f�t� cor-
responds to a constant value of v � n given by (8). This is a
circle in the celestial sphere. It can be shown that every
frequency bin of width 
f corresponds to an annulus on the
celestial sphere whose width is at least

�
��min �
c

v


f

f̂
; (21)

with v being the magnitude of the average velocity of the
detector in the SSB frame.

The resolution 
� in sky positions is chosen to be
frequency dependent, being at most 
� � 1

2
�
��min. To

choose the template spacing only, we use a constant value
of v=c equal to 1:06� 10�4. This yields:


� � 9:3� 10�3rad� 300 Hz

f̂

 !

: (22)

This resolution corresponds to approximately 1:5� 105

sky locations for the whole sky at 300 Hz. For that, we
break up the sky into 23 sky patches of roughly equal area
and, by means of the stereographic projection, we map
each portion to a plane, and set a uniform grid with spacing

� in this stereographic plane. The stereographic projec-
tion maps circles in the celestial sphere to circles in the
plane thereby mapping the annuli in the celestial sphere,
described earlier, to annuli in the stereographic plane. We
ensure that the dimensions of each sky-patch are suffi-
ciently small so that the distortions produced by the ste-
reographic projection are not significant. This is important
to ensure that the number of points needed to cover the full
sky is not much larger than if we were using exactly the
frequency resolution given by Eq. (22).

This adds up to a total number of templates per 1 Hz
band at 200 Hz� 1:9� 109 while it increases up to 7:5�
109 at 400 Hz.

C. The implementation of the Hough transform

This section describes in more detail the implementation
of the search pipeline which was summarized in Sec. V.
The first step in this semicoherent Hough search is to
select frequency bins from the SFTs and construct the
peak-grams. As mentioned in Sec. V, our criteria for select-
ing frequency bins is to set a threshold of 1:6 on the
normalized power (11), thereby selecting about 20% of
the frequency bins in every SFT.

The power spectral density Sn appearing in Eq. (11) is
estimated by means of a running median applied to the
periodogram of each individual SFT. The window size we
employ for the running median is w � 101 corresponding
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to 0:056 Hz [47]. The running median is a robust method to
estimate the noise floor [48–50] which has the virtue of
discarding outliers which appear in a small number of bins,
thereby providing an accurate estimate of the noise floor in
the presence of spectral disturbances and possible signals.
The use of the median (instead of the mean) to estimate the
power spectral density introduces a minor technical com-
plication (see Appendix A for further details).

The next step is to choose a tiling of the sky. As
described before, we break up the sky into 23 patches, of
roughly equal area. By means of the stereographic projec-
tion, we map each portion to a two dimension plane and set
a uniform grid with a resolution 
� in this plane. All of our
calculations are performed on this stereographic plane, and
are finally projected back on to the celestial sphere.

In our implementation of the Hough transform, we treat
sky positions separately from frequencies and spin downs.
In particular, we do not obtain the Hough histogram over
the entire parameter space in one go, but rather for a given

sky patch, a search frequency f0 and a spin-down _f value.
These are the so-called Hough maps (HMs). Repeating this
for every set of frequency and spin-down parameters and
the different sky patches we wish to search over, we obtain
a number of HMs. The collection of all these HMs repre-
sent our final histogram in parameter space.

The HMs could be produced by using a ‘‘brute force’’
approach, i.e., using all the peaks in the time-frequency
plane. But there is an alternative way of constructing them.
Let us define a partial Hough map (PHM) as being a
Hough histogram, in the space of sky locations, obtained
by performing the Hough transform using the peaks from a
single SFT and for a single value of the intrinsic signal
frequency and no spin down. This PHM therefore consists
of only zeros and ones, i.e., the collection of the annuli
corresponding to all peaks present in a single peak-gram.
Then each HM can be obtained by summing the appropri-
ate PHMs produced from different SFTs. If we add PHMs
constructed by using the same intrinsic frequency, then the
resulting HM refers to the same intrinsic frequency and no
spin down. But note that the effect of a spin down in the
signal is the same as having a time varying intrinsic fre-
quency. This suggests a strategy to reuse PHMs computed
for different frequencies at different times in order to
compute the HM for a nonzero spin-down case.

Given the set of PHMs, the HM for a given search

frequency f0 and a given spin down _f is obtained as

follows: using Eq. (10) calculate the trajectory f̂�t� in the

time-frequency plane corresponding to f0 and _f. If the mid
time stamps of the SFTs are ftig (i � 1 . . .N), calculate

f̂�ti� and find the frequency bin that it lies in; select the
PHM corresponding to this frequency bin. Finally, add all
the selected PHMs to obtain the Hough map. This proce-
dure is shown in Fig. 2.

This approach saves computations because it recognizes
that the same sky locations can refer to different values of

frequency and spin down, and avoids having to redeter-
mine such sky locations more than once. Another advan-
tage of proceeding in this fashion is that we can use look up

tables (LUTs) to construct the PHMs. The basic problem to
construct the PHMs is that of drawing the annuli on the
celestial sphere, or on the corresponding projected plane.
The algorithm we use based on LUTs has proved to be
more efficient than other methods we have studied, and this
strategy is also employed by other groups [51].

A LUT is an array containing the list of borders of all the

possible annuli, for a given value of v and f̂, clipped on the
sky-patch we use. Therefore it contains the coordinates of
the points belonging to the borders that intersect the sky-
patch, in accordance to the tiling we use, together with
information to take care of edge effects. As described in
[23], it turns out that the annuli are relatively insensitive to
the value of the search frequency and, once a LUT has been
constructed for a particular frequency, it can be reused for a
large number of neighboring frequencies thus allowing for
computational savings. The value of v used to construct the
LUTs corresponds to the average velocity of the detector in
the SSB frame during the 30 minutes interval of the cor-
responding SFT.

In fact, the code is further sped up by using partial

Hough map derivatives (PHMDs) instead of the PHMs,
in which only the borders of the annuli are indicated. A
PHMD consists of only ones, zeros, and minus ones, in
such a way that by integrating appropriately over the
different sky locations one recovers the corresponding
PHM. This integration is performed at a later stage, and
just once, after summing the appropriate PHMDs, to obtain
the final Hough map.

In the pipeline, we loop over frequency and spin-down
values, taking care to update the set of PHMDs currently
used, and checking the validity of the LUTs. As soon as the
LUTs are no longer valid, the code recomputes them again
together with the sky grid. Statistical analyses are per-
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FIG. 2. A partial Hough map (PHM) is a histogram in the
space of sky locations obtained by performing the Hough trans-
form on a single SFT and for a given value of the instantaneous
frequency. A total Hough map is obtained by summing over the
appropriate PHMs. The PHMs to be summed over are deter-
mined by the choice of spin-down parameters which give a
trajectory in the time-frequency plane.
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formed on the Hough maps in order to compress the output
size. These include finding the maximum, minimum, mean
and standard deviation of the number counts for each
individual map, the parameters of the loudest event, and
also of all the candidates above a certain threshold. We also
record the maximum number count per frequency ana-
lyzed, maximized over all spin-down values and sky loca-
tions, and a histogram of the number counts for each 1 Hz
band. The schematic search pipeline is shown in Fig. 3.

As a technical implementation detail, the search is per-
formed by dividing the 200 Hz frequency band into
smaller bands of 1 Hz and distributed using Condor [52]

on a computer cluster. Each CPU analyzes a different 1 Hz
band using the same pipeline (as described in Fig. 3). The
code itself takes care to read in the proper frequency band
from the SFTs. This includes the search band plus an extra
interval to accommodate for the maximum Doppler shift,
spin down, and the block sized used by the running median.
The analysis described here was carried out on the Merlin
cluster at AEI [53]. The full-sky search for the entire S2
data from the three detectors distributed on 200 CPUs on
Merlin lasted less than half a day.

The software used in the analysis is available in the
LIGO Scientific Collaboration’s CVS archives (see [54]),
together with a suite of test programs, especially for visual-
izing the Hough LUTs. The full search pipeline has also
been validated by comparing the results with indepen-
dently written code that implements a less efficient but
conceptually simpler approach, i.e., for each point in pa-

rameter space �f0; _f;n�, it finds the corresponding pattern
in the time-frequency plane and sums the corresponding
selected frequency bins.

D. Number counts from L1, H1 and H2

In the absence of a signal, the distribution of the Hough
number count ideally is a binomial distribution. En-
vironmental and instrumental noise sources can excite
the optically sensed cavity length, or get into the output
signal in some other way, and show up as spectral distur-
bances, such as lines. If no data conditioning is applied,
line interference can produce an excess of number counts
in the Hough maps and mask signals from a wide area in
the sky. Figure 4 shows the comparison of the theoretical
binomial distribution Eq. (12) with the distributions that
we obtain experimentally in two bands: 206–207 Hz and
343–344 Hz. The first band contains very little spectral
disturbances while the second band contains some violin
modes. As shown in Fig. 4, the Hough number count
follows the expected binomial distribution for the clean

band while it diverges from the expected distribution in the
presence of strong spectral disturbances, such as the violin
modes in this case. We have verified good agreement in
several different frequency bands that were free of strong
spectral disturbances.

The sources of the disturbances present in the S2 data
are mostly understood. They consist of calibration lines,
broad 60 Hz power line harmonics, multiples of 16 Hz due
to the data acquisition system, and a number of mechanical
resonances, as, for example, the violin modes of the mirror
suspensions [36,55]. The 60 Hz power lines are rather
broad, with a width of about �0:5 Hz, while the calibration
lines and the 16 Hz data acquisition lines are confined to a
single frequency bin. A frequency comb is also present in
the data, having fundamental frequency at 36:867 Hz for
L1, 36:944 Hz for H1 and 36:975 Hz for H2, some of them
accompanied with side lobes at about 0:7 Hz, created by
up-conversion of the pendulum modes of some core optics,

Generate sky−grid

Calculate time−frequency

path and sum PHMDs

Compute Hough map

Compute LUTs and

PHMDs

YES

Increase search
frequency

statistics

Store candidates and

Loop over
sky−patches

  Read in SFTs and

generate peak−grams

Loop over
spin−downs

Are

LUTs

valid?

NO

FIG. 3. The schematic of the analysis pipeline. The input data
are the SFTs and the search parameters. The first step is to select
frequency bins from the SFTs and generate the peak-grams.
Then, the Hough transform is computed for the different sky
patches, frequencies and spin-down values, thus producing the
different Hough maps. The search uses LUTs that are computed
for a given tiling of the sky-patch. The sky grid is frequency
dependent, but it is fixed for the frequency range in which the
LUTs are valid. Then, a collection of PHMDs is built, and for
each search frequency f0 and given spin down _f, the trajectory in
the time-frequency plane is computed and the Hough map
obtained by summing and integrating the corresponding
PHMDs. The code loops over frequency and spin-down parame-
ters, updating the sky grid and LUTs whenever required.
Statistical analyses are performed on each map in order to reduce
the output size.
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but these were only present (or at least prominent) in H1
and H2. The sources of these combs were synthesized
oscillators used for phase modulation that were later re-
placed by crystal oscillators. In addition to the above
disturbances, we also observe a large number of multiples
of 0:25 Hz. While this comb of lines is strongly suspected
to be instrumental, its physical origin is unknown. In
Table I we summarize the list of known spectral disturban-
ces in the three interferometers during the S2 run.

After analyzing all the data we discard the number
counts from all those frequencies that could be contami-
nated by a known instrumental artifact. Thus, we exclude
every frequency bin which is affected by the spectral
disturbances including the maximum possible Doppler
broadening of these lines; thus, for a known spectral dis-
turbance at a frequency f and width �f, we exclude a
frequency range ��vf=c� �f=2� around the frequency f.
We also exclude from our analysis the frequency band
342–348 Hz for L1 and H1 and 342–351 Hz for H2 be-
cause they contain many violin modes. The net effect of
this vetoing strategy is that we consider only 67.1% for L1,
66.8% for H1 and 65.6% for H2 of the full 200 Hz range.

Figures 5–7 show the maximum Hough number count
nk obtained in each of the 360 000 different frequency bins
fk analyzed, maximized over all sky locations and spin-

TABLE I. List of known spectral disturbances in the three
interferometers during the S2 run used as a frequency veto in
the 200–400 Hz band. f refers to the central frequency and �f to
the full width of the lines. Lines denoted with �f � 0:0 Hz are
those in which the line width is much smaller than the associated
maximum Doppler broadening of the line. This ranges from
�0:04 Hz at a frequency of 200 Hz up to �0:08 Hz at 400 Hz.

L1 H1 H2

f (Hz) �f (Hz) f (Hz) �f (Hz) f (Hz) �f (Hz)

0:250a 0.00 0:250a 0.00 0:250a 0.00

16:000a 0.00 16:000a 0.00 16:000a 0.00

60:000a 1.00 60:000a 1.00 60:000a 1.00

221.200 0.01 221.665 0.01 221.850 0.02

258.080 0.04 257.875 0.02 258.830 0.01

294.935 0.01 258.610 0.02 295.070 0.02

331.810 0.01 259.340 0.02 295.670 0.02

345.000 6.00 294.820 0.01 295.800 0.04

368.670 0.02 295.560 0.00 295.930 0.02

296.300 0.00 296.530 0.02

331.790 0.00 323.300 0.00

332.490 0.00 323.870 0.04

333.200 0.00 324.000 0.04

335.780 0.14 324.130 0.04

336.062 0.00 324.700 0.00

339.000 0.02 332.800 0.00

339.720 0.02 335.120 0.02

345.000 6.00 335.590 0.02

365.500 0.02 341.615 0.01

368.690 0.00 346.500 9.00

369.430 0.00 349.202 0.00

370.170 0.01

aIndicates all higher harmonics are present.
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FIG. 4 (color online). Top: Graph of the L1 number-count
discrete probability distribution: the solid curve corresponds to
the number-count distribution obtained for the band between
206–207 Hz, the dash-dot curve to the number-count distribution
obtained for the 343–344 Hz band, that contains violin modes,
and in asterisks the theoretical expected binomial distribution for
687 SFTs and a peak selection probability of 20%. Middle: the
H1 number-count distribution for 1761 SFTs. Bottom: the H2
number-count distribution for 1384 SFTs.

FIG. 5 (color online). Graph of the L1 maximum number
count n?k for every analyzed frequency fk, maximized over all

spin-down values and sky locations. The top figure corresponds
to the raw output from the Hough transform in which many
outliers are clearly visible. The bottom figure corresponds to
the same data after vetoing the frequency bands contaminated
by known instrumental noise. See Appendix B for details on
outliers.

FIRST ALL-SKY UPPER LIMITS FROM LIGO ON THE . . . PHYSICAL REVIEW D 72, 102004 (2005)

102004-11



down values for the three detectors. In those figures we
compare the results of the search before and after applying
the frequency veto, showing how the spectral disturbances
impact on the number counts. This can be seen more
clearly in Fig. 8, where we plot the histograms of these
maximum Hough number counts nk before and after ap-
plying the frequency veto.

These values of n?k obtained after removing the known
outliers can be easily seen to be consistent with what we
would expect for Gaussian stationary noise. Assuming that
the maximum occurs only once, the expected value of n?k
should be consistent with a false alarm rate of 1=mbin�fk�,
where mbin�fk� is the total number of templates at a fre-
quency fk. mbin�fk� is frequency dependent, ranging from
�1:1� 106 at 200 Hz to �4:2� 106 at 400 Hz. Thus,

n?k should be consistent with a false alarm rate of �400 �
2:4� 10�7 at 400 Hz, up to �200 � 9:5� 10�7 at 200 Hz.
In the case of Gaussian stationary noise, the expectation
value of nk should therefore be similar to nth [defined by

Eq. (16)] for a false alarm � � 1=mbin�fk�. Table II com-
pares the mean hn?k i of the maximum Hough number count

before and after vetoing, with nth��� at different false
alarm rates. After vetoing, we observe that hnki lies within

the interval [nth��200�, nth��400�], and the standard devia-
tion std(nk) is also greatly reduced. This indicates the

consistency of the observed values of n?k with ideal noise.
As can be seen in Figs. 5–7, a few outliers remain after

applying the frequency veto described above. The fact that
these outliers have such small false alarm probabilities
makes it very unlikely they were drawn from a parent

FIG. 7 (color online). Graph of the H2 maximum number
count nk versus frequency fk as in Fig. 5.
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FIG. 8 (color online). Histograms of the maximum Hough
number count nk for the three detectors. The light curve corre-

sponds to the raw output and the dark thick curve corresponds to
the same output after vetoing the contaminated frequencies.

FIG. 6 (color online). Graph of the H1 maximum number
count nk versus frequency fk as in Fig. 5.

TABLE II. Comparison between the statistics of the maximum
Hough number count nk (before and after the frequency veto)

and nth��� at different false alarm rates �200 � 9:5� 10�7 and
�400 � 2:4� 10�7 for the three detectors.

Before veto After veto

nth��200� nth��400� hnki std(nk) hnki std(nk)

L1 188.8 191.7 194.8 32.3 191.4 10.2

H1 435.8 440.3 452.0 94.0 439.8 29.5

H2 350.6 354.6 360.6 72.3 353.2 11.3
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Gaussian distribution. However they could also be due to
spectral disturbances (line noise) that mimic the time-
frequency evolution of a pulsar for a certain location in
the sky. If these outliers are due to gravitational signals
they should show up in the different detectors. By perform-
ing a simple coincidence analysis in frequency, the only
candidate that remains is the one at 210:360 Hz. But this
has been ruled out since it seems to be associated to
multiples of 70:120 Hz produced by a VME (VERSA
module Eurocard) controller hardware used during S2.
Since the other outliers are not coincident among the three
detectors, there is no evidence for a detection. We refer the
interested reader to Appendix B for further details.

As explained in Sec. I, the ultimate goal for wide
parameter-space searches for continuous signals over large
data sets is to employ hierarchical schemes which alternate
coherent and semicoherent techniques. The Hough search
would then be used to select candidates in the parameter
space to be followed up. The way in which those candi-
dates would be selected is the following: fix the number of
candidates to follow up, determine the false alarm rate, and
set the corresponding threshold on the Hough number
count. Not all the candidates selected in this manner will
correspond to real gravitational-wave signals, but they will
point to interesting areas in parameter space.

The analysis presented here is a very important step
forward in this direction. However, given the limited sen-
sitivity its relevance mostly rests in the demonstration of
this analysis technique on real data. In what follows we will
thus concentrate on setting upper limits on the amplitude
h0 of continuous gravitational waves emitted at different
frequencies.

VII. UPPER LIMITS

We use a frequentist method to set upper limits on the
amplitude h0 of the gravitational-wave signal. Our upper
limits refer to a hypothetical population of isolated spin-
ning neutron stars which are uniformly distributed in the

sky and have a spin-down rate _f uniformly distributed in

the range �� _fmax; 0�. We also assume uniform distributions
for the parameters cos� 2 ��1; 1�,  2 �0; 2��, and �0 2
�0; 2��. As before, the frequency range considered is
200–400 Hz.

The upper limits on h0 emitted at different frequencies
are based on the highest number count, the loudest event,
registered over the entire sky and spin-down range at that
frequency. Furthermore, we choose to set upper limits not
on each single frequency but on a set of frequency values
lying within the same 1 Hz band and thus are based on the
highest number count in each frequency band. In every
1 Hz band the loudest event is selected excluding all the
vetoed frequencies of Table I.

Let n? be the loudest number count measured from the
data. The upper limit hC0 on the gravitational-wave ampli-

tude, corresponding to a confidence level C, is the value

such that had there existed in the data a real signal with an
amplitude greater than or equal to hC0 , then in an ensemble

of identical experiments with different realizations of the
noise, some fraction C of trials would yield a maximum
number count equal to or bigger than n?. The upper limit
hC0 corresponding to a confidence level C is thus defined as

the solution to this equation:

Prob �n 	 n?jhC0 � �
XN

n�n?
p�njhC0 � � C; (23)

where p�njh0� is the number-count distribution in the
presence of a signal with amplitude h0 and averaged over
all the other parameters; note that p�njh0� is different from
the distribution p�njh� discussed before Eq. (12) which
was relevant for a targeted search when all signal parame-
ters are known. We choose to set upper limits at a con-
fidence level of C � 95%; h95%0 denotes the 95%

confidence upper limit value.
Given the value of n?, if the distribution p�njh0� were

known, it would be a simple matter to solve Eq. (23) for hC0 .

In the absence of any signal, this distribution is indeed just
a binomial, and as exemplified in Fig. 4, this is also what is
observed in practice. If a signal were present, the distribu-
tion may not be sufficiently close to binomial because the
quantity � defined in Eq. (14) varies across the SFTs due to
nonstationarity in the noise and the amplitude modulation
of the signal for different sky locations and pulsar orienta-
tions. In addition, now we must also consider the random
mismatch between the signal and template (in relation to
the parameter-space resolution used in the analysis) which
causes an additional reduction in the effective signal-to-
noise ratio for the template. For these reasons, we measure
p�njh0� by means of a series of software injections of fake
signals in the real data. Figure 9 shows four distributions
for different h0 values obtained by Monte Carlo simula-
tions. While for low signal amplitudes the distribution is
close to the ideal binomial one, the distribution diverges
from it at higher amplitudes, thereby illustrating the com-
plexity of the number-count distribution for sufficient large
h0.

Our strategy for calculating the 95% upper limits is to
find p�njh0� for a wide range of h0 values, then to get the
corresponding confidence levels C�h0�, and find the two
values of h0 which enclose the 95% confidence level. The
95% upper limit is approximated by a linear interpolation
between these values. We then refine this reduced range of
h0 values by further Monte Carlo simulations until the
desired accuracy is reached. This is described in Fig. 10.

The parameters of the fake injected signals are drawn
from the population described above, and we ensure that
the frequency does not lie within the excluded bands. The
data with the injections are searched using the search
pipeline used for the actual analysis. For computational
efficiency, for each injected signal we find the number
count using only the 16 nearest templates, and choose the
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one yielding the largest number count. The SFT data in the
different frequency bins in a 1 Hz band (of orderN � 1800
bins that get combined differently for the different time-
frequency patterns) can be considered as different realiza-
tions of the same random process. Therefore it is reason-
able to assume that the normalized histogram of the largest
number count represents the discrete probability distribu-
tion p�njh0�.

The most computationally intensive part of this Monte
Carlo scheme is the generation of the artificial signals. The
computational costs can be greatly reduced by estimating
p�njh0� for different h0 values in one go: for each individ-
ual artificial signal, we generate a set of SFTs containing
only one noiseless signal of a given amplitude. These SFTs
can be scaled by an appropriate numerical constant to
obtain a set of SFTs containing signals with different
amplitudes, which are then added to the noise SFTs. The
disadvantage of doing this is that the different signals
obtained by rescaling the amplitude this way are not sta-
tistically independent since all the other signal parameters
are identical. We must ensure that we have a sufficiently
large number of trials so that the error in the final upper
limit is sufficiently small.

We have found empirically that 5000 injections per band
are sufficient to get upper limits accurate to within 3%; see
Figs. 11–13. Figure 11 shows the confidence level as a
function of the signal amplitude h0 for L1 data within the

band 200–201 Hz. The solid line corresponds to our most
accurate simulations using 100 000 injections. The two
dashed lines correspond to two different simulations both
using 5000 injected signals and the dotted line corresponds
to simulation with 3000 injections. In each case, confi-
dence levels for different h0 values are calculated by
simply rescaling the signal as described above. This means
that all the points in each individual curve in Fig. 11 are
statistically biased in a similar way, and this explains why
the curves in this figure do not intersect. To estimate the
error in the 95% upper limit, we generate several of these
curves for a fixed number of injections and we measure the
error in h95%0 with respect to the accurate reference value

obtained using 100 000 injections. For this particular band
and detector, we find that for 5000 injections, the error in
the upper limit is at most 0:1� 10�23, corresponding to a
relative error of 2:2%. This experiment has been repeated
for several 1 Hz bands and many simulations, and in all of
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count excluding known

lines within band

Iterate many
times

Inject signal into data and 
find number count using
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Find h    0 value 

for 95% confidence
level

YES
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FIG. 10. Pipeline description of the Monte Carlo simulation to
determine the upper limit values h95%0 . We inject randomly

generated fake pulsar signals with fixed amplitude (the other
parameters are drawn from a suitable uniform distribution) into
the real data and measure the value of h0 required to reach a 95%
confidence level.
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FIG. 9 (color online). Histograms of the Hough number-count
distribution (in arbitrary units) for L1 using 1000 injected signals
randomly distributed over the whole sky within the band
200–201 Hz for different h0 values. The largest number count
for the search in that band was 202. The confidence level
associated with the different h0 values are: 0:1% for 1:0�
10�23, 30:5% for 2:0� 10�23, 87:0% for 4:0� 10�23, and 1
for 1:0� 10�22.
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them 5000 injections were enough to ensure an accuracy of
better than 3% in the h95%0 . We also have found that

with 5000 injections, using amplitudes equal to the most
accurate upper limit h95%0 obtained from 100 000 injec-

tions, the confidence level are within �94:5–95:5�%. See
Figs. 12 and 13.
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FIG. 13 (color online). Confidence level as a function of the
signal amplitude h0 for different Monte Carlo simulations for H1
within the band 259–260 Hz. The solid thick line corresponds to
a simulation using 100 000 injected signals. The other 20 lines
correspond to simulations with 5000 injected signals. The h95%0

upper limit for this band using 5000 injections has a maximum
absolute error of the order of 0:1� 10�23 corresponding to a
relative error of 2:0%.
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FIG. 12 (color online). Confidence level as a function of the
signal amplitude h0 for different Monte Carlo simulations for L1
within the band 200–201 Hz. The solid thick line corresponds to
a simulation using 100 000 injected signals. The other 20 lines
correspond to simulations with 5000 injected signals. The h95%0

upper limit for this band using 5000 injections has a maximum
absolute error of the order of 0:1� 10�23 corresponding to a
relative error of 2:2%.
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FIG. 11 (color online). Confidence level as a function of the
signal amplitude h0 for different Monte Carlo simulations for L1
within the band 200–201 Hz. The solid line corresponds to a
simulation using 100 000 injected signals. The two dashed lines
correspond to 5000 injected signals. The dash-dotted line cor-
responds to 3000 signal injections. The h95%0 upper limit for this

band using and these two simulations with 5000 injections has a
maximum absolute error of the order of 0:02� 10�23 corre-
sponding to a relative error smaller than 0:5%. In the case of
using only 3000 injections the error increases to the 1:5% level.
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FIG. 14 (color online). Measured Hough number-count proba-

bility distribution for p�njhinject0 � from the Monte Carlo simula-

tions using 100 000 injected signals. (a) L1 within the band

200–201 Hz, with a h
inject
0 of 4:422� 10�23 corresponding to a

confidence level of 94:95%. The n? value for this band was 202.

(b) H1 within the band 259–260 Hz, with a h
inject
0 of 4:883�

10�23 corresponding to a confidence level of 95:04%. The n?

value for this band was 455. (c) H2 within the band 258–259 Hz,

with a h
inject
0 of 8:328� 10�23 corresponding to a confidence

level of 95:02%. The n? value for this band was 367.
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Figure 14 shows the probability distribution for

p�njhinject0 � for L1, H1 and H2 in a 1 Hz band measured

from 100 000 randomly injected signals, with a signal

amplitude h
inject
0 close to the 95% confidence level; note

that these h
inject
0 values are not the 95% upper limits be-

cause they correspond to different confidence levels. This
illustrates, yet again, that the true number-count distribu-
tions are far from the ideal binomial distribution. It is also
interesting to notice that, among all the templates used to
analyze each injection, the nearest template, in the normal
Euclidean sense, corresponds to the template providing the
highest number count only 18% of the time. This effect is
due to the noise contribution and the fact that the matching-
amplitude, described by the parameter-space metric is
highly anisotropic [56].

The 95% confidence upper limits on h0 for each 1 Hz
band using all the data from the S2 run are shown in
Fig. 15. As expected, the results are very similar for the
L1 and H1 interferometers, but significantly worse for H2.

The typical upper limits in this frequency range for L1 and
H1 are mostly between �4–9� 10�23, typically better at
lower frequencies. The most stringent upper limit for L1 is
4:43� 10�23 which occurs within 200–201 Hz, largely
reflecting the lower noise floor around 200 Hz. For H1 it
is 4:88� 10�23, which occurs in the frequency range
259–260 Hz, and for H2 it is 8:32� 10�23, which occurs
in the frequency range 258–259 Hz. The values of the most
stringent upper limits on h95%0 have been obtained using

100 000 injections in the most sensitive 1 Hz bands. The
upper limits are significantly worse in bands lying near the
known spectral disturbances, especially near the violin
modes.

In Table III we summarize the best upper limits on h95%0

and we compare them with the theoretical values h
exp
0 we

would expect for a directed search using a perfectly
matched template, as given by Eq. (17). Here we take a
false dismissal rate of 5% and the false alarm rate associ-
ated to the loudest number count in that band. In those
three bands the ratio h95%0 =h

exp
0 is about 1.8.

These h95%0 results are also about a factor of 2.6 worse

than those predicted by Fig. 1 which corresponds to a
directed search using a perfectly matched template, and
with a false alarm rate of 1% and a false dismissal rate of
10%. Of these 2.6, a factor �1:5 is due to the use of
different values of the false alarm and false dismissal
rate, and a factor �1:8 because the p�njh0� distribution
does not correspond to the ideal binomial one for values of
h0 distinct from zero.

From the upper limits on h0, using Eq. (5), we can derive
the distance covered by this search. This is shown in
Fig. 16 assuming � � 10�6 and Izz � 1045 g cm2. The
maximum reach is 2.60 pc for H1 which occurs within
395–396 Hz. For L1 the maximum reach is 2.15 pc and
1.62 pc for H2. This value of � � 10�6 corresponds to the
maximum expected ellipticity for a regular neutron star,
but ellipticities from more exotic alternatives to neutron
stars may be larger [10], e.g., solid strange quark stars for
which �max � 10�4. Therefore the astrophysical reach for
these exotic stars could be better by a factor 100.
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FIG. 15 (color online). The 95% confidence upper limits on h0
over the whole sky and different spin-down values in 1 Hz
bands.

TABLE III. Best all-sky upper limits obtained on the strength of gravitational waves from isolated neutron stars. The h95%0 values
have been obtained using 100 000 injections in the best 1 Hz bands fband for the three detectors. hSn�fband�i is the average value of
noise in that 1 Hz band excluding the vetoed frequencies, N the number of SFTs available for the entire S2 run, n is the loudest
number-count measured from the data in that band, � is the corresponding false alarm assuming Gaussian stationary noise derived
from Eq. (16), m1Hz the number of templates analyzed in that 1Hz band, the quantify Sexp is defined by Eq. (18) using the values
� � � and 	 � 0:05. h

exp
0 is the theoretical expected upper limit from searches with perfectly matched templates assuming the ideal

binomial distribution for p�njh0� defined by Eq. (17), therefore ignoring also the effects of the different sensitivity at different sky
locations and pulsar orientations.

Detector Best h95%0 fband (Hz) hSn�fband�i (Hz�1) N n � m1 Hz Sexp h
exp
0

L1 4:43� 10�23 200–201 1:77� 10�43 687 202 8:94� 10�10 1:88� 109 5.4171 2:41� 10�23

H1 4:88� 10�23 259–260 3:53� 10�43 1761 455 1:77� 10�9 3:11� 109 5.3381 2:67� 10�23

H2 8:32� 10�23 258–259 1:01� 10�42 1384 367 2:25� 10�9 3:11� 109 5.3098 4:78� 10�23
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VIII. HARDWARE INJECTIONS

Two artificial pulsar signals, based on the waveforms
given in Eqs. (2)–(4) and (6) were injected into all three
LIGO interferometers for a period of 12 h towards the end
of the S2 run. These injections were designed to give an
end-to-end validation of the search pipeline. The wave-
forms were added digitally into the interferometer length
sensing and control system (responsible for maintaining a
given interferometer on resonance), resulting in a differ-
ential length dither in the optical cavities of the detector.
We denote the two pulsars P1 and P2; their parameters are
given in Table IV.

The data corresponding to the injection period have been
analyzed using the Hough transform and the same search
code as described in Sec. VI C. As before, the input data
consists of 30 min long SFTs. The number of SFTs avail-
able are 14 for L1, 17 for H1 and 13 for H2. As in
Sec. VI B, the frequency resolution is 1=1800 s, the sky

resolution is given by Eq. (22), and 
 _f � 1=�TobsTcoh�.
Since the total effective observation time is somewhat

different for the three detectors, we get 
 _f � �2:286 24�
10�8 Hz-s�1 for L1, �1:770 24� 10�8 Hz-s�1 for H1,
and �1:935 33� 10�8 Hz-s�1 for H2. As before, for
each intrinsic frequency we analyze 11 different spin-
down values. The portion of sky analyzed was of 0:5
radians �0:5 radians around the location of the two in-
jected signals.

Figure 17 shows the Hough maps corresponding to the
nearest frequency and spin-down values to the injected
ones. Although the presence of the signal is clearly visible,
it is apparent that 12 h of integration time is not enough to
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FIG. 16 (color online). Astrophysical reach covered by the
search. The curves show the estimated distance d out to which
signals from isolated gravitational-wave pulsars could be de-
tected in our S2 data set derived from the upper limits on h0. This
plot assumes � � 10�6 and Izz � 1045 g cm2.

TABLE IV. Parameters of the two hardware injected pulsars.
See Eqs. (2)–(4) and (6) for the definition of the parameters. RA
and Dec are the right ascension and declination in equatorial
coordinates. T0 is the GPS time in the SSB frame in which the
signal parameters are defined. h0 is the amplitude of the signal
according to the strain calibration used at the time of the
injections.

P1 P2

f0 (Hz) 1279.123 456 789 012 1288.901 234 567 890 123
_f (Hz-s�1) 0 �10�8

RA (rad) 5.147 162 131 9 2.345 678 901 234 567 890

Dec (rad) 0.376 696 024 6 1.234 567 890 123 45

 (rad) 0 0

cos� 0 0

�0 (rad) 0 0

T0 (sec) 733 967 667.026 112 310 733 967 751.522 490 380

h0 2� 10�21 2� 10�21
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FIG. 17 (color online). Hough maps for the hardware injected
signals. The left maps correspond to P1 and the right maps to P2.
From top to bottom, the left maps correspond to L1, H1 and H2,
for a frequency of 1279:123 333 Hz and zero spin down; the
right maps to a frequency of 1288:901 11 Hz and zero,
�1:77024� 10�8 Hz-s�1, and �1:93533� 10�8 Hz-s�1 spin-
down values, respectively. The location of the injected signals
are close to the centers of these subplots.
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identify the location of the source using the Hough trans-
form. In particular if one looks at the Hough maps at
mismatched frequencies and spin-down values, one can
still identify annuli with very high number-counts, but
appearing with a mismatched sky location.

For P2, the Hough maps corresponding to the closest
values of frequency and spin down contain the maximum
number count at the correct sky location. These maximum
number counts are 12 for L1, 17 for H1, and 11 for H2.
Notice that for L1 and H2 these numbers are smaller than
the number of SFTs used.

For P1, the closest template to the signal parameters has
a number count of 13 for L1, 12 for H1 and 8 for H2. The
maximum number counts obtained in the search were 13
for L1, but 14 for H1, and 10 for H2. Those higher number
counts occurred for several templates with a larger mis-
match, for example, at 1279:123 333 Hz and �5:310 73�
10�8 Hz-s�1 for H1, and 1279:132 222 Hz and
�1:354 73� 10�7 Hz-s�1 for H2. This is not surprising
because we only compute the Hough maps at the Fourier
frequencies n� 1=Tcoh. In any case, both pulsar signals are
unambiguously detected because these number counts are
much bigger then the expected average number counts for
pure noise.

IX. CONCLUSIONS

In this paper we use the Hough transform to search for
periodic gravitational-wave signals. This is a semicoherent
suboptimal method. Its virtues are computational effi-
ciency and robustness. The search pipeline was validated
using a series of unit tests and comparisons with indepen-
dently written code. We then applied this method to ana-
lyze data from the second science run of all three LIGO
interferometers. We also validated the search pipeline by
analyzing data from times when two artificial pulsar sig-
nals were physically injected into the interferometer hard-
ware itself. We show in this paper that the injected signals
were clearly detected.

Our final results are all-sky upper limits on the
gravitational-wave amplitude for a set of frequency bands.
The best upper limits that we obtained for the three inter-
ferometers are given in Table V. The overall best upper
limit is 4:43� 10�23. We searched the 200–400 Hz band

and the spin-down space _fmax 
 1:1� 10�9Hz-s�1, and
no vetoes were applied except for the list of ignored
frequency bands that contain instrument line artifacts.

Our best upper limit is 26 times worse than the best
upper limit obtained for a targeted coherent search using
the same data. This was an upper limit of 1:7� 10�24 [16],
achieved for PSR J1910-5959D. This is to be expected
because we have performed not a targeted, but a wide
parameter-space search. If we were to use the optimal
F -statistic method to perform a hypothetical search over
the same parameter-space region as the Hough search in
this paper, the number of templates required would be
much larger for the same observation time: �1019 [20]
instead of �1012. Thus, we would have to set a lower false
alarm rate for this hypothetical search, and in the end, the
sensitivity turns out to be roughly comparable to that of the
Hough search. Note also that this hypothetical search is not
computationally feasible for the foreseeable future.

From Eq. (1), in an optimistic scenario, we see that our
best upper limits are approximately 1 order of magnitude
larger than the strongest expected signals based on the
statistics of the neutron star population of our galaxy.
From Fig. 1, we see that with 1 yr of data at design
sensitivity, the present method should gain us about one
order or magnitude in sensitivity, thus enabling us to detect
signals smaller than what is predicted by Eq. (1), at least
for a certain frequency range. We can search for smaller
signals either by increasing the number of coherent seg-
ments, N, or by increasing the coherent time baseline, Tcoh.
Since the number of segments is determined by the length
of the data set, for a given amount of data one wants to
make Tcoh as large as possible. However, for the search
pipeline presented in this paper, increasing Tcoh was not
possible due to the restriction on its value mentioned in
Sec. V. This will be overcome by demodulating each short
segment, taking into account the frequency and amplitude
modulation of the signal. The optimal method will be to
calculate the F -statistic [57] for each segment. The time-
frequency pattern will then no longer be given by (8) and
(10) but by the master equation given in Ref. [23].

Since the wide parameter-space search for periodic
gravitational-wave signals is computationally limited,
there is also a limit on the maximum Tcoh that can be
used, given finite computing resources. Thus, a hierarch-
ical strategy that combines fully coherent and semicoher-
ent methods will be needed to achieve optimal results
[21,22]. Our goal is to use the Hough transform as part
of such a strategy. This is work in progress and the results
will be presented elsewhere.
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APPENDIX A: THE BIAS IN THE RUNNING

MEDIAN

We are using a running median to estimate the noise
floor in our SFTs. Thus, the value of Sn at a particular
frequency bin can be estimated from the median of j~xkj2 in
w frequency bins around the frequency bin, where w is an
integer and represents the window size of the running
median. The reason for using a running median is to
minimize the effect of large spectral disturbances, and to
ensure that the presence of any pulsar signals will not bias
our estimation of Sn. To carry this out in practice, we would
like to know how the median can be used as an estimator of
the mean. In this appendix, we answer this question assum-
ing that the noise is Gaussian, so that the power is distrib-
uted exponentially.

Let x be a random variable with probability distribution
f�x�. Let F�x� denote the cumulative distribution function:

F�x� �
Z x

�1
f�x0�dx0: (A1)

Let us draw w samples from this distribution and arrange
them in increasing order: xn (n � 1 . . .w). Define an in-
teger k which is �w� 1�=2 when w is odd, and w=2 when

w is even. We define the median � �w� as

� �w� �
�
xk�1 when w is odd;
1
2
�xk � xk�1� when w is even:

(A2)

Consider first the case when w is odd. The distribution of

� �w� can be found as follows: � �w� lies within the range
�x; x� dx� when k values are less than x,w� k� 1 values
are greater than x� dx, and one value is in the range

�x; x� dx�. The probability density for � �w� is thus

gw�x� �
�
w
k

�

�w� k��F�x��k�1� F�x��w�k�1f�x�: (A3)

When w is very large, it can be shown that the distribution
gw�x� approaches a Gaussian whose mean is equal to the
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FIG. 18 (color online). Value of the running median bias � �w�

as a function of the window size w; � �w� approaches log�2:0� for
large w.

TABLE VI. List of outliers present in the Hough maps after
applying the known instrumental frequency veto, for a false
alarm rate of 10�13. This corresponds to a threshold in the
number count of 216 for L1, 480 for H1 and 390 for H2. For
each outlier we quote the central frequency and the maximum
number count. The triple coincidence at 210:36 Hz is a harmonic
of the 70:12 Hz spectral disturbance described in the text.

Detector Frequency (Hz) Number count

L1 210.36 268

234.50 224

281.35 218

329.34 626

335.62 219

H1 210.36 596

212.26 519

244.14 507

249.70 746

280.48 949

329.58 1510

329.78 1227

348.45 482

350.60 1423

H2 202.18 402

203.23 395

210.36 443

298.81 394

329.69 867

387.05 400

389.40 391
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population median �̂ , and whose variance is proportional to
1=

����
w

p
[58].

For Gaussian noise, the normalized power � follows the
exponential distribution, i.e. f�x� � e�x for x 	 0 and
f�x� � 0 for x < 0. The mean is unity, therefore

� �w�=E�� �w�� is an unbiased estimator of the mean, where

E�� �w�� is the expectation value of � �w�:

E �� �w�� �
Z 1

�1
xgw�x�dx: (A4)

We can explicitly calculate E�� �w�� for this case and the
answer turns out to be given by a truncated alternating
harmonic series:

E �� �w�� �
Xw

j�1

��1�j�1

j
: (A5)

For very large w, E�� �w�� approaches ln�2�, which is pre-
cisely the population median. For w � 1 it is just unity,
which makes sense because in this case the median is equal

to the mean. For finite w, E�� �w�� is somewhat larger than
ln�2� and for a window size of w � 101, which is what is
used in the actual search, it is 0:698 073. This is to be
compared with ln�2� � 0:693 147, a difference of about
0:7%.

When w is even, the distribution of � �w� is given (up to a
factor of 2) by the convolution of the distributions of xk and
xk�1. However, we are interested only in the expectation
value

E �� �w�� � 1

2
�E�xk� �E�xk�1��: (A6)

The expectation value of xk�1 is calculated as above, using
the distribution (A3), while the distribution of xk is ob-
tained by replacing k with k� 1 in (A3). It turns out that

E�� �w�� � E�� �w�1�� when w is even. Thus E�� �2�� �
E�� �1��, E�� �4�� � E�� �3�� and so on. Figure 18 plots

E�� �w�� for all values of w from 1 to 200.

APPENDIX B: THE NUMBER-COUNT OUTLIERS

This appendix contains a discussion about the outliers in
the Hough number counts that are strongly suspected to be
instrumental artifacts but that we were not able to definitely
identify as such.

After applying the frequency veto described in
Sec. VI D, we focus our attention on those candidates
with a false alarm rate � (for a single detector) smaller
than 10�13. This corresponds to a threshold on the number
count of 216 for L1, 480 for H1 and 390 for H2. Since the

total number of templates analyzed in this 200 Hz search
band is roughly 1012, the probability of getting one candi-
date above that threshold over the full search is approxi-
mately 10% in each detector. All the candidates that satisfy
such condition tend to cluster around a few frequencies that
are listed in Table VI. These are the so-called outliers that
were present in Figs. 5–7.

If these outliers are due to gravitational signals they
should show up in the different detectors. By performing
a simple coincidence analysis in frequency, the only can-
didate that remains, at this false alarm level, is the one at
210:36 Hz. The reader should notice that 210:36 Hz cor-
responds to 3� 70:12 Hz. In the H1 data, there are also
excess of number counts at 280:480 Hz and 350:600 Hz,
corresponding to 4� 70:12 and 5� 70:12 respectively.
These 70:120 Hz multiples together with the 244:14 Hz
line were detected in association with a VME (VERSA
module Eurocard) controller hardware used during S2.
However, since the data acquisition system architecture
has changed since S2 the coupling mechanism cannot be
proven.

Figures 19–21 show how the outliers listed in Table VI
stand well above the background noise spectrum level Sn,
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FIG. 19 (color online). The square root of the average value of
Sn using the entire S2 L1 data set analyzed. The four graphs
correspond to the frequencies where outliers were present in the
Hough maps after applying the known instrumental veto. They
correspond to 210:36 Hz, 234:50 Hz, 281:35 Hz, 329:34 Hz and
335:62 Hz.
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when this is estimated from the entire run. We believe they
all arise from instrumental or environmental artifacts.
However we are not able to determine in a conclusive

manner their physical cause. For this reason, the potential
contaminated frequency bands have not been vetoed when
setting the upper limits.
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