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Abstract: In order to detect intermittent first- and higher-order correlation between a pair of signals in both time and frequency, a

wavelet-based coherence and bicoherence technique was developed. Due to the limited averaging in a time-frequency coherence estimate,

spurious correlated pockets were detected due to statistical variance. The introduction of multiresolution, localized integration windows

was shown to minimize this effect. A coarse ridge extraction scheme utilizing hard thresholding was then applied to extract meaningful

coherence. This thresholding scheme was further enhanced through the use of ‘‘smart’’ thresholding maps, which represent the likely

statistical noise between uncorrelated simulated signals bearing the same power spectral density and probability-density function as the

measured signals. It was demonstrated that the resulting filtered wavelet coherence and bicoherence maps were capable of capturing low

levels of first- and higher-order correlation over short time spans despite the presence of ubiquitous leakage and variance errors.

Immediate applications of these correlation detection analysis schemes can be found in the areas of bluff body aerodynamics, wave-

structure interactions, and seismic response of structures where intermittent correlation between linear and nonlinear processes is of

interest.
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Introduction

Though transients have long defined signature characteristics
across the engineering spectrum, available analysis tools like Fou-
rier transforms have been ill equipped to represent this phenom-
enon. It was not until the time-frequency revolution of the 20th
century that such signals could be adequately treated by the likes
of the Gabor transform and the Wigner-Ville distribution. Today,
wavelet transforms lead the transition to this new analysis do-
main, providing the ability to display time and frequency infor-
mation independently and unveil the hidden features of evolution-
ary phenomena.

Particularly in the areas of aerodynamics and wind engineer-
ing, wind field fluctuations result in spatiotemporal pressure fluc-
tuations on the surfaces of bluff bodies, e.g., buildings. These
pressure fluctuations are manifestations of complex, nonlinear in-
teractions that take place as the wind passes around a bluff struc-
ture. The spatiotemporal pressure fluctuations exhibit drastic tran-
sient features depending on their location on the surface and, with

the exception of the windward face, are not amenable to a func-

tional relationship with the oncoming wind field. Efforts to iden-

tify significant linear correlation between wind and pressure fluc-
tuations were unsuccessful, especially in the separated flow
regions. This has led to the consideration of higher-order correla-
tion, e.g., bicoherence ~Gurley et al. 1997!. However, these ef-
forts highlighted the inability of such Fourier-based measures to
capture transient higher-order correlations that may exist between
wind and pressure fluctuations.

With the availability of time-frequency analysis via wavelets,
linear correlation analyses were enhanced by way of the coscalo-
gram ~Gurley and Kareem 1999a!. This approach did identify
some intermittent correlation between wind and pressure and will
be further developed in this study as a tool for delineating any
previously obscured intermittent relationship between certain
wavelengths in the approach flow and the resulting pressure fluc-
tuations. The potential for such insights have lent wavelets to
other applications in wind engineering. For example, early inves-
tigations of turbulent wind effects were conducted by Farge
~1992!, who applied wavelet-based spectral analysis to the mod-
eling of atmospheric turbulence. Gurley and Kareem ~1997a! later
adapted this to the analysis of turbulence and resulting pressures
in full-scale dynamic response data. In total, the use of wavelet
transforms in this field continues to advance, as overviewed by
Gurley and Kareem ~1999a! in their study showcasing applica-
tions of wavelets in wind, offshore, and earthquake engineering.

Unfortunately, though the wavelet coscalogram was successful
in identifying intermittent linear correlation between wind speed
and pressure, it failed to reveal the instantaneous higher-order
correlations that may exist in the transient spikes of fluctuating
pressures. While Fourier-based higher-order spectral measures
such as bicoherence can capture higher-order correlations, they
have difficulty detecting such intermittent nonlinear interactions.
The same can be said for the case of high amplitude, nonlinear
extreme waves, whose first- and second-order components are
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phase coupled over relatively short intervals ~Powers et al. 1997!.
This motivated the need for wavelet-based measures such as bi-
coherence to study nonstationary and nonlinear characteristics of
random waves and the resulting response of floating offshore plat-
forms, as well as prompting their consideration in this study for
higher-order intermittent correlation analysis of wind velocity and
fluctuating pressures.

This study continues the work in wavelets for both wind and
waves by applying wavelet transforms to identify first- and
higher-order intermittent correlation between measured records.
While this representation allows a display in terms of time and
frequency, the influence of noise in the estimation of coherence
and bicoherence over a localized time frame is significant, mak-
ing a distinction between the true correlation and noise a major
issue to be addressed. This study revisits the classical approach
for reduction of variance, averaging, in the multiresolution con-
text of wavelets, and later discusses denoising schemes, which
minimize the need for localized averaging in order to preserve
temporal information. While hard thresholding based on global
maxima of the wavelet coherence map can be used to isolate
meaningful coherence, a ‘‘smart’’ thresholding simulation scheme
is proposed to provide a reference noise map to more accurately
separate spurious noise effects from true signal content. This ref-
erence map is generated using independent realizations of time
histories that match the power spectrum and probability contents
of the signals being analyzed to establish a statistical measure of
the expected noise in the estimated coherence and bicoherence.
Though relatively intensive, this scheme’s robustness is estab-
lished using both simulated and measured data. The method is
shown to significantly reduce the presence of spurious coherence,
even in cases where variance and leakage are prevalent. The per-
formance of these techniques is then validated by example in the
case of both wind-pressure effects on bluff bodies and offshore
platform surge response.

Wavelet Transform Background

Wavelet analysis ~Daubechies 1988; Strang and Nguyen 1996!
decomposes a signal via a set of finite basis functions, revealing
transient characteristics obscured by the trigonometric basis func-
tions used in Fourier analysis. Wavelet coefficients Wx(a ,t) are
produced through the convolution of a scaled parent wavelet
function c(t) with the analyzed signal x(t)

Wx~a ,t !5

1
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E
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x~t !cS t2t

a
D dt (1)

where a5scale of the wavelet, inversely proportional to fre-
quency and t5local time origin of the analyzing wavelet.

As harmonic analysis is quite intuitive, the results of this study
are interpreted in the time-frequency domain, rather than the
time-scale domain natural to the wavelet transform. This perspec-
tive is facilitated by choosing the Morlet wavelet ~Grossman and
Morlet 1985! as the parent wavelet, with its well-defined relation-
ship between scale and frequency

c~ t !5e2t
2
/2e j2p f ot

5e2t
2
/2@cos~2p f ot !1 j sin~2p f ot !#

(2a)

f >
f o

a
(2b)

As shown in Kijewski and Kareem ~2002a!, the parameter f o , the
wavelet’s central frequency, dictates the time and frequency reso-
lutions of the wavelet analysis and should always be adjusted
accordingly. The resulting variable time Dt and frequency D f

resolutions are merely scaled versions of the duration and band-
width of the Gaussian window in Eq. ~2a!, as determined by
Gabor’s ~1946! mean square definition, and later given by Chui
~1992! as
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&
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Though a considerable amount of work in wavelet transform
theory has been assembled, for a host of parent wavelets, exten-
sive development of these topics could not be included in this
paper, for the sake of brevity. As a result, only relationships di-
rectly relevant to the discussions herein are provided via Eqs.
~1!–~3!. A more detailed discussion of wavelet transforms and
associated theorems may be found in a number of textbooks, in-
cluding Daubechies ~1992!; Burrus et al. ~1998!; Carmona et al.
~1998!; and Mallat ~1998!.

Wavelet Coherence Background-Scalogram
and Coscalogram

The localized wavelet coefficients are well suited for analyzing
nonstationary events, with their squared values plotted on a time-
scale ~time-frequency! grid. This visualization, called the scalo-
gram or mean square map, reveals the frequency content of the
signal at each time step to pinpoint the occurrence of transients
while tracking evolutionary phenomena in both time and fre-
quency.

In some recent studies, the concept of the scalogram has been
advanced to identify correlation between signals in which the
squared coefficients are replaced with the product of the wavelet
coefficients of two different processes ~e.g., Gurley and Kareem
1999a!. This coscalogram produces a view of the coincident
events between the processes, revealing time-varying pockets of
correlation over frequency.

To demonstrate this concept, full-scale pressures measured on
a building and the upstream wind velocity fluctuations are ana-
lyzed. The scalogram of wind velocity and simultaneously mea-
sured pressure are presented along with their coscalogram in Figs.
1~a–c!. The dark hues of the coscalogram identify areas of corre-
lation. Figs. 1~d–f! present the same information for two uncor-
related records. The resulting coscalogram @Fig. 1~f!# of these two
unrelated processes shows no distinct correlation. The coscalo-
gram contains wavelet coefficients determined from segments of
the signal isolated by the sliding window of the scaled parent
wavelet. At each time step, the calculated wavelet coefficients
comprise a single raw spectrum across the range of scales,
equivalent to a spectrum obtained from a single time history in
the traditional Fourier analysis. These raw spectra that are as-
sembled along the time axis in the scalogram and coscalogram
lack the ensemble averaging necessary in traditional Fourier
methods to reduce the variance in the estimate, resulting in noisy
displays where correlated events are difficult to differentiate from
random coincident coefficients. Though this simple measure of
correlation has been used to qualitatively identify first-order wind
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velocity and pressure relationships ~Gurley and Kareem 1999a!, it
is refined in this study by the introduction of a wavelet coherence
measure.

It should be noted that other studies have applied higher-order
spectral analysis to quantify the nonlinear relationship between
wind velocity and pressure ~Gurley et al. 1997!. However, these
Fourier-based higher-order spectral methods are not capable of
capturing the transient intermittent relationship being sought here.
A more accurate and reliable approach to quantitatively identify
intermittent first- and higher-order correlation is the thrust of this
study.

Wavelet-Based Coherence Map

As the Morlet wavelet is merely a localized form of the Fourier
transform, it can intuitively be substituted into classical spectral
measures to uncover time-varying frequency content, effectively
windowing the Fourier analysis. The equivalence of traditional
Fourier measures with those newly recast using Morlet wavelets
was previously shown in Gurley and Kareem ~1999a! for quanti-
ties such as scalogram and coscalogram, analogs to the autospec-
trum and cross spectrum. In the current study, the classical coher-
ence definition is modified utilizing spectra defined locally by
Morlet wavelets to yield a time-frequency coherence function.
The traditional form of the coherence function can be retained as
the ratio of the wavelet cross spectrum to the product of the

wavelet autospectra of the two signals x(t) and y(t). The wavelet

coherence map is thus defined as

@cW~a ,t !#2
5

uSxy
W ~a ,t !u2

Sxx
W ~a ,t !Syy

W ~a ,t !
(4)

where the localized power spectra discussed above are given by

S i j
W~a ,t !5E

T

W i
*~a ,t !W j~a ,t !dt (5)

The localized time integration window in Eq. ~5!, T5@ t

2DT ,t1DT# , is selected based on the time resolution desired in

the resulting coherence map and essentially performs the same

ensemble averaging operation, albeit localized in time, as tradi-

tional Fourier analysis to obtain an auto-spectrum or cross spec-

trum of two signals. The map is bounded between 0 and 1 and

provides a view of the localized correlation with respect to both

time and frequency. An equivalence of this proposed time-

frequency coherence map with its classical formulation is demon-

strated in the following section.

It should be noted that discussions in Torrence and Compo

~1998! highlight that an earlier coherence measure defined by Liu

~1994!, similar to that used by Shin et al. ~1999!, had limited

physical meaning without the smoothing introduced here by T in

Eq. ~5!, and hint that averaging to some extent is necessary to

provide a useful measure of coherence. The parameter T in Eq.

Fig. 1. ~a! Scalogram of upstream wind velocity 1; ~b! scalogram of rooftop pressure; ~c! coscalogam of these two correlated processes; ~d!

scalogram of upstream wind velocity 2; ~e! scalogram of rooftop pressure; and ~f! coscalogram of these two uncorrelated processes
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~5! addresses this concern, although, being somewhat arbitrary, it
also presents the potential for a loss in time localization.

Comparison of Wavelet- and Fourier-Based
Coherence Estimates

The validity of the coherence map in Eqs. ~4! and ~5! is demon-
strated by first applying the wavelet-based coherence to stationary
signals. The standard Fourier-based coherence estimate is directly
compared with the wavelet-based coherence by averaging out the
time information in the wavelet coherence map, according to

@cW~a !#2
5

1

nt (i51

nt

@c~a ,t i!#
2 (6)

where nt5number of discrete time steps resulting from the local-
ized time window T.

The signals being analyzed in this example are the upstream
wave elevation and the resulting surge response of a tension leg
offshore platform ~TLP! 1:200 scale model, measured experimen-
tally in a wind/wave tank facility and shown in Figs. 2~a and b!.
Sampled at 1 Hz, 4,096 s of data is used in this analysis. Standard
Fourier coherence estimation and Eqs. ~4!–~6! are applied to
these signals with the results shown in Fig. 2~c!. The coherence is

well represented by both estimates, demonstrating the accuracy of
the wavelet-based coherence estimate with respect to both mag-
nitude and frequency. A second example demonstrates that
wavelet-based coherence can accurately estimate smaller levels of
linear correlation. In this case, independent white noise vectors
are added to the wave surface and TLP response time histories to
reduce the level of correlation, and coherence estimates are again
produced. Fig. 2~d! shows the wavelet coherence representing the
reduced correlation accurately.

Application of Wavelet-Coherence to
Nonstationary Signals

The previous section demonstrated that wavelet-coherence
viewed only with respect to frequency provides an effective co-
herence estimate. The advantage of wavelet-based coherence is
now demonstrated by its application to velocity and pressure sig-
nals with known pockets of short duration correlation. Two inde-
pendent Gaussian wind velocity signals @v1(t),v2(t)# are simu-
lated for 2,048 s at 1 Hz. A pressure record is then created by
combining independent white noise «(t) with the v2(t) wind
record

pr~ t !5«~ t !1v2~ t !1G@«~ t !2
1v2~ t !2# (7)

For this example, G50.05. Two small segments of the pressure
record, over the time interval t8, are then replaced with signals
generated by

pr~ t8!5«~ t8!1v1 f~ t8!1G@«~ t8!2
1v1 f~ t8!2# (8)

where v1 f(t8) indicates v1(t8) after band-pass filtering is applied
to correlate the pressure and the velocity record over selected
frequency ranges. The use of Eq. ~8! produces a pair of signals,
pr(t) and v1(t), correlated only from 512 to 768 s between
0.0625 and 0.25 Hz and from 1,536 to 1,792 s between 0.19 and
0.37 Hz, and uncorrelated everywhere else.

The standard Fourier-based coherence between v2(t) and pr(t)
and between v1(t) and pr(t) are displayed in Fig. 3. Note that the
intermittent coherence between v1(t) and pr(t) cannot clearly be
distinguished, suggesting that the signals are uncorrelated,
whereas the relationship between v2(t) and pr(t), as expected,
appears fairly strong.

Fig. 2. ~a! Incoming wave surface elevation; ~b! tension leg offshore

platform surge response; ~c! wavelet and fast Fourier transform co-

herence estimates between wave elevation and tension leg offshore

platform response; and ~d! wavelet and FFT coherence estimates be-

tween wave elevation and tension leg offshore platform response with

incoherent noise added to each

Fig. 3. Coherence between v2(t) and pr(t) and between v1(t) and

pr(t)
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Isometric and overhead views of the wavelet-coherence map
between v1(t) and pr(t), as generated by Eq. ~4!, are shown in
Fig. 4. For this example, and those which follow, a value of f o

55/(2p) was deemed sufficient to provide the necessary time
and frequency resolutions, though a more precise frequency reso-
lution ~larger f o) may be required in other cases, as discussed in
Kijewski and Kareem ~2002a!. A time integration window of T

5@ t264 s,t164 s# was applied. Pockets of strong correlation
can be identified in these displays that include the time and fre-
quency regions of introduced correlation, approximately boxed.
However, the coherence estimate also displays phantom correla-
tion in regions where no correlation exists, particularly in the
low-frequency regions as emphasized by the semilogarithmic plot
in Fig. 4. This noise is similar to that seen in Fourier-based spec-
tral methods, where, due to a finite number of ensembles, vari-
ance errors are introduced. In the case of the wavelet coherence
map, the localized time integration window T determines the
number of ensembles used in the estimation of coherence in Eq.
~4!. Increasing T can reduce the noise in the coherence estimate at
the expense of temporal resolution.

Minimization of Spurious Coherence

Classically, the presence of variance in raw spectral estimates
necessitates the use of averaging in order to obtain more reliable
results. However, the transient information sought in a time-
frequency analysis may be obscured through excessive averaging,
especially in the low-frequency regime, where spurious coherence
seems most prevalent. A variable integration scheme is proposed
in the following section to address this issue, followed by alter-
native approaches designed to better preserve temporal resolution.

Multiresolution Integration Windows

In the initial formulation of the wavelet coherence, the localized
time window is constant throughout the analysis. However, unlike
its Fourier counterpart, the wavelet transform is multiresolution,
having scale-dependent time and frequency resolutions. Each
wavelet coefficient, at given ~frequency! scale a i and time t j , is
the result of analyzing a local section of the time history win-
dowed by the scaled Gaussian function of the Morlet wavelet.

Fig. 4. Wavelet coherence map between v1(t) and pr(t), also shown as semilogarithmic in frequency, emphasizing low-frequency content
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Thus, the signal’s content Dt before that point in time and Dt

after that point in time is used to estimate the wavelet coefficient
Wx(a i ,t j), where Dt is dictated by a i according to Eq. 3~a!.

For the analysis conducted in the Section, ‘‘Application of
Wavelet-Coherence to Nonstationary Signals’’ and shown in Fig.
4 ~referred to herein as the baseline example!, the choice of a
constant window spanning a total of 128 s implies that at very
low frequencies, as little as one unique local section of the time
history is effectively being included in the estimate of the wavelet
local spectrum in Eq. ~5!. For f o55/2p , at 0.01 Hz nearly all the
wavelet coefficients in that 128 s time span are estimated from the
same section of the time history, approximately 112 s long (Dt

;56.27 s), and are thereby virtually nonunique. Thus, their sub-
sequent averaging does little to reduce the variance, as conceptu-
alized by Fig. 5~a!. The figure illustrates that at low frequencies
there can be considerable overlap of the Morlet wavelet’s Gauss-
ian window within the analysis horizon T, yielding only three
unique wavelet windows, shown in white. Conversely, at higher
frequencies, the same T affords five unique wavelet windows. The
ramifications parallel the estimation of power spectra from
Fourier-transformed blocks of a time history. Consider a signal of
finite duration from which five raw spectra can be generated only
by heavily overlapping the blocks of the time history being Fou-
rier transformed. These five spectra are highly dependent and thus
only minimally reduce the variance when averaged. However, if
the signal were long enough to estimate five raw spectra from
nonoverlapping segments of the signal, their averaged result
would have far less variance, just as in the case of the higher
frequencies in Fig. 4, whose wavelet coefficients are estimated
using windows with temporal duration of only a few seconds. The
localized spectra in Eq. ~5! at these frequencies include markedly
more wavelet coefficients generated from independent segments
of the time history. Now the same f o55/2p Morlet wavelet, at
0.5 Hz, produces a wavelet coefficient from only 2.24 s of data
(Dt;1.12 s), affording over 50 coefficients from nonoverlapping
segments of the 128 s analysis window for averaging and sizeable
reductions in variance. This explains why lower frequencies in the
coherence map seem to be heavily plagued by spurious coher-
ence, as emphasized when the coherence map is plotted as semi-
logarithmic in frequency in Fig. 4.

The use of a fixed integration window in Eq. ~5! actually pro-
vides differential treatment to the high-frequency components, in
terms of the number of uniquely estimated wavelet coefficients
included in the averaging process. Due to the multiresolution
character of the wavelet analysis, T in Eq. ~5! should be replaced
by T(a), so that the integration in Eq. ~5! averages the same
number of ‘‘ensembles’’ over all frequencies, as also conceptual-
ized in Fig. 5~b!. In this case, at both high and low frequencies
there are at least three unique wavelet windows, shown in white.

The variable integration scheme proceeds by defining the win-
dow of integration for each frequency as an integer multiple ~b!

of the temporal resolution of the analyzing wavelet at that scale,

given as

T~a !>2bDt5
2ba

&
5

2b f o

f &
(9)

for the Morlet wavelet. Thus, b would be chosen as a constant for

the entire map, dependent on the number of desired averages in

the coherence measure, and T(a) would vary, inversely propor-

tional to the frequency being analyzed. The inequality in Eq. ~9!

arises from the fact that the times at which the signal is sampled

will not coincide with the effective initiation and termination of

an arbitrary dilated wavelet, such that T(a) must be rounded to

the nearest sampled point. This fact leads to the overlapping

which may occur at lower frequencies, as visualized in Fig. 5.

Note that Eq. ~9! insures that there is a minimum of b indepen-

dent time segments being windowed in the estimation of wavelet

coefficients, but there certainly may be additional overlapping

ensembles present, especially in the lower frequencies. As the

number of independent ensembles makes the most significant

contributions to variance reduction, it allows the simplest and

most direct criteria for defining T(a).

In Fig. 6, the benefits of variable integration are evaluated by

comparing the baseline case to three other cases: b510, 20, and

50. Note that in the baseline case, the fixed integration window

yielded approximately b550 in the high frequencies while af-

fording as little as b51 in the low frequencies, accounting for the

prevalence of spurious coherence in this region. As shown in Fig.

6, by averaging over a horizon long enough to permit a sufficient

number of wavelet coefficients to be estimated from nonoverlap-

ping windowed sections of the time history, much of the low-

frequency spurious coherence is minimized. The higher frequen-

cies still appear to be plagued in comparison to the baseline case,

as expected, since the baseline essentially had b550 in this re-

gion. Increasing the number of ensembles being averaged to b

520 and 50 yields further improvements in the higher frequen-

cies, though the known pockets of coherence are now beginning

to bleed temporally, a consequence of increasing the time frame

for local averaging. This loss of temporal resolution in the coher-

ence map is an unavoidable consequence of increasing the num-

ber of ensembles in the averaging process. However, the ex-

amples provided in Fig. 6 illustrate that meaningless coherence

can be attributed to the effective number of ensembles in the

averaging process in Eq. ~5! and justifies the use of a variable

time window for this integration, as defined by Eq. ~9!. Unfortu-

nately, the loss of temporal accuracy places practical limits on the

use of localized integration to diminish spurious coherence, mo-

tivating more sophisticated techniques to remove noise from the

map.

Fig. 5. Illustration of variable integration window concept
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Ridge Extraction by Hard Thresholding

As wavelet analysis is used commonly for the study of evolution-
ary behavior with relatively short duration data, the possibility of
significant amounts of averaging becomes increasingly difficult if
not impossible, particularly if the signal contains transient infor-
mation that would be completely obscured in the averaging pro-
cess. An alternative approach is to separate the signal from the
noise surrounding it. In the case of analyzing wavelets whose
Fourier transforms are sharply focused near a fixed frequency
value ~e.g., Morlet wavelet!, the maxima of the resulting wavelet
transform reflect the locations where the energy of the signal con-
centrates, defining a curve in the time-frequency plane termed the
ridge—quite useful in situations where frequency-modulated sig-
nals are imbedded in noise. Although noise is spread throughout
the time-frequency plane, the contribution of the signal is much
greater than the noise in the vicinity of the ridges. Exploiting this,
the signal ridges may be identified through simple algorithms that
seek out the local maxima of the modulus of the transform at each
instant in time. More sophisticated approaches that utilize known
properties of the ridge can be applied when noise is more preva-
lent ~Carmona et al. 1998!.

However, in the coherence analysis presented here, the coher-
ent pockets are intermittent and not suitable for extraction tech-
niques geared for smooth, continuous ridges. Still, the theory of
ridges implies that globally, the truly coherent pockets will show
stronger coherence than the surrounding noise. As a result, the
truly coherent pockets may be separated by globally identifying
the maximum coherence (max@cw#) in the map and applying de-
noising schemes such as hard thresholding ~Gurley and Kareem
1999a!

cW ,hard~a ,t !5H 0 if cw~a ,t !,l max@cw#

cw~a ,t ! if cw~a ,t !>l max@cw#
J (10)

This process roughly approximates a ridge identification pro-
cedure, effectively extracting the locations where the true coher-
ence lies. l is the assigned threshold factor, taking on a value
between 0 and 1 to define the percentage of the maximum coher-
ence deemed meaningful. The thresholding not only removes spu-

rious coherence as the result of variance, but also removes the

effects of the Gaussian windowing operation in the Morlet wave-

let transform, which introduces a known level of leakage in the

time and frequency domain, respectively, embodied by end effects

and an increase in spectral bandwidth ~Kijewski and Kareem

2002b!. Though lesser values of coherence surrounding a point in

time and frequency are produced as a result of this window, the

highest coherences will still manifest along these ridge points,

which carry all the meaningful coherence information.

The thresholding operation in Eq. ~10! was applied to some of

the cases considered in the previous section. The combination of

ridge extraction by hard thresholding and variable integration pro-

vides a simple means to extract meaningful coherence from the

wavelet coherence map. For b510, increasing the threshold fac-

tor to 0.75 approximately isolates both pockets of known coher-

ence, as clearly shown when comparing the results from Fig. 6 to

the filtered results in Fig. 7. However, by selecting too stringent a

threshold (l50.90, not shown!, only a portion of the first pocket

of coherence is retained, while the second is completely lost.

When the number of ensembles is more sizeable, the threshold

factor can be relaxed considerably, as b550, l50.50 illustrates.

Recall that this thresholding approach is merely another strategy

to separate true coherence from noise. As the noise is primarily

the byproduct of variance, or a lack of averaging, in cases where

variable integration has insured a large number of ensembles in

the average ~e.g., b550), the noise has already been considerably

alleviated ~see Fig. 6!. In such cases, the noise is less dominant,

taking on lower amplitudes in comparison to the coherent ridges,

thereby relaxing the necessary threshold value l. Note again, that

the bleeding of temporal information, particularly for the first

pocket of known coherence, is an unavoidable consequence of

increasing the number of ensembles in the averaging process.

Thus far, the sections, ‘‘Multiresolution Integration Windows’’

and ‘‘Ridge Extraction by Hand Thresholding’’ have discussed

two techniques for reducing the appearance of spurious wavelet

coherence that, while simple, are quite subjective. The following

Fig. 6. Examples of variance reduction by variable integration window
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section discusses a more sophisticated technique that removes
much of this subjectivity and provides an effective means to sepa-
rate meaningful pockets of coherence.

‘‘Smart’’ Ridge Extraction: Filtered Wavelet
Coherence Map

Though the coarse ridge extraction by thresholding is a simple
means to identify meaningful coherence, the insouciant use of
hard thresholding based on global maxima may obscure meaning-
ful coherence that is weaker than the dominant coherent compo-
nents. Any coherence, real or noise induced, falling below the
threshold value is neglected. Recognizing that the spurious coher-
ence is the result of inherent randomness, one alternative would
be to conduct repeated Monte Carlo simulations of white or col-
ored random noise in order to determine the likely levels of vari-
ance in a given wavelet spectral measure. By this approach, peaks
in a wavelet scalogram, for example, are deemed statistically sig-
nificant if they surpass a given confidence level defined by the
random noise simulations, as detailed in Torrence and Compo
~1998!. However, this technique is quite generalized and does not
incorporate any specific information on the spectral or probabilis-
tic structure of the analyzed signals. This was enhanced by Du-
nyak et al. ~1997!, who presented a method to quantify the statis-
tical relevance of wavelet coefficients when detecting coherent
wind gusts. These sustained gusts are delineated from short inco-
herent bursts by establishing a reference distribution of wavelet
coefficients from simulated Gaussian signals with no sustained
gusts. This notion can be extended for the purposes of wavelet
coherence analysis by employing a ‘‘smart’’ thresholding scheme
that exploits both the spectral and probabilistic information from
the signals being analyzed to generate a map describing the ex-
pected noise threshold for a given pair of signals, x(t) and y(t)
~Gurley and Kareem 1999b!.

The expected noise map is developed by first generating mul-
tiple simulations of the second signal, denoted y s(t). These simu-
lated signals are independent of each other and x(t) and are sta-

tistically identical to the original signal y(t) in both the power
spectral density ~PSD! and probability-density function ~PDF!,
through the use of a recently developed non-Gaussian simulation
algorithm ~Gurley and Kareem 1997a!.

The wavelet coherence between x(t) and y s(t), delineated

@c i
nc(a ,t)#2, is then calculated for each of the N independent

simulations, according to Eqs. ~4! and ~5!. These coherence maps,
which should contain no meaningful coherence and only embody
coherence introduced by noise or leakage in the transform, are
then averaged to produce a mean noise reference map

@cmn~a ,t !#2
5

1

N (
i51

N

@c i
nc~a ,t !#2 (11)

with standard deviation c st(a ,t). The threshold value of a statis-
tically meaningful correlation can them be defined as the sum of
this mean and the standard deviation weighted by a factor g

c th~a ,t !5cmn~a ,t !1g@cst~a ,t !# (12)

The factor g is selected based on the desired probability of ex-
ceeding the noise threshold. With the reference map c th(a ,t) now
in place, the actual coherence of x(t) and y(t) can be generated
by Eq. ~4! and then subjected to a ‘‘smart’’ thresholding scheme,
yielding a filtered coherence map according to

cF
W~a ,t !5H 0 if cW~a ,t !,c th~a ,t !

cW~a ,t ! if cW~a ,t !.c th~a ,t !
J (13)

The noise factor g in Eq. ~12! must be selected judiciously, as
a choice that is too large may negate statistically meaningful,
albeit reduced, levels of correlation, as observed in the threshold-
ing procedure in the previous section. While the choice of g may
be rather arbitrarily defined, e.g., Hangan et al. ~2001!, a less
subjective choice for g may be determined based on the probabil-
ity distribution of the noise coherence maps.

The non-Gaussian probability distribution of the random noise

Fig. 7. Examples of coarse ridge extraction by thresholding
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map is approximated by considering higher-order statistics col-
lected from the multiple simulated noise maps, in addition to their
mean and standard deviation. As the extreme regions of the es-
tablished distribution are used to determine the threshold, the
probability model used must reliably reflect the actual distribution
of noise. An extreme value-type distribution that does not explic-
itly include any information on the higher-order statistics is dis-
regarded in favor of more advanced four parameter models. A
modified Hermite polynomial-based model and a maximum
entropy-based model are used for this study: Both of these have
been shown to be very effective in representing the tail region of
non-Gaussian processes ~Gurely and Kareem 1997b! and pro-
duced almost identical results for the examples used in this study.
The tail region of the resulting PDF represents the probability of
noise exceeding the selected threshold that demarcates correlation
in the wavelet coherence map. The noise factor g, in Eq. ~12!, is
then selected based on the desired likelihood of noise exceeding
the threshold, providing a quantitative measure of statistically
meaningful correlation.

To illustrate the proper selection of the factor g, as well as the
robustness of this approach, a filtered wavelet coherence map is
generated using N5100 for the baseline analysis of the velocity
and pressure signals, v1(t) and pr(t), discussed in the section,
‘‘Application of Wavelet-Coherence to Nonstationary Signals.’’
Note that this baseline case does not exploit the use of the vari-
able integration windows ~see the section, ‘‘Multiresolution Inte-
gration Windows’’! and thus provides significant low-frequency
noise. As Fig. 8 illustrates, the performance of the unfiltered map
is greatly enhanced as the noise exceedence criteria is made more
stringent. At the 1% exceedence level, both regions of known
coherence are completely isolated, even in the low-frequency
range, indicating that the technique cannot only remove spurious

coherence which results from variance, but also removes the win-
dow effects discussed previously that lead to leakage in the time-
frequency plane.

To further illustrate the application of the filtered wavelet co-
herence map, measured full-scale incident wind velocity fluctua-
tions and their corresponding pressure variation over a building
surface are analyzed. Note the strong low-frequency correlation
evident in the time histories of velocity and pressure shown in
Figs. 9~a and b!. The filtered wavelet coherence map is generated
using a threshold reference map based on 500 simulated realiza-
tions of the data. Figs. 9~c–f! show the resulting filtered wavelet
coherence map at several levels of the noise factor g. Extraneous
noise again is removed as g increases, leaving a clearer portrait of
the pockets of strong correlation. Though relatively intensive, the
application of these filtered wavelet coherence estimates to wind
data may be useful for identifying intermittent variations in the
relationship between the velocity and pressure introduced by a
change in wind direction or due to the evolution of a flow struc-
ture under the separation zone. Such maps can enhance the un-
derstanding of complex wind-structure interactions and open new
avenues for data analysis, modeling, and simulation.

Scale ÕFrequency-Averaged Wavelet Coherence Map

Traditionally, coherence is displayed as a function of frequency
only, averaged over the entire time duration, as shown previously
in Fig. 3. As a result of the dual character of wavelet transforms,
the resulting coherence maps may be manipulated in order to
view coherence with respect to time. The wavelet coherence be-
tween two signals and those between the first signal and simu-
lated versions of the second signal are each averaged over the
scale component. In doing so, a display of the scale-averaged

Fig. 8. Filtered wavelet coherence map between v1(t) and pr(t) with g selected for varying noise exceedence levels
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coherence, c̄(t), mean noise reference coherence, c̄mn(t), and

threshold coherence, c̄ th(t), between the two signals can be gen-
erated with respect to time rather than frequency. Such an inter-
pretation for the simulated velocity and pressure v1(t) and pr(t)
is displayed in Fig. 10~a!. The intermittent correlated regions
clearly stand out as those surpassing the noise threshold, deter-
mined as a percent exceedence in the Hermite polynomial-based
probability distribution model derived from the first four mo-
ments of the noise coherence maps as shown in Fig. 10~b!.

Higher-Order Coherence

The wavelet coherence has been demonstrated to be useful for
detecting localized linear coherent structures in time and fre-
quency. However, higher-order spectral analysis must be con-

Fig. 9. ~a! Measured wind velocity; ~b! measured wind pressure; ~c! unfiltered wavelet coherence map; filtered wavelet coherence map with g

selected for varying levels of noise exceedence; ~d! 25% exceedence; ~e! 10% exceedence; and ~f! 1% exceedence

Fig. 10. ~a! Scale-averaged coherence along with mean coherence

and noise threshold and ~b! Hermite polynomial-based probability

density function model of reference noise maps
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sulted for estimating nonlinear correlation, such as the use of
bicoherence for second-order correlation ~e.g., Nikias and Petro-
pulu 1993; Gurley et al. 1997!. The bicoherence is the ratio of the
higher-order cross bispectrum to the first-order spectra. Due to its
direct analogs to the Fourier transform, a Morlet wavelet trans-
form may again be substituted in the bicoherence calculations to
provide a time-frequency higher-order spectral equivalent.

One disadvantage of higher-order spectral techniques is the
quantity of data needed to acceptably minimize variance errors in
the higher-order spectral estimates. As a result, intermittent bursts
of strong second-order correlation cannot be identified by apply-
ing a Fourier-based method over short time intervals without the
benefit of additional variance reduction schemes. By extending
the wavelet-based spectral estimation of coherence to the bicoher-
ence estimates, the notion of a filtered wavelet bicoherence map
can similarly be developed. Thus, the localized Fourier analysis
that was once precluded is now made possible through this mul-
tiresolution wavelet framework to detect transient second-order
relationships between two signals.

Wavelet Bicoherence

In this framework, wavelet coefficients are used to estimate bico-
herence over short time intervals and are displayed with respect to
both time and frequency. The time-scale wavelet cross bispec-
trum, given by

Bxxy
W ~a1 ,a2 ,t !5E

T

Wx~a1 ,t !Wx~a2 ,t !Wy~a ,t !dt (14)

where

1

a
5

1

a1
1

1

a2
(15)

is used in the evaluation of the wavelet bicoherence ~Powers et al.
1997; Gurley and Kareem 1999b!

@bxxy
W ~a1 ,a2 ,t !#2

5

uBxxy
W ~a1 ,a2 ,t !u2

*TuWx~a1 ,t !Wx~a2 ,t !u2dt*TuWy~a ,t !u2dt
(16)

Note that the wavelet coefficients simply replace the Fourier co-
efficients in the standard bicoherence, and integrals replace the
expected value operator. The integration over short time windows
in Eq. ~16! provides an expectation over short time intervals. As
currently defined, this local window T is fixed in duration over all
frequencies, implying that this ensemble averaging is again dif-
ferential over the range of frequencies. While the concept of vari-
able integration can also be used to provide equal levels of vari-
ance reduction over all scales, the introduction of a filtered noise
reference map was shown in the case of wavelet coherence to
independently remedy the problem of spurious coherence. As a
result of this, and for the sake of brevity, only the use of a filtered
map for the wavelet bicoherence is discussed here.

Filtered Wavelet Bicoherence Map

The wavelet bicoherence defined in Eq. ~16! can manifest spuri-
ous spikes, particularly in the low frequencies, as also noted by
Powers et al. ~1997!. As discussed previously and demonstrated
in Fig. 4, spurious coherence and similarly bicoherence is the
result of insufficient averaging to remove the randomness in the
estimation. Thus, following the success of reference noise maps
in the estimation of coherence in the section, ‘‘ ‘Smart’ Ridge
Extraction: Filtered Wavelet Coherence Map,’’ the same concept

is extended to the bicoherence measure to eliminate such spurious

artifacts. Reference wavelet bicoherence maps are created be-

tween the first signal x(t) and multiple independent simulations

of the second signal y s(t), statistically identical to y(t) in both

PSD and PDF. The wavelet bicoherence maps between first signal

and the simulations of the second signal are then averaged to

produce a mean noise reference map, bxxy
Wmn(a1 ,a2 ,t). The stan-

dard deviation of the reference maps, bxxy
Wst(a1 ,a2 ,t), is also cal-

culated, as well as their skewness and kurtosis. The threshold

value of a statistically meaningful correlation, bxxy
Wth(a1 ,a2 ,t), is

then given by

bxxy
Wth~a1 ,a2 ,t !5bxxy

Wmn~a1 ,a2 ,t !1g@bxxy
Wst~a1 ,a2 ,t !# (17)

with the noise factor g again selected based on the desired prob-

ability of noise exceeding the noise threshold, as discussed in the

section, ‘‘ ‘Smart’ Ridge Extraction: Filtered Wavelet Coherence

Map.’’

The wavelet bicoherence maps are then compared with the

threshold bicoherence map calculated in Eq. ~17! to produce a

filtered coherence map by ‘‘smart’’ thresholding

bF
W~a1 ,a2 ,t !

5H 0 if bxxy
W ~a1 ,a2 ,t !,bxxy

Wth~a1 ,a2 ,t !

bxxy
W ~a1 ,a2 ,t ! if bxxy

W ~a1 ,a2 ,t !.bxxy
Wth~a1 ,a2 ,t !

J
(18)

Application of Wavelet-Bicoherence to Nonstationary
Signals

Validation of the proposed methodology is conducted by generat-

ing velocity and pressure signals with known pockets of short

duration second-order correlation. Two independent wind velocity

signals @v1(t),v2(t)# are first created, each 4,096 s long, sampled

at 1 Hz. The pressure record is created in the same way as de-

tailed in the section, ‘‘Application of Wavelet-Coherence to Non-

stationary Signals’’ using Eqs. ~7! and ~8!, with the nonlinear term

G50.1. The correlated time segments t8 in Eq. ~8! span time

ranges from 1,000 to 1,600 s and from 3,000 to 3,400 s.

Eq. ~16! is then applied to determine the bicoherence between

v1(t) and pr(t) over 16 equispaced segments spanning the entire

time duration of the signals. This results in 16 bicoherence maps,

each for a localized time span. Four of these maps are shown in

Fig. 11~a!, with their respective time region labeled. The first two

figures in Fig. 11~a! display bicoherence measurements from the

regions known to contain second-order correlation. The latter two

figures display bicoherence measurements from regions known to

have no correlation. As true of the coherence estimates in the

section, ‘‘Wavelet-Based Coherence Map,’’ these raw estimates

contain noise, making identification of correlation difficult; how-

ever, implementation of the noise reference maps, as described in

Eq. ~18!, permits true correlation to be distinguished from likely

statistical noise. This is shown in Fig. 11~b!, which displays the

same four regions after filtering is applied. In this case, g was

selected such that the probability of noise exceeding the threshold

is 10%, and 1,000 independently simulated pressure records were

used to generate the threshold reference map. The correlated time

frames are clearly seen in the first two views of Fig. 11~b!, while

most extraneous noise was filtered out in the latter two uncorre-

lated segments.
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Scale ÕFrequency-Averaged Wavelet Bicoherence Map

The multiple three-dimensional bicoherence maps shown in Fig.
11 can be reduced to a two-dimensional representation of second-
order correlation by averaging the bicoherence over all scales for
each time segment, according to

bxxy
W ~ t !5

1

n f 2 (
i

n f

(
j

n f

bxxy
W ~ f i , f j ,t ! (19)

Application of Eq. ~19! to the wavelet bicoherence maps previ-
ously generated reduces the 16 individual maps to 16 data points,
shown in Fig. 12. This reduction is also applied to generate
frequency-averaged mean reference bicoherence maps and their
standard deviation to produce the threshold also shown in Fig. 12.
Clearly, the time segments with known correlation can be identi-

fied as those exceeding the threshold level representing likely
random noise. The frequency-averaged bicoherence provides only
a qualitative display of the relative magnitude with respect to the
noise threshold.

Bicoherence Example Using Measured Data

A second example illustrates the applicability of the wavelet bi-
coherence on measured experimental data. Recall the example
presented in Fig. 2. The signals being analyzed are upstream wave
elevation and the resulting surge response of a tension leg plat-
form. Both viscous and inertial wave forces are acting on the
platform, leading to strong first- and second-order correlation be-
tween the wave elevation and surge response throughout the time
history ~e.g., Tognarelli et al. 1997!. In order to introduce regions
where no correlation exists, two separate surge response records
are combined. The wave elevation record wv1(t) and one of the
response records x1(t) were measured simultaneously during the
same experiment, while the second response record x2(t) was
measured in a separate experiment, and thus uncorrelated with the
wave elevation record wv1(t). For the total of 4,096 s of data, the
following tailored response vector:

x~ t !5@x2~122,048! x1~2,04922,560! x2~2,56124,096!#

(20)

contains only one small time segment of data correlated with
wv1(t) in the range of 2,049–2,560 s.

The wavelet bicoherence is again calculated over 16 equi-
spaced time regions. Fig. 13~a! shows the unfiltered bicoherence
estimates for two of these regions, with their respective time seg-
ments labeled, while Fig. 13~b! displays the improvement after
filtering with a noise map. The time segment from 2,049–2,304 s
represents a time frame where correlation exists, while the second
time frame has no correlation. The spurious noise in this latter
case is completely removed by the filtering procedure, while the
former case is relatively unchanged, representing a region of
meaningful correlation. The frequency-averaged bicoherence es-

Fig. 11. Wavelet bicoherence maps between v1(t) and pr(t): ~a! unfiltered and ~b! filtered. Signals are correlated over 1,025–1,280 s and

3,073–3,328 s, uncorrelated over 257–512 s and 2,561–2,816 s

Fig. 12. Scale-averaged bicoherence of simulated velocity and

pressure signals, v1(t) and pr(t)
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timate for each of the 16 time frames is shown in Fig. 14, iden-
tifying the known correlation region as the point at which the
coherence exceeds the noise threshold. Both Figs. 13 and 14
clearly help in identifying the regions containing second-order
correlation.

Conclusions

In this study, wavelet decomposition was used to produce a time-

frequency display of the coherence and bicoherence between sig-

nals intermittently correlated. Unfortunately, raw spectral esti-

mates used in the definition of coherence and bicoherence were

inherently laden with statistical noise. The classical approach for

reduction of variance is to perform ensemble averaging by using

localized time integration. In this case, the introduction of a vari-

able integration window was predicated on the multiresolution

character of wavelets and highlighted that the lack of ensemble

averaging results in much of the observed spurious coherence.

Insuring sufficient ensembles in the average reduced the spurious

coherence, though the loss of temporal resolution was a limiting

factor. The theory of ridges was briefly introduced and the con-

cept of hard thresholding based on global maxima of the wavelet

coherence map was used as a coarse ridge extraction scheme to

isolate meaningful coherence. The technique, when coupled with

sufficient ensembles in the variable integration scheme, was

shown to enhance performance. However, to preserve evolution-

ary characteristics while removing significant noise, more sophis-

ticated approaches were required which do not involve extensive

averaging. A ‘‘smart’’ thresholding simulation scheme was pro-

posed to provide a reference noise map to separate spurious noise

effects from true signal content. The noise was filtered from the

display map by comparison with a threshold describing the likely

noise level. This threshold was created by averaging a series of

Fig. 13. ~a! Unfiltered and ~b! filtered bicoherence. t52,049– 2,304 s represents correlated time segment, while t5257– 512 represents uncor-

related time segment

Fig. 14. Scale-averaged bicoherence of experimental tension leg off-

shore platform data
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reference correlation maps between one signal and uncorrelated
simulations of the second signal. Examples demonstrated that this
technique was capable of identifying both first- and second-order
correlation and effectively reducing the presence of noise in the
correlation displays for both simulated and measured data. Its
robustness was further established as it was shown to alleviate the
presence of spurious coherence, even in cases where variance and
leakage were prevalent. Though relatively intensive, the proposed
approach facilitated the removal of significant levels of all of the
various contributing noise sources. In total, the wavelet-based
first- and higher-order correlation detection analysis schemes pre-
sented here offer immediate applications where the determination
of intermittent correlation between linear and nonlinear processes
is required, e.g., bluff body aerodynamics in turbulent flows,
wave-structure interactions in nonlinear random seas, and the
nonlinear and nonstationary seismic response of structures.
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