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Abstract 

The first two moments o f  non-linear and least-squares estimators are studied. 

Approximate expressions for the moments are derived and discussed The results are 

compared with those of Jeudy [1988]. 

1. Introduction 

Despite the fact that almost all functional relations in our geodetic models 
are non-linear, we predominantly use the ideas, concepts and results from the theory 
of linear estimation in our geodetic adjustment. In order to be able to justify such a 
linearized approach, we need to have ways of assessing the amount of non-linearity 
and methods to prove whether a linear(ized) model is a sufficient approximation. We, 
therefore, need to know how non-linearity manifests itself at the various stages of an 
adjustment. 

In this paper, we will restrict ourselves to least-squares (LS) estimators and 
only study the effect of non-linearity on their first two moments. 

Although we emphasize a diagnostic point of view, most of the objectives of 
this paper are essentially the same as those of the interesting paper [Jeudy, 1988]. We 
will compare our results - parts of which are taken from Teunissen [1984, 1985] and 
Teunissen and Knickmeyer [ 1988 ] -  with those of [ ib id] .  We will also try to clarify 
some points which were raised in [ ib id] .  

2, First moment of a non-linear estimator 

One of the commonest problems in estimation theory is, given a series of 

random variables y i ,  i = 1 , . . . ,  m (the underscore in y i  typifies randomness), 

to find a set of functions of these, x a ( y i ) ,  a = 1 , . . . ,  n ,  which should provide an 

estimator, ~a = x a ( y i ) ,  of an unknown set of parameters x a (in this paper, Greek 
indices range from 1 to n ,  while Roman indices range from 1 to m). There exist 
many general considerations for the development of "good" estimators [see e.g. Mood 
et al., 1974]. One of these is unbiasedness (although in some cases it may be useful to 
sacrifice the unbiasedness condition in favour of other, more desirable, properties; e.g. 

Bull. Gdod. 63 (1989) pp. 253-262. 
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a better precision). An estimator x a of x a is said to be unbiased if E = x a , 
where E I . ~  stands for the mathematical expectation operator.  The difference 

E l  2 a l  I x~-  a is called the bias of ~a and it will be denoted by b a . 

In general, we can hardly expect non-l inear estimators to be unbiased, since 

if x a ( . ) i s  non-linear, then E I x a ( _ y i ) t  =/= x a ( E l y i t ) ,  i.e. the mean of  the 

image differs generally from the image of the mean. If the non-l inear funct ions X a ( . )  
admit a Taylor expansion, it is not di f f icult  to derive an expression which approximates 

(Z 

the bias b~ .  The usefulness of such an expression is threefold. Firstly, such an expression 

will give us valuable insight in the factors contr ibuting to the bias b s  Secondly, the 
expression may show us the way to derive practical measures for testing the significance 
of  the bias. And, finally, if the bias turns out to be significant, the expression might be 

used to correct the estimator ~a for biasedness. 

Let us assume that the unknown set of parameters x a which are to be 

estimated, satisfy x a = x a ( y i ) ,  and that the random variables _yi have a mean 

E l -Yi  I and covariance matrix 02 g i j ,  where ~ stands for the variance factor of 
i l y i l  _ , i  y i  unit weight. We also assume that the bias by = E of as an estimator 

of  y i ,  is not necessarily equal to zero. A Taylor expansion of &a = x a ( y i )  at y i  
gives then �9 

x~a = X a + Oi X a (yi  -- y i )  + 1/2 ~ 2  X a ( y i  _ yi) (y...j _ yj) . . . .  , (1) 

where 0 i x a and 02 x a stand for the first and second order partial derivatives of ij 
x a ( . )  evaluated at y i  respectively, and Einstein's summation convention is used for 
repeated indices. Upon taking the expectation of (1) we get " 

I b'- 'ixa i " ' 1  " by + ,/= xO(o2 g,J § b'  (21 

2 x a  " "  Note that ai j  gU in (2) stands for a weighted trace. It reduces to the ordinary trace 

of  a 2 x a , if gi j  equals the identity matrix. 

Before we make some remarks on (2), let us first see this formula at work  on 
an example. We have chosen the fol lowing illustrative, but simple and artificial example �9 

Let the parameter x ,  which is to be estimated, be given by x = y i  $ i j  YJ ' 

i , j  = 1 . . . .  , m ,  where y i  = y V i  and thus x = my  2 (&i j  stands for the Kronecker 

delta �9 ~ i j  = 1 if i = j ,  ~i j  = 0 if i =/=j) .  The partial derivatives evaluated at y i  

read then n i x  = 2y  i = 2 y ,  V i and a 2 x  = 2 5 i j .  L e t y i  be normally distr ibuted 
i = as _.yi ,,, N ( 0 ,  e 2 &iJ).  Then by - y ,  V i  " Hence, with the aid of (2) we f ind that 

b# = - 2 m y  2 + 1/2 . 2 . $ i j ( e 2 + y 2 ) $ i J  = m ( e 2 _ y 2 ) .  This result is easily 

. ~ �9 . 0" 2 verified, since clearly the estimator x = y16,:  yJ has a x2-d is t r ibut ion wi th  m 
- 

degrees of freedom and thus a mean of E x = m e  2 . Hence we find again that 
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l ^  I - m y 2  " E x - x  = m e  2 

With respect to formula (2), the following remarks are in order : 

1. For formula (2) to be useful, we need to know the functions x a ( . ) ,  or at least 
their partial derivatives of lower order. In a non-linear least-squares context this is a 
non-trivial matter. We wil l  come back to this in section 3 

�9 x a is independent of y i  and second 2. If the functions x e ( . )  are linear, then a 

and higher order partial derivatives vanish. Formula (2) reduces then to 

a x a b i (3) b~ = a i y 

Here we recognize the well-know0 bias propagation formula, which is used extensively 
in linear estimation theory and in reliabil ity theory. A useful upperbound on the absolute 

va[ues of the elements of the bias vector (3) of _x a can be obta'ined through the use of 
Cauchy-Schwarz'inequality 

a 11 , ( 3 ' )  I I o# o, II by 

A 

where ~ a. stands for the variance of _x a and I[ by [12 = e -2  biy gij bJy , w i t h  
" "  = (~ l  

glj gjk k �9 A similar bound wil l be derived in section 3 for the bias in the non-linear 

least-squares estimator. 

3. If the functions x a ( . ) a r e  quadratic, then ~)~jx a is independent of y i  and 
formula (2) holds exactly (see example above). 

4. If y i  is an unbiased estimator of y i  i.e. b i = 0 then (2) reduces to �9 
- -  ' y ' 

~" gl] (4) 

This is formula (13), with (14), of [Jeudy, 1988] (the difference in sign between 
the two formulae is due to a different convention in the bias definition).The approxima- 

tion (4) neglects terms of the order 03 and higher. 

5. Formula (4) becomes an improved approximation of the bias in &e if y i  is an 

unbiased estimator of y i  and _.yi is normally distributed. In this case terms of the order 

e 4 and higher are neglected, due to the fact that the third order central moments 

vanish. Hence, if the functions x a ( . )  are cubic in this case, then (4) holds exactly. 

6. If y i  is a non-linear least-squares estimator of y i ,  then (see next section) b i 
- y 

is of the order a 2 . Hence, by retaining quantities of the order o 2 formula (2) can be 
simplified to " 

b~ - ~i xa  bi  + 1 02 a.2. xa  "" 
Y 2 U gU (5) 

7. Once the bias in x a is known, one can derive, using exactly the same Taylor 
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expansion technique as was used above, an approximation to the covariance matrix of 

x~ a , For the case that y i  is an unbiased estimator of y i ,  this will give formula (19) 

of [ibidJ. Note that if y i  is normally distributed, this formula simplifies because of 

the terms of order o 3 . 

8. In [Jeudy, 1988], under the heading "practical considerations", the interesting 

point is raised concerning the evaluation of the partial derivatives of x a ( . ) .  In (2), as 
in formulae (13), (19) and (21) of [ ib id] ,  the partial derivatives need to be evaluated at 
y i ,  which is unknown in general. In practice one will therefore, if yj  is an unbiased 

estimator of y i ,  evaluate the partial derivatives at the known sample value of y i .  And, 
as is correctly pointed out in [ ib id] ,  this will introduce another approximation in the 
computation of the bias. 

In [Jeudy, 1988] a numerical example is given with .the purpose Of testing the 
adequacy of his formulae (13) (our formula (4)) and (21) for the bias and covariance 
matrix respectively. Unfortunately the author has missed here the opportunity to 
investigate for his particular example, the effect of evaluating the partial derivatives at 

a sample value instead of evaluating at y i .  For the example given in [ ib id] ,  the closed 
form expressions for the bias and variance respectively, are namely easily derived. They 
read in the notation of [ibid] �9 

X(L) -E  l~((~)l  = exp(- ;~L2)-E l e x p ( - ~ 2 )  I and 

I 1 l l 
with E 1 exp(-~"~2) I = (2~.o 2 + l)-l/2.exp(-~.(2~O .2 + l) -1 L2). 

For the bias formula (2) we belief that the problem of having to evaluate the 

partial derivatives at a sample value instead of at y i ,  should n~{-be of too much concern 
to us. First of all, one can always, from a diagnostic point of view, evaluate the partial 

derivatives at all likely values of y i ,  in order to infer whether non-linearity is likely 
to produce a significant bias or not. In some practical important cases one can even 
derive a closed formula for the bias, and th.Js study the behaviour of bias under various 
circumstances (see e.g. [Teunissen, 1985]or [Teunissen and Knickmeyer, 1988] for the 
bias in the scale estimator of the Symmetric Helmert transformation). Secondly, if the 

partial derivatives of (2) are evaluated at a sample value of yi and if y i  is either an 

unbiased estimator of y i  or a non-linear least-squares estimator of y i ,  one can show 
with the same Taylor expansion technique of above, but now applied to the partial 

derivatives of x a ( . ) ,  that the additional error introduced will be of the same order, on 
the average, as the order of the terms one is already neglecting in (2). 

For the covariance formulae (19) and (21) of [Jeudy, 1988] the situation is 
more problematic. In this case the additional error introduced is of the same order, on 
the average, as the terms which are included in (19) and (21). If the need arises, i.e. if 
higher order terms turn out to be significant, it is therefore doubtful whether (19) and 

(21) of [ibid] can be used as improved formulae for the covariance matrix o f  x~ a in 

case evaluation, is done at a sample value of __yi. Nevertheless, if the first, second and 
third order partial derivatives are not too difficult to compute, these formulae can still 
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be used as diagnostic tools for inferring the effect of non-l inearity. We wil l come back 
to this point in section 4 .  

3. First Moment of a Non-linear LS--Estimator 

Consider the non-linear model 

yi = A i ( x  a ) +  e i 02 gij i , j  = 1 m"  a = I n (6) 

where e i is random with zero mean and covariance matrix o 2 g i j .  Then __yi, the 

observables, are random with mean A i (• and covariance matrix 0 .2 g i j .  Since we 

wil l assume that __yi is normally distributed, we have, through the method of maximum 
likelihood (ME) ,  a probabilistic justification for using the LS-criterium in finding the 

[,S-estimator ~a = • (y i )  of the unknown but fixed set of parameters.x a . Again 
the estimator wil l  be biased in general. From the invariance Ibroperty of ML fol lows 

namely that if ~a is the ML-est imator of x a than for any arbitrary regular 

enough function F ( . ) ,  F(,r a) is the ME-estimator of F ( x a ) ,  and since 

E lF(s l #- F ( E  I ~ _ a l ) i t  will be the exception rather than the rule for a ML-  
estimator to be unbiased. 

In order to be able to compute the bias in the LS--estimator &a of x a , we 

need to know, as before the functions x a ( . )  or at least their second order partial 

derivatives evaluated at E l__yi I . Since we do not have, in general, closed expressions 
available which express the estimators as known functions of the observables, we again 
have to take recourse to Taylor expansions. The method we wil l  use was also used in 
[Teunissen, 1985], and can be described as follows �9 

First assume that the LS-estimator ~__a = x a (Y2) admits a Taylor expansion 

at E l y i l  . Tay l o r  expansion at F. l y i  I gives an expansion in e 2 .  The problem is 
now to find the coefficients of this expans,on. Once these coefficients are known, we can 
apply formula (4) of the previous section. 

The coefficients are found in the following way. We start from the orthogonality 

A i ( • ) g i j  (YJ AJ ('~)) Expansion of the right hand side of the conditions 0 = D a " - _ . 

orthogonality conditions at x a gives an expansion in ~.._a_ • We now substitute 

our first expansion in e i , in the above expansion in _ ~ a - x  a . The result is a new 

expansion in e i , which is identical to zero for all _e i . Hence we may collect terms of 
the same order and set them to zero. After taking the expectations of these terms and 

making use of the central moments of e 2 , e.g. 

we can recursively determine all the coefficients sought. The higher order central moments 

of e i fo l low from using e.g. the characteristic functions approach. 

In a similar way one can find the bias in the LS-residual 
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2 i  = A i (s . 

a) b x  - 0 2 ga# 0# A i g i j  bj 

e 0 .2 [ 5 )  -- 0 a A i A k b j b) b i  ._. " ga#  0# g k j  ] 

with �9 b j = 1 02 Aj 
-- "2 a #  ga/3 

(8) 

All  partial derivatives in (8) are evaluated at x a . The matrix t r 2 g  at3 is to a 

_ A i A j = 5 a first order the covariance matrix of ~a (see section 4) and ga#0#  gi j  0 ,  7"  

The fo l lowing remarks about (8) are in order �9 

1. In (8) terms of the order o 4 and higher are neglected. If y i  is not normal ly  

distributed, then in general only terms of the order a 3 and higher are neglected. 

2. Using results from differential geometry, the right hand sides of (8) can be given 
simple geonqetric interpretations (see [Teunissen, 1985] for more details). 

3. The above approximations of the biases were derived using the se t -up  of 
observation equations. For the dual set-up of adjustment by condi t ion equations similar 
results can be given (see [Teunissen and Knickmeyer, 1988]) . 

4. From (8) fol lows that the bias in the parameters is zero if either the model is 

linear, i.e. b j = 0 ,  or i f  b j is orthogonal to the rangespace of 0 A i . The bias in the 
a 

residuals is zero i f  either the model is linear, b j is orthogonal to the orthogonal 

complement of the rangespace of 0 a A i , or i f  m = n., i.e. i f  there is no redundancy. 

5. Expression (8.) shows that, roughly speaking, the fol lowing factors effect the bias ' 

a priori precision ( a 2 g i j ) ,  the design (a a A  i) and amount of non- l inear i ty  (bJ).  

This indicates that in most geodetic models it is not so much the absence of severe non-  
l inearity which makes bias negligible, but the relatively high precision of the measurements 

(e.g. o = 10 -5 or better). For the same reason (see section 4) the inverse of the normal 
matr ix of linearized least-squares suffices for most applications as an approx imat ion to 
the covariance matr ix of the LS-estimator. 

6. It is interesting to observe that the biases in the LS-estimators x_ a and ~_~ are 

computed from b j , just like in the linear LS-case the estimators ~a and ~i  themselves 

are computed f rom_yi  . Hence wi th  an available LS-software package the evaluat ion of 
the biases becomes rather simple. 

7. Apart  from (8), it is useful to have global scalar bias-measures available which 
summarize the bias present in the non-l inear model. In order to discern the significance 
of  the biases it was proposed in [Teunissen and Knickmeyer, 1988] to weight the biases 
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in the parameters and residuals with the inverse of 02 ga# and 02 gij respectively. 

With I1-112 = o - 2 ( . )  a .)/3 ~ 0-2 . ) i  , ) j  1 ga# ( , II �9 I1~ = ( gij ( , it follows from 
(8} that 

.L 
I Ib~ , l l  1 - o l l P A b l l  2 , I I b ~ l l  2 - o l I P A  b l l  2 , (9) 

..L 
Where PA and PA are orthogonal projectors, projecting onto the rangespace of c3 a A i 

and its orthogonal complement respectively. Using "Pythagoras" the fol lowing 
approximate upperbounds are obtained from (9) 

I I b ~ l l  1 @ I l o b l l  2 , I Ib~ ' l l  2 <~ I l o b l l  2 . (9') 

8. Alternative local upperbounds for the biases can be obtained from (8) using 
Cauchy-Schwarz ' inequality ' 

Ib~ I ~ o#al lobl l  2 I b ~ l  < o~ , i l l ( rb l l  2 10) 

2 dr~ 2 �9 ,~xa A "  where o~, a and i are, to a first order, the variances of and respectively. e l 
e 

Compare (10} with (3') of section 2. 

9. In [ ]eudy, 1988] the steps to be taken for deriving the second order partial 
derivatives, which are needed for the LS-bias, are outlined. Together with his formula 
(13) (our formula (4)) this then gives his approximation of the bias in the LS- 

estimator ~a . In order to be able to compare our result (8a) with the one of [ ibid],  

we have to compare the different ways the partial derivatives of the functions x a ( . )  
are derived and evaluated. Above and in section 2 ,  we have worked with the second 

order partial derivatives evaluated at E l y i l  . Also in the first part of [ ibid] the bias 
formula is given with the second order partial derivatives (his H-array) evaluated at 

E , , lY i l  In the second part of [ ibid] however, the author unfortunately does not, in 

his sequence of steps for obtaining the H-array, evaluate at E I y i  I ' Thus in contrast 
to the first part of [ ib id ] ,  the derivations in the second part of [Tbid] are all done with 
an evaluation at the sample point. Note that there is a difference whether one starts of 

by deriving the partial derivatives all evaluated at E l y i  I and then in the final result 
evaluates at the sample point, or whether one starts evaTu~iting from the beginning at the 
sample point. 

The consequences of the approach taken in [ ibid] are in our opinion somewhat 
unfortunate. First of all this method gives a rather complicated structure for the H-array. 
This may be the reason why the author does not expl ic i t ly state the final form of his 
H-array. In any case, when compared to (8a), the result seems to be too complicated to 
be practical useful. Secondly, the H-array so obtained is very di f f icul t  to interpret. One 
is almost certainly not able to give a simple geometric interpretation, as was given to (8) 
in [Teunissen, 1985]. Also the LS-interpretation, which was given above to (8), is then 
not possible, and the simple bounds (9') and (10) wil l  be hard to get by. Finally, it 
turns out that with the approach of [ ibid] one needs for the evaluation of H up to third 
order partial derivatives of the observation equations. In (8) we only need the first and 
second order partial derivatives. 
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4. On the Second Moment  of a Non- l inear  LS-Estimator 

In section 2 we already expressed our doubt whether in general the covariance 
formula (19) of [Jeudy, 1988] can be considered an improved formula when evaluated 
at the sample point. The sample point evaluation introduces namely additional errors 
that are on the average of the same order as the terms already included in the formula. 
Nevertheless, from a diagnostic point of view, such formulae can still be useful, e.g. to 
infer and study the effects of non-linearity. 

As to the formulae of [ibid] for approximating the covariance matrix of the 
s our comments of section 3 concerning complexity and interpretation 
also apply here. 

Our derivation of an approximation to the covariance matrix of the LS- 

estimator ~a of x a , follows along the same lines as our derivation in section 3. We 
m 

will denote the covariance matrix by a 2 G ag . 

With the definitions ['~1'~ =A C321,8 A ig i j  c3g A j g#a,  Bil,6 =A c32,r~ A i -  ra'r~ 6qa A i '  and 

by taking only terms up to the order 04 into account, our result reads : 

02 Gag _. (72 gag + Aa# , with 

Aag = a 2ga-r 0 t b~*x + 0 2  0 b 2x g'r# +~I a4 r r~ga. "reg6p [,#ep 

B i ga P B j g~g 4_ 04 ga~ ~6 gij gr 

(11) 

All the partial derivatives in the above formula are evaluated at x a . 

1. Although expression (11) is of a rather complicated form, some structure can be 

discerned. First note that the first order term o 2 gag is of the form of the inverse of 
the normal matrix of linearized least-squares. This was to be expected. The additional 

term A ag is of the order o 4 . The first two terms of A ag depend on the rate of 
change of the bias; the third term can be shown to describe the non-linear behaviour 

o f  the x C* -parameter curves in the manifold described by E l__yil = A i ( x  a) (the 
p a ~6 -a r ray  is the Christoffel symbol of the second kind, see [Teunissen, 1985])" and 

i 
the fourth term can be shown to describe the curvature of this manifold (Ba6 is the 

multi-dimensional generalization of the second fundamental tensor known from classical 

surface theory). Hence, relative to gag,  this fourth term of A a# is invariant against 
reparametrizations and therefore gives a limit in the reduction one can achieve through 
reparametrizations. 

2. Although one could use (11) to study the effect of non-linearity, a somewhat 

simpler expression is obtained if we study the average of Aa# relative to 02 ga~.  We 

therefore take the trace of 0 -2 g~,a Aa~ and get 
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o' " g a 3  - ~ "y 
1, 02 ~ 2 Aj ) bx + (0~z3 Ai) gij ga~, g38(~) r, 

- -  P ap AJ) 1 02 (Fea3 ~ A i) gij ga3, g3~ (Ft6 
2 e 

Since the last term is non-positive we have the approximate bound " 

"r 0 2  2 (12) 

3. A lower bound for (12) can be obtained via the celebrated Cramer-Rao bound (see 
e.g. [Mood et al., 1974]).  In our case �9 

where the inequal i ty should be read as a matrix inequality. Hence, neglecting the term of  

order 06 gives approximately �9 

bZ - II bs I1~ (13) ga3 ( G a 3 - g a 3 ) ~  2a v x 

The effect of non-l ineari ty can now be considered insignificant if one over n 
times the bounds are small compared to one. 

5 .  C o n c l u s i o n s  

In this paper we have discussed the effect of non- l inear i ty on the first two 
moments of non-l inear and least-squares estimators. Approximate expressions for the 
biases in non-l inear and least-squares estimators were given. The approximations neglect 

terms of  the order a 3 or higher. The same approximations also hold on the average i f  
the formulae are evaluated at the sample point  instead of at the mean. 

The structure of  the bias formula for LS--estimators is such that it fits w i th in  
the general framework of linearized IS-est imat ion and is therefore not d i f f icu l t  to 
compute in practice. 

The factors that effect the bias are : a priori precision, the design and amount 

of non- l inear i ty.  Since the bias is of the order o 2 , the relatively high precision of 
geodetic measurements often makes bias negligible, despite strong non- l inear i ty  in the 
functional model. 

For the same reason the inverse of the normal matrix of linearized least-squares 
suffices for most applications as an approximation to the covariance matr ix of the LS- 
estimator. 

An  approximation to the order e 4 of  the covariance matrix of the I S -  
estimator was given and discussed, The result is useful as a diagnostic tool to infer the 
effect of non-l ineari ty.  When the intention is to use the covariance formula as an 
improvement over the customarily used approximation, one should keep in mind that 
a sample point  evaluation introduces additional approximations which on the average 
are of the same order as the terms included in the covariance formula. 
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