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ABSTRACT

Coupling atmosphere, ocean, sea ice, and land surface models requires a means for remapping fields between
grids in an accurate and conservative manner. A method is described here for computing interpolation weights
for first- and second-order conservative remappings. The method is completely general and can be used for any
grid on a sphere.

1. Introduction

In order to study the earth’s climate system, climate
models are often created by coupling individual com-
ponent models that simulate the atmosphere, land sur-
face, ocean, and sea ice. Component models are often
developed as stand-alone models or perhaps as pairs of
components (e.g., atmosphere–land or ocean–ice) and
utilize grids that work best for that particular compo-
nent. For example, ocean circulation models have begun
to utilize grids that cover the polar regions effectively
(Smith et al. 1995) or that can utilize local mesh re-
finement (Levin et al. 1997; Taylor et al. 1997). Simi-
larly, atmosphere models have begun to use icosahedral
grids or triangular tesselations for horizontal discreti-
zations (Schättler and Krenzien 1997; Heikes and Rand-
all 1995).

In a fully coupled climate model, state variables and
heat and water fluxes must be transferred between mod-
els periodically, and such fields must be remapped from
one component grid to another. Fluxes in particular must
be remapped in a conservative manner in order to main-
tain the energy and water budgets of the coupled climate
system. Currently, many coupled models utilize an area-
weighted remapping where the interpolation weights are
based on the fractional area-overlap of the source and
destination grid cells (Bryan et al. 1996). Such a scheme
is automatically conservative, but is only first-order ac-
curate. Also, it has been primarily applied to situations
where both grids are latitude–longitude rectangular
grids. We present here a method for computing remap-
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ping weights that will work for any general grid and
will provide weights for both first- and second-order
accurate remappings. The method was originally intro-
duced by Dukowicz and Kodis (1987) but will be de-
rived for spherical coordinates in the next section. The
third section will describe practical considerations and
problems encountered in spherical coordinates.

2. Conservative remapping

To compute a flux on a new (destination) grid that
results in the same energy or water exchange as a flux
f on an old (source) grid, the destination flux F at a
destination grid cell k must satisfy

1
F 5 f dA, (1)k EAk Ak

where F is the area-averaged flux and Ak is the area of
cell k. Satisfying (1) will automatically satisfy the global
conservation condition

F dA 5 f dA, (2)E E
A A

where the integral is over the entire grid surface A.
Because the integral in (1) is over the area of the des-
tination grid cell, only those cells on the source grid
that are covered at least partly by the destination grid
cell contribute to the value of the flux on the destination
grid. If cell k overlaps N cells on the source grid, the
remapping can be written as

N1
F 5 f dA, (3)Ok E nA n51k Ank

where Ank is the area of the source grid cell n covered
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FIG. 1. An example of a triangular destination grid cell k shown
by the dashed outline overlapping a quadrilateral source grid. The
region Akn, where cell k overlaps the quadrilateral cell n, is shaded.
Vectors used by search and intersection routines are also labeled.

by the destination grid cell k, and f n is the local value
of the flux in the source grid cell (see Fig. 1).

Assuming f n is constant across a source grid cell, (3)
would lead to the first-order area-weighted schemes
used in current coupled models. A more accurate form
of the remapping is obtained by using a more accurate
approximation of the flux on the source grid. For a
conservative scheme, the flux must satisfy

f A 5 f dA. (4)n n E n

An

Dukowicz and Kodis (1987) approximate the source flux
by

f n 5 f n 1 =n f · (r 2 rn), (5)

where =n f is the gradient of the flux in cell n and rn is
the centroid of cell n defined by

1
r 5 r dA. (6)n EAn An

Such a distribution satisfies the conservation constraint
and is equivalent to the first terms of a Taylor series
expansion of f around rn. The remapping is thus second-
order accurate if =n f is at least a first-order approxi-
mation to the gradient.

The remapping can now be expanded in spherical
coordinates as

N ] f 1 ] f
F 5 f w 1 w 1 w , (7)Ok n 1nk 2nk 3nk1 2 1 2[ ]]u cosu ]fn51 n n

where u is latitude, f is longitude, and the three re-
mapping weights are

1
w 5 dA, (8)1nk EAk Ank

1
w 5 (u 2 u ) dA2nk E nAk Ank

1 w1nk5 u dA 2 u dA, (9)E EA Ak nA Ank n

and

1
w 5 cosu(f 2 f ) dA3nk E nAk Ank

1 w1nk5 f cosu dA 2 f cosu dA. (10)E EA Ak nA Ank n

Again, if the gradient is zero, (7) reduces to a first-order
area-weighted remapping. The second-order weights are
an area-weighted distance from the source cell centroid.

Computing the area integrals in Eqs. (8)–(10) is sim-
ple for very simple grids, but can be difficult for general
grids where overlap regions may be irregular in shape.
To compute the area integrals for more general grids.
Dukowicz and Kodis (1987) convert the area integrals
into line integrals using the divergence theorem. Com-
puting line integrals around the overlap regions is much
simpler; one simply integrates first around every grid
cell on the source grid, keeping track of intersections
with destination grid lines, and then one integrates
around every grid cell on the destination grid in a similar
manner. After the sweep of each grid, all overlap regions
have been integrated.

In spherical coordinates, the divergence theorem is

= · G dA 5 [G du 2 G cosu df], (11)E R f u

A C

where C is the curve containing the area A. The selection
of the function G is arbitrary as long as = · G is chosen
to be the integrand of the above area integrals. If Gf

5 0, the integrals in Eqs. (8)–(10) become

dA 5 2sinu df, (12)E R
A Cnk nk

u dA 5 [2cosu 2 u sinu] df, (13)E R
A Cnk nk

and

f
f cosu dA 5 2 [sinu cosu 1 u] df, (14)E R 2A Cnk nk

where Cnk is the counterclockwise path around the re-
gion Ank. Computing these three line integrals during
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the sweeps of each grid provides all the information
necessary for computing the remapping weights.

3. Practical considerations

As mentioned in the previous section, the algorithm
for computing the remapping weights is relatively sim-
ple. The process amounts to finding the location of the
end point of a segment and then finding the next inter-
section with the other grid. The line integrals are then
computed and summed according to which grid cells
are associated with that particular subsegment. Despite
this relative simplicity, the practical application of this
method requires avoiding some spherical coordinate
problems and optimizing search and intersection algo-
rithms.

a. Search algorithms

The most time-consuming portion of the algorithm
described above is finding which cell on one grid con-
tains an end point from the other grid. Optimal search
algorithms can be written when the grid is well struc-
tured and regular. However, if one requires a search
algorithm that will work for any general grid, a hier-
archy of search algorithms appears to work best. In such
a case, a preliminary sorting of grid cells based on lat-
itude bins or bounding boxes can be used to restrict a
more robust but expensive algorithm.

Once the search has been restricted, a robust algo-
rithm that works for most cases is a cross-product test.
In this test, a cross product is computed between the
vector corresponding to a cell side (r12 in Fig. 1) and a
vector extending from the beginning of the cell side to
the search point (r1b). If

r12 3 r1b . 0, (15)

the point lies to the left of the cell side. If (15) holds
for every cell side, the point is enclosed by the cell.
This test is not completely robust and will fail for grid
cells that are nonconvex.

b. Intersections

Once the location of an initial end point is found, it
is necessary to check to see if the segment intersects
with the cell side. If the segment is parametrized as

u 5 ub 1 s1(ue 2 ub) f 5 fb 1 s1(fe 2 fb),
(16)

and the cell side as

u 5 u1 1 s2(u2 2 u1) f 5 f1 1 s2(f2 2 f1),
(17)

where u1, f 1, u2, f 2, ub, and ue are end points as shown
in Fig. 1, the intersection of the two lines occurs when
u and f are equal. The linear system

(u 2 u ) (u 2 u ) s (u 2 u )e b 1 2 1 1 b5 , (18)[ ][ ] [ ](f 2 f ) (f 2 f ) s (f 2 f )e b 1 2 2 1 b

is then solved to determine s1 and s2 at the intersection
point. If s1 and s2 are between zero and one, an inter-
section occurs with that cell side.

It is important also to compute identical intersections
during the sweeps of each grid. To ensure that this will
occur, the entire line segment should be used to compute
intersections rather than using a previous or next inter-
section as an end point.

c. Coincidences

Often, pairs of grids will share common lines (e.g.,
the equator). When this is the case, the method described
above will double count the contribution of these line
segments. Coincidences can be detected when comput-
ing cross products for the search algorithm described
above. If the cross product is zero in this case, the end
point lies on the cell side. A second cross product be-
tween the line segment and the cell side can then be
computed. If the second cross product is also zero, the
lines are coincident. Once a coincidence has been de-
tected, the contribution of the coincident segment can
be computed during the first sweep and ignored during
the second sweep.

d. Spherical coordinates

Some aspects of the spherical coordinate system in-
troduce additional problems for the method described
above.

1) MULTIPLE-VALUED COORDINATE

Longitude is multiple valued on one line on the
sphere, and this branch cut may be chosen differently
by different grids. Care must be taken when calculating
intersections and line integrals to ensure that the proper
longitude values are used. A simple method is to always
check to make sure the longitude is in the same interval
as the source grid cell center.

2) POLE

Another problem with computing weights in spherical
coordinates is the treatment of the pole. First, note that
although the pole is physically a point, it is a line in
latitude–longitude space and has a nonzero contribution
to the weight integrals. If a grid does not contain the
pole explicitly as a grid vertex, the pole contribution
must be added to the appropriate cells. The pole con-
tribution can be computed analytically.

The pole also creates problems for the search and
intersection algorithms described above. For example,
a grid cell that overlaps the pole can result in a non-
convex cell in latitude–longitude coordinates. The cross-
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product test described above will fail in this case. In
addition, segments near the pole typically exhibit large
changes in longitude even for very short segments. In
such a case, the linear parametrizations used above re-
sult in inaccuracies for determining the correct inter-
sections.

To avoid these problems, a coordinate transformation
can be used poleward of a given threshold latitude (typ-
ically within one degree of the pole). A possible trans-
formation is the Lambert equivalent azimuthal projec-
tion

p u
X 5 2 sin 2 cosf1 24 2

p u
Y 5 2 sin 2 sinf (19)1 24 2

for the North Pole. The transformation for the South
Pole is similar. This transformation is used only to com-
pute intersections; line integrals are still computed in
latitude–longitude coordinates. Because intersections
computed in the transformed coordinates can be differ-
ent from those computed in latitude–longitude coordi-
nates, line segments that cross the latitude threshold
must be treated carefully. To compute the intersections
consistently for such a segment, intersections with the
threshold latitude are detected and used as a normal grid
intersection to provide a clean break between the two
coordinate systems.

e. Gradients

For a second-order remapping, a gradient must be
supplied. Methods for computing gradients can vary
depending on the grid and numerical algorithm em-
ployed, and the remapping method above requires only
that the gradient be at least first-order accurate. If a field
to be remapped has strong gradients, numerical ap-
proximations to the gradient may be too steep. In such
cases, (5) may overshoot the expected value of the field,
resulting in spurious oscillations in the resulting re-
mapped field. Avoiding such oscillations requires lim-
iting the gradient, and sample methods for limiting the
gradient are discussed in Dukowicz and Kodis (1987).
When gradient limiters are employed, formal second-
order accuracy is lost, but the remappings can be made
monotone.

It should also be noted that (5) implies that little
increase in accuracy is gained using the second-order
remappings to remap from a fine grid to a coarse grid.
Remapping from a fine grid to a coarse grid consists of
averaging over cells on the fine grid; the gradient com-
ponents in (5) will average to zero when averaging over
an entire cell.

f. Mask conflicts

While computing the remapping weights, the fraction
of a grid cell participating in a remapping is also com-
puted. For an ocean-to-atmosphere mapping, this means
that the land fraction on the atmosphere grid is computed
automatically. This land fraction and the associated land
mask may differ from that used by the atmosphere in
stand-alone mode. In this case, one grid must be chosen
as a ‘‘master’’ grid for determining land–ocean bound-
aries. The problem is further compounded if all com-
ponents use different grids, and in this case all com-
ponents must conform to the same ‘‘master’’ grid.

g. Optimizations

Throughout the descriptions above, the most general
algorithms have been presented that are robust enough
to work for any grid on a sphere. Such robustness comes
at a cost in computational time, but the weights only
need be computed once for each grid pair and stored in
a file for later use. Computational cost is typically less
of an issue than robustness and accuracy. However, the
algorithms can be highly optimized for grids that are
highly structured. For example, it is very easy to de-
termine the location of a point in a simple latitude–
longitude grid using an arithmetic calculation without
using a full search algorithm. Also, for logically rect-
angular grids, it is simple to determine which cell you
are entering after an intersection, so a search is unnec-
essary.

For grids in which cells share a common side (e.g.,
logically rectangular grids), the line integral contribu-
tion can be computed once for both grid cells on each
side of the segment; the contribution to the cell on the
right of the segment has the opposite sign of the con-
tribution to the cell on the left. For a logically rectan-
gular grid, all of the line integrals can be performed by
integrating once along the i-axis and then once along
the j-axis rather than integrating around each cell in-
dividually.

Finally, note that lines of constant longitude do not
contribute to the integrals and can be ignored in the
weight calculations. For some grids, this results in a
large savings in computational work.

4. Results

The conservative first- and second-order remappings
have been implemented and tested for a variety of grid
combinations described below. Tests were conducted
using several analytic fields. The first field is a cosine
hill f 5 2 1 cos(pr/L) where r is the distance from
the center of the hill and L is a length scale. Such a
function is useful for determining the effects of repeated
applications as shown below. The other two fields are
representative of spherical harmonic wavefunctions. A
relatively smooth function f 5 2 1 cos2u cos(2f ) is

Unauthenticated | Downloaded 08/23/22 01:14 PM UTC



2208 VOLUME 127M O N T H L Y W E A T H E R R E V I E W

TABLE 1. Results of remappings from a T42 grid to a 18 latitude–
longitude grid.

Field Method emax emean

Hill
Hill
Hill
Hill
Y2

2

Y2
2

Bilinear
Bicubic
1st-order conservative
2d-order conservative
Bilinear
Bicubic

7.0 3 1023

1.8 3 1023

5.9 3 1022

4.8 3 1023

1.7 3 1023

1.0 3 1025

1.7 3 1024

2.0 3 1025

1.1 3 1023

8.4 3 1025

2.2 3 1024

2.4 3 1026

Y2
2

Y2
2

Y16
32

Y16
32

Y16
32

Y16
32

1st-order conservative
2d-order conservative
Bilinear
Bicubic
1st-order conservative
2d-order conservative

1.8 3 1022

3.7 3 1024

8.0 3 1022

9.0 3 1023

1.4 3 1021

4.7 3 1022

3.9 3 1023

1.2 3 1024

4.3 3 1023

5.9 3 1024

1.1 3 1022

2.1 3 1023

TABLE 2. Results of remappings between various grid pairs.

Source
grid

Destination
grid Field

1st-order conservative

emax emean

2nd-order conservative

emax emean

T42
POP
ICOS
POP
POP
ICE

POP
T42
POP
ICOS
ICE
POP

Y2
2

Y2
2

Y2
2

Y2
2

Y2
2

Y2
2

1.5 3 1022

3.1 3 1023

3.0 3 1022

2.2 3 1023

1.8 3 1022

1.4 3 1024

2.7 3 1023

4.6 3 1024

5.9 3 1023

3.9 3 1024

2.2 3 1023

1.4 3 1025

1.3 3 1023

4.4 3 1024

2.2 3 1023

1.8 3 1023

1.1 3 1023

1.3 3 1024

1.2 3 1024

8.9 3 1025

3.0 3 1024

2.4 3 1024

3.7 3 1025

1.1 3 1025

T42
POP
ICOS
POP
POP
ICE

POP
T42
POP
ICOS
ICE
POP

Y16
32

Y16
32

Y16
32

Y16
32

Y16
32

Y16
32

1.2 3 1021

6.0 3 1022

4.5 3 1021

1.4 3 1021

1.8 3 1021

2.1 3 1022

9.3 3 1023

3.4 3 1023

2.7 3 1022

9.0 3 1023

1.5 3 1022

9.2 3 1024

5.1 3 1022

2.7 3 1022

2.4 3 1021

1.0 3 1021

6.0 3 1022

2.1 3 1022

1.8 3 1023

1.2 3 1023

8.6 3 1023

7.0 3 1023

1.9 3 1023

8.6 3 1024

T42
POP
ICOS
POP

POP
T42
POP
ICOS

Hill
Hill
Hill
Hill

2.7 3 1022

1.0 3 1022

6.7 3 1022

7.8 3 1023

5.0 3 1024

3.5 3 1024

1.1 3 1023

5.1 3 1024

2.9 3 1023

1.7 3 1023

1.1 3 1022

5.1 3 1023

4.5 3 1025

7.2 3 1025

1.5 3 1024

3.1 3 1024

similar to a spherical harmonic with l 5 2 and m 5 2,
where l is the spherical harmonic order and m is the
azimuthal wave number. The function f 5 2 1 sin16(2u)
cos(16f ) is similar to a spherical harmonic with l 5
32 and m 5 16 and is useful for testing a field with
relatively high spatial frequency and rapidly changing
gradients. The latter two functions will be referred to
as and , respectively, although they are not true2 16Y Y2 32

spherical harmonic functions.
A first test compared the conservative remappings to

bilinear and bicubic interpolations for two simple grids.
While the bilinear and bicubic interpolations are not
conservative, such a test is useful to gauge the accuracy
of the remappings. The grids in this case were a Gauss-
ian latitude–longitude grid used for T42 spectral trun-
cations and a latitude–longitude grid with one-degree
spatial resolution. The results of a remapping from the
coarse T42 grid to the finer one-degree grid are shown
in Table 1. The errors shown in the table are relative
errors e 5 |( f computed 2 f analytic)/ f analytic| and both the max-
imum and spatially averaged values are shown. For all
of the test fields, the second-order conservative remap-
pings resulted in errors somewhere between the bilinear

and bicubic results. The second-order mappings used
analytic gradients, so a more typical case with numer-
ically approximated gradients would likely be closer to
the bilinear result. Such a result is consistent with the
assumption of constant gradients across a cell for the
second-order remappings. The first-order remappings
assume a piecewise constant field and are much less
accurate than the bilinear and bicubic cases. Such a
piecewise constant field is a very poor approximation
for fields with high spatial frequency exhibited by the

test field, yet this is the method commonly used in16Y 32

current coupled models where fields must be conserved.
Use of the second-order conservative mappings would
greatly improve the accuracy of fluxes between coupled
model components.

In order to show the robustness and generality of the
method presented here, the remappings were tested us-
ing more general grids. Results for combinations of four
different grids are shown in Table 2. The icosahedral
(ICOS) grid (Heikes and Randall 1995) is made up of
cells with either five or six sides and has an average
resolution of 4.58. It is used to provide a good test of
the generality of the method. A second grid is a high-
resolution (27 km) ice grid (ICE; Washington and
Weatherly 1997) that provides a good test of a grid with
incomplete coverage (the grid only covers the polar re-
gions) and of the coordinate transformation utilized in
the polar regions. The third grid is a displaced-pole grid
used by the Los Alamos Parallel Ocean Program (POP)
and is a general grid with a land mask. The final grid
is a standard Gaussian latitude–longitude grid at T42
resolution. Only the conservative mapping results are
shown as the bilinear and bicubic interpolations cannot
be applied to some of these grids. Where bilinear in-
terpolations can be applied, the second-order conser-
vative results are again comparable to the bilinear results
for accuracy.

For all remappings from a coarse grid to a fine grid,
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FIG. 2. Remapping of a cosine hill function after (a) one remapping at first order, (b) 100 remappings at first order, (c) one remapping at
second order, and (d) 100 remappings at second order.

the second-order scheme results in an order-of-magni-
tude improvement over the first-order conservative re-
mapping. The first-order mappings are particularly bad
for the high-frequency field on the coarse grids con-16Y 32

sidered here. The disadvantage of the second-order re-
mapping is the computational cost; a factor of 3 more
computations are required and two components of the
gradient must be computed. Remappings from a fine
grid to a coarse grid are an averaging operation, so there
is virtually no advantage to using the second-order
method in such cases, as can be seen in Table 2.

The conservation properties of the remappings were
tested by computing global area integrals of the analytic
field on the source grid and of the remapped field on
the destination grid. The resulting integrals agreed to
one part in 10215, so the remappings are conservative
to machine accuracy.

The conservative remappings presented here have
been used in production coupled model simulations, in-
cluding the work of Washington and Weatherly (1997)
and a spinup of the Los Alamos POP model in prepa-
ration of a full coupled model simulation. In both of
these cases, the remappings have worked well and no
biases have been detected associated with the remap-
pings. However, to try and assess the effects of repeated
remappings, a test was performed mapping the hill func-
tion back and forth repeatedly between a T42 grid and
the 18 latitude–longitude grid. Figure 2 shows the result
after one mapping and after 100 repeated mappings of
the hill function for both the first-order and second-order
methods. The second-order method retains the shape
quite well, while the first-order method is quite diffusive
and begins to show the pattern of the coarse grid on the
fine grid. It should be noted that such a pattern does not
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appear in actual coupled model simulations where the
identical field is never mapped repeatedly.

5. Conclusions

The method described here provides a mechanism for
computing remapping weights for both first- and sec-
ond-order remappings. Use of these weights provides
remappings that are up to second-order accurate and
conservative to machine accuracy. Because the method
is completely general, weights can be computed for any
type of grid on a sphere, allowing developers of com-
ponent models in a coupled model context to use what-
ever grid is appropriate for a given component and not
be constrained by compatibility with other component
model grids.

Software implementing the methods described in this
paper is freely available from the author (http://www.
acl.lanl.gov/lanlclimate/SCRIP).
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