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FIRST- AND SECOND-ORDER EPI-DIFFERENTIABILITY
IN NONLINEAR PROGRAMMING

R. T. ROCKAFELLAR

ABSTRACT. Problems are considered in which an objective function express-
ible as a max of finitely many C2 functions, or more generally as the composi-
tion of a piecewise linear-quadratic function with a C2 mapping, is minimized
subject to finitely many C2 constraints. The essential objective function in
such a problem, which is the sum of the given objective and the indicator
of the constraints, is shown to be twice epi-differentiable at any point where
the active constraints (if any) satisfy the Mangasarian-Fromovitz qualification.
The epi-derivatives are defined by taking epigraphical limits of classical first-
and second-order difference quotients instead of pointwise limits, and they re-
veal properties of local geometric approximation that have not previously been
observed.

1. Introduction. Nonlinear programming used to be viewed, at least for com-
putational purposes, as the minimization of a smooth (i.e. continuously differen-
tiable) objective function subject to finitely many equality or inequality constraints
given by other smooth functions. Many applications of optimization, however,
concern objective functions that are not necessarily smooth but of "max" type,
expressible as the pointwise maximum of certain other functions which are them-
selves smooth. Penalty representations of constraints, whether in terms of /i or
l2 penalty functions or augmented Lagrangians, likewise have focused attention on
nonsmoothness. Such representations are now the rule of the day in the develop-
ment of numerical methods and can be used even in mathematical modeling itself.

A problem form that is becoming recognized as fundamental for theory and
computation in nonlinear programming and for its much greater versatility than
the traditional form is:

(P) minimize g(F(x)) subject to F(x) E D,

where g is a convex function on Rd with nonempty effective domain D (a convex
subset of Rd), and F is a smooth mapping from Rn to Rm. The present paper focuses
on the case where F is actually of class C2 and g is "piecewise linear-quadratic"
(see Definition 1.1). This case is broad enough to cover all of the most common
types of problems seen in practice, as will be clear from examples.
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76 R. T. ROCKAFELLAR

Problem (P) can be identified abstractly with minimizing the function f(x) =
g(F(x)) over all _ _ Rn. (Since D is the effective domain of g, one has g(u) —
oo when _ ^ G and consequently f(x) = oo when F(x) £ D.) We call / the
essential objective function for (P). Our aim is to study / by methods of nonsmooth
analysis, introducing certain first and second derivatives called "epi-derivatives"
and developing formulas for them in terms of g and F. The idea is that by doing
this in a "neoclassical" manner, with close parallels to the example of smooth
unconstrained optimization where / is itself a C2 function, a unified foundation
can be laid for the treatment of many questions of theoretical and computational
interest in optimization.

The main difference between our work and that of others who have explored such
an approach is in the choice of concepts and their level of generality. A number of
authors have defined first and second derivatives in the framework of nonsmooth
analysis that are viable for various kinds of functions / outside the class considered
here, for instance Lipschitz continuous functions, and have used them to formulate
necessary or sufficient conditions for a local minimum or in sensitivity analysis.
Especially to be cited in this respect are Clarke [1, 2] (first derivatives only), Ioffe
[3-5], Hiriart-Urruty [6-8], Chaney [9-12], Auslender [13], Aubin [14], and Seeger
[15]. We forego such breadth and concentrate instead on notions that only are
appropriate in a more limited context—although it should be noted that we do,
on the other hand, allow for extended-real-valuedness, in contrast to most of the
authors cited.

From the technical standpoint, the use of epi-convergence of difference quo-
tients in defining the "epi-derivatives" introduced in this paper deserves emphasis.
Epi-convergence of functions, which refers to convergence of the epigraphs of the
functions as sets, is coming to the fore as the correct concept for many situations
in optimization. Until now, however, the only instance of epi-convergence being
invoked in connection with derivatives was in a special analysis of "two-sided" sec-
ond derivatives of convex functions in Rockafellar [16]. The strong feature of epi-
convergence is that it corresponds to a geometric concept of approximation much
like the one used in classical differential analysis. Derivatives defined in terms of it
therefore have a certain "robustness" that can be advantageous. One of the princi-
pal objectives here may be seen as the identification of a central class of functions
for which such derivatives do always exist.

In the context of mathematical programming the project we take on may best
be compared with the efforts of Ben-Tal and Zowe in [17-20]. Those authors too
introduce a kind of second derivative and investigate special classes of functions for
which it exists. They use it to derive necessary and sufficient conditions for some
of the most common types of problems in smooth and nonsmooth programming. A
major difference between our results and theirs is that their second derivative does
not correspond to a geometric notion of "uniform" approximation and therefore
cannot be the basis of a truly abstract sufficient condition for optimality. They
only get sufficiency by introducing a very particular structure for /. (Without such
structure they have to assume that / is continuously differentiable with Lipschitz
continuous gradient [20].) Our second-order "epi-derivative", when it exists (as
for the functions / of the type in this paper) does support an abstract theory of
sufficiency, as we shall demonstrate in [21],
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EPI-DIFFERENTIABILITY IN NONLINEAR PROGRAMMING 77

Actually, as part of our work on "epi-derivatives" we also investigate certain
"parabolic derivatives" that resemble the ones of Ben-Tal and Zowe, but involve
epi-convergence. These reveal further connections between our approach and theirs.

To elucidate the nature of problem (P) under our assumptions, the following
concept is required.

DEFINITION 1.1. A function g: Rd —► R with effective domain D = {u\g(u) <
00} will be called piecewise linear-quadratic if D can be expressed as the union
of finitely many sets Dj (for j E J', a finite index set), such that Dj is a convex
polyhedron and the restriction of g to Dj is a quadratic (or affine) function. (Then
in particular g must be continuous relative to the sets Dj, which are all closed, and
consequently continuous relative to D.) If the restriction of g to Dj is affine for
every j, then g will be called piecewise linear.

Note that when g is convex, as assumed in (P), the set D must itself be a
convex polyhedron according to this definition. The class of piecewise linear convex
functions is identical to the class of polyhedral convex functions defined in convex
analysis [22]. Incidentally, a function representable as a maximum of finitely many
quadratic (or affine) functions need not be piecewise linear-quadratic in the sense
of Definition 1.1, because the joins between different "pieces" could be quadratic
surfaces not subject to a polyhedral representation.

Example 1.2. Let
(1.1) F(x) = (x,fo(x)Jy(x),...,fm(x))ERn X Rm+1

where each fi is of class C2,

(1.2) £> = XxRx_iX---x_mcR"x Rm+1

where X is a convex polyhedron in Rn and each J, is a closed interval in R (bounded
or unbounded),

„,, i \       i ,      f a0    HuE D,
(1.3) g(u) =g(x,a0, ay,..., am) = i if u ^ ^

where u = (x, tvo, oty,..., am) sR"x Rm+1. The condition F(x) E D corresponds
then to the general constraint system

(1.4) x E X and fi(x) E Ii    for i = 1,... ,m,

and for points x satisfying this system one has g(F(x)) = fo(x). Thus (P) is the
problem

(1.5) minimize fo(x) subject to (1.4),

which is a traditional nonlinear programming problem with several refinements:
the condition x E X is available for representing some underlying linear constraints
(such as nonnegativity or bounds on variables) that are not conveniently expressed
by constraint functions, and the conditions fi(x) E It allow for general upper and/or
lower bounds on the constraint functions fi. (Obviously an inequality fi(x) < Ci
corresponds to Ii = (—oo,Ci], while an equation fi(x) = Ci corresponds to Ii =
[ci,Ci], the degenerate interval consisting of the single number c,-.)

EXAMPLE 1.3. This extends the preceding example of (P) to the case where the
objective in (1.5) is of max type:

(1.6) fo(x) = max{f0y(x),..., fos(x)}.
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78 R. T. ROCKAFELLAR

The component fo(x) in (1.1) is replaced by the vector (/oi(z), ■ • • > fos(x)) and the
component R in (1.2) by Rr. (It is assumed that f0k E C2.) Instead of (1.3) one
takes

ii n\     i \       t      \ \      i maxlaoi,... ,aos}    if uED,(1.7) g(u) = g(x,a)oy,...,a0s,ay,...,am) = { lUi' us)    {{u(±D

Here u = (x,a01,... ,a0s,ay,... ,am) _ R" x Rr x Rm.
EXAMPLE 1.4. The general /r-penalty representation of the traditional problem

(1.5) in Example 1.2 is to
m

(1.8) minimize fo(x) + 2~]Pidi,(fi(x)) over all x E X,
i=\

where the coefficients Pi > 0 are penalty parameters and

(1.9) d[t (a^ = [distance of ai from the interval /<].

(If Ii = [0,0], then d/,-(o!i) = |aj|. If _j(-oo,0], then di((ai) = [ai]+.) This penalty
problem is the case of (P) where F is given by (1.1),

(1.10) £> = J_xRm+1,

{m

an+ >   Pidi(ai)    if x E X,

oo otherwise.

Each of the functions d[{ is piecewise linear on R, so g is piecewise linear.
EXAMPLE 1.5. The basic /2-penalty representation of problem (1.5) is the simple

modification of Example 1.4 where djt is replaced by d2 in (1.8) and (1.11). Then g
is piecewise linear-quadratic (and convex), not just piecewise linear. More generally
one can look at representations of the form

m

(1.12) minimize fo(x) + ^/),(_/, (/2(o;))) over x E X,
i=i

where pt: R+ —► R+ is a nondecreasing, convex, piecewise linear-quadratic penalty
function. Then the term pidjt (ai) is replaced by pt(djt (at)) in (1.11), and g is again
piecewise linear-quadratic and convex. In stochastic programming, for instance,
the case where pi is quadratic initially but affine for high values is of interest; see
Rockafellar and Wets [23].

EXAMPLE 1.6. Augmented Lagrangians of the standard quadratic-based kind
lead to further cases of (P) that are important in computation. The general aug-
mented Lagrangian expression associated with problem (1.5) can be written as

771

(1.13) foix) + J2 5ri[dl(fi(x) + At/r2) - (At/r,)2],

where r^ > 0 and A, E R are parameters. In It = [0,0] one has

_r.[4(/_(_0 + Xi/rt) - (Xi/n)2} = Xifi(x) + \nh(x)2
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EPI-DIFFERENTIABILITY IN NONLINEAR PROGRAMMING 79

(the term introduced by Hestenes [24] and Powell [25] for equality constraints),
whereas if T^ = (—oo, 0] one has

irW2 (f.(r]  ,X/r\ - (X/rW - I A,/t(x) + 5r'/'(x)2    when /«(*) ^ "A'M'
2ri[dh(h(x) + xjn)    (xjn) j - j _ ^xyfi when h[x) < _K/^

(the term introduced by Rockafellar [26] for inequality constraints).   Minimizing
the expression (1.13) over x E X is the case of (P) where F is given by (1.1), D is
given by (1.10), and
(1.14) {m    1

Qo + 5_! ^rt[dj (an + Xi/n) - (Xl/rl)2}    if x E X,
i=\

oo otherwise.

Clearly g is a piecewise linear-quadratic convex function in this case also.
EXAMPLE 1.7. Unconstrained problems (P) where the objective function / has

the following form have been explored by Ben-Tal and Zowe [17, 18]:
m

(1.15) /(_) = y^ hi(fi(x)),    where fi(x) -    max   fij(x).
^—' j=l,...,Si
j=i

The functions hi: R —> R and ftJ: R" —► R are assumed to be of class C2, and
differential properties of / are studied at a point x such that h[(fi(x)) > 0 for
i — 1,... ,m. If the slightly stronger assumption is made that h[ is nonnegative on
a neighborhood of fi(x) for every i, the situation fits the framework in the present
paper, because / can then be written locally around x as f(x) = g(F(x)) with

(1.16) F{x) = (..., hi(fij(x)),...),
m

(1.17) g(u) = }      max   Ui3    for u = (... ,ul3,...).
T—f j=l,...,Si1=1

Clearly F is a C2 mapping from R" to R"1 x ■ • • x RSm, and g is a piecewise linear
convex function from RSl x • • ■ x RSm to R.

Generalized second derivatives of functions / of type (1.15) have specifically been
treated also by Chaney [12] as examples within his theory for classes of Lipschitz
nonsmooth continuous functions. Such results will be important to us later in
putting the results of this paper in perspective.

We would like to point out that the general problem (P) can be seen as arising
from Lagrangian

(1.18) L(x,y) = yF(x)-h(y)    and y E Y,

where h is the convex function conjugate to g and Y is its effective domain:

(1.19) h(y) = sup {y ■ u - g(y)},
_eRd

(1.20) Y = {y E Rd\h(y) < oo}.

Since g is in turn the conjugate of h, i.e.

(1.21) g(u) = sup {y ■ u - h(y)} = sup{y ■ u - h(y)},
yeR" y&Y
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80 R. T. ROCKAFELLAR

one has

(1.22) /(_■) = g(F(x)) = sup L(x, y)    for all x.
y€Y

Sun [27] in his recent dissertation has demonstrated that g is piecewise linear-
quadratic if and only if h is piecewise linear-quadratic (the set Y then being, of
course, a polyhedron). Our problems (P) are therefore precisely the ones that con-
cern the minimization of a function / expressible as in (1.22) by a Lagrangian (1.18)
where F E C2 and h is a piecewise linear-quadratic convex function with dom h = Y.
This Lagrangian representation of (P) is a natural one for computational purposes
and can also play a useful role in the statement of optimality conditions. It may be
used alternatively as the basis for developing such conditions. For a complementary
theory along such lines, in the more general setting where the convex function h
need not be piecewise linear-quadratic (and epi-derivatives are not applicable), we
refer to Burke [28].

The plan of the paper is first to define epi-derivatives in §2 and look at some of
their elementary properties. The next task is to analyze in §3 the epi-derivatives of
piecewise linear-quadratic convex functions and relate them to parabolic derivatives
similar to the derivatives of Ben-Tal and Zowe. A constraint qualification is devised
in §4 to handle the condition F(x) E D in (P) when x might be such that F(x) is
a boundary point of D. This is invoked along with the results in §3 to establish
the existence of first- and second-order epi-derivatives of functions f(x) = g(F(x))
with g piecewise linear-quadratic convex, as in (P). (The centerpiece is Theorem
4.5.) Finally, a duality between second-order epi-derivatives and parabolic second
derivatives is demonstrated.

2. Epi-derivatives. Our basic problem (P) corresponds to the essential objec-
tive function

(2.1) f(x)=g(F(x))        (= oo when F(x) £ D),

under our stated assumptions about F, g and D. Although the specific structure
inherent in any given case, such as illustrated by Examples 1.2-1.6, must ultimately
be accommodated in analyzing (P) or computing its solutions, the viewpoint of the
essential objective function enables us to draw parallels between different cases and
to focus on the aspects that are the most fundamental. For the purposes of this
section therefore, we do not assume that / is necessarily given by (2.1) but proceed
more generally.

A brief mention of the classical ideas when / happens itself to be a function of
class C2 will put us in the right frame of mind for taking a "neoclassical" approach
when / is not of such type. Classical first-order differentiability of / at x means
the existence of a vector v ERn (which will be the gradient V/(„)) such that

(2.2) ^/(' + 'r)-/W=(,„    fa all € 6 R".
no

Second-order differentiability, in the sense of a Taylor expansion of degree 2, means
further the existence of a symmetric matrix H (which will be the hessian V2/(x))
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EPI-DIFFERENTIABILITY IN NONLINEAR PROGRAMMING 81

such that

(2.3) lim /(* + ^-/(*)-^ = ^ . ̂     for an ^ e R„
€'-€

These concepts can be interpreted geometrically in terms of the graph of /. The
limits in (2.2) and (2.3) describe local approximations to this graph at the point
(x,f(x)) by the graphs of other functions, namely the ones giving the first- and
second-order Taylor expansions of / around x.

Such ideas are not adequate to the task of handling more general functions / like
the essential objective in (2.1). A lesson which has been learned in convex analy-
sis and carried over to other forms of nonsmooth analysis is that the geometrical
thinking that used to be directed towards the graph of / needs, for the sake of
achieving a more versatile theory, to be directed instead towards the epigraph of /,
which is the set

(2.4) epi/ = {(x,a)eRnxR|a >/(_■)}.

This is closed in R" x R if and only if / is lower semicontinuous on Rn, a property
that holds certainly for the essential objective function (2.1) and is more appropriate
anyway for many contexts in optimization than ordinary continuity.

A "neoclassical" approach to the local study of / can be characterized as an
attempt to follow the classical approach, even when / is not differentiable, by
working systematically with epigraphs instead of graphs. Such an approach calls
for the replacement of the "graphical" limits (2.2) and (2.3) by "epigraphical" limits
that yield first- and second-order approximations to / at x in a more general sense.
What we refer to here as "epigraphical" limits are limits expressed by the notion
of "epi-convergence", which was first introduced for convex functions by Wijsman
[29, 30] (although not under that designation) and has in recent years come to be
recognized as an analytical tool of great promise. We mention in particular the
work as Mosco [31], DeGiorgi [32], Attouch [33], Wets [34], Attouch and Wets
[35]. An exposition of some of the main ideas and their motivation is contained in
Rockafellar and Wets [36].

The notion of epi-convergence of functions, which we explain in a manner attuned
to our purposes, depends on the notion of set convergence that has often been
associated with Kuratowski [37] but really has a much longer history starting with
Painleve and his students. Rather than focusing on sequences, let us look at a
family of subsets St C R" parameterized (or indexed) by t > 0. One says that St
converges to a subset S as t j 0, written

(2.5) S = lim St,

if
(2.6) S = lim sup St = liminf St,

no *i°
where

(2.7) lim sup St := {£|3 sequences t" 1 0, £" -> £,

with C E St- for all u = 1,2,.., },
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82 R. T. ROCKAFELLAR

liminf St := {£|V sequences tv \ 0,_f -> £ with £" € 5t-(2.8) ti0
for all i/ sufficiently high}.

An equivalent statement of (2.5) is this: S is a closed set such that for every e > 0
and bounded set A there exists r > 0 for which

(2.9) Str\AcS + eB    and    SnicS(+efl,        Vte(0,r).
(Here B denotes the closed unit ball in R" with respect to the euclidean norm.)
Still another way of expressing the concept is in terms of the distance functions

(2.io) <fe,(.) = di«rt(_,St)= inf ie — <e'i-
One has (2.5) if and only if 5 is a closed set such that

(2.11) limdsM) = ds(t),       V£eR".

Consider now a family of functions ipt: R" —> R, where R = [—00,00] (extended
real line). One says that <pi epi-converges to a function ip: Rn —► R as t J. 0, written

(2.12) ip — epi-lim^>t,

if the sets epi <pt converge to epi <p in R" x R as t J. 0. Note that <p must in this
case be a lower semicontinuous function, because the limit set epi ip is necessarily
closed. This concept is in general distinct from classical pointwise convergence,
where <Pt(0 —* f(0 f°r eacn fixed £. The latter may or may not hold in a particular
instance of epi-convergence. For example, when <pt and <p are the indicators of sets
St and S in Rn (vanishing on these sets but taking the value 00 outside), the
notion of epi-convergence in (2.12) is equivalent to that of set convergence (2.5);
but depending on the way the sets St "move", the values of the functions <pt can P°P
back and forth between 0 and 00 at any fixed £ and therefore will not necessarily
converge to £>(£)■

One way of expressing the epi-convergence (2.12), in parallel with (2.6), is to
user "semi-limits" of various kinds such as may be seen in the original papers of
Wijsman [30, 31].  In the notation introduced by Rockafellar [38] one can write
(2.12) equivalently as

(2.13) £)(£) = limsup inf <pt(S') = liminf inf <pt(?),
tio £'-*£ tio$'-»€

where

(2.14) lim sup inf <Pt(£') '■= lim lim  sup       inf     <Pt(€'),
U0 €'-»€ £|0 r|OtG(0iT)«'e€+eB

(2.15) liminf inf <pt(£') :— lim lim   inf       inf     ipt(E')—lim inf <Pt(Z')-
U  «'->« eiOT|Ote(0,T)€'€«+eB no

We turn now to the study of a function /: Rn —> R and a point x where / is
finite. By applying epi-convergence to the usual difference quotients for / at _,
in place of pointwise (or locally uniform pointwise) convergence, we obtain new
concepts of "epi-differentiation" that will provide us with tools we need for a more
general analysis of optimality.
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DEFINITION 2.1. The function / is epi-differentiable at x if the first-order dif-
ference quotient functions

(2.16) P«,t( _) = [/(*+ *.)-/(*)]/'    fort>0
have the property that the limit function

(2.17) f'x := epi -lim <px,t

exists and fx(0) > —oo. Then the values fx(£) are called first-order (directional)
epi-derivatives of / at x. A vector v E Rn is a epi-gradient of / at x if

(2.18) /£(_)>_■»    foralUeR".
DEFINITION 2.2. The function / is twice epi-differentiable at x relative to a

vector v if it is (once) epi-differentiable at x in the sense of the preceding definition
and the second-order difference quotient functions

(2-19) <P*,vM) = [/(* + tO ~ fix) - t£ ■ v\/\t2
have the property that the limit function

(2-20) f'lv:=epi-lim<pXtV,t

exists and /_"„(0) > —oo. Then the values /"„(£) are called second-order (direc-
tional) epi-derivatives of / at x relative to v. A symmetric matrix H E RnXn is
called a epi-hessian of / at x relative to v if

(2.21) /_*,„(.)>.•#.    foralUGR".
Some elementary properties entailed by these definitions are explored in the

following propositions.

PROPOSITION 2.3. The first-order epi-derivative function f'x, if it exists, is
lower semicontinuous and positively homogeneous:

(2.22) /_(A_) = *£(_)    forallX>0, £ERn.
The property fx(0) > —oo is equivalent to

(2.23) /_(0>-oo    for all £, /_(0) = 0.
PROOF. Any function expressible as an epi-limit is lower semicontinuous, as

already noted. The positive homogeneity of f'x is immediate from the form of the
functions ipXtt in (2.16). Lower semicontinuity and positive homogeneity imply that
if /£(£) = -'oo for any f, then fx(X£) = -co for all A > 0 and fx(0) = -oo. On
the other hand one has fx(0) < 0 trivially from the definition, so the property
fx(0) > —oo must be equivalent to (2.23) as claimed.    □

PROPOSITION 2.4. The function f is epi-differentiable at x if and only if the
contingent cone to epi / at (x,f(x)), which is defined as the set

(2.24) limsup[epi/-(_,/(_■))]/..
no

exists actually as a limit and does not contain the "downward pointing" vector
(0,-1).  This cone is then the epigraph of the function f'x:

(2.25) epif'x = lim\epif-(x,f(x))]/t.
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84 R. T. ROCKAFELLAR

PROOF. This is immediate from the relation

(2.26) epi^t = [epif-(x,f(x))}/t
and the definition of epi-convergence.    □

PROPOSITION 2.5. Suppose that f is epi-differentiable at x. Then the epi-
gradients of f at v, if any, are the vectors v such that

(2.27) f(x') > /(_) + v(x' -x)+ o(\x' - x\).

PROOF. Under epi-differentiability we have in particular from the epi-conver-
gence expressions (2.13)-(2.15), as applied to the functions (px<t that

liminf/MHM_m
tio t xK '

The defining inequality (2.18) for v to be a epi-gradient can therefore be written as

liminf  f(x + t?)-f(x)-te.v>
tio t ~

which is the same as (2.27) according to the meaning of the notation.    □

PROPOSITION 2.6. The function f is epi-differentiable at x in particular when
it is subdifferentially regular at x (in the sense of Clarke) and the subgradient set
df(x) (in the sense of Clarke) is nonempty. Then df(x) consists exactly of the
epi-gradients v of f at x, and f'x is a convex function satisfying

(2.28) f'x(£)=    sup    £•.    for all £.
vedf(x)

PROOF. Subdifferential regularity is the case where the contingent cone to
epi / at (x,f(x)) coincides with the Clarke tangent cone at (x,/(„)); see Clarke
[1]. The Clarke tangent cone is by definition the set

lim inf «Pi/-(*»,
no t

(_',_)-(_,/(_))
(x',a)€epi/

which is always contained in

(2.29) ,iminf epi/-(*,/(*))
v     ; no t

Subdifferential regularity thus guarantees the equality of the sets (2.24) and
(2.29) and gives us the existence of the limit (2.25), as required. The Clarke tangent
cone is moreover convex always, so that f'x is then a convex function. The remaining
assertions merely restate well-known facts of nonsmooth analysis in this case, but
in the terminology and notation of Definition 2.1.    D

The significance of Proposition 2.6 lies in our ability to identify, by means of the
well-developed subdifferential calculus for nonsmooth functions, a large number of
instances where the property of subdifferential regularity does hold; cf. Clarke [1].
Convex functions in particular are subdifferentially regular, as are general "max"
functions.
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PROPOSITION 2.7. The second-order epi-derivative function fxv, if it exists,
is lower semicontinuous and positively homogeneous of degree 2:

(2.30) fx\v(X$) = A2/_",„(0    for all X > 0, £ E Rn.
The property fx\v(0) > -oo implies

(2.31) f'x\v(0 >-°o   for all£,        /_",„(0)=0.
PROOF. As with Proposition 2.3, these properties are immediate from the form

of the difference quotient functions involved in the definition.    □

PROPOSITION 2.8. Suppose that f is twice epi-differentiable at x relative to a
vector v. Then fx(£) > £ ■ v for all £, i.e. v is a epi-gradient of f at x, and in
addition

(2.32) {£!/_;«,(£)< oo} C {£,/_(£) = £•«}.
Furthermore there exists at least one epi-hessian of f at x relative to v. Indeed, H
is such a epi-hessian if and only if H is a symmetric matrix satisfying

(2.33) f(x') > f(x) + v ■ (x' - x) + §(_' - x) ■ H(x' - x) + o(\x' - x\2).

PROOF. The assumption of twice epi-differentiability implies by Proposition 2.7
that the function fx    is lower semicontinuous on R" and nowhere -oo. The value

(2.34) p:=mmf'x\v(0

therefore exists and is not —oo. Properties (2.30) and (2.31) yield for any real
p < p that

f'xAO >m2    forallCeR".
In particular this inequality says that the matrix H = pi is a epi-hessian, i.e.
satisfies (2.21).

Recall now from the definition of fxv and the epi-convergence expression (2.13)-
(2.15) as applied to the functions <px,v,t that

(2.35) ,_. m /(-+'f)-/w-'f-'. ruo-
uo ±t*

C'-C
The epi-hessian property (2.21) can therefore be written as

lim inf   fix + tO-fW-ti'-v-^Z'-H? > .
im no k2 ~  '

which is the meaning of (2.33). Of course (2.33) implies (2.27) and consequently
by Proposition 2.5 that v must be a epi-gradient of / at x. The definition of fxv
also asserts together with (2.35) that

(2.36) limsupinf  ^ + ^\-^^/-=/^(0,
no v-*t %t2

and if /",„(£) < oo this implies the existence of /? E R and £t —» £ satisfying

/(* + *..)-/(*)-*..-»</g    f0_,e(0)r)
2*
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(some t > 0). Then

[fix + *.«)- fix)}/t <£fV+\tp   for * E (0, t)

and accordingly
.. .      /Qc-MQ -/(») ^rlim sup inf —-i—^ < £ • t>,

tio i'^i t
where the left side is f'x(£) by the definition of first-order epi-differentiability. Thus
f'x,v(0 < € ■ v when /£'„(£) < oo. This property in combination with v being a
epi-gradient of / at x yields (2.32).    □

The fact in Proposition 2.8 that v must be a epi-gradient leads us to the following
simplified terminology.

DEFINITION 2.9. The function / will be called twice epi-differentiable at x
(without mention of any particular vector v) if / is (once) epi-differentiable at x,
at least one epi-gradient exists, and relative to every such epi-gradient v one has /
twice epi-differentiable at x relative to v.

PROPOSITION 2.10. Suppose that f is twice epi-differentiable at x. Let k be
any C2 function. Then the function h = f + k is twice epi-differentiable at x. The
epi-gradients of h at x are the vectors of the form u = v + Vfc(x) such that v is a
epi-gradient of f at x, and for any such u one has

(2-37) Kj£) = f'x\v(0 + £-V2k(x)£.
PROOF. Clearly

h(x + t?) - h(x) - if ■ u _ f(x + t£) - f(x) -t? -v
Lf-2 ~ lf2

(2'38) k(x + t£') - k(x) - t£' -Vfc(x)
+ H2

2L

where
lim «» + 'Q-fc(*)-'f •**(') = e . V2fc(-)e
no ht2 ;s

It is evident because of the strict convergence of the A; quotient that equality is
preserved in (2.38) when one takes either "lim sup inf" or "lim inf inf" on both
sides of (2.38). This immediately gives the result.    □

To explore comparisons with other derivative concepts, we need another defini-
tion, which will anyway turn out to be of importance later in this paper.

DEFINITION 2.11. Suppose that / is (first-order) epi-differentiable at x, and let
£ be a vector such that fx(£) < oo. If the difference quotients

(0 ,Q.                        ,       ,  v      f(x + n+\t2r,)-f(x)-tf'x(£)
(2-39) i>x,z,tiv) =-~U~2-

2l

epi-converge as t J. 0, then the limit function will be denoted by fx(£,-), and the
value fx(£,n) will be called the parabolic second derivative of / at _ relative to £
and n. (Thus

(2.40) fx(£,rf) =limsup inf ipx^tW) = liminf inf ipx^t(r\'),
tiO 1 -"? tiOn'—n
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where the assumption behind the symbol fx(t],n) is that the two semi-limits are
indeed equal.)

The parabolic second derivative f'x is closely related to the second derivative of
Ben-Tal and Zowe [17-20]. The first derivative of those authors (in an auxiliary
notation we shall employ here in order to avoid confusion with the symbolism
already introduced) is

,2.4i) /.,G_!ftffi±3L___1
and their second derivative is

to a^                   fie    \     r    /(* + *e+,^)-/(*)-*/x(0(2.42) /_(£, n) = hm-i—-^-

The difference between /_ and f'x is, of course, that /_ is defined by pointwise
convergence of the difference quotient functions instead of epi-convergence, and the
same for /_(£, ■) versus /_"(£, ■)• In consequence, the functions /_ and /_(£, ■) are
not necessarily lower semicontinuous, and they do not have the "local uniformity"
properties of f'x and f"(£, ■).

The relationship between the parabolic derivatives f"(£,n) and the epi-deriva-
tives fx\y(£) is not totally clear for general functions, but a kind of duality will be
demonstrated in Proposition 3.2 in the case of piecewise linear-quadratic functions
and more generally in Theorem 4.7. Such duality may be compared with results of
Chaney [12] and Seeger [15]. In any case, neither these authors nor Ben-Tal and
Zowe have considered, as here, functions / that are extended-real-valued.

3. Piecewise linear-quadratic functions. A prerequisite to the study of
epi-derivatives in the case of the essential objective f(x) = g(F(x)) in (P), which
is our real goal, is an understanding of such derivatives in the case of the proper
convex function g: Rd —► R, which is piecewise linear-quadratic in the sense of as
in Definition 1.1. We turn to this next.

In analyzing g the ordinary subgradient set of convex analysis, given by

(3.1) dg(u) = {yE Ud\g(u') > g(u) + y(u'-u) for all y'},

will help us out. We shall also find useful the normal cones to D = domg in the
sense of convex analysis:

ND(u) = {yE Rd\y ■ (_' - u) < 0 for all u' E D},        uE D.

The polar of Nq(u) is the tangent cone Tjj(u), which has a particularly simple
form because D is polyhedral, namely

TD(u) = {w E Rd|3r > 0 with u + tu E D for all t E (0,r)}.

Both ND(u) and TD(u) are polyhedral [22, §19].
Note that since g is continuous relative to D by nature of the definition of it

being piecewise linear-quadratic, it is a closed proper convex function on Rd.

THEOREM 3.1. At any u E D, the function g is twice epi-differentiable. Its
first epi-derivative function g'u is expressed simply by taking limits along rays:

,,„                                      i (  \     v    g(u + tw) - g(u)
(3-2) ?»=te-1-•

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



88 R. T. ROCKAFELLAR

The function g'u is convex and piecewise linear with effective domain

(3.3) domg'u=TD(u).

It is the support function of dg(u), which is a nonempty convex polyhedron and
coincides with the set of all epi-gradients y of g at u.

For any y E dg(u) the second epi-derivative function 3"    is likewise expressed
simply by taking limits along rays:

(3.4) g_>) = "mg(U + M"if3(U)'to'g-
uu 2t

The function g"    is convex and piecewise linear-quadratic with effective domain

(3.5) domg'ly = {u E Rn|<7» = w • y] = Ndg(u)(y).

Thus for y E dg(u) one has

V     ' u'yX   '     \ 00 ifuj-y<g'u(oj),

where for to E dom g'u one defines

(3.7) 7u(<_) = lim g(" + M->M-W < ..

[ = 0 if g is actually piecewise linear}.

PROOF. Consider a representation of g as in Definition 1.1 in terms of polyhedral
sets Dj(j E J). Fix u E D and let

(3.8) Ju = {j EJ\uED3).

For each j E Ju write

(3.9) g(u') = g(u)+q3-(u'-u) + \(u'-u)-Q3(u'-u)    for u'E D3

for some q3 E Rd and symmetric Q3 E Rdxd. Because Dj is polyhedral, there exists
for each j E Ju an ej > 0 such that [Dj — u] fl ejB — T_>(_) fl ejB. In particular
one has

(3.10) TD(u)=  |J TDj(u).
3€JU

Let e = min{£j|j E «/_}. Then for arbitrary p > 0 one has for all w 6 p5 and
tE(0,£/p):

g(u + tu) - g(u)      j qj ■ uj + \tu ■ QjW    when u E TDj (_), ;' E Ju,
[       > t \oo whenw $TD{u),

Let ^_it(w) and o_,t(w) denote the left and right sides of (3.11), respectively; (3.11)
asserts that <pUtt and c_,« agree on the ball pB when t E (0,£/p). The epi-limit of
aUtt (as t I 0) obviously exists and equals

(3.12) «r(«)=(*'W   when a, € TD («), i e J_,
v       ' ^00 when w £ TD(u),
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since auj differs from a only by a function on T_>(u) that converges to zero uniformly
on bounded sets as t J. 0. The epi-limit of <pu<t (as t [ 0) therefore exists and equals
a too. This means that g'u exists and

(3.13) g'u(oj) = o-(w)    for all u.

In particular then by formula (3.11), g'u is a piecewise linear function, and by (3.12)
its values satisfy (3.2). Thus g'u agrees with the ordinary directional derivative
function for g at u, which therefore must be a polyhedral convex function, in par-
ticular closed. In general the closure of the ordinary directional derivative function
is conjugate to the indicator of dg(u) [22, Theorem 23.2], and polyhedral convexity
is preserved under conjugacy [22, Theorem 19.2]. Therefore dg(u) is a nonempty
polyhedral convex set whose support function (the conjugate of its indicator) is g'u.
Then too dg(u) consists of the vectors y satisfying g'u(w) > u ■ y for all u>, which
are by definition the epi-gradients of g at u.

Passing now to second-order concerns, we transform (3.11) into the assertion
that

g(u + tui) - g(u) -tu-y
H2

(3.14) ,   2_ f w • Qjoj + 2[q3 - y] ■ u/t    when w 6 TDj (u), j E Ju,
\ oo when w ^ TD(u),

this being true for all w € pB when t E (0, p/e). Let

(3.15) *(_,) = J w'<fcw  wh««erc», j6 J_,
( oo if w fTD(u),

and observe that

(3.16) ^M = limg(M + M"1fl(")"tg"M    forall.GR^
no \t2

by virtue of (3.11)-(3.13). Denote the difference quotient in (3.14) by ^_,j,,t(w).
Recalling that (3.12) gives g'u(w), we can write (3.14) as

(3.17) P_,».t(w) = ^(w) + 2[g_(w) - w • y]/t,

an equation that holds for all uj E pB as long as t E (0, e/p). Under the assumption
that y is a epi-gradient of g at y, we have __(w) - w ■ y > 0 for all w, and the right
side of (3.17) therefore epi-converges as t J. 0 to

,U,A- l^W    ifff_(w)-w» = 0,

It follows that y_tJ/,t epi-converges likewise to ipo as t } 0. Thus j„' y exists and
equals t/>n. We can therefore write

(3-18) g'u,y=^ + oK,

where 8k is the indicator of K = {td|j?(,(a;) = w • j/}. The fact already established,
namely that g'u is the support function dg(u), i.e. satisfies

ff_(w) =    sup    u-y',
y'edg(u)
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implies

(3.19) K = {u\u-tf-y)<0 for all y' E dg(u)} = Ndg(u)(y)
and consequently that __ is a polyhedral convex cone, because dg(u) is a polyhedral
convex set. When (3.18) is combined with (3.16) and (3.19), we obtain justification
for the claim that (3.5) holds, and that on the set in (3.5), formula (3.4) holds.

The fact that g'^y is piecewise linear-quadratic follows from (3.18) and (3.15)
because the cones T_>. (u) and __ are polyhedral: one can write

dom _(,',„ =  \J[KnTDj(u)}.
jeJu

The convexity of g'l y follows from its definition as an epi-limit of functions <pu,y,t,
each of which is convex: in the context of epigraphs one observes that the limit of
convex sets St as t j 0, if it exists, must be convex.    □

Next on our agenda are some results about the parabolic second derivative in
Definition 2.11 and its relationship to second-order epi-derivatives of g.

PROPOSITION   3.2.   For any u E D and w  E Td(u)  the parabolic second-
derivative function g'^(w, ■) exists and has the formula

(3.20) 9_(«,f) =»_(«, 0) + (<?_)_(?)    forallcERd,
with

(3.21) g>,0) = Hm^ + ^7^-^^.

Furthermore, g'^(oJ, f) is a proper convex piecewise linear function of <; with effective
domain equal to

(3.22) T'D(u,ui) := [tangent cone to Td(u) at _>].

PROOF. We continue with the notation and setting that led in the proof of the
preceding theorem to (3.11): we have for any p > 0 that

(3 23)   9[U + tU + ^ = 9{U) + 9i(<W + 2*2f) + 2{tW + ^2f) ' Qjit0J + ^^

when u+\tcE TD] (u) n pB and t E (0,e/p).

Here w is fixed as well as u, and our concern is centered on behavior with respect
to c. Accordingly we take p > \ui\ and define

(3.24) Ju,u, = {JeJu\ojeTDj(u)},

(3.25) T'D (u,u)) = [tangent cone to Td3(u) at w],

so that

(3.26) T_(_,w)=    |J   T'Dj(u,u).

The cone T'D (u, w) agrees with T_>. (u) -won some neighborhood of 0 because
TDj(u) is polyhedral. The condition w + |ic E TDj(u) C\ pB in (3.23) is therefore
equivalent to k<; E T'D (u,u>) C\ (pB - ui) when |ic| is smaller than some Sj > 0.
Take 6 E (0,1) to be smaller than these 6j's and £. Then as long as p > |w| +1, say,
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the assumptions in (3.23) will be satisfied when c E T'D (u,ui)DpB and t E (0,6/p):
one will have
(3.27) g(u + toj+ i«2c) = g(u) + tq3 • (w + Uc) + U2(lj + Uc) ■ Q3(uj + Uc)

when c E T'D. (u, w) n pB and t E (0, S/p)
as long as p is sufficiently high. Remembering at the same time that

(3.28) g'u(oj) = g3• • w    for any j E J_iU)

we can write (3.27) in terms of the difference quotients

„9Qx                       ,        M     g(u + toj+k2^)-g(u)-tg'u(oj)
(3-29) ^u,o,,t(?) =-     i 2-

2l

as saying that the formula
(3.30)

/        i \ _ j °J -f + (^+ _<?) -<9i(w+ §*?)    when c€T^.(u,w), i e Ju,„,
Vu'w'tig" \oo when c£T^(u,a;),

holds when c € pS and £ E (0, <5/p), as l°n_ as p > \u>\ + 1. The function of c given
by the right side of (3.30) obviously epi-converges to

/3 31n | .j ■ ? + w • Qj-u;   when c e T^ (w, w), j G Ju,_,
\ oo when Tp(w,o;),

and therefore Vu,w,t epi-converges to this too as £ J. 0. Thus g'^(oj,-), which is
defined to be the epi-limit of ^>_,_-,ti exists and is given as a function of c by (3.31).
From the formula for g'u derived in the proof of Theorem 3.1 as (3.19), applied in
turn to the function g'u in place of g so as to get (<?_)„> we obtain

(3.32) (^(c) _ | ^        when f ^ r^(uw)
From (3.28) and (3.29), on the other hand, we have

(3.33) Um^ + ^-'M-MM =u.QiU    foranyiGJ_,_.
uo 2t

When (3.32) and (3.33) are plugged into formula (3.30) for <^'(u;,c), the result is
(3.20)-(3.21). Finally we observe that the functions ipu,u,t are convex because g
is convex, and their epi-limit g'^(oj, ■) is therefore convex also. The formula (3.21)
obtained for (?^(w, f) shows that this expression is piecewise linear in c; with effective
domain T'D(u,uj).    □

To help in stating the next result, we introduce some minor notation and termi-
nology.

DEFINITION 3.3 For a mapping 9: [0,r) -» Rd, we shall write

(3.34) 0(0) = lim 9® ~ 9^    (if the limit exists),

(3.35) 0(0) = lug ^ ~ g(10)2~ ^(0)    (if the limit exists).

If at least the first limit exists, we shall call 9 a first-order arc emanating from the
point _ = 9(0). If both limits exist, 9 is a second-order arc from u = 9(0). The
notation (3.34) and (3.35) will also be used for real-valued functions of t, despite
the one-sided nature of the limits.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



92 R. T. ROCKAFELLAR

PROPOSITION 3.4. For any uE D, the vector pairs (oj, f) such that g'l(oj, c) <
oo are the ones for which there exists a second-order arc 9: [0, r) —> D (in the sense
of Definition 3.3) with

(3.36) 9(0) = u,    9(0) = oj,    9(0) = c.
For any such arc 9 the function i(t) = g(9(t)) satisfies

(3.37) 1(0) = g(u),    7(0) = ._M,    7(0) = ff_(w,.).
PROOF. Any second-order arc 9: [0,t] —► R" satisfying (3.36) can be expressed

by
(3.38) 9(t) =u + tuj + k2$t    with lim ct = c,

namely by taking

(3.39) «M->TO-»W

The analysis in the proof of Proposition 3.2 shows that if 9(t) E D for t E [0, r)
then u E T_>(u) and c E T'd(u,oj) (the tangent cone to T_>(u) at oj), which are
the conditions in Proposition 3.2 for having g!^(oj,c) < oo. Conversely, if u and c
satisfy these conditions, then for t sufficiently small one has u + ^ic E Td(u) and
then also, for still smaller t if necessary, one has u + t(oj+ k$) E D. Thus by taking
9(t) — u + toj + k2$ over a small enough interval [0, r) one will have a second-order
arc satisfying (3.36) with 9(t) E D. This proves our first assertion.

In turning to the second assertion we use the fact developed in the proof of
Theorem 3.1 that (3.11) holds when oj E pB and t E (0, £Jp), except we apply it to
ojt = oj + k<;t in place of oj, obtaining

[l(t) - l(0)]/t = gj -ojt + ^tojf QjOJt    when ut E TDj (u), j E Ju.

The limit of this expression is qj ■ oj for any j E Ju, which we know from the proof
of Proposition 3.1 to be g'u(oj). Thus 7(0) = g'u(oj).

The argument proceeds next with the formulas (3.27)-(3.28) in the proof of
Proposition 3.2, which we apply to ft instead of c. (The formula holds when t is
sufficiently small.) This yields

~U) _ ~(o) — t'y(O)
-^-if-i-^ =%■( + (*■ Qj«Jt    when c e T'Dj(u,oj), j E __,_.

2*

The limit this time as t J, 0 is

7(0) = <7j■ ■ c + ojQjOJ    for any j E </_,_ with c ET'D (u,oj)

and this expression has been shown in Proposition 3.2 to be <?_(w, c).    □
Proposition 3.4 tells us in particular that for piecewise linear-quadratic convex

functions the parabolic second derivative in Definition 2.11 agrees with the second
derivative of Ben-Tal and Zowe defined by (2.42): g'^(oj,c) = gu(oj,c) (and also
g'uioj) = 3_(w))- (But for more general functions they need not agree.)

The final result of this section reveals a duality between second-order epi-deriva-
tives and parabolic second derivatives that will lead later (Theorem 4.7) to a deeper
one for our general functions /.
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PROPOSITION 3.5.   LetuED and oj E Td(u), and define

,      s dg(u)u = {yE dg(u)\oj E Ndg[u)(y)},

= {y E dg(u)\g'u(oj) =oj-y).

Then

(3.41) sup    {g'ly(u)+S-y} = g'u(oJ,c)    forall^ERd,
y€dg(u)u

and dually

,3,2) ««<„,,) -f ■,)-{_>'    m?""'-
PROOF. Let

p.43) ,(„={ :<.M *^*->-

Our claim is that v? and the function <7_(w, •) are conjugate to each other. Theorem
3.1 tells us in fact that <?_iy(w) is constant in y E dg(u)u, the constant having the
value 7_(w) there, as defined by (3.7). This value is the same as g£(oj,0) by (3.21)
in Proposition 3.2. Thus

(3.44) ip = —c + Sq    where c = g'u(oj,0) and G = dg(u)u.

On the other hand the function (<?„)_ in Proposition 3.2 is by Theorem 3.1 the
support function of dg'u(oj), and since g'u is in turn by Theorem 3.1 the support
function of dg(u), the set dg'u(oi) is just dg(u)u. Thus (3.20) can be written as

(3.45) .J,'(w,•) = c + «5g    where c = g'^(oj,0) and G = dg(u)u.

The conjugacy between (3.44) and (3.45) is apparent.    □

4.   Constraint qualification and the general derivative formulas. We
pass now to the setting of problem (P) itself, where f(x) = g(F(x)) for a C2
mapping F: Rn —> Rd and a piecewise linear-quadratic proper convex function
g: Rd -* R. The effective domain of / is

(4.1) C = {xERn\F(x)ED},

where D is the effective domain of g and is a nonempty convex polyhedron in Rd.
The condition F(x) E D represents the constraint system in (P), so it will come
as no surprise that a constraint qualification must be introduced before we can
proceed.

The d x n matrix of first derivatives of F at x will be denoted by VF(x); the
rows of VF(x) are thus the gradients of the components of the vector F(x). For
any y E Rn one then has (In writing yVF(x) we think of y as a row vector.) For
any first-order arc

(4.3) V:[0,r)-+Rn    with ip(0) = x, ip(0) = £

in the sense of Definition 3.3, one has

(4.4) 9(0)=F(x)    and    9(0) = VF(x)£       for 9: [0,r) — F(ip(t)).
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The dx nx n array of second derivatives of F at x will be denoted by V2F(x).
This three-dimensional array can be viewed as a stack of n x n hessian matrices,
one for each of the d components of the vector F(x). In parallel with (4.2) we write

(4.5) V2(yF)(x) = yV2F(x)    for the function yF: x y~* y ■ F(x).

Thus yV2F(x) denotes for us the n x n matrix obtained by multiplying each of
the Hessians in the stack V2F(x) by the corresponding scalar component of y and
adding them up. On the other hand we introduce the notation f V2F(_)f to denote
the vector in Rd obtained by multiplying each of the hessians both on the left and
the right by f (as a row vector and as a column vector, respectively). Then

(4.6) y(iV2F(x)0 = t:-yV2F(x)i.

(Inasmuch as y E Rd but £ E R", this notation ought not to lead to any confusion.)
When ijj in (4.3) is a second-order arc with ij)(0) = n, then 9 in (4.4) is a second-
order arc with

(4.7) 0(0) = £V2F(x)Z + VF(x)n.

DEFINITION 4.1. At a point x EC in (4.1) the basic constraint qualification will
be said to hold if the only vector y E Nd(F(x)) satisfying yVF(x) = 0 is y = 0.

EXAMPLE 4.2. Let F and D have the form specified in Example 1.2, which
corresponds to the constraint system

x E X (polyhedron) and fi(x) E 1% (closed interval)    for i = 1,..., m.

The basic constraint qualification at a point x satisfying this system is then the
following: the only vector y — (yy, ■ ■ ■ ,ym) satisfying

m

(4.8) yi E NIt(ft(x))    fon = l,...,mand -J2ytVfl(x)ENx(x)
i = l

is y = (0,..., 0). To elucidate this further, let us note that if we write

(4.9) Il = [c-,c+}    fori = l,...,m

(a slight abuse of notation when cf = oo or c~ = -oo, since It C R), we have

h(x)Eh <*-c~ < fi(x) <cf
and
(4.10)

[0, oo) if fi(x) = cf > ct   (active inequality constraint),
\r   j r i \\ _ J ("OOiO] H fiix) = c~ < cf (active inequality constraint),

j (-00,00) if fi(x) = c~ = cf (equality constraint),
[0,0] if c~ < fi(x) < cf (inactive inequality constraint).

The first conditions in (4.8) are therefore just sign requirements on y in the classical
mode. If x E intX (as when X = Rn, for instance), the normal cone Nx(x)
reduces to the vector 0, and (4.8) turns into the well known dual statement of the
Mangasarian-Fromovitz constraint qualification [40].

In Example 1.3, where the objective of Example 1.2 is replaced by a function of
max type, the basic constraint qualification reduces to exactly the same condition
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as just stated. In Examples 1.4-1.7 the basic constraint qualification trivializes and
is always satisfied.

A second-order generalization of the classical theorem on the representation of
tangent cones to sets defined by smooth constraints can now be stated. In proving
this theorem we rely at a crucial point on an argument of Ben-Tal [41] concern-
ing the existence of second-order arcs under the Mangasarian-Fromovitz constraint
qualification.

THEOREM 4.3. Suppose that the basic constraint qualification is satisfied at
the point x EC. Then the vectors £ such that there exists a first-order arc

(4.11) yj): [0, t) -* C    with ip(0) = x, ip(0) = £,

are precisely the ones such that

(4.12) VF(x)£ETD(F(x)).

Moreover the vector pairs (£, n) such that there exists a second-order arc

(4.13) ip: [0,r) ->• C    with ip(0) = x, ip(0) = £, j>(0) = n,

are precisely the ones such that

(4.14) VF(x)£ETD(F(x))    and   £V2F(x)£ + VF(x)n E T'D(F(x), VF(_)0,

where T'D(F(x), VF(x)£) denotes the tangent cone to the cone Tp(F(x)) at VF(x)£.

PROOF. An arc ip: [0, r) —» C has associated with it an arc 0: [0, r) —> D, where
9(t) = F(ip(t)). From the observations preceding Definition 4.1, we know that

(4.15) 0(O) = F(_),    0(O) = F(x)£,    9(0) = ZVF(x)Z + VF(x)n.
Propositions 3.2 and 3.4 convey the information that an arc 0: [0, r) —» D has
0(0) € TD(0(O)) and 0(0) E TD(9(0),9(0)). The necessity of (4.12) in the first-order
case is therefore clear, regardless of any constraint qualification, and likewise for
(4.14) in the second-order case.

The sufficiency of (4.12) and (4.14) in the respective cases will be established by
converting our situation to the classical one, where our basic constraint qualification
can be identified with the Mangasarian-Fromovitz constraint qualification. Let
u = F(x). The set D being a convex polyhedron, it coincides in some neighborhood
u with the set u + T_>(u). The polyhedral cone T_>(«) can be represented in the
form

(4.16) TD(u) = {oj\a% ■ oj < 0 for i = 1,... ,q; a, ■ oj — 0 for i — q + 1,... ,r}

for some choice of vectors ai ERd, and then from some e > 0 we will have

Dn(u + £B) = {u'\ai ■ u' < ai for i = 1,... ,q; a^ • w' = a, for i = q+ 1,... ,r},

where a, = a^ • u. This implies that for some 6 > 0 we will have
(4.17)

C n (x + 6B) = {x'\ft(x') <0fori = l,...,g; /,(_') = 0 for i = q+ 1,... ,r},
where

(4.18) U(x') = at ■ F(x') - a%    for i = 1,... ,r.
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In selecting the representation (4.16), it is always possible to choose the _j's in
such a way that

,. ]qx the only A = (Xy,..., Xr) with Aj > Ofor t = 1,... ,q and £^=1 A^aj
^■™>        = 0 is A = (0,...,0).
To see this, let M = ND(u) n (-ND(u)) (a subspace of Rd) and let K = ND(u) n
Mx (a polyhedral cone with K D (-K) = {0}). Then

(4.20) ND(u)= K + M    and    TD(u) = K° n M"1,

where __° is the polar of if. Let ai,..., aq be nonzero vectors that generate K as
the set of all their nonnegative linear combinations, and let aq+y,..., ar be a basis
for M. Then (4.19) holds as desired, and the representation (4.16) is obtained from
the second part of (4.18).

With this refinement we have in (4.17)-(4.18) a local constraint representation of
C around x in terms of C2 constraint functions fi that are all active at x and satisfy,
we claim, the dual statement of the Mangasarian-Fromovitz constraint qualification:

,       . the only vector A = (Ai,..., Ar) satisfying Aa > 0 for i = 1,...,q
[*-n> and E[=i AtV/t(x) = 0 is A = (0,..., 0).
Indeed, the gradients in (4.18) are

(4.22) V/i(x) = a,VF(i)    for i = 1,... ,r

so that if A were a vector satisfying the conditions in (4.19) the vector y = __^=i At_i
would belong to Nd(x) (because a^ E Njj(x) for i = 1,... ,q and ±_^ E Nd(x) for
i = q + 1,..., r) and give us

r r

yVF(x) = J2 A.a,VF(x) = £ A,V/,(x) = 0.

Then y = 0 by our basic constraint qualification, and this implies A* = 0 for
i = l,...,rby (4.19).

The original statement of the Mangasarian-Fromovitz constraint qualification,
equivalent to the property we have just derived, is that the gradients V/^(x) for
i = q+1,... ,r are linearly independent and there exists at least one vector £ with
(4.23)

V/i(x)-f<0    for i=l,...,q       and        V/j(x)-£ = 0    for i = q+1,... ,r.
It is well known (see [40]) that when this holds there exists for every vector £
satisfying
(4.24)

V/t(x) • £ < 0   for i = 1,... ,q       and       V/j(_)■£ = 0   for i = q +1,... ,r,
a first-order arc

(4.25) ip: [0, t0) -» Rn    with ip(0) = x, ip(0) = £,

(4.26) /,-M0)<0    for i = l,..., q, f,(ip(t)) = 0    for t = q+ 1,... ,r.
In view of (4.15) we have ij)(t) E C for t sufficiently small, say for t E [0,r). In our
local representation the condition VF(x)£ € Tq(F(x)) is equivalent to

_i-V.F(_)f <0    for i = !,...,<?,        and       ai-VF(x)£ = 0    for i = q + 1,... ,r,
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which is the same as (4.24) by (4.22). It follows therefore that if (4.12) is satisfied,
an arc ip as in (4.11) does exist. Sufficiency in the first-order case is thereby
demonstrated.

For the second-order case we make use of the fact established by Ben-Tal
[41, proof of Theorem 3.1]: if £ and c satisfy (4.24) and

(4.27) e-vv^+v/^j;0, \ztl\Vi::::Twm8Vfl{x)^<0,
and if the gradients V/j(x) for i = q + 1,..., r are linearly independent, then there
exists a second-order arc

(4.28) ip: [0, T0) -* Rn    with ^(0) = x, ^(0) = £, $(0) = V

and such that (4.26) holds. (The argument of Ben-Tal essentially uses the implicit
function theorem to change the coordinate system and convert the equality con-
straints into simple linear constraints where everything is easy.) In preparation for
applying this fact we need to see what condition (4.14) means in our local represen-
tation. The first part of (4.14) has already been translated into (4.24). Observing
from (4.16) that the tangent cone T'D(u,oj) to T_>(_) at _ is expressed by

T'D(u, oj) = {c|ai • C < 0 for i — 1,..., q having a% ■ oj = 0,
and ai ■ c = 0 for i — q + 1,..., r},

we see that the second condition in (4.14) is

at-[ZV2F(xK + VF(x)n){ ^   £ \ Z ^.^ * ' **** ~ °'

But

^ ■ [£V2F(x)£ + VF(x)n] = £ • V2(fliF)(x)£ + V(aiF)(x)n

= e-v2/I(x)£+v/J(x)e

Therefore (4.14) is equivalent to the combination of (4.24) and

(4.29) £ • V/,(xK + V/4(»), { *°0   *\Z IVC™? V/t(XK = °'
What we must do to establish the sufficiency in the second-order part of the theorem
is to show that for any pair (£,//) satisfying (4.24) and (4.29) there is an arc ip
satisfying (4.28) and (4.26).

Consider therefore a pair (£, n) satisfying (4.24) and (4.29). For k — 1,2,... let
nk = n + (l/fc)£, where £ is a vector satisfying (4.23), which we have shown to
exist because of the constraint qualification. The pair (£,??fc) then satisfies (4.24)
and (4.27), so by the cited result of Ben-Tal there exists

i>k ■ [0,Tk) -* C   with ipk(0) = x, ip\(0) = £, i/ifc(0) = nk-

Then for all k

ipk(t)-x ipk(t)-x-ttllim-= t    and    lim-=—--= m.
tio        t tio \t2 IK
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Lowering the values rk consecutively if necessary, we can arrange that 7_ > r2 >
••■ > Oand [ipk(t)-x]/t differs from £ by at most 1/fc on (0,rfc), [ipk(t)-x-ttl\/\t2
differs from r)k by at most 1/fc on (0,rk). Define

i>(t) =ipk(t) on [Tjt+i,Tfc)    for k= 1,2,..., and ip(0) = x.

Then ip(t) E D for all t E [0,ri), and one has

lim^^ = £,no      t s'
,.  M)-I-fg    ,.
lim-r—- =  lim m = n.
no k2 fc-oo ,k      '

Thus V is a second-order arc satisfying (4.13), which is what we had to come up
with.    □

The proof of Theorem 4.3 reveals another fact about first-order properties of
the set C. Recall that C is said to be tangentially regular if the Clarke tan-
gent cone Tc(x) coincides with the contingent cone Kc(x) to C at x (see Clarke
[2, p. 55]). This is a property of considerable interest in nonsmooth analysis, be-
cause it is known to imply for instance that

Kc(x) = lim inf Kc(x').
x'—*x
x'ec

PROPOSITION 4.4.   Suppose that the basic constraint qualification is satisfied
at the point x EC.  Then C is tangentially regular at x with its Clarke tangent cone
expressed by

(4.30) Tc(x) = {£ e Rn|VF(x)£ E TD(F(x))}.

PROOF. As in the proof of Theorem 4.3, give C a local representation at x of
the form (4.17)-(4.18) in such a way that the Mangasarian-Fromovitz constraint
qualification is satisfied and the set on the right side of (4.30) is characterized by
the linear system (4.24). Use the linear independence of the equality constraint
gradients Vft(x), r — q+ 1,... ,m, to pass by way of the implicit function theorem
to a lower dimensional format in which C is identified with a set represented by
inequality constraints only, still with the Mangasarian-Fromovitz constraint qual-
ification satisfied. For this set one has tangential regularity, as proved by Clarke
[2, Corollary 2 to Theorem 2.4.7]. The tangential regularity of C then follows, the
cone Tc(x) being given by (4.24) and therefore by (4.33).    □

The next theorem is our main result on epi-derivatives of first and second order.
It demonstrates their existence for a large and significant class of functions.

THEOREM 4.5. Let x be a point ofC = dom/ where the basic constraint quali-
fication is satisfied. Then f is twice epi-differentiable at x and also subdifferentially
regular at x in the sense of Clarke.  The first epi-derivative function is given by

(4.31) /_(.) = fl_-(_)(VF(*)0,

(4.32) dom/; = {£|VF(x)£ E TD(F(x))} = Tc(x).

It is the support function of the generalized subgradient set

(4.33) df(x) = dg(F(x))VF(x) = {yVF(x)\y E dg(F(x))},
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which is therefore the same as the set of all epi-gradients of f at x; this set is a
nonempty convex polyhedron. The second epi-derivative function relative to any
v E df(x) is given by

UW    f" in- /TF(x)(VF(x)£) + maxyey„(_)i/.[£V2F(x)£]    z/£eH„(x),
(4-34)     /_,,(£)- | ^    forUEv{xl

(4.35) dom/£„ = S„(*),

where

(4.36) Yv(x) := {y E dg(F(x))\yVF(x) = v}

is a nonempty, bounded, polyhedral convex set,

H„0r) := Ndf(x)(v) = {£|/;(£) = v ■ £}
1 '   ' ={Z\g'F{x)(VF(x)c:) = vO

is a polyhedral convex cone, and 7F(x)(Vir'(x)£) is the expression defined from g by
(3.7).

PROOF. Our first task is to show that the difference quotient functions

(4.38) <px,t(0 = [fix + tO - f(x)}/t = [g(F(x + *£)) - g(F(x))}/t
epi-converge as t J, 0 to the function given by the right side of (4.31), or in other
words to show that

(4.39) lim inf p_>t(£') > __•(_)(VF(_)0,

(4-40)                           limsup inf <p_,t(£') < gfF{x){VF(Z)).
no €'—c

Let u = F(x). We can write

<Px,tW) = [.(« + toj') - g(u)\/t    for J = [F(x + t&) - F(x)]/t

and note that oj' —» VF(x)£ when £' —* £. This makes it clear that

,.    • r       /_m ^    r    • t    g(u + toj') - g(u)hmmiBit c>     liminf    —-—-.«io      ' no t
€'-»£ _'^VF(_)«

Since g is known to be epi-differentiable at u (Theorem 3.1), the limit on the right
is g'u(VF(x)t;). This proves (4.39).

To obtain the complementary inequality (4.40), it is enough to consider a £ with
9^(VF(x)£) < oo, i.e. £ belonging to the set on the right side of (4.32). For any
such £ there exists by Theorem 4.3 a first-order arc ip as in (4.11). Then

(4.41) limsup inf <p_,t(£') < nmsupp_it(£t)
no £'-»£ no

where £< = [ip(t) - ip(0)\/t so that

e«.t(.t) = [fim) - /MO))]/* = Wit)) - g(0(o))]/t
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for 9(t) = F(ip(t)), 9(t) EC fort E [0, r). Then

Km<p_,t(£t) = <^(O)(0(O)) = ^(:c)(VF(x)£)

by Proposition 3.4. This and (4.41) yield (4.40) and finish the justification of (4.31)
(and therefore (4.32)).

The subdifferential regularity of / at x will be tackled next. The function g, being
piecewise linear-quadratic, is locally Lipschitzian relative to its effective domain G.
Let p > 0 be a Lipschitz constant that works for a neighborhood of u = F(x), and
define

(4.42) g(u') =   mi {giw) + A*lw' — wl}i    where p > p.
tu _Rn

This formula says that g is the infimal convolute of g and p\ ■ |; since g is convex,
so is g [22, Theorem 5.4]. Because of the choice of p one will have

(4.43) giu') = giu>)    i°T an u> m some neighborhood of _

(namely any neighborhood where p acts as a Lipschitz constant). In particular g is
finite at certain points, but also g(u') < g(u) + p\u' — u\ < oo for all u' from (4.42),
so by convexity g is finite everywhere on Rd [22, Theorem 7.4]. Hence g is locally
Lipschitzian [22, Theoerm 10.4] and everywhere subdifferentially regular (Clarke
[39]).

In view of (4.43) we have

(4.44) f(x') = g(F(x')) + 6c(x')    for all x' near x.

The function f(x') = g(F(x')) is subdifferentially regular, because composition
of a subdifferentially regular locally Lipschitzian function with a smooth mapping
preserves subdifferential regularity (Clarke [39]). The set G is tangentially regular
at x by Proposition 4.4. The indicator function 6c is thus subdifferentially regular
at x. Applying Rockafellar [42, Corollary 2 of Theorem 2] we are able to conclude
that the sum function in (4.42) is subdifferentially regular at x and consequentially
that / has this asserted property.

Because / is subdifferentially regular, fx is the support function of the set df(x)
(Proposition 2.6). But g'F<x\ is the support function of dg(F(x)) (Theorem 3.1), so
formula (4.31) says
(4.45)

/;(£)=      sup      yVF(x)£=      sup     (yVF(x)) • £ = sup v • £.
yedg{F{x)) yedg{F(x)) v€dg(F(x))VF(x)

Thus f'x is the support function dg(F(x))WF(x). The latter is nonempty convex
polyhedron, because it is the image under the linear transformation y h-» yVF(x)
of the set dg(F(x)), which is a nonempty convex polyhedron by Theorem 3.1. (The
image of a convex polyhedron under a linear transformation is a convex polyhedron
[22, Theorem 19.3].) In particular dg(F(x))VF(x) is a closed convex set. The
correspondence between closed convex sets and their support functions is one-to-
one, so the fact that f'x is the support function of both df(x) and dg(F(x))VF(x)
implies these two sets are the same, as claimed in (4.33).

We pass now to the second-order formula in the theorem, where £ is fixed as well
as x. Let oj = VF(x)£. Select v E df(x) = dg(F(x))VF(x) and consider Yv(x) as
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in (4.36). It must be shown that the difference quotient functions

UAR\ m     f(x + ttj)-f(x)-tl;-v     g(F(x + tQ)-g(F(x))-tvt
(4.46) ip_,„,t(_) =-rr2-=-TT2- 2 2l

epi-converge at t \ 0 to the function given by the right side of (4.34). For this it
will suffice by the formulas for g'^y(oj) in Theorem 3.1 that we prove two facts: first
that

(4.47) Vy E Yv(x),    lim inf p_,„,t(6') > <» + y • [£V2F(x)£];
€'-»«

and second that for any £ in the set Ev(x),

(4.48) 3y E Yv(x),    limsup inf <px,v,t{t') < g'^oj) + y ■ [£V2F(x)£] < oo.
no i -»£

The inclusion c in (4.35) is already known to hold from Proposition 2.8, so, this
second property will also serve to establish the equality in (4.35). (For £ such
that /;(£) > £ ■ v one has for all y E Yv that ^(l)(VF(x)£) > y ■ VF(x)£ and
consequently g'F,x\ y(VF(x)£) = oo by Theorem 3.1. Then the maximum in (4.34)
is attained trivially at every y E Yv(x).)

We begin with the verification of (4.47). For any y E Yv(x) we can write yVF(x)
in place of v in (4.46). Then if we take oj' = [F(x + ££') — F(x)]/t, which converges
to oj = VF'(x)£ as t [ 0 and £' —► £, we have

,       g(u + toj') - g(u) -ty-oj'
Px,vM ) =-n^- 2l

(yF)(x + tZ')-(yF)(x)-tV(yF)(x)-e
+ 1/22l

where the second term converges as t J. 0 and £' —* £ to

£-V2(2/F)(x)£ = 2/.[£V2F(x)£].

It follows that

lim inf ^,t(£')>lim  inf   »<» + U) ~[^ ' ty ' J + y ■ [£V2F(x)£],
t|U tio -~t

where the "liminf on the right is g'^y(oj) since g'u exists by Theorem 3.1. Thus
(4.46) is true.

The argument that (4.48) holds, under the assumption that /£(£) = i> • £, is
more involved. Let us observe that the set Yv(x) is a (nonempty) polyhedron by
its definition in (4.36), inasmuch as the set dg(F(x)) = dg(u) is a polyhedron
(Theorem 3.1). It is bounded (hence compact), because if it were not it would have
a recession vector n / 0:

(4.49) y + tn E Yv(x)    for any y E Yv(x) and t > 0

[22, Theorem 8.4]. Such a vector n would belong to the recession cone of dg(u) and
satisfy nVF(x) — 0. To say that n belongs to the recession cone of dg(u) means
that for any y E dg(u) one has y + tn E dg(u) for all t > 0, so that

g(u') > g(u) + (y + tn) ■ (u' - u)    for all t > 0, u' E Rd.
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Then in particular one must have n ■ (u' — u) < 0 for all u' E D = domg, so
that n E Nd(u). Thus if Yv(x) were not bounded there would exist a nonzero
vector n E Nd(F(x)) such that nVF(x) = 0, which would be contrary to the basic
constraint qualification.

For any y E Yv(x) the assumption £ E Ev(x) implies /£(£) = y ■ VF(x)£ = y ■ oj.
The supremum in (4.45), which equals g'u(oj), must therefore be attained at y: one
has g'u(oj) = y ■ oj and in consequence y belongs to the set d<?(_)_ defined in (3.40),
which is a convex polyhedron included in dg(u). This allows us to write

(4.50) Yv(x) = {yE dg(u)u\yVF(x) = .}.

For each y E dg(u)u we have <?_iy(w) < oo by formula (3.5) in Theorem 3.1; in fact
the function y •—► ff_)V(w) is constant on dg(u)u with the constant being given the
value 1u(oj) defined by (3.7). Denote this constant for the moment by 7 and let
a = £V2F(x)£. With (4.50) being the same as (4.36) we can express the right side
of (4.34) as

(4.51) sup     {l + y-o-},    where G = dg(u)u.
yea

yVF(x)=v

This maximum can be viewed as the optimal value in a certain linear programming
problem, since dg(u)u is polyhedral. Hence it is attained by some y. By duality
theory (either linear programming duality in terms of a constraint representation
for G or the more general polyhedral convex programming duality in [22, Theorem
29.2]) there is a Kuhn-Tucker multiplier vector for the constraint yVF(x) = v in
(4.51), i.e. a vector n such that

(4.52) sup     {l + y ■ o-} = sup{i + y ■ 0+ [yVF(x) - v] ■ n}.
y€G yeG

yVF(x)=v

The left side of (4.52) is attained at the vector y G Yv(x) and equals

(4.53) 7 + V ■ o = 7«M + y • [£V2F(x)£] < 00.

The right side can be worked out from formula (3.41) of Proposition 3.5 as
(4.54)

sup    {g'ly (oj) + y ■ [£V2F(x)£ + VF(x)n] - v ■ n} = &(oj, c)-vn
y€dg(_)_

forc = £V2F(x)£ + VF(x)r/.

Because of the equality between (4.53) and (4.54), our task in demonstrating (4.48)
is reduced now to the verification that

(4.55) limsup inf £_,t>,t(£') < ff_(w,c) -v-n
no v-*i

for u = F(x), oj = VF(x)£, c = £V2F(x)£ + VF(x)n, when g'^oj, c) < 00.
The condition g'^(u>,c) < 00 has been shown in Proposition 3.2 to mean u E

Td(u), c E T'd(u, oj). Applying Theorem 4.3 we get the existence of a second-order
arc ip as in (4.13) whose corresponding arc 0: [0, r) —> D given by 9(t) = F(ip(t))
satisfies

0(0) = u,     0(0) = oj,    0(0) = f.
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Then for j(t) = f(ip(t)) = g(F(ip(t))) we have by Proposition 3.4 that 7(0) =
g(u) = /(_),

7(0) = g'u(oj) = g'F{x)(Fix)0 = /_(£) = £• v,

and 7(0) = £_(w,f). It follows that

This in turn yields in terms of £t = \ip(t) - ip(0)]/t that

»(      ,     v    ff(x + t*t)-f(x)-ttfv ,  (£t-£)-t;\fa(«.,.) = hm ̂ -p-+ —I7i—j

where

no   k2       tio ±£2 v

Thus

g(,'(w,n)-v-n = lim^_,„,t(£t),    where lim£t = £.

This gives us 4.55 and finishes the proof of the theorem.    D
Some complementary results will now be obtained for the parabolic second-

derivative in Definition 2.12.

THEOREM 4.6. At any point x E C = domf where the basic constraint qual-
ification is satisfied and for any £ € Tc?(x) = domf'x (cf. (4.32)), the parabolic
second-derivative function /_*(£, ■) is well defined and given by

(4.56) /;(£)??) = ^(x)(VF(x)£, £V2F(x)£ + VF(xh)    for all n.

One has fx(l;,n) < 00 if and only if there exists a second-order arc

(4.57) ip: [0, t) -► G    with ip(0) = x, ^(0) = £, i>(0) = n

(cf. Theorem 4.3), in which case the function ^(t) = f(ip(t)) satisfies

(4.58) 7(0) = /(*),    7(0) = /_(£),    7(0) = /_"(£, 17).

Moreover /"(£, 77) as a function of n is proper, convex and piecewise linear.
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Proof. Let

(4.59) „,,,(„ = Z_______k_______>.2f

The first question is whether <px,£,t epi-converges to something as t [ 0. In terms
of u = F(x), oj = VF(x)£ and c ='£V2F(x)£ + VF(x)r?, we have /;(£) = g'u(w) by
Theorem 4.5 and can express

lAan, , v     g(" + ^ + _*2ft(??)) ~ g(«) ~ tg'ujoj)
(4.60) <Px,i,,t(v) =-r^-

2l

with

(4.6D m_*+«+m-r<*-«m(t

(4.62) lun ct(r,') = ?.

Therefore
,.      . f            , /w,-     ■ f g(u + toj + k2c')-g(u)-tg'u(oj)hm inf <p_,€,tfa ) > lim inf -2—^-

f/'-"7 ?'-»?

where the limit on the right is g'^(oj,^) because <?„(w, ■) exists by Proposition 3.2.
The complementary inequality

(4-63) limsup inf <Px,ct(v') < 0_(w,f)
tio v'->*i

must be argued next. Only the case where g'^(oj,c) < oo needs to be addressed.
In this case w E Td(u) and c E Td(u,oj) by Proposition 3.2, so the condition in
Theorem 4.3 is satisfied and there exists an arc ip as in (4.57). Then 9(t) = F(ip(t))
is a second-order arc

0: [0, r) — D    with 0(0) = u, 0(0) = oj, 0(0) = c

and ~f(t) = g(9(t)). Proposition 3.4 asserts that

(4.64) 7(0) = .(«),    i(0) = g'Jw),    7(0) = ff£(w, ().
If we substitute

_ ip(t) - ip(0) - tip(0) _ ip(t)-x-tt\
r?t ~~ 172 ~~ I72

2 2

for n in (4.60)-(4.61) we get

7(Q - 7(0) ~ <7(0)
Px,z,t(r)t) = -nj-•

2J

It follows that

limsup  inf  <px^,t(v') < limsup<px,z,t(rit)
tio v'-"i t\o

= 1.m7(0-7(0)-<7(0)        (Q)
tiO i<2
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This gives (4.63) by the last equation in (4.64) and brings us to the point where
only the final assertion of the theorem is left to prove. In fact (?_(w, •) is known
from Proposition 3.2 to be a proper convex, piecewise linear function with effective
domain T'd(u,oj), so this assertion is immediate from (4.56).    □

A fundamental duality between second-order epi-derivatives and parabolic
second-order derivatives exists for functions / of the class we have been treating,
as can now be stated.

THEOREM 4.7. At any point x E C = domf where the basic constraint qual-
ification is satisfied and for any £ 6 Tc(x) = domfx, one has in terms of the
set

,      . df(x)s = {vedf(x)\fx(0 = £-v}
1 •    j ={vEdf(xMENdf{x)(v)}
the following duality between the two kinds of second derivatives:

(4.66) /_•(_,!/)=     sup    {/£„(£) + vV}   forallnERd,
vedf(x)t

(4.67) inf {/»(£,„) - v  V} = { #"(€)    *" € */(l)c'
neRn ^ oo otherwise.

Moreover the supremum and the infimum are attained when finite.

PROOF. Recall that f'x is the support function of df(x) (Theorem 4.5), and
9Fix) 1S ̂ ae support function of dg(F(x)) (Theorem 3.1). In view of the formulas
for f'x and df(x) in (4.31) and (4.33), one has v E df(x)$ if and only if there exists
a vector y E dg(F(x))vF(x)£ satisfying yVF(x) = v. The right side of (4.66) can
be written using (4.34) as

sup {gFix)JVF(x)0 + y • [£V2F(x)£ + VF(x)r,}}.
y€dg{F(x))VF(x)(

But this is _£(_)(VF(_)£, £V2F(x)£ + VF(x)n) by Proposition 3.5 and equals
/"(£, n) by Theorem 4.6. Equation (4.66) is therefore correct. It can be interpreted
as saying that /£'(£, •) is the convex function conjugate to the function

(4-68) h(v) = -f'J^) + 6df{xU(v).
We shall argue that h is a closed convex function and therefore is in turn the

conjugate of /"(£,), i.e. (4.67) holds. Certainly the indicator term in (4.68) is a
closed convex function, because df(x)^ is a closed convex set. We have observed in
the second-order part of the proof of Theorem 4.5 that the formula (4.6) for /"„(£)
takes the alternative form (4.51), namely

/£'.(.)=     sup     {7 + 2/-[£V2F(x)£]},    where G = dg(F(x))VF(x)i.
y<EG

yVF(x)=v

The constant 7 does not depend on v. Thus for a certain polyhedral convex function
fc one has

(4.69) -/_„(_) = inf{Jfc(u)|yVF(i) = v}    when v E df(x)*.
y
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Let ho(v) denote the infimum in this formula. The function ho is the so-called
image of fc under the linear transformation y t-» y\/F(x), and it inherits from
fc the property of polyhedral convexity [22, Corollary 19.3.1] and in particular
closedness, i.e. lower semicontinuity. We may conclude from (4.69) that fxv(£) is
lower semicontinuous as a function of v E df(x)$. Hence h is closed, as we needed
to show.

It has been verified that the functions /"(£, •) and h are conjugate to each other.
Also, though, f'x (£, •) is polyhedral convex by Theorem 4.6. This property is pre-
served under conjugation, so h is polyhedral convex. The supremum in (4.66) and
the infimum in (4.67) both involve polyhedral functions, therefore, and are attained
when finite.    □

The duality in Theorem 4.7 can be compared with a similar duality discovered by
Chaney [12] for finite functions / of the type (1.15) in Example 1.7. For functions
of this type the parabolic second derivatives /_ (£, n) given by (4.56) coincide with
the ones of Ben-Tal and Zowe [17] (except for a factor of ^), as can readily be
verified. Chaney demonstrates in effect in [12, Theorem 4.4] that in terms of such
a formula for /"(£, f) the expression inf^gRn {/"(£, n) — v ■ n} gives his own second-
order derivative (except for a factor of |): let us denote it by /£'„(£); like /"jt)(£),
this is oo when v £ df(x)^. It follows then from Theorem 4.7 that fxv = fxv for
this class of functions.

We shall not go into the details of Chaney's derivative here, but we note that it
is applicable to other functions beyond the ones in Example 1.7 and even beyond
the class f(x) = g(F(x)) chosen in the present paper. Whether it coincides with
our derivative in other situations is an open question. Chaney's derivative is in any
case only defined for finite functions of certain kinds, whereas ours allows / to be
extended-real-valued as a way of incorporating constraints.

The following consequence of Theorem 4.7 deserves to be recorded.

COROLLARY 4.8. If the basic constraint qualification is satisfied at the point
x E C then /"(£, n) is lower semicontinuous jointly in £ and n relative to Tc(x) x
Rn.

PROOF. Since df(x) is a convex polyhedron, there are only finitely many sets
dF(x)^ that arise as £ varies over Tc(x), the closures of the faces of df(x). Denote
the faces of df(x) by Vk, k E K (& finite index set). These are relatively open convex
sets (cf. [22, §18]), and the normal cone Ngf^(v) is the same for all v E Vk; denote
it by Nk. Then

(4.70) [J Nk = {£|/;(£) < oo} = Tc(x).
k€K

In (4.66) we have
(4.71) /_"(£,»?)= sup {/£„(£)+«•»?}    when£€7Vfc.

v€Vk

Since fxv(£) is lower semicontinuous in £ (by virtue of the definition of fxv as
an epi-limit), the supremum in (4.71) gives a lower semicontinuous function of
(£,n) E Nk x Rn. Since K is a finite index set and (4.70) holds, this implies
fx(i,n) is lower semicontinuous on Tc(x) x Rn.

A final observation is that the basic constraint qualification is a stable condition
that yields more than just properties at the particular x where it is assumed.
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PROPOSITION 4.9. If the basic constraint qualification holds at a point x EC,
then it also holds at all points x' E C in some neighborhood of x. The preceding
theorems are thus applicable at such points x' as well.

PROOF. If this were false, we could find a sequence of points xv E C (v =
1,2,...) and vectors yv E ND(F(xu)) with y"VF(xv) = 0, such that xu -» x. The
vectors y" could be normalized so that \y"\ — 1, and by passing to a subsequence
if necessary they could be assumed to converge to some y with \y\ = 1. Then
yVF(x) — 0 by the continuity of VF, and y E ND(F(x)) by the closedness of the
multifunction _ i-> Nd(u) = 36d(u) (since D is convex) [22, Theorem 24.4]. The
basic constraint qualification at x would then be violated by y.     U
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