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Abstract

Many statistical translation models can be
regarded as weighted logical deduction.
Under this paradigm, we use weights from
the expectation semiring (Eisner, 2002), to
compute first-order statistics (e.g., the ex-
pected hypothesis length or feature counts)
over packed forests of translations (lat-
tices or hypergraphs). We then introduce
a novel second-order expectation semir-
ing, which computes second-order statis-
tics (e.g., the variance of the hypothe-
sis length or the gradient of entropy).
This second-order semiring is essential for
many interesting training paradigms such
as minimum risk, deterministic anneal-
ing, active learning, and semi-supervised
learning, where gradient descent optimiza-
tion requires computing the gradient of en-
tropy or risk. We use these semirings in an
open-source machine translation toolkit,
Joshua, enabling minimum-risk training
for a benefit of up to 1.0 BLEU point.

1 Introduction

A hypergraph or “packed forest” (Gallo et al.,
1993; Klein and Manning, 2004; Huang and Chi-
ang, 2005) is a compact data structure that uses
structure-sharing to represent exponentially many
trees in polynomial space. A weighted hypergraph
also defines a probability or other weight for each
tree, and can be used to represent the hypothesis
space considered (for a given input) by a mono-
lingual parser or a tree-based translation system,
e.g., tree to string (Quirk et al., 2005; Liu et al.,
2006), string to tree (Galley et al., 2006), tree to
tree (Eisner, 2003), or string to string with latent
tree structures (Chiang, 2007).

∗This research was partially supported by the Defense
Advanced Research Projects Agency’s GALE program via
Contract No HR0011-06-2-0001. We are grateful to Sanjeev
Khudanpur for early guidance and regular discussions.

Given a hypergraph, we are often interested in
computing some quantities over it using dynamic
programming algorithms. For example, we may
want to run the Viterbi algorithm to find the most
probable derivation tree in the hypergraph, or the k
most probable trees. Semiring-weighted logic pro-
gramming is a general framework to specify these
algorithms (Pereira and Warren, 1983; Shieber et
al., 1994; Goodman, 1999; Eisner et al., 2005;
Lopez, 2009). Goodman (1999) describes many
useful semirings (e.g., Viterbi, inside, and Viterbi-
n-best). While most of these semirings are used in
“testing” (i.e., decoding), we are mainly interested
in the semirings that are useful for “training” (i.e.,
parameter estimation). The expectation semiring
(Eisner, 2002), originally proposed for finite-state
machines, is one such “training” semiring, and can
be used to compute feature expectations for the E-
step of the EM algorithm, or gradients of the like-
lihood function for gradient descent.

In this paper, we apply the expectation semir-
ing (Eisner, 2002) to a hypergraph (or packed for-
est) rather than just a lattice. We then propose
a novel second-order expectation semiring, nick-
named the “variance semiring.”

The original first-order expectation semiring al-
lows us to efficiently compute a vector of first-
order statistics (expectations; first derivatives) on
the set of paths in a lattice or the set of trees in a
hypergraph. The second-order expectation semir-
ing additionally computes a matrix of second-
order statistics (expectations of products; second
derivatives (Hessian); derivatives of expectations).

We present details on how to compute many in-
teresting quantities over the hypergraph using the
expectation and variance semirings. These quan-
tities include expected hypothesis length, feature
expectation, entropy, cross-entropy, Kullback-
Leibler divergence, Bayes risk, variance of hy-
pothesis length, gradient of entropy and Bayes
risk, covariance and Hessian matrix, and so on.
The variance semiring is essential for many in-
teresting training paradigms such as deterministic



annealing (Rose, 1998), minimum risk (Smith and
Eisner, 2006), active and semi-supervised learning
(Grandvalet and Bengio, 2004; Jiao et al., 2006).
In these settings, we must compute the gradient of
entropy or risk. The semirings can also be used for
second-order gradient optimization algorithms.

We implement the expectation and variance
semirings in Joshua (Li et al., 2009a), and demon-
strate their practical benefit by using minimum-
risk training to improve Hiero (Chiang, 2007).

2 Semiring Parsing on Hypergraphs

We use a specific tree-based system called Hiero
(Chiang, 2007) as an example, although the dis-
cussion is general for any systems that use a hy-
pergraph to represent the hypothesis space.

2.1 Hierarchical Machine Translation
In Hiero, a synchronous context-free grammar
(SCFG) is extracted from automatically word-
aligned corpora. An illustrative grammar rule for
Chinese-to-English translation is

X → 〈X0{ X1 , X1 of X0 〉 ,

where the Chinese word { means of, and the
alignment, encoded via subscripts on the nonter-
minals, causes the two phrases around { to be
reordered around of in the translation. Given
a source sentence, Hiero uses a CKY parser to
generate a hypergraph, encoding many derivation
trees along with the translation strings.

2.2 Hypergraphs
Formally, a hypergraph is a pair 〈V,E〉, where V
is a set of nodes (vertices) and E is a set of hy-
peredges, with each hyperedge connecting a set of
antecedent nodes to a single consequent node.1 In
parsing parlance, a node corresponds to an item
in the chart (which specifies aligned spans of in-
put and output together with a nonterminal label).
The root node corresponds to the goal item. A
hyperedge represents an SCFG rule that has been
“instantiated” at a particular position, so that the
nonterminals on the right and left sides have been
replaced by particular antecedent and consequent
items; this corresponds to storage of backpointers
in the chart.

We write T (e) to denote the set of antecedent
nodes of a hyperedge e. We write I(v) for the

1Strictly speaking, making each hyperedge designate a
single consequent defines a B-hypergraph (Gallo et al., 1993).

X 0,2 the mat NA X 3,4 a cat NA

X 0,4 a cat the matX 0,4 the mat a cat

goal item

!"0 #1                   $2               %3

on the mat                of              a cat

X→〈X0的X1,X1 on X0〉
X→〈X0的X1,X1 of X0〉X→〈X0的X1,X0 ’s X1〉

X→〈X0的X1,X0 X1〉

X→〈垫子上, the mat〉

S→〈X0,X0〉 S→〈X0,X0〉

X→〈猫, a cat〉

Figure 1: A toy hypergraph in Hiero. When generating the
hypergraph, a trigram language model is integrated. Rect-
angles represent items, where each item is identified by the
non-terminal symbol, source span, and left- and right-side
language model states. An item has one or more incoming
hyperedges. A hyperedge consists of a rule, and a pointer to
an antecedent item for each non-terminal symbol in the rule.

set of incoming hyperedges of node v (i.e., hyper-
edges of which v is the consequent), which repre-
sent different ways of deriving v. Figure 1 shows
a simple Hiero-style hypergraph. The hypergraph
encodes four different derivation trees that share
some of the same items. By exploiting this shar-
ing, a hypergraph can compactly represent expo-
nentially many trees.

We observe that any finite-state automaton can
also be encoded as a hypergraph (in which every
hyperedge is an ordinary edge that connects a sin-
gle antecedent to a consequent). Thus, the meth-
ods of this paper apply directly to the simpler case
of hypothesis lattices as well.

2.3 Semiring Parsing

We assume a hypergraph HG, which compactly
encodes many derivation trees d ∈ D. Given HG,
we wish to extract the best derivations—or other
aggregate properties of the forest of derivations.
Semiring parsing (Goodman, 1999) is a general
framework to describe such algorithms. To define
a particular algorithm, we choose a semiring K
and specify a “weight” ke ∈ K for each hyper-
edge e. The desired aggregate result then emerges
as the total weight of all derivations in the hyper-
graph. For example, to simply count derivations,
one can assign every hyperedge weight 1 in the
semiring of ordinary integers; then each deriva-
tion also has weight 1, and their total weight is the
number of derivations.

We write K = 〈K,⊕,⊗, 0, 1〉 for a semiring
with elements K, additive operation ⊕, multi-



plicative operation⊗, additive identity 0, and mul-
tiplicative identity 1. The ⊗ operation is used to
obtain the weight of each derivation d by multi-
plying the weights of its component hyperedges e,
that is, kd =

⊗
e∈d ke. The ⊕ operation is used

to sum over all derivations d in the hypergraph
to obtain the total weight of the hypergraph HG,
which is

⊕
d∈D

⊗
e∈d ke.2 Figure 2 shows how to

compute the total weight of an acyclic hypergraph
HG.3 In general, the total weight is a sum over
exponentially many derivations d. But Figure 2
sums over these derivations in time only linear on
the size of the hypergraph. Its correctness relies
on axiomatic properties of the semiring: namely,
⊕ is associative and commutative with identity 0,
⊗ is associative with two-sided identity 1, and
⊗ distributes over ⊕ from both sides. The dis-
tributive property is what makes Figure 2 work.
The other properties are necessary to ensure that⊕

d∈D
⊗

e∈d ke is well-defined.4

The algorithm in Figure 2 is general and can be
applied with any semiring (e.g., Viterbi). Below,
we present our novel semirings.

3 Finding Expectations on Hypergraphs

We now introduce the computational problems of
this paper and the semirings we use to solve them.

3.1 Problem Definitions

We are given a function p : D → R≥0, which
decomposes multiplicatively over component hy-
peredges e of a derivation d ∈ D: that is, p(d) def=∏

e∈d pe. In practice, p(d) will specify a probabil-
ity distribution over the derivations in the hyper-

2Eisner (2002) uses closed semirings that are also
equipped with a Kleene closure operator ∗. For example, in
the real semiring 〈R,+,×, 0, 1〉, we define p∗ = (1 − p)−1

(= 1 + p + p2 + . . .) for |p| < 1 and is undefined other-
wise. The closure operator enables exact summation over the
infinitely many paths in a cyclic FSM, or trees in a hyper-
graph with non-branching cycles, without the need to iterate
around cycles to numerical convergence. For completeness,
we specify the closure operator for our semirings, satisfying
the axioms k∗ = 1 ⊕ k ⊗ k∗ = 1 ⊕ k∗ ⊗ k, but we do not
use it in our experiments since our hypergraphs are acyclic.

3We assume that HG has already been built by deductive
inference (Shieber et al., 1994). But in practice, the nodes’ in-
side weights β(v) are usually accumulated as the hypergraph
is being built, so that pruning heuristics can consult them.

4Actually, the notation
⊗

e∈d ke assumes that ⊗ is com-
mutative as well, as does the notation “for u ∈ T (e)” in our
algorithms; neither specifies a loop order. One could how-
ever use a non-commutative semiring by ordering each hyper-
edge’s antecedents and specifying that a derivation’s weight
is the product of the weights of its hyperedges when visited in
prefix order. Tables 1–2 will not assume any commutativity.

INSIDE(HG,K)
1 for v in topological order on HG � each node

2 � find β(v)←
⊕

e∈I(v)(ke ⊗ (
⊗

u∈T (e) β(u)))

3 β(v)← 0
4 for e ∈ I(v) � each incoming hyperedge

5 k ← ke � hyperedge weight

6 for u ∈ T (e) � each antecedent node

7 k ← k ⊗ β(u)
8 β(v)← β(v)⊕ k
9 return β(root)

Figure 2: Inside algorithm for an acyclic hypergraph HG,
which provides hyperedge weights ke ∈ K. This computes
all “inside weights” β(v) ∈ K, and returns β(root), which is
total weight of the hypergraph, i.e.,

⊕
d∈D

⊗
e∈d ke.

OUTSIDE(HG,K)
1 for v in HG
2 α(v)← 0
3 α(root)← 1
4 for v in reverse topological order on HG
5 for e ∈ I(v) � each incoming hyperedge

6 for u ∈ T (e) � each antecedent node

7 α(u)← α(u)⊕ (α(v)⊗ ke⊗
8

⊗
w∈T (e),w 6=u β(w))

Figure 3: Computes the “outside weights” α(v). Can only be
run after INSIDE(HG) of Figure 2 has already computed the
inside weights β(v).

graph. It is often convenient to permit this prob-
ability distribution to be unnormalized, i.e., one
may have to divide it through by some Z to get a
proper distribution that sums to 1.

We are also given two functions of interest r, s :
D → R, each of which decomposes additively
over its component hyperedges e: that is, r(d) def=∑

e∈d re, and s(d) def=
∑

e∈d se.
We are now interested in computing the follow-

ing quantities on the hypergraph HG:

Z
def=

∑
d∈D

p(d) (1)

r
def=

∑
d∈D

p(d)r(d) (2)

s
def=

∑
d∈D

p(d)s(d) (3)

t
def=

∑
d∈D

p(d)r(d)s(d) (4)

Note that r/Z, s/Z, and t/Z are expectations un-
der p of r(d), s(d), and r(d)s(d), respectively.

More formally, the probabilistic interpretation
is that D is a discrete sample space (consisting



INSIDE-OUTSIDE(HG,K,X )
1 � Run inside and outside on HG with only ke weights

2 k̂ ← INSIDE(HG,K) � see Figure 2

3 OUTSIDE(HG,K) � see Figure 3

4 � Do a single linear combination to get x̂

5 x̂← 0
6 for v in HG � each node

7 for e ∈ I(v) � each incoming hyperedge

8 ke ← α(v)
9 for u ∈ T (e) � each antecedent node

10 ke ← ke β(u)
11 x̂← x̂+ (ke xe)
12 return 〈k̂, x̂〉

Figure 4: If every hyperedge specifies a weight 〈ke, xe〉 in
some expectation semiring EK,X , then this inside-outside al-
gorithm is a more efficient alternative to Figure 2 for comput-
ing the total weight 〈k̂, x̂〉 of the hypergraph, especially if the
xe are vectors. First, at lines 2–3, the inside and outside al-
gorithms are run using only the ke weights, obtaining only k̂
(without x̂) but also obtaining all inside and outside weights
β, α ∈ K as a side effect. Then the second component x̂ of
the total weight is accumulated in lines 5–11 as a linear com-
bination of all the xe values, namely x̂ =

∑
e kexe, where

ke is computed at lines 8–10 using α and β weights. The lin-
ear coefficient ke is the “exclusive weight” for hyperedge e,
meaning that the product keke is the total weight in K of all
derivations d ∈ D that include e.

of all derivations in the hypergraph), p is a mea-
sure over this space, and r, s : D → R are ran-
dom variables. Then r/Z and s/Z give the expec-
tations of these random variables, and t/Z gives
the expectation of their product t = rs, so that
t/Z − (r/Z)(s/Z) gives their covariance.

Example 1: r(d) is the length of the translation
corresponding to derivation d (arranged by setting
re to the number of target-side terminal words in
the SCFG rule associated with e). Then r/Z is
the expected hypothesis length. Example 2: r(d)
evaluates the loss of d compared to a reference
translation, using some additively decomposable
loss function. Then r/Z is the risk (expected loss),
which is useful in minimum-risk training. Exam-
ple 3: r(d) is the number of times that a certain
feature fires on d. Then r/Z is the expected fea-
ture count, which is useful in maximum-likelihood
training. We will generalize later in Section 4 to
allow r(d) to be a vector of features. Example 4:
Suppose r(d) and s(d) are identical and both com-
pute hypothesis length. Then the second-order
statistic t/Z is the second moment of the length
distribution, so the variance of hypothesis length
can be found as t/Z − (r/Z)2.

3.2 Computing the Quantities

We will use the semiring parsing framework to
compute the quantities (1)–(4). Although each is a
sum over exponentially many derivations, we will
compute it in O(|HG|) time using Figure 2.

In the simplest case, let K = 〈R,+,×, 0, 1〉,
and define ke = pe for each hyperedge e. Then
the algorithm of Figure 2 reduces to the classical
inside algorithm (Baker, 1979) and computes Z.

Next suppose K is the expectation semiring
(Eisner, 2002), shown in Table 1. Define ke =
〈pe, pere〉. Then Figure 2 will return 〈Z, r〉.

Finally, suppose K is our novel second-order
expectation semiring, which we introduce in Ta-
ble 2. Define ke = 〈pe, pere, pese, perese〉.
Then the algorithm of Figure 2 returns 〈Z, r, s, t〉.
Note that, to compute t, one cannot simply con-
struct a first-order expectation semiring by defin-
ing t(d) def= r(d)s(d) because t(d), unlike r(d)
and s(d), is not additively decomposable over the
hyperedges in d.5 Also, when r(d) and s(d) are
identical, the second-order expectation semiring
allows us to compute variance as t/Z − (r/Z)2,
which is why we may call our second-order ex-
pectation semiring the variance semiring.

3.3 Correctness of the Algorithms

To prove our claim about the first-order expecta-
tion semiring, we first observe that the definitions
in Table 1 satisfy the semiring axioms. The
reader can easily check these axioms (as well
as the closure axioms in footnote 2). With a
valid semiring, we then simply observe that Fig-
ure 2 returns the total weight

⊕
d∈D

⊗
e∈d ke =⊕

d∈D 〈p(d), p(d)r(d)〉 = 〈Z, r〉. It is easy to
verify the second equality from the definitions
of ⊕, Z, and r. The first equality requires
proving that

⊗
e∈d ke = 〈p(d), p(d)r(d)〉

from the definitions of ⊗, ke, p(d), and r(d).
The main intuition is that ⊗ can be used to
build up 〈p(d), p(d)r(d)〉 inductively from the
ke: if d decomposes into two disjoint sub-
derivations d1, d2, then 〈p(d), p(d)r(d)〉 =
〈p(d1)p(d2), p(d1)p(d2)(r(d1) + r(d2))〉 =
〈p(d1), p(d1)r(d1)〉 ⊗ 〈p(d2), p(d2)r(d2)〉. The
base cases are where d is a single hyperedge e, in
which case 〈p(d), p(d)r(d)〉 = ke (thanks to our
choice of ke), and where d is empty, in which case

5However, in a more tricky way, the second-order expec-
tation semiring can be constructed using the first-order ex-
pectation semiring, as will be seen in Section 4.3.



Element 〈p, r〉
〈p1, r1〉⊗ 〈p2, r2〉 〈p1p2, p1r2 + p2r1〉
〈p1, r1〉⊕ 〈p2, r2〉 〈p1 + p2, r1 + r2〉

〈p, r〉∗ 〈p∗, p∗p∗r〉
0 〈0, 0〉
1 〈1, 0〉

Table 1: Expectation semiring: Each element in the semir-
ing is a pair 〈p, r〉. The second and third rows define the
operations between two elements 〈p1, r1〉 and 〈p2, r2〉, and
the last two rows define the identities. Note that the multi-
plicative identity 1 has an r component of 0.

sa sb
a+ b a · b

sa+b `a+b sa·b `a·b
+ + + `a + log(1 + e`b−`a) + `a + `b
+ - + `a + log(1− e`b−`a) - `a + `b
- + - `a + log(1− e`b−`a) - `a + `b
- - - `a + log(1 + e`b−`a) + `a + `b

Table 3: Storing signed values in log domain: each value a
(= sae

`a) is stored as a pair 〈sa, `a〉 where sa and `a are the
sign bit of a and natural logarithm of |a|, respectively. This
table shows the operations between two values a = sa2

`a

and b = sb2
`b , assuming `a ≥ `b. Note: log(1 + x) (where

|x| < 1) should be computed by the Mercator series x −
x2/2+x3/3−· · · , e.g., using the math library function log1p.

〈p(d), p(d)r(d)〉 = 1. It follows by induction that
〈p(d), p(d)r(d)〉 =

⊗
e∈d ke.

The proof for the second-order expec-
tation semiring is similar. In particular,
one mainly needs to show that

⊗
e∈d ke =

〈p(d), p(d)r(d), p(d)s(d), p(d)r(d)s(d)〉.

3.4 Preventing Underflow/Overflow

In Tables 1–2, we do not discuss how to store p, r,
s, and t. If p is a probability, it often suffers from
the underflow problem. r, s, and tmay suffer from
both underflow and overflow problems, depending
on their scales.

To address these, we could represent p in the
log domain as usual. However, r, s, and t can be
positive or negative, and we cannot directly take
the log of a negative number. Therefore, we repre-
sent real numbers as ordered pairs. Specifically, to
represent a = sae

`a , we store 〈sa, `a〉, where the
sa ∈ {+,−} is the sign bit of a and the floating-
point number `a is the natural logarithm of |a|.6
Table 3 shows the “·” and “+”operations.

6An alternative that avoids log and exp is to store a =
fa2

ea as 〈fa, ea〉, where fa is a floating-point number and
ea is a sufficiently wide integer. E.g., combining a 32-bit
fa with a 32-bit ea will in effect extend fa’s 8-bit internal
exponent to 32 bits by adding ea to it. This gives much more
dynamic range than the 11-bit exponent of a 64-bit double-
precision floating-point number, if vastly less than in Table 3.

4 Generalizations and Speedups

In this section, we generalize beyond the above
case where p, r, s are R-valued. In general, p may
be an element of some other semiring, and r and s
may be vectors or other algebraic objects.

When r and s are vectors, especially high-
dimensional vectors, the basic “inside algorithm”
of Figure 2 will be slow. We will show how to
speed it up with an “inside-outside algorithm.”

4.1 Allowing Feature Vectors and More
In general, for P,R, S, T , we can define the
first-order expectation semiring EP,R = 〈P ×
R,⊕,⊗, 0, 1〉 and the second-order expectation
semiring EP,R,S,T = 〈P ×R×S×T,⊕,⊗, 0, 1〉,
using the definitions from Tables 1–2. But do
those definitions remain meaningful, and do they
continue to satisfy the semiring axioms?

Indeed they do when P = R, R = Rn, S =
Rm, T = Rn×m, with rs defined as the outer
product rsT (a matrix) where sT is the trans-
pose of s. In this way, the second-order semiring
EP,R,S,T lets us take expectations of vectors and
outer products of vectors. So we can find means
and covariances of any number of linearly decom-
posable quantities (e.g., feature counts) defined on
the hypergraph.

We will consider some other choices in Sec-
tions 4.3–4.4 below. Thus, for generality, we con-
clude this section by stating the precise technical
conditions needed to construct EP,R and EP,R,S,T :

• P is a semiring
• R is a P -module (e.g, a vector space), mean-

ing that it comes equipped with an associative
and commutative addition operation with an
identity element 0, and also a multiplication
operation P×R→ R, such that p(r1+r2) =
pr1+pr2, (p1+p2)r = p1r+p2r, p1(p2r) =
(p1p2)r
• S and T are also P -modules
• there is a multiplication operation R × S →
T that is bilinear, i.e., (r1 + r2)s = r1s +
r2s, r(s1 + s2) = rs1 + rs2, (pr)s = p(rs),
r(ps) = p(rs)

As a matter of notation, note that above and in
Tables 1–2, we overload “+” to denote any of
the addition operations within P,R, S, T ; over-
load “0” to denote their respective additive iden-
tities; and overload concatenation to denote any
of the multiplication operations within or between



Element 〈p, r, s, t〉
〈p1, r1, s1, t1〉⊗ 〈p2, r2, s2, t2〉 〈p1p2, p1r2 + p2r1, p1s2 + p2s1,

p1t2 + p2t1 + r1s2 + r2s1〉
〈p1, r1, s1, t1〉⊕ 〈p2, r2, s2, t2〉 〈p1 + p2, r1 + r2, s1 + s2, t1 + t2〉

〈p, r, s, t〉∗ 〈p∗, p∗p∗r, p∗p∗s, p∗p∗(p∗rs+ p∗rs+ t)〉
0 〈0, 0, 0, 0〉
1 〈1, 0, 0, 0〉

Table 2: Second-order expectation semiring (variance semiring): Each element in the semiring is a 4-tuple 〈p, r, s, t〉. The
second and third rows define the operations between two elements 〈p1, r1, s1, t1〉 and 〈p2, r2, s2, t2〉, while the last two rows
define the identities. Note that the multiplicative identity 1 has r,s and t components of 0.

P,R, S, T . “1” refers to the multiplicative identity
of P . We continue to use distinguished symbols
⊕,⊗, 0, 1 for the operations and identities in our
“main semiring of interest,” EP,R or EP,R,S,T .

To compute equations (1)–(4) in this more gen-
eral setting, we must still require multiplicative
or additive decomposability, defining p(d) def=∏

e∈d pe, r(d) def=
∑

e∈d re, s(d) def=
∑

e∈d se as be-
fore. But the

∏
and

∑
operators here now denote

appropriate operations within P , R, and S respec-
tively (rather than the usual operations within R).

4.2 Inside-Outside Speedup for First-Order
Expectation Semirings

Under the first-order expectation semiring ER,Rn ,
the inside algorithm of Figure 2 will return 〈Z, r〉
where r is a vector of n feature expectations.

However, Eisner (2002, section 5) observes that
this is inefficient when n is large. Why? The
inside algorithm takes the trouble to compute an
inside weight β(v) ∈ R × Rn for each node v
in the hypergraph (or lattice). The second com-
ponent of β(v) is a presumably dense vector of
all features that fire in all subderivations rooted at
node v. Moreover, as β(v) is computed in lines
3–8, that vector is built up (via the ⊗ and ⊕ oper-
ations of Table 1) as a linear combination of other
dense vectors (the second components of the vari-
ous β(u)). These vector operations can be slow.

A much more efficient approach (usually) is
the traditional inside-outside algorithm (Baker,
1979).7 Figure 4 generalizes the inside-outside
algorithm to work with any expectation semiring
EK,X .8 We are given a hypergraph HG whose
edges have weights 〈ke, xe〉 in this semiring (so

7Note, however, that the expectation semiring requires
only the forward/inside pass to compute expectations, and
thus it is more efficient than the traditional inside-outside al-
gorithm (which requires two passes) if we are interested in
computing only a small number of quantities.

8This follows Eisner (2002), who similarly generalized
the forward-backward algorithm.

now ke ∈ K denotes only part of the edge weight,
not all of it). INSIDE-OUTSIDE(HG,K, X) finds⊕

d∈D
⊗

e∈d 〈ke, xe〉, which has the form 〈k̂, x̂〉.
But, INSIDE(HG,EK,X) could accomplish the

same thing. So what makes the inside-outside al-
gorithm more efficient? It turns out that x̂ can
be found quickly as a single linear combination∑

e kexe of just the feature vectors xe that ap-
pear on individual hyperedges—typically a sum
of very sparse vectors! And the linear coefficients
ke, as well as k̂, are computed entirely within the
cheap semiring K. They are based on β and α val-
ues obtained by first running INSIDE(HG,K) and
OUTSIDE(HG,K), which use only the ke part of
the weights and ignore the more expensive xe.

It is noteworthy that the expectation semiring is
not used at all by Figure 4. Although the return
value 〈k̂, x̂〉 is in the expectation semiring, it is
built up not by ⊕ and ⊗ but rather by computing
k̂ and x̂ separately. One might therefore wonder
why the expectation semiring and its operations
are still needed. One reason is that the input to
Figure 4 consists of hyperedge weights 〈ke, xe〉 in
the expectation semiring—and these weights may
well have been constructed using ⊗ and ⊕. For
example, Eisner (2002) uses finite-state operations
such as composition, which do combine weights
entirely within the expectation semiring before
their result is passed to the forward-backward al-
gorithm. A second reason is that when we work
with a second-order expectation semiring in Sec-
tion 4.4 below, the k̂, β, and α values in Figure 4
will turn out to be elements of a first-order expec-
tation semiring, and they must still be constructed
by first-order ⊗ and ⊕, via calls to Figures 2–3.

Why does inside-outside work? Whereas the
inside algorithm computes

⊕
d∈D

⊗
e∈d in any

semiring, the inside-outside algorithm exploits
the special structure of an expectation semir-
ing. By that semiring’s definitions of ⊕ and ⊗
(Table 1),

⊕
d∈D

⊗
e∈d 〈ke, xe〉 can be found as



〈
∑

d∈D
∏

e∈d ke,
∑

d∈D
∑

e∈d(
∏

e′∈d,e′ 6=e ke′)xe〉.
The first component (giving k̂) is found
by calling the inside algorithm on just the
ke part of the weights. The second com-
ponent (giving x̂) can be rearranged into∑

e

∑
d: e∈d(

∏
e′∈d,e′ 6=e ke′)xe =

∑
e kexe, where

ke
def=

∑
d: e∈d(

∏
e′∈d,e′ 6=e ke′) is found from β, α.

The application described at the start of this
subsection is the classical inside-outside algo-
rithm. Here 〈ke, xe〉

def= 〈pe, pere〉, and the al-
gorithm returns 〈k̂, x̂〉 = 〈Z, r〉. In fact, that
x̂ = r can be seen directly: r =

∑
d p(d)r(d) =∑

d p(d)(
∑

e∈d re) =
∑

e

∑
d: e∈d p(d)re =∑

e(keke)re =
∑

e kexe = x̂. This uses the fact
that keke =

∑
d: e∈d p(d).

4.3 Lifting Trick for Second-Order Semirings
We now observe that the second-order expectation
semiring EP,R,S,T can be obtained indirectly by
nesting one first-order expectation semiring inside
another! First “lift” P to obtain the first-order ex-
pectation semiring K def= EP,R. Then lift this a sec-
ond time to obtain the “nested” first-order expec-
tation semiring EK,X = E(EP,R),(S×T ), where we

equip X def= S × T with the operations 〈s1, t1〉 +
〈s2, t2〉

def= 〈s1 + s2, t1 + t2〉 and 〈p, r〉〈s, t〉
def=

〈ps, pt+ rs〉. The resulting first-order expectation
semiring has elements of the form 〈〈p, r〉, 〈s, t〉〉.
Table 4 shows that it is indeed isomorphic to
EP,R,S,T , with corresponding elements 〈p, r, s, t〉.

This construction of the second-order semiring
as a first-order semiring is a useful bit of abstract
algebra, because it means that known properties
of first-order semirings will also apply to second-
order ones. First of all, we are immediately guar-
anteed that the second-order semiring satisfies the
semiring axioms. Second, we can directly apply
the inside-outside algorithm there, as we now see.

4.4 Inside-Outside Speedup for
Second-Order Expectation Semirings

Given a hypergraph weighted by a second-order
expectation semiring EP,R,S,T . By recasting this
as the first-order expectation semiring EK,X where
K = EP,R and X = (S × T ), we can again ap-
ply INSIDE-OUTSIDE(HG,K, X) to find the total
weight of all derivations.

For example, to speed up Section 3.2, we
may define 〈ke, xe〉 = 〈〈pe, pere〉, 〈pese, perese〉〉
for each hyperedge e. Then the inside-outside
algorithm of Figure 4 will compute 〈k̂, x̂〉 =

〈〈Z, r〉, 〈s, t〉〉, more quickly than the inside algo-
rithm of Figure 2 computed 〈Z, r, s, t〉.

Figure 4 in this case will run the inside and
outside algorithms in the semiring EP,R, so that
ke, k̂, α, β, and ke will now be elements of P ×R
(not just elements of P as in the first-order case).
Finally it finds x̂ =

∑
e kexe, where xe ∈ S×T .9

This is a particularly effective speedup over
the inside algorithm when R consists of scalars
(or small vectors) whereas S, T are sparse high-
dimensional vectors. We will see exactly this case
in our experiments, where our weights 〈p, r, s, t〉
denote (probability, risk, gradient of probability,
gradient of risk), or (probability, entropy, gradient
of probability, gradient of entropy).

5 Finding Gradients on Hypergraphs

In Sections 3.2 and 4.1, we saw how our semirings
helped find the sum Z of all p(d), and compute
expectations r, s, t of r(d), s(d), and r(d)s(d).

It turns out that these semirings can also com-
pute first- and second-order partial derivatives of
all the above results, with respect to a parameter
vector θ ∈ Rm. That is, we ask how they are
affected when θ changes slightly from its current
value. The elementary values pe, re, se are now
assumed to implicitly be functions of θ.

Case 1: Recall that Z def=
∑

d p(d) is com-
puted by INSIDE(HG,R) if each hyperedge e has
weight pe. “Lift” this weight to 〈pe,∇pe〉, where
∇pe ∈ Rm is a gradient vector. Now 〈Z,∇Z〉 will
be returned by INSIDE(HG,ER,Rm)— or, more
efficiently, by INSIDE-OUTSIDE(HG,R,Rm).

Case 2: To differentiate a second
time, “lift” the above weights again
to obtain 〈〈pe,∇pe〉,∇〈pe,∇pe〉〉 =
〈〈pe,∇pe〉, 〈∇pe,∇2pe〉〉, where ∇2pe ∈ Rm×m

is the Hessian matrix of second-order mixed
partial derivatives. These weights are in a
second-order expectation semiring.10 Now

9Figure 4 was already proved generally correct in Sec-
tion 4.2. To understand more specifically how 〈s, t〉 gets
computed, observe in analogy to the end of Section 4.2 that
〈s, t〉 =

∑
d 〈p(d)s(d), p(d)r(d)s(d)〉

=
∑
d 〈p(d), p(d)r(d)〉〈s(d), 0〉

=
∑
d 〈p(d), p(d)r(d)〉

∑
e∈d 〈se, 0〉

=
∑
e

∑
d: e∈d 〈p(d), p(d)r(d)〉〈se, 0〉

=
∑
e(keke)〈se, 0〉 =

∑
e ke〈pe, pere〉〈se, 0〉

=
∑
e ke〈pese, perese〉 =

∑
e kexe = x̂.

10Modulo the trivial isomorphism from 〈〈p, r〉, 〈s, t〉〉 to
〈p, r, s, t〉 (see Section 4.3), the intended semiring both here
and in Case 3 is the one that was defined at the start of Sec-
tion 4.1, in which r, s are vectors and their product is defined



〈〈p1, r1〉, 〈s1, t1〉〉⊕ 〈〈p2, r2〉, 〈s2, t2〉〉 = 〈〈p1, r1〉 + 〈p2, r2〉, 〈s1, t1〉 + 〈s2, t2〉〉

= 〈〈p1 + p2, r1 + r2〉, 〈s1 + s2, t1 + t2〉〉

〈〈p1, r1〉, 〈s1, t1〉〉⊗ 〈〈p2, r2〉, 〈s2, t2〉〉 = 〈〈p1, r1〉〈p2, r2〉, 〈p1, r1〉〈s2, t2〉 + 〈p2, r2〉〈s1, t1〉〉

= 〈〈p1p2, p1r2 + p2r1〉, 〈p1s2 + p2s1, p1t2 + p2t1 + r1s2 + r2s1〉〉

Table 4: Constructing second-order expectation semiring as first-order. Here we show that the operations in EK,X are
isomorphic to Table 2’s operations in EP,R,S,T , provided that K def

= EP,R and X def
= S × T is a K-module, in which addition is

defined by〈s1, t1〉 + 〈s2, t2〉 def
= 〈s1 + s2, t1 + t2〉, and left-multiplication by K is defined by 〈p, r〉〈s, t〉 def

= 〈ps, pt+ rs〉.

〈Z,∇Z,∇Z,∇2Z〉 will be returned by
INSIDE(HG,ER,Rm,Rm,Rm×m), or more effi-
ciently by INSIDE-OUTSIDE(HG,ER,Rm ,Rm ×
Rm×m).

Case 3: Our experiments will need to find ex-
pectations and their partial derivatives. Recall that
〈Z, r〉 is computed by INSIDE(HG,ER,Rn) when
the edge weights are 〈pe, pere〉 with re ∈ Rn. Lift
these weights to 〈〈pe, pere〉,∇〈pe, pere〉〉 =
〈〈pe, pere〉, 〈∇pe, (∇pe)re + pe(∇re)〉〉.
Now 〈Z, r,∇Z,∇r〉 will be returned
by INSIDE(HG,ER,Rn,Rm,Rn×m) or by
INSIDE-OUTSIDE(HG,ER,Rn ,Rm × Rn×m).11

5.1 What Connects Gradients to Expectations?
In Case 1, we claimed that the same algorithm
will compute either gradients 〈Z,∇Z〉 or expec-
tations 〈Z, r〉, if the hyperedge weights are set to
〈pe,∇pe〉 or 〈pe, pere〉 respectively.12 This may
seem wonderful and mysterious. We now show in
two distinct ways why this follows from our setup
of Section 3.1. At the end, we derive as a special
case the well-known relationship between gradi-
ents and expectations in log-linear models.

From Expectations to Gradients One perspec-
tive is that our semiring fundamentally finds ex-
pectations. Thus, we must be finding ∇Z by for-
mulating it as a certain expectation r. Specif-
ically, ∇Z = ∇

∑
d p(d) =

∑
d∇p(d) =

to be rsT, a matrix. However, when using this semiring to
compute second derivatives (Case 2) or covariances, one may
exploit the invariant that r = s, e.g., to avoid storing s and to
compute r1s2 + s1r2 in multiplication simply as 2 · r1r2.

11Or, if n > m, it is faster to instead use
INSIDE-OUTSIDE(HG,ER,Rm ,Rn × Rm×n), swapping the
second and third components of the 4-tuple and trans-
posing the matrix in the fourth component. Alge-
braically, this changes nothing because ER,Rn,Rm×Rn×m and
ER,Rm,Rn×Rm×n are isomorphic, thanks to symmetries in Ta-
ble 2. This method computes the expectation of the gradient
rather than the gradient of the expectation—they are equal.

12Cases 2–3 relied on the fact that this relationship still
holds even when the scalars Z, pe ∈ R are replaced by more
complex objects that we wish to differentiate. Our discus-
sion below sticks to the scalar case for simplicity, but would
generalize fairly straightforwardly. Pearlmutter and Siskind
(2007) give the relevant generalizations of dual numbers.

∑
d p(d)r(d) = r, provided that r(d) =

(∇p(d))/p(d). That can be arranged by defining
re

def= (∇pe)/pe.13 So that is why the input weights
〈pe, pere〉 take the form 〈pe,∇pe〉.

From Gradients to Expectations An alterna-
tive perspective is that our semiring fundamen-
tally finds gradients. Indeed, pairs like 〈p,∇p〉
have long been used for this purpose (Clifford,
1873) under the name “dual numbers.” Oper-
ations on dual numbers, including those in Ta-
ble 1, compute a result in R along with its gradi-
ent. For example, our ⊗ multiplies dual numbers,
since 〈p1,∇p1〉 ⊗ 〈p2,∇p2〉 = 〈p1p2, p1(∇p2) +
(∇p1)p2〉 = 〈p1p2,∇(p1p2)〉. The inside algo-
rithm thus computes both Z and ∇Z in a single
“forward” or “inside” pass—known as automatic
differentiation in the forward mode. The inside-
outside algorithm instead uses the reverse mode
(a.k.a. back-propagation), where a separate “back-
ward” or “outside” pass is used to compute∇Z.

How can we modify this machinery to pro-
duce expectations r̄ given some arbitrary re
of interest? Automatic differentiation may
be used on any function (e.g., a neural net),
but for our simple sum-of-products function
Z, it happens that ∇Z = ∇(

∑
d

∏
e pe) =∑

d

∑
e∈d(

∏
e′∈d,e′ 6=e pe′)∇pe. Our trick is to

surreptitiously replace the ∇pe in the input
weights 〈pe,∇pe〉 with pere. Then the output
changes similarly: the algorithms will instead
find

∑
d

∑
e∈d(

∏
e′∈d,e′ 6=e pe′)pere, which re-

duces to
∑

d

∑
e∈d p(d)re =

∑
d p(d)

∑
e∈d re =∑

d p(d)r(d) = r̄.

Log-linear Models as a Special Case Replac-
ing ∇pe with pere is unnecessary if ∇pe already
equals pere. That is the case in log-linear models,
where pe

def= exp(re · θ) for some feature vector re
associated with e. So there, ∇Z already equals
r̄—yielding a key useful property of log-linear

13Proof: r(d) =
∑
e∈d re =

∑
e∈d(∇pe)/pe =∑

e∈d∇ log pe = ∇
∑
e∈d log pe = ∇ log

∏
e∈d pe =

∇ log p(d) = (∇p(d))/p(d).



models, that ∇ logZ = (∇Z)/Z = r̄/Z, the vec-
tor of feature expectations (Lau et al., 1993).

6 Practical Applications

Given a hypergraph HG whose hyperedges e are
annotated with values pe. Recall from Section 3.1
that this defines a probability distribution over all
derivations d in the hypergraph, namely p(d)/Z
where p(d) def=

∏
e∈d pe.

6.1 First-Order Expectation Semiring ER,R

In Section 3, we show how to compute the ex-
pected hypothesis length or expected feature
counts, using the algorithm of Figure 2 with a
first-order expectation semiring ER,R. In general,
given hyperedge weights 〈pe, pere〉, the algorithm
computes 〈Z, r〉 and thus r/Z, the expectation of
r(d) def=

∑
e∈d re. We now show how to compute a

few other quantities by choosing re appropriately.

Entropy on a Hypergraph The entropy of the
distribution of derivations in a hypergraph14 is

H(p) = −
∑
d∈D

(p(d)/Z) log(p(d)/Z) (5)

= logZ − 1
Z

∑
d∈D

p(d) log p(d)

= logZ − 1
Z

∑
d∈D

p(d)r(d) = logZ − r

Z

provided that we define re
def= log pe (so that

r(d) =
∑

e∈d re = log p(d)). Of course, we can
compute 〈Z, r〉 as explained in Section 3.2.

Cross-Entropy and KL Divergence We may
be interested in computing the cross-entropy or
KL divergence between two distributions p and q.
For example, in variational decoding for machine
translation (Li et al., 2009b), p is a distribution
represented by a hypergraph, while q, represented
by a finite state automaton, is an approximation to
p. The cross entropy between p and q is defined as

H(p, q) = −
∑
d∈D

(p(d)/Zp) log(q(d)/Zq) (6)

= logZq −
1
Zp

∑
d∈D

p(d) log q(d)

= logZq −
1
Zp

∑
d∈D

p(d)r(d) = logZq −
r

Zp

14Unfortunately, it is intractable to compute the entropy of
the distribution over strings (each string’s probability is a sum
over several derivations). But Li et al. (2009b, section 5.4) do
estimate the gap between derivational and string entropies.

where the first term Zq can be computed using
the inside algorithm with hyperedge weights qe,
and the numerator and denominator of the sec-
ond term using an expectation semiring with hy-
peredge weights 〈pe, pere〉 with re

def= log qe.
The KL divergence to p from q can be computed

as KL(p ‖ q) = H(p, q)− H(p).

Expected Loss (Risk) Given a reference sen-
tence y∗, the expected loss (i.e., Bayes risk) of the
hypotheses in the hypergraph is defined as,

R(p) =
∑
d∈D

(p(d)/Z)L(Y(d), y∗) (7)

where Y(d) is the target yield of d and L(y, y∗) is
the loss of the hypothesis y with respect to the ref-
erence y∗. The popular machine translation met-
ric, BLEU (Papineni et al., 2001), is not additively
decomposable, and thus we are not able to com-
pute the expected loss for it. Tromble et al. (2008)
develop the following loss function, of which a lin-
ear approximation to BLEU is a special case,

L(y, y∗) = −(θ0|y|+
∑
w∈N

θw#w(y)δw(y∗)) (8)

where w is an n-gram type, N is a set of n-gram
types with n ∈ [1, 4], #w(y) is the number of oc-
currence of the n-gramw in y, δw(y∗) is an indica-
tor to check if y∗ contains at least one occurrence
of w, and θn is the weight indicating the relative
importance of an n-gram match. If the hypergraph
is already annotated with n-gram (n ≥ 4) lan-
guage model states, this loss function is additively
decomposable. Using re

def= Le where Le is the
loss for a hyperedge e, we compute the expected
loss,

R(p) =
∑

d∈D p(d)L(Y(d), y∗)
Z

=
r

Z
(9)

6.2 Second-Order Expectation Semirings
With second-order expectation semirings, we can
compute from a hypergraph the expectation and
variance of hypothesis length; the feature expec-
tation vector and covariance matrix; the Hessian
(matrix of second derivatives) of Z; and the gradi-
ents of entropy and expected loss. The computa-
tions should be clear from earlier discussion. Be-
low we compute gradient of entropy or Bayes risk.

Gradient of Entropy or Risk It is easy to see
that the gradient of entropy (5) is

∇H(p) =
∇Z
Z
− Z∇r − r∇Z

Z2
(10)



We may compute 〈Z, r,∇Z,∇r〉 as ex-
plained in Case 3 of Section 5 by using
ke

def= 〈pe, pere,∇pe, (∇pe)re + pe∇re〉
def=

〈pe, pe log pe,∇pe, (1 + log pe)∇pe〉, where ∇pe

depends on the particular parameterization of the
model (see Section 7.1 for an example).

Similarly, the gradient of risk of (9) is

∇R(p) =
Z∇r − r∇Z

Z2
(11)

We may compute 〈Z, r,∇Z,∇r〉 using ke
def=

〈pe, peLe,∇pe, Le∇pe〉.

7 Minimum-Risk Training for MT

We now show how we improve the training of a
Hiero MT model by optimizing an objective func-
tion that includes entropy and risk. Our objective
function could be computed with a first-order ex-
pectation semiring, but computing it along with its
gradient requires a second-order one.

7.1 The Model p
We assume a globally normalized linear model
for its simplicity. Each derivation d is scored by

score(d) def= Φ(d) · θ =
∑

i

Φi(d) θi (12)

where Φ(d) ∈ Rm is a vector of features of d. We
then define the unnormalized distribution p(d) as

p(d) = exp(γ · score(d)) (13)

where the scale factor γ adjusts how sharply the
distribution favors the highest-scoring hypotheses.

7.2 Minimum-Risk Training
Adjusting θ or γ changes the distribution p. Mini-
mum error rate training (MERT) (Och, 2003) tries
to tune θ to minimize the BLEU loss of a decoder
that chooses the most probable output according
to p. (γ has no effect.) MERT’s specialized line-
search addresses the problem that this objective
function is piecewise constant, but it does not scale
to a large number of parameters.

Smith and Eisner (2006) instead propose a dif-
ferentiable objective that can be optimized by gra-
dient descent: the Bayes risk R(p) of (7). This is
the expected loss if one were (hypothetically) to
use a randomized decoder, which chooses a hy-
pothesis d in proportion to its probability p(d). If
entropy H(p) is large (e.g., small γ), the Bayes risk

is smooth and has few local minima. Thus, Smith
and Eisner (2006) try to avoid local minima by
starting with large H(p) and decreasing it gradu-
ally during optimization. This is called determin-
istic annealing (Rose, 1998). As H(p) → 0 (e.g.,
large γ), the Bayes risk does approach the MERT
objective (i.e. minimizing 1-best error).The objec-
tive is

minimize R(p)− T · H(p) (14)

where the “temperature” T starts high and is ex-
plicitly decreased as optimization proceeds.

7.3 Gradient Descent Optimization
Solving (14) for a given T requires computing the
entropy H(p) and risk R(p) and their gradients
with respect to θ and γ. Smith and Eisner (2006)
followed MERT in constraining their decoder to
only an n-best list, so for them, computing these
quantities did not involve dynamic programming.
We compare those methods to training on a hy-
pergraph containing exponentially many hypothe-
ses. In this condition, we need our new second-
order semiring methods and must also approxi-
mate BLEU (during training only) by an additively
decomposable loss (Tromble et al., 2008).15

Our algorithms require that p(d) of (13) is mul-
tiplicatively decomposable. It suffices to define
Φ(d) def=

∑
e∈d Φe, so that all features are local

to individual hyperedges; the vector Φe indicates
which features fire on hyperedge e. Then score(d)
of (12) is additively decomposable:

score(d) =
∑
e∈d

scoree =
∑
e∈d

Φe · θ (15)

We can then set pe = exp(γ · scoree), and ∇pe =
γpeΦ(e), and use the algorithms described in Sec-
tion 6 to compute H(p) and R(p) and their gradi-
ents with respect to θ and γ.16

15Pauls et al. (2009) concurrently developed a method to
maximize the expected n-gram counts on a hypergraph using
gradient descent. Their objective is similar to the minimum
risk objective (though without annealing), and their gradient
descent optimization involves in algorithms in computing ex-
pected feature/n-gram counts as well as expected products of
features and n-gram counts, which can be viewed as instances
of our general algorithms with first- and second-order semir-
ings. They focused on tuning only a small number (i.e. nine)
of features as in a regular MERT setting, while our experi-
ments involve both a small and a large number of features.

16It is easy to verify that the gradient of a function f (e.g.
entropy or risk) with respect to γ can be written as a weighted
sum of gradients with respect to the feature weights θi, i.e.

∂f
∂γ

=
1

γ

∑
i

θi ×
∂f
∂θi

(16)



7.4 Experimental Results

7.4.1 Experimental Setup
We built a translation model on a corpus for
IWSLT 2005 Chinese-to-English translation task
(Eck and Hori, 2005), which consists of 40k pairs
of sentences. We used a 5-gram language model
with modified Kneser-Ney smoothing, trained on
the bitext’s English using SRILM (Stolcke, 2002).

7.4.2 Tuning a Small Number of Features
We first investigate how minimum-risk training
(MR), with and without deterministic annealing
(DA), performs compared to regular MERT. MR
without DA just fixes T = 0 and γ = 1 in (14).
All MR or MR+DA uses an approximated BLEU

(Tromble et al., 2008) (for training only), while
MERT uses the exact corpus BLEU in training.

The first five rows in Table 5 present the results
by tuning the weights of five features (θ ∈ R5). We
observe that MR or MR+DA performs worse than
MERT on the dev set. This may be mainly because
MR or MR+DA uses an approximated BLEU while
MERT doesn’t. On the test set, MR or MR+DA
on an n-best list is comparable to MERT. But our
new approach, MR or MR+DA on a hypergraph,
does consistently better (statistically significant)
than MERT, despite approximating BLEU.17

Did DA help? For both n-best and hypergraph,
MR+DA did obtain a better BLEU score than plain
MR on the dev set.18 This shows that DA helps
with the local minimum problem, as hoped. How-
ever, DA’s improvement on the dev set did not
transfer to the test set.

7.4.3 Tuning a Large Number of Features
MR (with or without DA) is scalable to tune a
large number of features, while MERT is not. To
achieve competitive performance, we adopt a for-
est reranking approach (Li and Khudanpur, 2009;
Huang, 2008). Specifically, our training has two
stages. In the first stage, we train a baseline system
as usual. We also find the optimal feature weights
for the five features mentioned before, using the
method of MR+DA operating on a hypergraph. In
the second stage, we generate a hypergraph for
each sentence in the training data (which consists
of about 40k sentence pairs), using the baseline

17Pauls et al. (2009) concurrently observed a similar pat-
tern (i.e., MR performs worse than MERT on the dev set, but
performs better on a test set).

18We also verified that MR+DA found a better objective
value (i.e., expected loss on the dev set) than MR.

Training scheme dev test
MERT (Nbest, small) 42.6 47.7
MR (Nbest, small) 40.8 47.7
MR+DA (Nbest, small) 41.6 47.8

NEW! MR (hypergraph, small) 41.3 48.4
NEW! MR+DA (hypergraph, small) 41.9 48.3
NEW! MR (hypergraph, large) 42.3 48.7

Table 5: BLEU scores on the Dev and test sets under different
training scenarios. In the “small” model, five features (i.e.,
one for the language model, three for the translation model,
and one for word penalty) are tuned. In the “large” model,
21k additional unigram and bigram features are used.

system. In this stage, we add 21k additional uni-
gram and bigram target-side language model fea-
tures (cf. Li and Khudanpur (2008)). For example,
a specific bigram “the cat” can be a feature. Note
that the total score by the baseline system is also
a feature in the second-stage model. With these
features and the 40k hypergraphs, we run the MR
training to obtain the optimal weights.

During test time, a similar procedure is fol-
lowed. For a given test sentence, the baseline sys-
tem first generates a hypergraph, and then the hy-
pergraph is reranked by the second-stage model.
The last row in Table 5 reports the BLEU scores.
Clearly, adding more features improves (statisti-
cally significant) the case with only five features.
We plan to incorporate more informative features
described by Chiang et al. (2009).19

8 Conclusions

We presented first-order expectation semirings
and inside-outside computation in more detail
than (Eisner, 2002), and developed extensions to
higher-order expectation semirings. This enables
efficient computation of many interesting quanti-
ties over the exponentially many derivations en-
coded in a hypergraph: second derivatives (Hes-
sians), expectations of products (covariances), and
expectations such as risk and entropy along with
their derivatives. To our knowledge, algorithms
for these problems have not been presented before.

Our approach is theoretically elegant, like other
work in this vein (Goodman, 1999; Lopez, 2009;
Gimpel and Smith, 2009). We used it practically to
enable a new form of minimum-risk training that
improved Chinese-English MT by 1.0 BLEU point.
Our implementation will be released within the
open-source MT toolkit Joshua (Li et al., 2009a).

19Their MIRA training tries to favor a specific oracle
translation—indeed a specific tree—from the (pruned) hyper-
graph. MR does not commit to such an arbitrary choice.
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