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Second order statistics characterization of Hawkes

processes

and non-parametric estimation
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Abstract

We show that the jumps correlation matrix of a multivariate Hawkes process is related to the Hawkes kernel matrix through
a system of Wiener-Hopf integral equations. A Wiener-Hopf argument allows one to prove that this system (in which the kernel
matrix is the unknown) possesses a unique causal solution and consequently that the second-order properties fully characterize a
Hawkes process. The numerical inversion of this system of integral equations allows us to propose a fast and efficient method,
which main principles were initially sketched in [1], to perform a non-parametric estimation of the Hawkes kernel matrix. In this
paper, we perform a systematic study of this non-parametric estimation procedure in the general framework of marked Hawkes
processes. We describe precisely this procedure step by step. We discuss the estimation error and explain how the values for
the main parameters should be chosen. Various numerical examples are given in order to illustrate the broad possibilities of this
estimation procedure ranging from 1-dimensional (power-law or non positive kernels) up to 3-dimensional (circular dependence)
processes. A comparison to other non-parametric estimation procedures is made. Applications to high frequency trading events in
financial markets and to earthquakes occurrence dynamics are finally considered.
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I. INTRODUCTION

A (multivariate) Hawkes process is a counting process which intensity, at each time, is given by a linear regression over past

jumps of the process [2], [3]. This “self-” and “mutually-” exciting nature of Hawkes processes makes them very appealing

to account, within a simple tractable model, for situations where the likelihood of future events directly depends on the

occurrence of past events. For this reason, there has been, during last decade, a growing interest for Hawkes processes in

various fields where endogenous triggering, contagion, cross-excitation can be naturally invoked to explain discrete events

dynamics. Originally Hawkes models have been introduced to describe the occurrence of earthquakes in some given region [4],

[5], but they also became popular in many other areas like high-frequency finance (trading and order book events dynamics)

[6]–[8], neurobiology (neurons activity) [9], sociology (spread of terrorist activity) [10], [11] or processes on the internet (viral

diffusion across social networks) [12], [13].

A D-dimensional Hawkes process N(t) is mainly characterized by its D×D kernel matrix Φ(t) = {φij(t)}1≤i,j≤D, where

the kernel φij(t) describes how events of the jth process component influence the occurrence intensity of the ith component.

As far as estimation of Hawkes process is concerned, in most studies, one assumes a specific parametric shape for the kernel

components φij(t) (e.g. an exponential decay) and performs either a moment method (based e.g. on the bartlett spectrum

[14], [15]) or a maximum likelihood estimation [16], [17]. However, when one has no a priori on the shape of the kernel

components, it is necessary to perform a non-parametric estimation. The first approach devoted to this goal was a method

based on Expected Maximization (EM) procedure of a (penalized) likelihood function [10], [18]. It has been designed for

monovariate Hawkes processes and can be hardly used to handle large amounts of data in situations where the kernel function

is not well localized as compared to the exogenous inter-events time (see section VI). Another approach, proposed in [9], [19],

[20], consists in minimizing a contrast function, assuming that the kernels {φij(t)}1≤i,j≤D can be decomposed over atoms of

some dictionary. The estimation is regularized using a Lasso penalization which provides sparse estimations. The so-obtained

kernels are, for instance, piece-wise constant functions with very few non zero pieces. Though it is clearly the right choice

when the dimension D is large or when the kernels are known to be very well localized (this seems to be the case when

modeling networks of neurons [9]), it does not make sense when modeling earthquakes or financial time-series for which a

large amount of data is available and the kernels are known to be power-law. Let us also mention an approach proposed in

[21], where the authors estimate the kernel components φij(t) from the jumps correlation matrix through a spectral method.

This technique is however exclusively adapted to symmetric Hawkes processes.

In this paper, our main purpose is two-fold: We first provide a complete overview of Hawkes processes second order

properties and show that they uniquely characterize the process, i.e., there is a one-to-one correspondence between the matrix
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Φ(t) and a matrix g(t) associated with the jumps (dN(t)) correlation function. In fact, we prove that Φ(t) is the unique causal

solution of a system of Wiener-Hopf equations that directly involves the correlation function. We then show that this property

allows us to propose a new simple non-parametric estimation method based on the explicit resolution of the Wiener-Hopf

system using a Gaussian quadrature method. In many applications, it is interesting to consider a marked version of Hawkes

processes, where the conditional intensities of the Hawkes components may also depend on some random variables (the marks)

associated with each event through a matrix of mark functions. We write the new system of equations which links Φ(t) with

the correlation function which is no longer a Wiener-Hopf system. In the case the mark functions are piecewise constant, we

show that a simple variant of our method allows one to solve this system, i.e., to recover both the kernel and the mark functions

matrices. We provide various numerical examples ranging from a 1-dimensional process up to a 3-dimensional process. We

also provide some heuristics about the estimation error and convergence issues as well as some procedures to fix the various

parameters of the method. We compare this method to existing non-parametric methods and show that it is relatively simple

to implement and allows one to handle very large data sets and lead to reliable results in a wide number of situations. Our

estimation framework is then illustrated on two different applications: First, along the same line as in Refs. [21], [22], we study

the arrival of market orders of 2 liquid future assets on the EUREX exchange. We show that the estimated kernel is strikingly

well fitted by a power-law function with an exponent very close to 1. Second, we estimate a Hawkes model of earthquake

events marked by the event magnitudes from the Northern California EarthQuake Catalog (NCEC) [23]. To our knowledge,

the only attempt to estimate a non-parametric self-exciting from earthquakes was provided in Ref. [18]. In our case we confirm

that the ETAS model specifications, i.e. of power-law shape of the kernel φ(t) and an exponential law for the mark function.

The paper is structured as follows: In section II, we introduce the main mathematical definitions and review the second

order properties of multivariate Hawkes processes. We notably provide the explicit expression for the Laplace transform of the

jump correlation function. We also introduce the conditional expectation matrix g(t) and show how it is basically related to

the jump correlation function. Finally, we recover a former result by Hawkes [3] by virtue of which the kernel matrix Φ(t)
satisfies a Wiener-Hopf equation with g(t) as a Wiener-Hopf kernel. We show that the Wiener-Hopf operator has a unique

causal solution and thus Φ(t) is uniquely determined by the shape of g(t). Our estimation method relies on this property and

is described in section III. More precisely, by reformulating a marked Hawkes process with piecewise constant mark functions

as a multivariate Hawkes process in higher dimension, we propose a numerical method that allows one to estimate both the

kernel and the mark functions. This method mainly uses a Nyström method to solve the system of Wiener-Hopf equations.

It is illustrated in Section V on four different examples : a 2-dimensional marked process, two 1-dimensional processes (one

involving slowly decreasing kernels and one involving a negative-valued kernel) and a 3-dimensional process (involving circular

dependance and non decreasing kernels). Section IV presents some heuristics about the analysis of the estimation errors and

discusses some procedures to fix the main parameters of the method (namely, the bandwidth and the number of quadrature

points). We then briefly discuss the link to former approaches for non-parametric kernel estimation in section VI, while the

aforementioned applications to financial statistics and geophysics are considered in section VII. Conclusion and prospect are

given is section VIII.

II. MULTIVARIATE HAWKES PROCESSES AND THEIR SECOND ORDER PROPERTIES

A. The framework

We consider a D-dimensional point process Nt = {N i
t}1≤i≤D. Each component N i

t is a 1d point process whose jumps are

all of size 1, and whose intensity at time t is λit. Thus the intensity vector of Nt is λt = {λit}1≤i≤D.

We consider that Nt is a Hawkes process [2], i.e., that, at time t, each intensity component λit can be written as a linear

combination of past jumps of Nt, i.e.,

∀i ∈ [1, D], λit = µi +

D∑

j=1

∫

(−∞,t)

φij(t− s)dN j
s , (1)

where

• µ = {µi}1≤i≤D are exogenous intensities

• each kernel function φij(t) is a positive and causal (i.e., its support is included in R
+). It codes the influence of the

past jumps of N j on the current intensity λit. In the following, the kernel matrix will denote the D ×D matrix function

Φ(t) = {φij(t)}1≤i≤D.

Using matrix notations, the D equations (1) can be rewritten in a very synthetic way as

λt = µ+Φ ⋆ dNt, (2)

where λ = {λi}1≤i≤D and the operator ⋆ stands for regular matrix multiplications where all the multiplications are replaced

by convolutions.

Let us remind that the process Nt has asymptotically stationary increments (and the process λt is asymptotically stationary)

if the following hypothesis holds [2] :
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(H) the matrix ||Φ|| = {||φij ||}1≤i≤D has a spectral radius ρ strictly smaller than 1,

where ||g|| stands for ||g|| =
∫
g(t)dt. In the following we will always consider that (H) holds and we shall consider that Nt

corresponds to the asymptotic limit, i.e., Nt has stationary increments and λt is a stationary process.

In that case, the vector Λ of mean event rates associated with each component reads [2]:

Λ = E(λt) = (I− ||Φ||)−1µ. (3)

In the following, Λi will refer to the ith component of Λ.

Remark (Inhibitory effects in Hawkes processes). Let us point out that Brémaud and Massoulié [24] have shown that the

stability condition criterium remains valid when λt is a nonlinear positive Lipschitz function of Φ ⋆dNt and where the kernels

φij are not restricted to be positive. A particular interesting generalization of Eq. (2) (notably considered in [20]) is:

λt = (µ+Φ ⋆ dNt)+ (4)

where (x)+ = x if x > 0 and (x)+ = 0 otherwise. This extension allows one to account for inhibitory effects when φij(t) can

take negative values.

B. Characterization of a multivariate Hawkes process through its second-order statistics

In this section we recall the main properties of the correlation matrix function associated with multivariate Hawkes processes

and prove that it fully characterizes these processes.

The second-order statistics are summed up by the infinitesimal covariances :

Cov(dN i
t , dN

j
t′) = E(dN i

tdN
j
t′)− ΛiΛjdtdt′, 1 ≤ i, j ≤ D. (5)

As already explained, under assumption (H), Nt can be considered to have stationary increments, consequently, Cov(dN i
t , dN

j
t′)

only depends on t′−t. Moreover, these measures are non singular measures, except for i = j for which it has a Dirac component

δ(t). Thus the non-singular part of this covariance can be written as

νij(t′ − t)dtdt′ = E(dN i
tdN

j
t′)− ΛiΛjdtdt′ − Λiǫijδ(t

′ − t)dt, 1 ≤ i, j ≤ D, (6)

where ǫij is the Kronecker symbol which is always 0 except when i = j in which case it is equal to 1.

Let us point out that, since all the jumps of the process N are of size 1, the second order statistics can be rewritten in terms

of conditional expectations (see [1]). Indeed, for all 1 ≤ i, j ≤ D, let gij(t) be the non-singular part of the density of the

measure E(dN i
t − Λidt|dN j

0 = 1), i.e.,

gij(t)dt = E(dN i
t |dN

j
0 = 1)− ǫijδ(t)− Λidt. (7)

Then

νij(t′ − t)dtdt′ = E(dN i
tdN

j
t′)− ΛiΛjdtdt′ − Λiǫijδ(t

′ − t)dt

= E(dN j
t′ |dN

i
t = 1)Prob{dN i

t = 1)− ΛiΛjdtdt′ − Λiǫijδ(t
′ − t)dt

= E(dN j
t′−t|dN

i
0 = 1)Λidt− ΛiΛjdtdt′ − Λiǫijδ(t

′ − t)dt

= Λigji(t′ − t)dtdt′

It follows that:

ν(t) = ΣgT (t) (8)

where gT (t) stands for the transpose of the matrix g(t).
In [21], it has been shown that the ”infinitesimal” covariance matrix ν(t) = {νij(t)}0≤i,j<D can be directly related to the

kernel matrix Φ :

Proposition 1 (from [21]). Let Ψ(t) =
∑+∞

k=1 Φ
(⋆k)(t), where Φ(⋆k) stands for the matrix convolution Φ ⋆Φ ⋆ . . . ⋆Φ (where

Φ is repeated k times). Let Ψ̃(t) = Ψ(−t). Then

ν(t) = (δI+ Ψ̃) ⋆ Σ(δI+ΨT )(t)− δ(t)Σ (9)

where Σ is the diagonal matrix defined by Σii = Λi and where we use the convention δ ⋆ δ(t) = δ(t). In the Laplace domain,

this last equation writes

ν̂(z) = (I+ Ψ̂(−z))Σ(I+ΨT (z))− Σ. (10)

Moreover,

I+ Ψ̂(z) = (I− Φ̂(z))−1, (11)
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where the Laplace transform of a L1 causal function s(t) is defined as:

ŝ(z) =

∫ +∞

−∞

s(t)eztdt, ∀z ∈ C . (12)

From Eqs (8) and (9), it results:

g(t) = νT (t)Σ−1 = (δI+Ψ) ⋆ Σ(δI+ Ψ̃T )(t)Σ−1 − δ(t)I. (13)

or alternatively, in the Laplace domain

ĝ(z) = (I+ Ψ̂(z))Σ(I+ Ψ̂T (−z))Σ−1 − I. (14)

Since

(δI− Φ) ⋆ (δI+Ψ)(t) = δ(t)I, (15)

convoluting both hand sides of (13) by δ(t)I− Φ(t) leads to

(δI− Φ) ⋆ g(t) = Σ(δ(t)I+ Ψ̃T (t))Σ−1 − δ(t)I+Φ(t) (16)

which gives

(δI− Φ) ⋆ g(t) = ΣΨ̃T (t)Σ−1 +Φ(t) (17)

Since all the elements of Φ(t) are causal functions (i.e., supported by R
+) and since Ψ(t) is just expressed as convolution

products of the matrix Φ, all the elements of Ψ(t) are also causal functions. Writing this last equation for t > 0, thus leads

to the following Proposition:

Proposition 2. The kernel matrix functions Φ(t) statisfies the D2-dimensional Wiener-Hopf system

g(t) = Φ(t) + Φ ⋆ g(t), ∀t > 0 (18)

Wiener-Hopf equations have been extensively studied in the past century [25]–[27] and arise in wide variety of problems in

physics. This last system of equation was first established by Hawkes in [3] (see also [1]) in order to express g(t) (considered

as the ”unknown”) as a function of Φ(t). He proved that it has a unique solution in g(t). One can work the other way around

and consider it as a system of equations that Φ(t) (the ”unknown”) satisfies, g(t) being known. In Appendix A, thanks to the

famous factorization technique introduced by Wiener and Hopf [27], we prove that this system (18) admits a unique solution

in Φ(t):

Theorem 1. Let Nt be a D-dimensional Hawkes process with exogenous intensity µ and kernel matrix Φ(t) as defined in

Section II-A. Let Φ(t) satisfies hypothesis (H) (as explained above, we then can consider that Nt has stationary increments).

Let g(t) be the matrix g(t) = {gij(t)}1≤i,j≤D defined by (7). Then the matrix Φ(t) is the only solution (whose elements are

all causal and in L1(R+)) of the system of equations (in which χ(t) is the unknown)

g(t) = χ(t) + χ(t) ⋆ g(t), ∀t > 0. (19)

One can then state the corollary :

Corollary 1. A multi-dimensional Hawkes process with stationary increments is uniquely defined by its first-order statistics (i.e.,

the expectation of its intensity λ(t)) and its second-order statistics (given by either its correlation function (5) or, equivalently,

by its conditional expectations (13)).

Indeed, this is a direct consequence

• of the Theorem 1 which proves that the second-order statistics fully characterize the kernel matrix Φ(t)
• and of (3) which allows to express µ as a function of ||Φ|| and the first-order statistics Λ.

III. NON-PARAMETRIC ESTIMATION OF A MULTI-DIMENSIONAL MARKED HAWKES PROCESS : FRAMEWORK AND MAIN

PRINCIPLES

As we shall see at the end of this Section, the results of previous Section naturally lead to a non-parametric estimation

method for multidimensional Hawkes processes. Actually, we shall develop our estimation framework in a slightly more general

framework than the one presented above which is very useful in applications : the framework of multi-dimensional marked

Hawkes process.
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A. The marked Hawkes process framework

Using the same notation as in Section II-A, each component N i
t is now associated with observable iid marks ξit . ξ

i
t is non

zero only at time when N i
t jumps. In the following, we note pi(x) the density of the law of the random variable ξit conditionally

to the fact N i
t jumps. We then replace (1) by the new equation

∀i ∈ [1, D], λit = µi +

D∑

j=1

∫

(−∞,t)

φij(t− s)f ij(ξjs)dN
j
s , (20)

where the past observed marks ξjs influence the current intensity λit through the unobserved mark (positive) function f ij(x).
Since f ij(x) is only involved through the product φij(t)f ij(ξj), it is defined up to a multiplication factor. We fix this factor

by choosing f ij such that E(f ij(ξj)) = 1.

As in the unmarked case, it is easy to show that under the condition (H), one can consider that Nt has stationary increments

and that (3) still holds.

In place of the functions gij(t) for an non-marked Hawkes process (see (7)), we now define the function Gij(t, x) as

Gij(t, x)dtdx = E(dN i
t | dN j

0 = 1 and ξj0 ∈ [x, x+ dx])− ǫijδ(t)dx− Λidtdx. (21)

Let us note that gij(t) =
∫
Gij(t, x)pi(x)dx. In Appendix B we prove that Gij satisfies a system of integral equation as stated

by the following proposition:

Proposition 3. Let i ∈ [1, D] fixed. The kernels {φij(t)}1≤j≤D of the marked Hawkes process defined in Section III-A satisfy

the following system of integral equations :

∀j ∈ [1, D], ∀t > 0, ∀x, Gij(t, x) = φij(t)f ij(t) +

D∑

k=1

φik ⋆ Kijk
x (t), (22)

where

Kijk
x (t) = Gkj(t, x)1R+(t) +

Λk

Λj

∫
dzf ik(z)pk(z)Gjk(−t, z)1R−(t). (23)

B. The Wiener-Hopf equation in the case of piece-wise constant f ij mark functions

In a non-parametric estimation framework, the unknown of the system (22) are both the kernels φij and the mark functions

f ij . In the case of non-marked Hawkes process, we already showed (see Eq. (18)) that this system is a Wiener-Hopf system.

We proved the unicity of the solution and, one can use standard methods for solving it. The system (22) is no longer a

Wiener-Hopf system which makes things much harder.

In the particular case of piece-wise constant mark functions f ij (with M number of pieces), it is easy to prove that the

process N basically corresponds to a non-marked Hawkes process of dimension DM : each components corresponds to the

jumps of a component of the marked Hawkes process associated with one of the M mark function values. Thus it is clear

that the system (22) can be written in terms of a D2M Wiener-Hopf system of the type of (18). It will be the base of our

non-parametric estimation procedure.

Remark : Before moving on, let us point out that, in the case the marks ξij influence the intensity of the process only through

a finite number M of values, one could consider the more general framework where the kernels themselves depend on the

marks, i.e.,

∀i ∈ [1, D], λit = µi +

D∑

j=1

∫

(−∞,t)

φ̃ij(t− s, ξjs)dN
j
s , (24)

and, following the same argument as above, estimate all the kernels φ̃ij(., .) solving a D2M Wiener-Hopf system. This can

be achieved following the exact same lines as the algorithm described in the next Section. For the sake of simplicity, we will

describe the algorithm in the case φ̃ij(t, ξ) = φij(t)f ij(ξ).
We consider that for any j, there exists a covering of R with a finite number of intervals {Ij(l)}1≤l≤Mj such that, for any

i and for any l, f ij(x) restricted to x ∈ Ij(l) is a constant function which value is f ijl :

∀x ∈ Ij(l), f ij(x) = f ijl . (25)

Since the marks ξij are involved in the process construction only through the functions f ij(ξij), it is clear that the functions

x→ Gij(t, x) are also piece-wise constant. Thus we note

∀x ∈ Ij(l), Gij(t, x) = Gij
l (t). (26)
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In the same way, we note ∫

Ij(l)

pj(x)dx = pjl . (27)

For fixed i and j, and for a fixed x ∈ Ij(l), Equations (22) and (23) then rewrite

∀t > 0, Gij
l (t) = φij(t)f ijl (t) +

D∑

k=1

φik ⋆


Gkj

l (t)1R+(t) +
Λk

Λj

Mk∑

m=1

f ikm p
k
mG

jk
m (−t)1R−(t)


 (28)

Since, E(f ik(ξik)) = 1, one has
∑Mk

m=1 f
ik
m p

k
m = 1, then, if we make the change of variable φikm(t) = f ikmφ

ik(t) (consequently∑Mk

m=1 p
k
mφ

ik
m(t) = φik(t)), we get

∀t > 0, Gij
l (t) = φijl (t) +

D∑

k=1

Mk∑

m=1

φikm ⋆

(
pkmG

kj
l (t)1R+(t) +

Λk

Λj
pkmG

jk
m (−t)1R−(t)

)
(29)

We finally get the Wiener-Hopf system

Proposition 4. Let i ∈ [1, D] fixed. The marked kernels {φijl (t) = f ijl φ
ij(t)}1≤j≤D,1≤l≤Mj

satisfy the following Wiener-Hopf

system :

∀t > 0, Gij
l (t) = φijl (t) +

D∑

k=1

Mk∑

m=1

∫ +∞

0

φikm(s)Kijk
l (t− s)ds, (30)

where

Kijk
l (t) = pkmG

kj
l (t)1R+(t) +

Λk

Λj
pkmG

jk
m (−t)1R−(t). (31)

Moroever,

φik(t) =

Mk∑

m=1

pkmφ
ik
m(t) (32)

Thus we get D Wiener-Hopf systems of dimension DM where M =
∑D

j=1M
j . The unicity of the solution is actually

deduced from the result of Section A where we proved the unicity of the solution of the system (18). Indeed, as we explained

in the previous Section, the marked Hawkes process we considered here is equivalent to a non-marked Hawkes process of

dimension DM .

Let us point out that, in the case the functions f ij are constant functions (and thus equal to 1, since E(f ij(ξijt )) = 1), then

we recover the system (18) (which corresponds to D Wiener-Hopf systems of dimension D). Indeed, in that case we have

Gij
l (t) = gij(t), φijl (t) = φij(t), pjl = 1 and, for all t < 0, gij(t) = Λi

Λj g
ij(−t).

C. Discretizing the system (22) using Nyström method

Solving the Wiener-Hopf systems (30) is the main principle of our estimation procedure. There is a huge literature about

numerical algorithm for solving Wiener-Hopf equations [27], [28]. One algorithm which is particularly simple and which works

particularly well is the Nyström method [29]. It basically consists in replacing convolutions (in time) by discrete sums using

quadrature method with Q points. Then, for each i, solving (30) amounts in solving a linear QDM dimensional standard

linear system which can be solved by simply inverting the corresponding QMD ×QMD matrix. Of course, in order to get

the full estimation of the kernels φij and the constants f ijl , one has to solve D such systems (one for each value of i). Let

us point out that, when the kernels have been estimated on the quadrature points, using quadrature formula, one can compute

these estimations on any finer grid.

If we suppose that the kernels are supported by [0, A] one gets

∀t > 0, Gij
l (t) = φijl (t) +

D∑

k=1

Mk∑

m=1

∫ A

0

φikm(s)Kijk
l (t− s)ds. (33)

However, when using the Nyström method, i.e., computing the integral using quadrature methods, one has to be careful since

the kernel Kijk
l (t) is generally discontinuous at t = 0. A standard way to deal with a Wiener-Hopf kernel which is singular

(non exploding) on the diagonal, is to rewrite (33) in the following way :

∀t > 0, Gij
l (t) = φikl (t) +

D∑

k=1

Mk∑

m=1

∫ A

0

(φikm(s)− φikm(t))Kijk
l (t− s)ds+ φikm(t)

∫ A

0

Kijk
l (t− s)ds. (34)
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The term in the first integral is then no-longer discontinuous (quadrature error will be one order smaller) and the second term

can be estimated directly, estimating directly the primitive function of the Gij
l (t) functions and using the formula

∫ A

0

Kijk
l (t− s)ds = pkm

(∫ t

0

Gkj
l (s)ds+

Λk

Λj

∫ A−t

0

Gjk
m (s)ds

)
. (35)

D. Main steps od our non-parametric estimation

We are now ready to present the main steps of our estimation algorithm. We refer the reader to Section V-A for a more

detailed description of the algorithm. The main steps for non-parametric estimation of multi-dimensional Hawkes processes

are :

• For all j ∈ [1, D], fix a priori the M j intervals {Ij(l)}1≤l≤Mj on which the mark function f ij(x) is considered as

constant.

• For all i, j ∈ [1, D] and l ∈ [1,M ], estimate the conditional-law functions Gij
l (t) = Gij

l (t, x ∈ Ijl ) as defined by (21) by

replacing the expectation by empirical averages. These functions are are density measures, in particular they are positive

(cf (13)) though they do not sum to 1. It is very natural to use classical kernel-based non-parametric estimation techniques

used for estimating the density of a random variable from iid realizations [30]. This classically involves a bandwidth

parameter h which corresponds to the size of the support of the kernel. This well be developed in the Section IV-A.

• Solve, in Φ, the Wiener-Hopf system (22) using the Nyström method as explained in Section III-C using Q Gaussian

quadrature points.

• Using quadrature formula, the so-obtained estimation of Φ (at the quadrature points) can be re-sampled on any grid with

an arbitrary resolution.

This method mainly involves two key parameters : the bandwidth h and the number Q of quadrature points. The next section

gives some insights on how one should fix these two parameters.

IV. SELECTION OF THE BANDWITH h AND THE NUMBER Q OF QUADRATURE POINTS

The goal of this Section is to give qualitative arguments for controlling the error of the estimation procedure presented

previously and to understand how to choose the estimation parameters h (the bandwidth) and Q (the number of quadrature

points). It will be illustrated by numerical simulations.

For the sake of simplicity, we shall consider that the Hawkes process is not marked. The arguments are exactly the same in

the case of a marked Hawkes process.

There are mainly two sources of errors :

(E1) the first one comes from the estimation of the conditional expectation density gij(t) (7). This error is basically controlled

by the amount of data available, i.e., by the number J of jumps available, and by the value of the bandwidth parameter

h.

(E2) The other one comes from the inversion of the Wiener-Hopf system (18). This error is basically controlled by the number

Q of quadrature points.

In the error analysis, it is very hard to take into account the fact that the kernel of the Wiener-Hopf system is a random

function (i.e., the empirical estimation of the conditional expectation). This problem has somewhat already been addressed in

[20] in a particular case (see Section VI). Clearly, this problem should be solved for understanding deeply the performance of

our estimator. However, in the general case, this is a very difficult problem which is still open as of today.

A. Conditional expectation density estimation - Bandwidth (h) selection

One of the main step of the algorithm presented in Section III-D consists in estimating the functions gij(t)1 defined by (7),

for t > 0 (for negative t, one can use the formula gij(−t) = gji(t)ΛiΛ
−1
j ).

These functions are density measures, in particular they are positive (cf (13)) though they do not sum to 1. It is very natural

to use classical kernel-based non-parametric estimation techniques used for estimating the density of a random variable from

iid realizations [30].

Let K(x) be a kernel function of order l, i.e., a localized function such that
∫
K(u)du = 1,

∫
K2(u)du < +∞ and∫

unK(u)du = 0 for all n, 1 ≤ n ≤ l. Since we want to perform estimations only for t > 0, it is convenient to choose the

support of K(u) to be in R
+. For the sake of simplicity, we consider that we have R iid realizations {Nt(r)}1≤r≤R of the

Hawkes process on an interval [0, tmax] (such that g[tmax,+∞[ ≃ 0). For each realization r, we call tjn(r) the nth jumping time

of the jth component N j
t (r). For a given bandwidth h > 0, it is natural to consider the following estimator of gij(t) +Λi for

t > 0

gij∗ (t) =
1

Rh

R∑

r=1

∫ tmax

0

dN i
u(r)K

(
u− tj1(r)− t

h

)
(36)

1In the non marked case the functions Gij
l (t) are such that Gij

l (t) = gij(t), ∀t
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The mean square error is defined as:

MSE(h) = E(E2
1 ) = E

(
(gij(t)− gij∗ (t))2

)
= V ar(gij∗ (t)) + b2(t)

where we denoted the estimation bias b(t) = gij(t) − E(gij∗ (t)). The following classical bound of this error is proven in

Appendix C:

Proposition 5 (Convergence speed). If gij(t) is Hölder β and if the kernel K is of order l ≥ ⌊β − ǫ⌋, then mean square

error (MSE) satisfies

MSE(h) ≤ C2
2h

2β +
C1

Rh
. (37)

The minimum is obtained for2

h∗ =

(
C1

2βC2
2

) 1
2β+1

R− 1
2β+1 , (38)

for which one gets the usual adaptive non-parametric convergence speed

MSE(h∗) = E(E2
1 ) = O

(
R−

2β
2β+1

)
. (39)

Thus, for instance, in the special case where the φij(t)’s are Hölder 1 (i.e., β = 1), using a simple order 0 kernel (such as

K(u) = 1[0,1](u)), one gets that if one chooses h∗ of the order of R−1/3, we expect the MSE to be of the order of R−2/3

where R is the number of iid realizations of the Hawkes process. Let us point out that, in practice, one often has a single

realization. One can then estimate gij +Λi by averaging on the different jumps of this realization. More precisely, we replace

(36) which used R realizations on the time interval [0, tmax] by the following estimation that uses a single realization on the

time interval [0, T ] (with T >> tmax) :

gij∗ (t) =
1

Jh

J∑

n=1

∫ T

0

dN i
uK

(
u− tjn − t

h

)
, (40)

where J is the number of events of the realization. After a certain time, the realization can be considered as independent of

its beginning. One should then get an error which is of the order of

E1 = O
(
J−

β
2β+1

)
, (41)

so for β = 1 that gives an error of the order of J−1/3.

These results are illustrated in Fig. 1 where we have computed the integrated MSE (MISE) on g(t) in a 1-dimensional

Hawkes model with an exponential kernel (φ(t) = 0.1e−0.2t, µ = 0.05) for different realization sizes J increasing from 8.103

to 106 by a factor 2. In order to estimate the MISE, for each parameter, we have generated 500 trials of the model and

estimated the MISE using the analytical expression of g(t). One can see in the log-log representation, that for each sample size

(J), the error decreases in the small h regime as expected from Eq. (72) as h−1. For large values of h, one clearly observes

the bias contribution that is expected to behave like h2. We have checked that the optimum value (h∗) behaves for large J as

h∗ ≃ CJ−0.33. In the right panel figure is reported, in log-log scale, the minimum MISE error as a function of the sample

size. As predicted by Eq. (39), one gets a power-law with an exponent close to 2/3.

Bandwdith selection using cross-validation. From a practical point of view, in order to choose the optimal value of the

bandwidth h∗ from a single realization (R = 1) on the time interval [0, T ], one can use a cross-validation method. Indeed, in

the MISE computation, the only terms that depend on h read:

M(h) = E

(∫ tmax

0

gij∗ (t)2dt− 2

∫ tmax

0

gij(t)gij∗ (t)dt

)
(42)

= E

(∫ tmax

0

gij∗ (t)2dt+ 2Λi

∫ tmax

0

gij∗ (t)dt− 2E

(∫ tmax

0

gij∗ (t)dN i(t)|dN j
0 = 1

))

where we have considered that gij(t) has a support included in [0, tmax] and where we used the definition gij(t) = E(dN i
t |dN

j
0 =

1)−Λidt. Replacing the last term in the expectation of the previous equation by an empirical average, it results that the following

contrast function provides an (unbiased) estimator of M(h) :

C(h) =

∫ tmax

0

[gij∗ (t)2 + 2Λigij∗ (t)]dt−
2

J

∑

tj
k

∑

tj
k
<ti

l
≤tmax+tj

k

gij∗ (til − tjk) (43)

2Notice that, the minimum h∗ depends on i and j but we chose to omit the superscripts i, j for the sake of simplicity.
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Fig. 1. Mean integrated square error (MISE) as a function of the kernel width h (left panel) and the sample size J (right panel) for a 1-dimensional Hawkes
model with µ = 0.05 and φ(t) = 0.1e−0.2t. The errors have been estimated using 500 Monte-Carlo samples of the process. In the left panel are represented
the MISE associated with various sample sizes (J = 8.103, 1.6104, 3.2104, . . . , 1.24.105). The results are in good agreement with Proposition 5.
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log2 (h)

−0.12
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−0.08

−0.06

M
∗ (
h
)

Fig. 2. Estimation of M∗(h) (•) (see (46)) as compared to the theoretical M(h) (solid lines) (see (42)) for a 1-d Hawkes sample. M(h) corresponds to the
h dependent part of the MISE. The top lines corresponds to a sample size J = 104 events while the bottom curves correspond to a sample size J = 5.104.
All curves are plotted as a function of log2(h). In each case the Hawkes model corresponds to the exponential kernel φ(t) = 0.1e−0.2t with µ = 0.05. The
estimated curves (•) are in good agreement with the theoretical curves (solid lines). The abscissa where the minimum is reached provides an estimation of
optimal bandwidth h∗. In both cases we choose R = 10 in Eq. (46).

where J stands for the number of events of N j , the first sum is taken on all the jumping times tjk of the component N j and

the second sum is taken on all the jumping times til of the component N i such that tjk < til ≤ tmax + tjk. A cross-validation

method can be used to estimate the expectation of C(h). For doing so, one divides the overall realization time interval [0, T ]
in R intervals of equal size, i.e., Ir = [(r − 1)TR , r

T
R ] for r ∈ [1, R]. Then, for each interval Ir, the conditional expectation

gij is estimated following the same ideas as (40), averaging only on the jumps of N j which do not take place in Ir. More
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precisely, we get the estimation gij(r) defined by

gij(r)(t) =
1

(J − Jr)h

∑

tjn /∈Ir

∫ T

0

dN i
uK

(
u− tjn − t

h

)
, ∀t ∈ [0, tmax], (44)

where Jr corresponds to the number of jumps of N j that take place in the time-interval Ir. The contrast function (43) is then

estimated on Ir, i.e.,

C(r)(h) =

∫ tmax

0

[gij(r)(t)
2 + 2Λigij(r)(t)]dt−

2

Jr

∑

tj
k
∈Ir

∑

tj
k
<ti

l
≤T+tj

k

gij(n)(t
i
l − tjk). (45)

The estimation of M(h) = E(C(h)) is thus naturally given by averaging on all the so-obtained quantities for all the possible

choices of n :

M∗(h) =
1

R

R∑

r=1

C(r)(h). (46)

Examples of M∗(h) curves are provided in Fig. 2 on a simple 1-d example of Hawkes process. The estimation M∗(h) is

close the theoretical quantity M(h). The abscissa corresponding to the minimum of the so-obtained M∗(h) curve gives an

estimation of the optimal bandwidth h∗

h∗ = argmin
h

M∗(h).

B. Overall error - Selection of the number of quadrature points Q

If one supposes that g(t) is estimated with no error, it remains to study the error due to the quadrature approximation. The

function K(t, s) = g(t − s) is the kernel of the Wiener-Hopf system (18). Even if the φij(t) functions are regular, this is a

singular kernel since it is generally discontinuous on its diagonal (except if the dimension D = 1). There is a huge literature

on how to solve numerically Wiener-Hopf systems with a singular kernel on its diagonal (though generally the singularity is

much stronger than a ”simple” discontinuity). It is out of the scope of this paper to compare all these methods and try to

understand which is more appropriate for our estimator. A pretty popular method is the Nyström method already described

above. It consists in rewriting (18) as we did when we rewrote (33) into (34), i.e., isolating the singular behavior of the kernel:

g(t) = Φ(t) +

∫
Φ(s)g(t− s)ds = Φ(t) +

∫
(Φ(s)− Φ(t))g(t− s)ds+Φ(t)

∫
g(t− s)ds.

The last integral term can be estimated ”directly”, i.e., estimating the primitive function of g(t). The other integral term is

approximated by a quadrature method (we shall use Gaussian quadrature).

Let us suppose again that each element of Φ(t) is Hölder β (we assume here that β ≥ 1) and that they are all bounded by a

constant φ∞. Again using (13) and (71), one can easily show that each element of g(t) is bounded by : g∞ = A1
φ∞

1−ρ (A2+
1

1−ρ ),
where A1 and A2 are some constants. Let us also suppose that all the elements of the derivative φ′(t) are bounded by a constant

φ′∞. Then, the terms in (Φ(s)− Φ(t))g(t− s) are of class Hölder β everywhere, except on the diagonal s = t for which the

derivative might be discontinuous. If the quadrature method uses Q points and is basically of order greater than max(2, β),

the error for the non diagonal terms is of the order of φ∞ g∞
Qβ while the error on the diagonal terms is of the order of

φ′

∞
g∞

Q2 .

The total quadrature error is of the order of

Quadrature error ∼ g∞

(
φ∞
Q2

+
φ′∞
Qβ

)

Solving the Wiener-Hopf equation amounts in applying the convolution operator whose Laplace transform is (see (14))

(I+ ĝ(z))−1 = Σ(I− Φ̂T (−z))Σ−1(I− Φ̂(z)).

This operator has a norm which is bounded by a constant times φ∞. Thus the error E2 resulting from the Wiener-Hopf inversion

is of the order of the quadrature error :

E2 = O
(
Q−2 +Q−β

)
(47)

Since, as we have just seen, the Wiener-Hopf inversion involves an operator whose norm is bounded by a constant (controlled

by φ∞) the Wiener-Hopf kernel estimation error E1 (related to to error in the estimation of g(t)) does not change of magnitude

order when inversion is performed. We deduce that the order of the overall error (when h = h∗) should basically be of the

order of the sum of the two errors (see (41))

overall error : E1 + E2 = O
(
J−

β
2β+1

)
+O

(
Q−2 +Q−β

)
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Fig. 3. Root mean square error on g(t) and L∞ error on φ(t) as functions of the sample size (in log-log scale) for the same Hawkes process as in Fig. 1.

In both case h = h∗ and the number of quadradure points Q is kept fixed (Q = 30). Both errors behave as J−1/3
.

Again, as explained in the introduction of this section, we left apart the fact that the inversion of the system involves a random

kernel that we need to control in order to control the error. In that respect, one can always choose Q large enough so that the

quadrature error is negligible as compared to the estimation error (E2 ≪ E1) so that the overall error will always behave as

O
(
J−

β
2β+1

)
.

In Fig. 3, we have reported the L∞ error on φ(t) as a function of the sample size for the n-dimensional Hawkes process

used previously. We set Q = 30 and chose, for each J , h = h∗ (i.e. the optimal bandwidth). One can see that the L∞ error

behaves as the the root mean square error (RMSE) on g(t), i.e., as J−1/3.
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Fig. 4. Estimation error dependence as a function of the number of quadrature nodes Q. Left panels: The relative L2 error is displayed as function of Q for
a 1D Hawkes process (J = 107 events) with an exponential kernel (top) or power-law kernel (bottom). Right panels: The empirical L2 relative variation RQ

(Eq. (48)) as a function of Q in the exponential case (top) and power-law case (bottom). One can see that, in both cases, it is sufficient to choose Q ∈ [20, 40]
to be very close to the best estimation for very large Q.
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Selection of the number of Quadrature points Q. From a practical point of view, in order to choose the number Q of

quadrature points that are used, one can start with a relatively small value for Q (e.g. Q = 20), compute the estimated kernels

and compare them to the estimated kernels that are obtained when increasing the value of Q. One should stop increasing Q
when the two estimations are “sufficiently close”. In order to decide whether Q is large enough, one can e.g. check if the

relative L2 variation,

RQ =
||φ̂Q − φ̂2Q||2

||φ̂Q||2
, (48)

is small enough (for instance RQ < 1%). This is illustrated in Fig. 4, where we have plotted, as a function of Q, both the

relative L2 estimation error ||φ − φ̂Q||2/||φ||2 and RQ for 2 examples of 1D Hawkes processes involving respectively an

exponential (top) and power-law kernel (bottom). One can see that in both situations, Q ∈ [20, 40] is large enough. For all

the numerical illustrations and applications presented in this paper, a value in that range has been chosen. Empirically, we

observed that, for a wide variety of kernels shapes and for sample sizes between 104 and 107, this range is sufficient to be

close to optimal results.
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Fig. 5. Non-parametric estimation of the 2-dimensional marked Hawkes model defined in Section V-B following estimation procedure of Section V-A.
Estimation is based on a realization with 4.5 105 (resp. 4 105) events for component N1

t (resp. N2
t ). We used h = 0.5 and Q = 50. The solid lines represent

the analytical curve and the symbols (◦) the empirical estimated values. The four plots at the top show the kernel matrix Φ estimation. The two plots at the
bottom show the estimation of the mark functions. See Fig. 6 for goodness of fits.

V. DESCRIPTION OF THE ALGORITHM - NUMERICAL ILLUSTRATIONS

The following section gives a detailed description of the algorithm and the next one gives several numerical illustrations.
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Fig. 6. Q-Q plots goodness of fits for estimation of the 2-dimensional marked Hawkes model defined in V-B (see Fig. 5 for estimation results). The solid
lines represent the expected diagonal and the symbols (◦) the empirical estimated values.

A. Description of the algorithm

In this Section, we describe precisely each step of our non-parametric estimation procedure within the framework of marked

Hawkes processes presented in Section III.

• Estimation of the vector Λ (simply using as an estimator of Λi the number of jumps of the realization of N i divided by

the overall time realization)

• For all j ∈ [1, D], one must a priori choose M j and the intervals {Ij(l)}1≤l≤Mj

• For all j ∈ [1, D] and for all l ∈ [1,M j ], estimation of the probabilities pjl as defined by (27). In order to do so, one just

needs to count the number of realized marks ξjs that falls within the interval Ij(l).
• One must estimate {Gij

l (nh}n (on an a priori chosen support [0, tmax]) using empirical averages as explained in Section

IV-A. For this purpose a value for the bandwidth h must be chosen. Section IV-A explains (for the sake of clarity, this

section only deals with the simpler case of non-marked Hawkes process, but the generalization is obvious) how this value

can be obtained using cross-validation.

• Fix the number of quadrature points Q to be used as well as the support for all the kernel functions (we use gaussian

quadrature). In general Q ≃ 30 is sufficient, however, at the end of Section IV-B, we explain how this value can be chosen

adaptively. Then, for each i ∈ [1, D], solve the QM linear system obtained by discretizing the convolutions in (29) using

the quadrature points. This leads to an estimation of all the functions φijl on the quadrature points.

• The estimations of the kernels (on the quadrature points) are simply obtained using the formula φij(t) =
∑Mj

m=1 p
j
mφ

ij
m(t).

The L1 norm ||φij || =
∫ +∞

0
φij(t)dt as well as a re-sampling of the kernels on a high resolution grid can be obtained

using again quadrature formula.

• The stability condition of the so-estimated Hawkes process should be checked (i.e., the spectral radius of the D × D
matrix made of the L1 norms ||φij || must be strictly smaller than 1).

• The estimation of the piece-wise values f ijl of the mark functions f ij(t), can be obtained via the formula f ijl =
||φijl ||/||φ

ij ||.

B. Numerical illustrations

In this section, we illustrate the performances of the previous estimation method on various examples accounting for different

situations: marked process, non decreasing lagged kernels, slowly decreasing kernels and kernels that can be negative.

In order to perform numerical simulations of D-dimensional Hawkes models, various methods have been proposed. We chose

to use a thinning algorithm (as proposed, e.g., in [31]). It is an incremental algorithm, the jumping times are generated one

after the other. In its simplest version (in the case of decreasing kernels), at a given time t, it basically consists in picking up

the next potential jumping time t+∆t using an exponentially distributed random variable ∆t with parameter λt =
∑D

k=1 λ
k
t .

Then a uniform random variable F on [0, λt] is drawn. If F < λt −
∑D

k=1 λ
k
t+∆t, the jump is rejected. If not rejected, it is

assigned to the ith component such that i is the maximum index i which satisfies F ≥ λt −
∑i−1

k=1 λ
k
t+∆t.
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Fig. 7. Non-parametric estimation of the 3-dimensional Hawkes model with circular interactions. The estimation is based on a realization with around 105

events for each component. We used h = 0.2 and Q = 50. The solid lines represent the analytical kernels and the symbols (◦) the empirical estimated values.

A marked 2-dimensional Hawkes process with exponential kernels

The first example we consider is a 2-dimensional marked hawkes process with exponential kernels. The matrix Φ(t) of the

process reads:

Φ(t) =

(
0.1e−0.2t 0.1e−0.2t

0.3e−0.9t 0.3e−0.4t

)

with µ1 = 0.05, µ2 = 0.1. We consider that N2
t is marked with a mark m that follows an exponential distribution of mean

value 1. We choose the mark functions: f12(m) = m and f22 = 1, i.e., the mark m only impacts (linearly) the intensity of

the process N1
t .

In Fig. 5 are reported the estimated kernels and mark functions obtained using a realization of this 2-dimensional process

with 4.5 105 (resp. 4 105) events for component N1
t (resp. N2

t ). For the mark function estimation, we supposed that f(m)
is piecewise constant on intervals [k/2, (k + 1)/2] for k = 0, . . . , 20. One can see in the four top figures that each of the

exponential kernels are well estimated (see the next section for a discussion of the error values). In the last two figures, we

show that one also recovers the mark functions.

In the estimation procedure, we chose h = 0.5 and Q = 50 (see Section IV for discussion on how to choose these values).

In order to check our estimation and test the Hawkes model on a set of data, one can perform a goodness-of-fit test by simply

noting that each point process component, N j(t̃), considered as a function of a “time” t̃ =
∫ t

0
λj(u)du, is an homogeneous

Poisson process. In that respect the inter events times expressed in t̃ must be exponentially distributed, i.e., for each j, if tjk
denote de jumping times of N j , then:

τ jk =

∫ tj
k

tj
k1

λj(u)du (49)

must be iid exponential random variables. From the estimated kernels, baseline intensities and mark functions, one can perform

estimations of all the τ jk ’s. In Fig. 6 are displayed the Q-Q plots of the empirical quantiles distribution (τ1k and τ2k were estimated
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Fig. 8. Non parametric estimation of the 1-dimensional Hawkes model with a power-law decreasing kernel. The estimation is based on a realization with
around 105 events. We used h = 0.5 and Q = 50. Left panel: Estimated (◦) and theoretical (solid line) kernels in linear scale. Right panel: Estimated (◦)
and theoretical (solid line) kernels in log-log scale.
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Fig. 9. Non parametric estimation of a Hawkes model with inhibitory effets. The kernel of the model (solid line) is negative a first interval and positive
over another one. If in Eq. (2), the probability that λt < 0 is negligible, the estimation method provides reliable results (◦).

from the last 3. 103 intervent times of each components) versus the exponential quantiles. One can check in both case that

both curves are very close to the expected diagonal.

A three dimensional example with circular interactions

In this example, we aim at illustrating two features: first, one can faithfully estimate Hawkes kernels that are not necessarily

decreasing, localized around t = 0. One can also, in a multidimensional Hawkes process, disentangle in the complex dynamics

of the events occurrence, the causality (in the sense of Granger causality) relationship between these events. For that purpose we

consider a 3-dimensional Hawkes process with “circular” interactions, i.e., the process N1(t) is excited only by the processes

N2(t) itself excited by the process N3(t) which events are triggered by the events of N1(t). Thus in the Hawkes matrix, only

the terms φ12(t), φ23(t) and φ31(t) are non zero. We choose the shape of these kernels to be triangular functions with different

positions. In Fig. 7, we report the results of the estimation of such process on a sample where each process has around 105

events. we can see that one remarkably recovers both the causality relationship between the 3 processes and the triangular
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shapes of the interaction kernels.

Kernel with heavy tail

In Fig. 8, is reported the estimation of a 1D Hawkes model with the power-law decreasing kernel φ(t) = α(ν + t)−β with

α = ν = 0.1 and β = 3
2 . Unlike the previous examples, this kernel has an algebraic decay for large t. One can see in both

panels of Fig. 8 (corresponding to linear and log-log representation) that, for a sample of 105 events, our estimation is very

close to the expected kernel on a wide range to time scales. Let us notice that in order to estimate a kernel that is slowly

decaying over a support extending over several decades, the regular sampling schemes of g(t) and φ(t) is not suited since it

would involve an exponentially large matrix to invert. For that purpose, in ref. [32], we propose a variant of the method of

section III that relies on a different (i.e., logarithmic) time sampling and that allows one to estimate g when it varies over a

time interval of several orders of magnitude.

Kernel with non-positive values

The last example we provide, concerns a 1D Hawkes process that involves a kernel with negative values. Indeed, according the

remark II-A, one can consider Hawkes processes with inhibitory impact of past events (instead of exciting) when the kernel

φ(t) takes some negative values. In that situation, if, in Eq. (4), the events corresponding to µ +
∫
φ(t − u)dNu < 0 occur

with a negligible probability, the model remains linear and one can expect our estimation method to be still reliable. This

is illustrated in Fig. 9 where the estimation is performed using a sample (of 105 events) of a 1D Hawkes model with the

kernel represented by the solid line: this kernel is either piecewise constant or piecewise linear and is negative on a whole

interval before becoming positive. According to this model, the occurrence of some event begins by decreasing the probability

of occurrence of further events while, after some time lag, this event has an opposite impact and increases the process activity.

By comparing estimated and real kernel values, one can see that even in that case, the method of section III provides provides

a fairly good estimation of the kernel shape.

VI. LINK WITH OTHER APPROACHES

In the academic literature, there are very few non parametric estimators of the kernel matrix of a Hawkes process. In the

particular case the kernel matrix is known to be symmetric (which is always true if the dimension D = 1), the method

developed in [21] uses a spectral method for inverting (10) and deduces an estimation from the second-order statistics. It can

be seen as a particularly elegant way of solving the Wiener-Hopf equation when the kernel is symmetric and in that respect,

it is very similar to our approach (though not at all as general of course).

Apart from this method, there are essentially two other approaches for non parametric estimation.

The first one, initiated by [10], corresponds to a non parametric EM estimation algorithm. It is based on regularization (via

L2 penalization) of the method initially introduced by [18] in the framework of ETAS model for seismology (see Section VII-B

for ETAS model). It has been developed for 1-dimensional Hawkes process. The maximum likelihood estimator is computed

using an EM algorithm :

• The E step basically corresponds to computing, for all n and m, the probability pnm that the nth jump tn has been

”initiated” 3 by the mth jump tm (where tm < tn), knowing an approximation of the kernel φ(t) and of µ.

• And the M step corresponds to estimating φ(t) and µ knowing all the pnm.

In [10], some numerical experiments on particular cases are performed successfully even when the exogenous intensity µ
depends slowly on time : the whole function µ(t) is estimated along with the kernel φ(t) with a very good approximation.

However, as emphasized in [10], the convergence speed of the EM algorithm drastically decreases when the decay of the

kernel φ(t) is getting slower (e.g., power-law decaying kernel). Equivalently, it also drastically decreases when one increases

the average number of events that occur on an interval of the same size order as the one of the support of φ(t) (keeping

constant the overall number of events J , i.e., shortening the overall realization time T ). This can be performed, for instance,

by simply increasing the baseline µ (keeping constant J).

This result is illustrated in Fig. 10, where we have compared, for a fixed estimation precision, the computation time TEM of

the EM method (without any regularization) and the computation time TWH of our approach based on solving the Wiener-Hopf

equation. All our tests are using a simple 1d Hawkes process with an exponential kernel. In a first experiment, we compared

the ratio of the convergence times TEM/TWH as a function of the overall number of events J in the sample. As illustrated

by the curve represented by symbols (◦) in Fig. 10, we observed that, up to a logarithmic behavior, the computation times of

both methods are comparable. In a second experiment (solid line curve in Fig. 10) we fixed the total number of jumps J and

let the number of events over the support of the kernel φ(t) vary by simply changing the baseline intensity µ. In that case,

one clearly observes that, as µ increases, the EM approach becomes slower as compared to our method.

3Here we refer to the ”branching” structure of the Hawkes process.
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A second important drawback of the EM approach is illustrated in the figure 11 where we have tested the EM algorithm on

the example of Fig. 9 where the Hawkes process involves a kernel with negative values. While our method is able to handle

inhibitory situations (provided the inhibitory effect does not leads to negative intensities), the probabilistic interpretation of the

kernel values involved in the EM method, prevent any such possibility. One can see in Fig. 11 the EM method only allows

one to estimate the positive part of φ(t).
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Fig. 10. Comparison of Wiener-Hopf and EM complexity: The ratio of the computation time of EM and Wiener-Hopf methods is plotted as a function of
log2(R) in the case of a 1d Hawkes model with exponential kernel. For the lower curve (symbol ◦) all the parameters are fixed and R represents simply the
ratio of the number of events J/J0 where J0 = 103 and J varies from J0 to 27J0. On can see that in that case, up to an eventual logarithmic correction,
both methods provide a comparable estimation time. For the upper curve (solid line) the number of events is fixed (to J = 105 events) while R represents a
normalized average number of events over the support of the kernel φ(t). More precisely , R is the ratio µ/µ0 where the baseline rate µ varies from µ = µ0

to µ = 27µ0. One can see that the convergence time of the EM method strongly increases as µ becomes larger.
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Fig. 11. Comparison of Wiener-Hopf and EM estimation of the Hawkes model with inhibitory effect of figure 9. Both methods have been tested on the
sample sample of size J ≃ 105 events. One can see that while our method provides a good estimation of the negative part of the kernel (◦), the EM based
method is only able to estimate its positive part (N).

In a recent series of papers [19], [20], some authors proposed, within a rigourous statistical framework, a second approach

for non-parametric estimation. It relies on the minimization of the so-called L2 contrast function. Given a realization of a

Hawkes process Ñt (associated with the parameters (Φ̃(t), µ̃)), on an interval [0, T ], the estimation is based on minimizing
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the contrast function C(µ,Φ) :

(µ∗,Φ∗) = argmin
(Φ,µ)

C(µ,Φ), (50)

where

C(µ,Φ) =

(
D∑

i=1

∫ T

0

λit(µ,Φ)
2dt− 2

∫ T

0

λit(µ,Φ)dÑ
i
t

)
(51)

and

λit(µ,Φ) = µi +

D∑

j=1

∫ t

−∞

Φij(t− s)dÑ j
s . (52)

Let us point out that, minimizing the expectancy of the contrast function is equivalent to minimizing the L2 error on the

intensity process. Indeed, if Ft is the information available up to time t−, since E(dÑ i
t |Ft) = λ̃itdt, one has

argmin
(Φ,µ)

E(C(µ,Φ)) = argmin
(Φ,µ)

D∑

i=1

(
E(λi(µ,Φ)2)− E(λi(µ,Φ)λ̃i)

)

= argmin
(Φ,µ)

D∑

i=1

E
(
(λi(µ,Φ)− λ̃i)2

)
.

The minimum (zero) is of course uniquely reached for Φ = Φ̃ and µ = µ̃. Since λit is expressed linearly in terms of µi and of

the {Φij}j , minimizing the L2 error is equivalent to solving a linear equation, which is nothing but the Wiener Hopf equation

(18). Consequently, minimizing the expectancy of the contrast function is equivalent to solving the Wiener-Hopf equation.

In [20], the authors chose to decompose Φ on a finite dimensional-space (in practice, the space of the constant piece-wise

functions) and to solve directly the minimization problem (50) in that space. For that purpose, in order to regularize the solution

(they are essentially working with some applications in mind for which only a small amount of data is available, and for which

the kernels are known to be well localized), they chose to penalize the minimization with a Lasso term (which is well known

to induce sparsity in the kernels), i.e., the L1 norm of the components of Φ. Let us point out, that minimizing the contrast

function and minimizing the expectancy of the contrast function are two different stories. The contrast function is stochastic,

and nothing guarantees that the associated linear equation is not ill-conditioned. In [20], the authors prove that, in the case

(i) the component of Φ are picked up from an orthogonal family of functions, and

(ii) any two components of Φ are always either equal or orthogonal one to each other,

then the linear equation is invertible, i.e., the associated random Gram matrix is almost surely positive definite. In applications

(they study real signals from neurobiology [9]), they choose the components of Φ to be piece-wise constant and give a lot of

examples of the resulting estimations.

In the present work, our approach is quite different and is motivated for modeling large amount of data (e.g., earthquakes,

financial time-series) which are well known to involve very regular non localized kernels. We directly solve the linear equation,

i.e., the Wiener-Hopf system. In that case, we also introduce a regularization component by the mean of the choice of the

quadrature method. Using a Gaussian quadrature with Q points, for instance, amounts in considering that the kernel term in

the Wiener-Hopf equation is polynomial of order Q. Let us point out that though we proved that the Wiener-Hopf equation is

invertible, we do not have any result on the invertibility of the stochastic version of the Wiener-Hopf equation in which the

conditional expectations are replaced by empirical averages. As we will see in the next Sections, in all our applications and

simulations, it does not seem to be a problem. This is clearly due to the fact that we always consider that a large amount of

data is available (e.g., financial high frequency time-series, earthquake time-series). It seems that if a very small amount of

data is available, both approaches described above should be more appropriate than our approach. For our approach to work,

we would certainly need to add a regularization term for inverting the discrete linear system. This will be addressed in a future

work.

VII. EXAMPLES OF APPLICATION

A. Application to financial time-series

Because of their natural ability to account for self and mutual excitation dynamics of specific events, Hawkes processes

have sparked an increasing interest in high frequency finance [1], [6]–[8], [21], [22], [33]. In this section, we consider, as

a first application, a 1-dimensional Hawkes model for market order arrivals. The trading rate in financial markets has non

trivial statistical features and is one the key factors that determines volatility. We use intraday data of most liquid maturity

of EuroStoxx (FSXE) and EuroBund (FGBL) future contracts. Our data correspond to all trades at best bid/ask during 1000

trading days covering the period from may 2009 to september 2013. The number of events (market orders) per day is close to

5 104 for FSXE and 4. 104 for FGBL. It is well known that market activity is not stationary and is characterized by a U-like
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Fig. 12. Non parametric estimation of a 1-dimensional Hawkes model of market order arrivals for Eurostoxx (FSXE) and EuroBund (FGBL). (Left) Estimated
kernel φ(t) for FSXE (blue) and FGBL (green) data in log-log representation. (Right) Estimated kernel φ(t) for FSXE using over varying time spans and
time resolutions in log-log scale. In both figures the slope is close to β = 1

shape. In order to circumvent this difficulty one can perform an estimation at a fixed time period within the day. However,

as emphasized in [1], it appears that the kernel shape is constant for each period (the non-stationarity of the trade arrival

rate can be associated with a varying baseline intensity µ) and that estimating this kernel on each of these small periods and

averaging on all the so-obtained estimations lead to the same estimation. This is why we did not consider the problem of

intraday non-stationarity and performed the estimation over a whole trading day. In left Figure 12, we have reported the kernels

of trades associated with FSXE and FGBL as estimated using the method described in section V-A (without considering any

mark). The curves are displayed in log-log representation since both kernels are obviously very close to a power-law. They

are well fitted by:

φ(t) = αt−β (53)

with β ≃ 1 and α ≃ 0.05. In right Figure 12, we have reported the same estimation for FSXE market orders but with 4

different values of the sampling parameter h (we chose h = 0.005, 0.05, 0.5, 2 seconds) in order to cover a wide range of

times t. One sees that all curves consistently fall on the analytical expression (53). This figure, where a scaling behavior of

φ(t) can be observed over a range of 5 decades, is very similar to the estimation performed by Bouchaud et al. on the S&P

500 mini [22]4. Let us notice that origin of the power-law nature of Hawkes kernels for market data is a challenging question

already raised in ref. [1], [21]. It is also remarkable that the shape of the kernel appears to be almost constant for different

markets. Let us finally point out that in order to have ||φ|| < 1, expression (53) must be truncated at both small and large

time scales. This point is discussed in Refs. [21], [22]. However, it is important to notice that the expression (53) has to be

integrated over 9 decades in order to reach ||φ|| = 1 (ie., if the minimum time resolution is 0.001 s, even after one month,

the integral of φ is still smaller than 1).

B. Application to earthquake time-series

Various point processes models have been proposed in order to reproduce the dynamics of seismic events (earthquakes) in

some given geographic region (see e.g. [4], [34] for a review). Among theses models, the Epidemic Type Aftershock Sequence

(ETAS) proposed by Ogata [35] is one of the most popular. This model accounts for the triggering of future events (aftershocks)

by former earthquakes simply by assuming that the shocks dynamics corresponds to a Hawkes process marked by the events

magnitude. More precisely, the one dimensional version of this model 5 is defined as follows: µ is the baseline intensity, the

kernel φ(t) is

φ(t) =
C

(1 + t/c)p
(54)

while the mark function (the “productivity law”) has an exponential like form:

f(m) = Aeαm . (55)

4It is noteworthy that these authors found values of α and β that are consistent with the previous reported values.
5There exists a space-time version of the ETAS model that accounts for both the time and the location of earthquakes.
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Fig. 13. log10 N(M) as a function of M where N(M) is the number of events of magnitude m ≥ M as estimated from data of the Northern California
Earthquake Catalog. As expected, an exponential shape of the form (56), with M0 ≃ 2 and a ≃ 1 fits well the empirical data.

Notice that the probability distribution of earthquake magnitudes is given by the famous Gutenberg-Richer law according to

which the probability that an earthquake magnitude m is greater than M (large enough, i.e., greater than a given threshold

M0) reads

Prob(m > M) = 10a−bM ∀M ≥M0 (56)
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Fig. 14. Non paramatric estimation of a 1-dimensional marked Hawkes model of earthquake data from NCEC.

In Fig. 13, we have displayed log10N(M) as a function of M where N(M) is the number of events of magnitude m ≥M
as estimated from data of the Northern California Earthquake Catalog [23] (NCEC). This catalog contains events of magnitude
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m ≥ 0 in the region of Northern California from january 1990 to october 2013. The total number of events is around 5. 105.

One can check that the Guttenberg-Richter law (56) provides a good fit of the data. Notice that despite the large number of

studies devoted to ETAS model application to earthquake data (see e.g. [4], [34]), to our knowledge, only ref. [18] performed

a non parametric estimate within the general class of linear self-exciting point processes. As previously mentioned (see section

VI) these authors obtained an estimation of the kernel shape φ(t) by applying an Expected Maximization iterative method.

A precise comparison of the EM-based method to the one presented in this study is out of the scope of this paper. Let us

just mention that the authors in [18] mainly found, using data from southern California Catalog, a value of the exponent p
that weakly depends on the magnitude threshold but stays in the range p ∈ [0.6, 0.8] while the reported value of α in the

productivity law (55) is α ≃ 0.7. In Fig. 14 are reported the results of the non-parametric estimation of φ(t) and f(m) from

NCEC data. One sees that the obtained estimates for both f(m) and φ(t) are consistent with ETAS model: in particular one

finds that the kernel φ(t) is well fitted by the shape (54) with p ≃ 0.7 and c ≃ 1 mn while the law (55) is well verified over

the whole range of magnitudes with α ≃ 0.75. It is noteworthy that the values we obtain are relatively close to the estimates

performed in [18].

VIII. CONCLUSION AND PROSPECTS

In this paper we have discussed some issues related to Hawkes processes, an important class of point processes that account

for the self and mutual excitation between classes of events. We have notably shown that this family of processes are fully

characterized by their conditional density function (or equivalently by its jumps self-correlation matrix) which is related to the

kernel matrix Φ through a system of Wiener-Hopf equations. A numerical inversion of this system by the means of Gaussian

quadratures, provides an efficient method for non-parametric estimation of Hawkes multivariate models. A simple variant of

this method allows one to also recover the mark functions for marked Hawkes processes. For Hölder β kernels, the estimation

error is shown to converge as J−1/(2β+1) (where J is the number of events) provided one chooses a number of quadrature

points large enough. The two examples from finance and geophysics we considered, illustrate the reliability of the approach and

allow one to confirm the slowly decaying nature of trading activity impact on future activity and to recover the specifications

of the Ogata ETAS model for earthquakes.

As far as the prospects are concerned, we intend to perform a systematic comparison of our method performances to former

methods based on the minimization of a cost function. It also remains to base our error analysis on more solid mathematical

and statistical foundations. We can also improve the method by regularity constraints in the case a very small amount of data

is available. The estimation of the mark functions also raises interesting problems: for example one could test, within the

framework of this paper, whether the kernels are separable, i.e., φ(t,m) = φ(t)f(m) or not.

As we mentioned in the introduction, since they naturally and simply capture a causal structure of event dynamics associated

with contagion, cross and self activation phenomena, Hawkes processes are promised for many applications. In that respect, we

hope that the method proposed in this paper will enter in the toolbox of standard techniques used for empirical applications of

point processes. Besides an improvement of the applications to finance (e.g. by accounting for order book events, price events

or exogenous events) and geophysics (e.g. by accounting for the space dependence of earthquake mutual excitations), we plan

to consider other fields where Hawkes processes are pertinent like social networks information diffusion, internet activity or

neural networks
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APPENDIX A

PROOF OF THE UNICITY OF THE SOLUTION OF THE SYSTEM (18) IN Φ(t)

Let us show that we can use a standard Wiener-Hopf factorization argument to prove that equation (18) admits a unique

solution matrix Φ(t) which components are L1 causal functions. For that purpose let us suppose that Φ̃(t) is another causal

solution and let us consider the matrix:

∆(t) = Φ(t)− Φ̃(t) .

We want to prove that ∆(t) is equal to 0 for all t.
Let us set

B(t) = ∆(t) + ∆ ⋆ g(t) . (57)
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Since both Φ(t) and Φ̃(t) satisfy (18), one has:

B(t) = 0 ∀t > 0,

consequently B(t) is in L1 and anti-causal. In the Laplace domain, (57) writes

B̂(z) = ∆̂(z) (I+ ĝ(z))

Thanks to (14) and (11), one has:

B̂(z) = ∆̂(z)
(
I+ Ψ̂(z)

)
Σ
(
I+ Ψ̂T (−z)

)
Σ−1

= ∆̂(z)
(
I+ Ψ̂(z)

)
Σ
(
I− Φ̂T (−z)

)−1

Σ−1

and consequently

B̂(z)Σ
(
I− Φ̂T (−z)

)
= ∆̂(z)

(
I+ Ψ̂(z)

)
Σ (58)

On the one hand, since the matrices Ψ(t) and ∆(t) are causal and in L1, the left hand side of this last equation is analytic in

the left half-plane {z,ℜ(z) ≤ 0}. On the other hand, since the the matrices B(t) and Φ(−t) (the Laplace transform of Φ(−t)
is Φ̂(−z)) are in L1 and anti-causal, the right hand side of this last equation is analytic in the right half-plane {z,ℜ(z) ≥ 0}.

Since both sides are equal, they actually are analytic on the whole complex plane (i.e., their elements are entire functions).

Let us fix 0 < β < 1 and i, j ∈ [1, D]. We choose z ∈ C such that ℜ(z) = −r ∈ R
−∗. Then for any causal function f(t) ∈ L1,

one has

f̂(z) ≤

∫ ∞

0

|f(t)|e−trdt =

∫ r−β

0

|f(t)|e−trdt+

∫ ∞

r−β

|f(t)|e−trdt ≤

∫ r−β

0

|f(t)|dt+ e−r1−β

||f ||1 −→
r→+∞

0

Since both ∆(t) and Ψ(t) are causal and in L1, the analytic function of (58) goes to 0 when ℜ(z) → −∞. By Liouville

theorem, we conclude that it is zero everywhere and consequently ∀t R, ∆(t) = 0. This ends the proof of the uniqueness of

the solution of (18) :

APPENDIX B

PROOF OF PROPOSITION 3

For a fix t > 0, one has, from definition (21):

Gij(t, x)dtdx = E(λitdt | dN
j
0 = 1, ξj0 ∈ [x, x+ dx])− Λidtdx. (59)

Using (20), we get

Gij(t, x)dx = (µi − Λi)dx+

D∑

k=1

∫
φik(t− s)E(f ik(ξks )dN

k
s | dN j

0 = 1, ξj0 ∈ [x, x+ dx]). (60)

Then using (3), one gets (µi − Λi) = −Λk
∑D

k=1

∫
dsφik(t− s) thus

Gij(t, x)dx =
D∑

k=1

∫
φik(t− s)

(
E(f ik(ξks )dN

k
s | dN j

0 = 1, ξj0 ∈ [x, x+ dx])− Λkdsdx
)
. (61)

Splitting the integral in 3 parts : s = 0, s > 0 and s < 0, we get

Gij(t, x) = φij(t)f ij(x) +A+(t, x) +A−(t) (62)

where

A+(t, x)dx =

D∑

k=1

∫

s>0

φik(t−s)
(
E(dNk

s | dN j
0 = 1, ξj0 ∈ [x, x+ dx])− Λkdsdx

)
=

D∑

k=1

∫

s>0

φik(t−s)Gkj(s, x)dx (63)

and

A−(t) =

D∑

k=1

∫

s<0

φik(t− s)
(
E(f ik(ξks )dN

k
s | dN j

0 = 1)− Λkds
)
. (64)
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Since, for s < 0

E(f ik(ξks )dN
k
s | dN j

0 = 1) =

∫
dzf ik(z)

Prob{ξks = z, dNk
s = 1, dN j

0 = 1}

Prob{dN j
0 = 1}

=

∫
dzf ik(z)

Prob{ξks = z, dNk
s = 1, dN j

0 = 1}

Λj

=
Λk

Λj

∫
dzf ik(z)pk(z)E(dN j

0 | ξks = z, dNk
s = 1)

=
Λk

Λj

∫
dzf ik(z)pk(z)

(
Gjk(−s, z) + Λj

)
.

Consequently

A−(t) =
D∑

k=1

Λk

Λj

∫

s<0

φik(t− s)

∫
dzf ik(z)pk(z)Gjk(−s, z) (65)

We finally get

Gij(t, x) = φij(t)f ij(x) +

D∑

k=1

∫

s>0

φik(t− s)Gkj(s, x) +

D∑

k=1

Λk

Λj

∫

s<0

φik(t− s)

∫
dzf ik(z)pk(z)Gjk(−s, z) (66)

This proves proposition 3.

APPENDIX C

PROOF OF PROPOSITION 5

The proof of proposition 5 follows a path that is very classical in the study of density kernel estimations or regressions.

First, the variance of g∗(t) can be bounded

V ar(g∗(t)) ≤
1

R2h2
E



(

R∑

k=1

∫ tmax

0

dN i
u(k)K

(
u− tj1(k)− t

h

))2

 (67)

≤
1

Rh2
E



(∫ tmax

0

dN i
uK

(
u− tj1 − t

h

))2

 . (68)

Using the stationarity of the increments of Nt

V ar(g∗(t)) ≤
1

Rh2
E

((∫ tmax

0

dN i
uK

(
u− t

h

))2

| dN j
0 = 1

)
(69)

≤
1

Rh2

∫

u∈]0,tmax]

∫

v∈]0,tmax]

E(dN i
udN

i
v|dN

j
0 = 1)K

(
u− t

h

)
K

(
v − t

h

)
. (70)

Straightforward computations (see [21] for examples) show that, E(dN i
udN

i
v|dN

j
0 = 1) can be decomposed in the sum

ψij(u)δ(u− v)+ b(u, v)dudv, where δ(.) is the Dirac distribution and b(u, v) is a polynomial in ψij taken at different points.

Let us consider that all the φij(t)’s are bounded by a constant φ∞. Then, if F (t) is a matrix function with positive elements,

one can easily check that each element of the matrix Φ ⋆ F (t) are bounded by φ∞1||F || where 1 is the matrix whose

elements are all equal to 1 and ||F || the matrix made of the L1 norm of the elements of F (t). Then applying this result to

F (t) =
∑+∞

k=0 Φ
(∗k)(t), and Ψ(t) = Φ ⋆ F (t), shows that

each element of Ψ(t) is bounded by : ψ∞ = φ∞1(I− ||Φ||)−1 < C
φ∞
1− ρ

(71)

where C is a constant and ρ the spectral radius of I− ||Φ||. Consequently, since (H) is supposed to hold (i.e., ρ < 1), when

h is small, the dominant term in (70) is of the form

1

Rh2

∫

u∈]0,tmax]

∫

v∈]0,tmax]

ψij(u)δ(u− v)K

(
u− t

h

)
K

(
v − t

h

)
≤

ψ∞

Rh2

∫

u∈]0,tmax]

K

(
u− t

h

)2

,

which is of order 1/h. Thus, for h small enough, there exists a constant C1 such that

V ar(g∗(t)) ≤
C1

Rh
(72)
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For the bias, the computation is also standard :

b(t) = E(g∗(t))− gij(t)− Λi =
1

h
E

(∫ tmax

0

dN i
u(k)K

(
u− tj1(k)− t

h

))
− gij(t)− Λi (73)

=
1

h

∫ tmax

0

E(dN i
u|dN

j
0 = 0)K

(
u− t

h

)
− gij(t)− Λi (74)

=
1

h

∫ tmax

0

E(dN i
u|dN

j
0 = 0)K

(
u− t

h

)
− gij(t)− Λi (75)

=

∫ tmax

0

E(dN i
t+uh|dN

j
0 = 0)K(u)− gij(t)− Λi (76)

=

∫ tmax

0

(E(dN i
t+uh|dN

j
0 = 0)− E(dN i

t |dN
j
0 = 0)du)K(u) (77)

=

∫ tmax

0

(gij(t+ uh)− gij(t))K(u)du (78)

If follows that if the density of E(dN i
t |dN

j
0 = 0)) is Hölder β and if the kernel K is of order l = ⌊β − ǫ⌋, for all small

ǫ > 0 6 (i.e., l is the largest integer smaller than β − ǫ) then, there exists a constant C2 such that

|b(t)| ≤ C2h
β (79)

The proposition directly results from Eqs (72) and (79).
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