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In microseismic monitoring, achieving an accurate and efficient first-arrival picking is crucial for improving the accuracy and
efficiency of microseismic time-difference source location. In the era of big data, the traditional first-arrival picking method
cannot meet the real-time processing requirements of microseismic monitoring process. Using the advanced idea of deep
learning-based end-to-end classification and the prominent feature extraction advantages of a fully convolution neural network,
this paper proposes a first-arrival picking method of effective signals for microseismic monitoring based on UNet++ network,
which can significantly improve the accuracy and efficiency of first-arrival picking. In this paper, we first introduced the
methodology of the UNet++-based picking method. And then, the performance of the proposed method is verified by the
experiments with finite-difference forward modeling simulated signals and actual microseismic records under different signal-
to-noise ratios, and finally, comparative experiments are performed using the U-Net-based first-arrival picking algorithm and
the Short-Term Average to Long-Term Average (STA/LTA) algorithm. The results show that compared to the U-Net network,
the proposed method can obviously improve the first-arrival picking accuracy of the low signal-to-noise ratio microseismic
signals, achieving significantly higher accuracy and efficiency than the STA/LTA algorithm, which is famous for its high
efficiency in traditional algorithms.

1. Introduction

The processing of microseismic monitoring data has con-
fronted with difficulty in balancing accuracy and efficiency
for a long time [1–3]. With the development of microseismic
monitoring technology, hydraulic fracturing microseismic
has become increasingly important in shale gas exploration
and development [4–7]. Accurate and efficient first-arrival
picking of microseismic monitoring is the premise for
improving the performance of microseismic time-difference
source location. Recently, many picking methods have been
proposed, such as the Short-Term Average to Long-Term
Average (STA/LTA) [8], Akaike information criterion
(AIC) [9], and correlation method [10].

Recently, certain progress in the research of first-arrival
picking has been achieved. Sheng [11] combined the wavelet
transform with the high-order statistics and used the high-
order statistics to pick the first arrival of signals after con-

ducting the wavelet multiscale analysis, which suppressed
random noise to a certain extent and enhance the accuracy
of first-arrival picking. Shimoda [12] employed the cross-
correlation method to identify the first arrival of the micro-
seismic signal in the borehole common geophone gathers,
thus providing simpler picking of the first-arrival time and
higher accuracy than previous step-by-step arrival picking
methods using a single detector. On the basis of previous
studies, Tan et al. [13] proposed a first-arrival picking
method of microseismic signals under low signal-to-noise
ratio (SNR). Firstly, the cross-correlation and the least
squares criterion were used to preprocess the original micro-
seismic data to obtain a better time difference correction, and
then, the multichannel semblance parameter was used to
identify the microseismic events. After the microseismic
events had been identified, the arrivals of records were
picked. Karastathis [14] used time-frequency analysis to
obtain a picking method of the first arrival of microseism,
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and compared with the traditional method, the picking accu-
racy was improved significantly. Massin [15] used the com-
ponent energy correlation method to identify microseismic
body waves. Further, after analyzing the energy ratio algo-
rithm, the high-order statistics method, and the minimum
information criterion (AIC) method, Akram et al. [16] found
that different methods had their own advantages and disad-
vantages under different conditions, so they designed a set
of parameter-optimized first-arrival picking methods for
microseismic signals, namely, different parameters were
assigned to different first-arrival picking methods according
to the microseismic signal conditions. Dowan et al. [17] pro-
posed a first-arrival picking method of noisy microseismic
records by combining the cross-correlation and superposi-
tion process. The results showed that this method could auto-
matically pick the first arrival for low-SNR signals. Yu et al.
[18] proposed a first-arrival picking method based on the
multichannel waveform cross-correlation. The results
showed that the first arrival consistency of the proposed
method is improved compared with the traditional single-
track picking method. Raj et al. [19] proposed a first-arrival
picking method of microseisms based on the two-
dimensional constant false alarm rate, which improved the
first-arrival picking accuracy under the low-SNR conditions.
Qu et al. [20] used the supervised support vector machine
algorithm to pick the first arrival automatically, improving
the efficiency of first-arrival picking. Sheng et al. [21] devel-
oped the Shearlet Transform-Short time window/Long time
window-Kurtosis (S-S/L_K) algorithm using the Shearlet
transform and high-order statistics, which could accurately
pick the first arrival of low-SNR microseismic signals. Gao
et al. [22] used a sliding window combined with the fuzzy
C-means clustering algorithm to pick the first arrival of noisy
and preprocessed microseismic signals. However, at a large
amount of monitoring data, the above traditional first-
arrival picking method cannot simultaneously meet the
requirements for efficiency and accuracy of real-time micro-
seismic monitoring.

The deep convolutional neural networks have been
widely researched because of their outstanding feature
extraction and recognition performances [23–26]. Zhang
et al. [27] proposed a new multifeature reweighted DenseNet
(MFR-DenseNet) architecture for image classification, which
greatly reduced the error rate on CIFAR-10 and CIFAR-100
datasets. Han et al. [28] proposed to add the edge convolu-
tion constraint to the improved U-Net for target detection
to predict the significant mapping of an image. The improved
U-Net integrates the characteristics of different layers and
thus greatly reducing the information loss. Qu et al. [29]
proposed a radar signal intrapulse modulation recognition
method, which uses the time-frequency analysis, image
processing, and convolutional neural network (CNN) to
modulate and recognize the radar signal. At the signal-
to-noise ratio of -6 dB, this method achieved the recogni-
tion success rate of 96.1%. Yang et al. [30] proposed a
detection model based on a multitask rotating region con-
volutional neural network and achieved good results in
arbitrary directional ship position detection and direction
prediction.

Recently, in the field of geophysics, researches have also
been conducted by many scholars. Xu et al. [31] identified
active earthquake events using the convolution neural net-
work. Chen et al. [32] achieved strong noise interference sup-
pression of magnetotelluric data using the recurrent neural
network (RNN). It is worth mentioning that Chen, Zhang,
and Saad [33–38] have made excellent contributions to the
field of geophysics by applying deep learning to microseismic
events.

Due to the jump layer connection, deep supervision
structure, and the advantages of end-to-end classification
and integration of deep and shallow features [39–42], the
UNet++ [43] has been widely used in the field of medical
image processing [44]. Following the advanced idea of deep
learning-based end-to-end classification, this paper considers
the first-arrival picking of effective microseismic signals as a
two classification problem and uses UNet++ network to pick
the first-arrival of effective microseismic signals, improving
the fault-tolerant performance and correcting the prediction
deviation caused by labeling error using the label smoothing
and regularization; finally, it outputs the maximum probabil-
ity prediction value corresponding to the first-arrival cate-
gory as the first arrival point.

The rest of the paper is organized as follows. I introduce
the methodology of the first-arrival picking method based on
UNet++. And then, data sets are constructed, and the
UNet++ is optimized to obtain the best hyperparameter.
The first arrivals are determined by the UNet++, and com-
parative experiments are conducted using the U-Net-based
first-arrival picking algorithm and the STA/LTA algorithm
according to the finite difference forwardmodeling simulated
signals and actual microseismic records at different signal-to-
noise ratios. The results show that compared with the U-Net
network, the proposed method can obviously improve the
first-arrival picking accuracy of the low-SNR microseismic
signals, achieving significantly higher accuracy and efficiency
than the STA/LTA algorithm, which is well-known for its
high efficiency in traditional algorithms. Finally, the discus-
sion and solution are presented, respectively.

2. Methods

2.1. UNet++-Based Picking Method. U-Net is an advanced
and mature network, which combines the special structure
of up-sampling and down-sampling to play an important
role in the field of deep learning. Compared to the U-Net net-
work, the UNet++ network, which is presented in Figure 1,
has a deeper receptive field. UNet++ owns a skip connection
structure and deep supervision based on the structure of U-
Net, which can handle higher-dimensional information.
The main advantages of the UNet++ are as follows: its unique
skip connection integrates the characteristics of different
layers, which improves accuracy; it has a deep supervision
framework, that is Liði = 1, 2, 3, 4Þ, so it gets the final output
result by averaging four split branches and which reduces
the number of parameters and improves the speed and accu-
racy of the network. The workflow of the UNet++-based
picking method is as follows:
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(1) Input: Discrete time series of microseismic signal.

(2) Contraction Path of UNet++: The main function of
this path is to extract the signal and noise features
of microseismic signals. Each layer of the contraction
path contains a convolution layer, an activation func-
tion layer, a batch normalization layer, and a maxi-
mum pooling layer; all layers except the first large
layer contain an up-sampling layer. The convolution
kernel in the convolutional layer has a size of 3 × 3;
the size of the convolution kernel in the up-
sampling layer is 2 × 2; the activation function used
in the activation function layer is Leaky Relu, which
is expressed as:

f xið Þ =
xi, xi ≥ 0,

axi, xi < 0,

(

ð1Þ

where a represents a trainable learning parameter, and in this
work, it is set to 0.01; xi denotes the network input; f ðxiÞ rep-
resents the output. The Leaky Relu function can solve the
problem of gradient disappearance caused by layer depth
and accelerate the convergence speed.

(3) The Expansion Path of UNet++: The expansion path
uses up-sampling to restore and decode the features
to the original input size and recover the spatial reso-
lution of the input signal, restore the detailed fea-
tures, and achieve the end-to-end classification effect.

(4) Output: In order to make the extracted features more
comprehensive, the average value of the branches
obtained by the pruning operation is used to obtain
the output result. Before the training, the one-hot
encoding of the labels is used to obtain the sparse
labels, and then, the label smoothing and regulariza-
tion processing given by (2) are used to improve pre-

diction accuracy of the model and increase its ability
to resist label error. Finally, the softmax function
given by (3) is used to obtain the probability curve
of the signal sampling point belonging to the first-
arrival category, and the point with the maximum
probability on the curve is taken as the first-arrival
point. The softmax cross-entropy is used as the net-
work loss function to optimize the network model,
and it is given by (4).

y′ = 1 − εð Þ ∗ y + ε ∗ μ: ð2Þ

In (2), y′ denotes the sample label after label smoothing, ε
represents the smoothing factor, yrepresents the original
sample, and μ is an introduced fixed distribution of all values
of 1.

Fi
′ xð Þ =

egi xð Þ

∑n
k=1e

gk xð Þ
, ð3Þ

L f i′ xð Þ, Fi′ xð Þ
� �

= −〠
n

i=1

〠
x

f i′ xð ÞlogFi′ xð Þ
� �

: ð4Þ

In (3) and (4), i signifies types, x denotes the sampling
point, giðxÞ denotes the output of the last layer of the

UNet++ network corresponding to sampling point x, f i′ðxÞ

indicates the probability distribution of real labels, and Fi
′ðx

Þ represents the network prediction probability distribution.
Figure 2 shows the flow of the paper. Figure 3 shows the pro-
cess of labeling the first arrival.

2.2. Experiment. The parameters of the experimental plat-
form are given in Table 1.

2.3. Dataset. The quality and richness of a dataset have a sig-
nificant influence on the picking ability of the UNet++.

L1 L2

∑L

C1

C2

C3

C4

C5

L3 L4

Figure 1: UNet++ model structure.
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Therefore, when constructing the training set of the UNet++,
it is necessary to consider the relationship between the trace
continuity and the changing trends of the model parameters
with the distance between the breaking and receiving points
of the signal at the arrival point. In this paper, the dataset
consisted of 5000 simulated signals produced by the forward
modeling and 5000 real microseismic monitoring signals col-
lected from Hubei, Sichuan, and Shengli Oilfield in China
with high and low SNR. The simulated signals were in the
frequency range of 20–1000Hz and was generated by the
finite difference forward modeling at different SNR values
using different velocity models. The data was divided into
the training set, test, and validation sets using the ratio of
6 : 2 : 2. Finally, automatic picking method, the Shearlet
Transform-Short time window/Long time window-Kurtosis
(S-S/L-K) method [43], and manual picking method were
used to label the arrival points in the training set.

2.4. Hyperparameter Optimization. The learning rate and
label smoothing regularization factor were optimized to
determine the most suitable hyperparameters of the UNet++.
The learning rate, as one of the most important hyperpara-
meters that affect the network model performance, directly
determines the convergence speed and training accuracy of
the network. The smoothing regularization factor can affect
the intensity of disturbance applied to correct labels, thus
affecting the correctness of network input labels. Therefore,
before using the UNet++ to pick the first arrival, it is neces-
sary to optimize the most important hyperparameters to
maximize model performance.

(1) Learning Rate Optimization: As already mentioned,
as one of the most important hyperparameters, the
learning rate directly affects the prediction perfor-
mance of the network. On the one hand, if the learn-
ing rate is too large, the network will miss the extreme
value point, which will reduce the network training
accuracy. On the other hand, if the learning rate is
too low, the network will converge too slowly or even
the overfitting problem can be caused. In order to
solve this issue, in this work, the optimal learning rate
was determined by evaluating the model’s perfor-
mances at the learning rate of 0.01, 0.001, and
0.0001. The model loss and accuracy on the training
and validation sets at different learning rates are pre-
sented in Figures 4(a) and 4(b), respectively. As pre-
sented in Figures 4(a) and 4(b), at the learning rate
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Figure 2: The structure and technical route of the paper.

Table 1: Experimental platform parameters.

Hardware environment

CPU IntelCorei7-9750H

GPU GeForceGTX1660 Ti

RAM 20GB

Software environment Platform

Ubuntu 16.04

Tensorflow1.12

CUDA9.0+Cudnn7.1

Pycharm+Python3.6
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Figure 3: Labeling the first arrival. (a) Microseismic signal profile. (b) The fifth signal in the profile.
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of 0.001, the model converged faster and obtained the
highest validation accuracy. Therefore, the learning
rate of 0.001 was used as the initial learning rate in
the experiments.

(2) Label Smoothing: Label smoothing regularization
enhances the model’s ability to tolerate input label
error by adding disturbances to the original label.
The label smooth regularization factor can determine
the strength of the applied disturbance. On the one
hand, if the regularization factor is too large, the
network can difficultly converge because the label
perturbation will be too strong. On the other hand,

if the regularization factor is too small, it will lead
to a decrease in network fault tolerance. Therefore,
it is very important to choose an appropriate
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Figure 4: Training and validation curves at different initial learning rates. (a) Model loss on the training set. (b) Model accuracy on the
validation set.
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Figure 5: Training and validation curve before and after label smoothing. (a) Model loss on the training set. (b) Model accuracy on the
validation set.
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Figure 6: Comparison of model performance on the training and validation sets. (a) Loss comparison. (b) Accuracy comparison.
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regularization factor. The loss curve during the
training phase and the accuracy curve during the
verification phase at different labels smoothing regu-
larization factor values are presented in Figures 5(a)
and 5(b), respectively. As presented in Figures 5(a)
and 5(b), after the label smoothing is used, the train-
ing loss and verification accuracy of the network were
significantly improved. Particularly, at the regulariza-
tion factor of 0.01, the model achieved the best per-
formance. Therefore, the regularization factor of
0.01 was used in the experiments.

(3) Model Validation: In order to verify the generaliza-
tion ability of the network, the performance of the
UNet++ on the training and verification sets was
compared, and the fivefold cross-validation was used
to evaluate the true generalization error of the net-
work. The loss and accuracy of the UNet++ during
the training and validation are presented in
Figure 6. According to the results shown in
Figures 6(a) and 6(b), the optimized model can be
used to pick the first arrival of the microseismic signal
accurately.

2.5. Synthetic Examples. The finite-difference forward model-
ing signal profile, at the signal frequency of 20Hz, the model
size of 301 × 160, the spatial sampling interval dx = dz = 10,
the source coordinate (140.80), and the two-layer velocity
model, where the medium velocities of the upper and lower
layers were 2000m/s and 3000m/s, is presented in Figure 7.

In this work, the fourth trace signal of the modeling sec-
tion was taken as a research object. The first arrival was

picked by the UNet++ at different SNR values by adding
the Gaussian noise. Then, after adding -8 dB Gaussian noise,
the first arrival of the whole section was picked to verify the
feasibility of the UNet++-based picking method. The SNR
value was calculated by:

S

N
= 10 log10

σs

σn

, ð5Þ

where σs and σn denote the standard deviations of the origi-
nal signal and the added noise, respectively.

2.6. Noise-Free Simulated Signal Test. The forward modeling
signals corresponding to eight sections shown in Figure 7 are
presented in Figure 8(a). As shown in Figure 8(a), the first
arrival time of the signal was 350ms. Figures 8(b) and 8(c)
showed the intermediate features of the signal shown in
Figure 8(a) extracted by C3 and C5 layers of the UNet++,
respectively. The local magnification of the signal and its
first-arrival picking curve obtained by the UNet++ in the
range from 330ms to 430ms are presented in Figures 9(a)
and 9(b), respectively. The complete prediction results are
shown in the dotted box in Figure 9(b).

2.7. Gaussian Noise-Added Signal Test. In order to further
verify the UNet++ performance in the first-arrival picking
of low-SNR microseismic effective signals, the Gaussian
noises of -3 dB, -5 dB, and -8 dB were added to the simulated
signal shown in Figure 8(a), respectively. The obtained
results are presented in Figure 10, Figure 11, and Figure 12.

The forward modeling simulated signals added with the
Gaussian noises of -3 dB, -5 dB, and -8 dB are presented in
Figures 13(a), 14(a), and 15(a), respectively. The intermedi-
ate features of the signal shown in Figure 13(a) extracted by
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Figure 8: Noise-free forward modeling signal and its intermediate features extracted by the UNet++. (a) The noise-free forward modeling
signal. (b) Intermediate features of the signal extracted by C3 layer. (c) Intermediate features of the signal extracted by C5 layer.
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C3 and C5 layers of the UNet++ network are presented in
Figures 13(b) and 13(c), respectively. The local magnification
of the signal and its first-arrival picking curve obtained by the
UNet++ in the range from 330ms to 430ms are presented in
Figures 10(a) and 10(b), respectively. The complete picking
result is shown in the dotted box in Figure 10(b).

The intermediate features of the signal shown in
Figure 14(a) extracted by C3 and C5 layers of the UNet++
are presented in Figures 14(b) and 14(c), respectively. The
local magnification of the signal and its first-arrival picking

curve obtained by the UNet++ in the range from 330ms to
430ms are presented in Figures 11(a) and 11(b). The com-
plete picking result is shown in the dotted box in
Figure 11(b).

The intermediate features of the signal shown in
Figure 15(a) extracted by C3 and C5 layers of the UNet++
are presented in Figures 15(b) and 15(c), respectively. The
local magnification of the signal and its first-arrival picking
curve obtained by the UNet++ in the range from 330ms to
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signal with -3-dB Gaussian noise added. (a) Local amplification of
the signal in the range from 330ms to 430ms. (b) The picking
result in the range from 330ms to 430ms obtained by the UNet++.
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simulated signal. (a) Local amplification of the signal waveform in
the range of 330ms to 430ms. (b) The picking result in the range
from 330ms to 430ms obtained by the UNet++.
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picking result in the range from 330ms to 430ms obtained by the
UNet++.
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430ms are presented in Figures 12(a) and 12(b). The com-
plete picking result is shown in the dotted box in
Figure 12(b).

As shown in Figure 9, Figure 10, Figure 11, and Figure 12,
as the SNR of the forward modeling simulated signals
decreased, the probability of the first-arrival point predicted
by the UNet++ declined. This was because the network
extracted not only the features of the original signal at the
arrival point but also the characteristics of the noise, thus
reducing the probability value of the first-arrival point pre-
dicted by the network. However, the proposed algorithm
could still accurately predict the first-arrival point, which
indicates that the first-arrival picking method based on the
UNet++ network can pick the first arrival of the effective sig-
nal of the low-SNR microseismic signals steadily and
accurately.

2.8. Forward Modeling Profile Test. As the distance between
the fracture and receiving points increases, the effective signal
amplitude gradually decays. In order to evaluate the influence
of the signal amplitude on the first-arrival point picking
result further, the third trace signal of the profile was taken
as a reference trace, and then, -8 dB Gaussian noise was
added to the reference trace signal. Finally, the Gaussian
noise was added to the reference trace signal to the entire
monitoring profile shown in Figure 7 to test the performance

of the proposed first-arrival picking algorithm. The picking
results are shown in Figure 16, and Table 2 shows the specific
data of Figure 16(c).

As presented in Figure 16, at the Gaussian noise of -8 dB,
the first-arrival picking algorithm based on the UNet++ was
more accurate for the synthesized signal profile than the U-
Net, and the picking error was only 276ms. Particularly,
the first-arrival picking results of the third eight traces of
the monitoring profile were in good agreement with the
first-arrival point of the forward modeling simulated signal.
This was because the features of the effective signal at the
arrival point were more obvious, and the SNR was higher
than the first and second signal trace. However, for the first
and second signal traces due to the amplitude attenuation
of the effective signal, after adding the Gaussian noise, the
signal characteristics were unrecognizable, and the SNR was
significantly reduced, resulting in a large first-arrival picking
error. As can be seen in Figure 16, for low-SNR microseismic
signals, the proposed algorithm could efficiently and accu-
rately pick the first arrival of microseismic signals.

2.9. Real Data Examples. In order to verify the feasibility of
the proposed algorithm further, the test was conducted on
selected microseismic data from Sichuan working area and
Shengli oilfield. Also, the U-Net-based arrival picking algo-
rithm and the traditional STA/LTA algorithm, known for
its high efficiency, were compared.
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Figure 13: Forward modeling signal with -3-dB Gaussian noise
added and its intermediate features extracted by the UNet++. (a)
The forward modeling signal with -3-dB Gaussian noise added.
(b) Intermediate features of the signal extracted by C3 layer. (c)
Intermediate features of the signal extracted by C5 layer.
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Figure 14: Forward modeling signal with -5-dB Gaussian noise
added and its intermediate features extracted by the UNet++. (a)
The forward modeling signal with -5-dB Gaussian noise added.
(b) Intermediate features of the signal extracted by C3 layer. (c)
Intermediate features of the signal extracted by C5 layer.
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The microseismic records with high SNR obtained by the
actual monitoring in a work area of Shengli Oilfield, with
seven-level geophones in total, are presented in Figure 17.
The length of each signal was 4096ms, and the sampling
interval was 1ms. The arrival point in the microseismic mon-
itoring record was about 3500–4000ms. The first trace signal
of the actual microseismic signal and the intermediate fea-
tures extracted by C3 and C5 layers of the UNet++ are pre-
sented in Figure 18. The arrival times of the signal shown
in Figure 18(a) picked by UNet++, U-Net, and STA/LTA
algorithms are shown in Figure 19.

As shown in Figure 19, the picking result obtained by the
U-Net and UNet++ for the microseismic monitoring signal
shown in Figure 18(a) were both consistent with the manual
picking result, whereas the STA/LTA algorithm had an obvi-
ous picking error.

The low-SNR microseismic records obtained from the
actual monitoring in a work area of Sichuan Province, with
nine-level geophones in total, are presented in Figure 20.
The length of each signal was 3200ms, and the sampling
interval was 1ms. The arrival point in the microseismic mon-
itoring record was at about 500ms; the results obtained by
the manual picking are given in Table 3. The sixth trace sig-
nal of the microseismic record profile and the intermediate
features extracted by C3 and C5 layers of the UNet++ are

presented in Figure 21. Comparison of the first-arrival pick-
ing results of the signal shown in Figure 21(a) obtained by
the UNet++, U-Net, and STA/LTA algorithms are presented
in Figure 22.
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Figure 15: Forward modeling signal with -8-dB Gaussian noise
added and its intermediate features extracted by the UNet++. (a)
The forward modeling signal with -8-dB Gaussian noise added.
(b) Intermediate features of the signal extracted by C3 layer. (c)
Intermediate features of the signal extracted by C5 layer.
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Table 2: Result comparison of UNet++ and U-Net methods with
the ground truth.

Method 1 2 3 4 5 6 7 8

Ground truth 678 617 554 493 438 392 360 350

UNet++ 891 724 552 490 436 392 361 351

U-Net 301 443 697 552 437 498 468 367
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Figure 17: Actual high-SNR microseismic record profile of a
working area in Shengli Oilfield.

9International Journal of Geophysics



As shown in Figure 22(a), the UNet++-based picking
method could pick the arrival for the low-SNR signal; how-
ever, there was s picking error of the U-Net-based first-
arrival picking method, and the arrival point picked by the
U-Net was 1384. Similarly, the STA/LTA algorithm had an
obvious picking error.

Table 3 shows the picking time consumption for the
record profiles shown in Figures 17 and 20 of the UNet++,
U-Net, and STA/LTA algorithm.

According to the comparison experiment of the simu-
lated and actual monitoring signals and the comparison of
first-arrival picking time consumption of different algo-
rithms, it can be concluded that the STA/LTA algorithm,
which is famous for its high efficiency, can difficultly obtain
accurate first-arrival picking result under the condition of
low SNR, while the first-arrival picking algorithm based on
deep learning, due to its powerful feature capturing capability
and better distinguishing of SNR features, can accurately and
efficiently pick the first arrival of low-SNR microseismic sig-
nals. The picking speed of the proposed method is signifi-
cantly higher than that of the STA/LTA algorithm, thus
improving both the speed and the accuracy of the first-
arrival picking.

The UNet++, due to its layer-to-layer dense connection
and deep supervision structure, can extract deeper character-
istics of signal and noise than the U-Net and distinguish the
microseismic signal even in a low-SNR environment. The
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Figure 18: The first trace signal of the actual microseismic record
profile shown in Figure 17 and its intermediate features extracted
by the UNet++. (a) The first trace signal of the actual
microseismic record profile shown in Figure 17. (b) Intermediate
features of the signal extracted by C3 layer. (c) Intermediate
features of the signal extracted by C5 layer.
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Figure 19: First-arrival picking result of the signal shown in
Figure 18(a). (a) Local amplification of the signal in the range
from 3650ms to 3800ms. (b) The picking result in the signal band
from 3650ms to 3800ms obtained by the UNet++. (c) The
picking result in the signal band from 3650ms to 3800ms
obtained by the U-Net. (d) The picking result in the signal band
from 3650ms to 3800ms obtained by the STA/LTA for the long-
and short-time windows of 300 and 100, respectively.
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Figure 20: Actual low-SNR microseismic record profile of a
working area in Sichuan Province.
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excellent generalization ability further expands its applica-
tion prospect in the first-arrival picking of microseismic sig-
nals. Consequently, the proposed first-arrival picking
algorithm based on the UNet++ can pick the arrivals of
microseismic signals more accurately and efficiently.

3. Discussion

Although the proposed method can achieve good results,
there is still room for improvement.

Monitoring data of different work areas differ in moni-
toring methods, geological conditions, fracturing methods,
etc. Thus, labeling of the data of a new survey area can greatly
reduce the application efficiency of the algorithm, causing it
does not meet the requirements of real-time processing of
microseismic monitoring. However, semisupervised learning
uses the network to extract the features of labeled data from
small samples automatically, thus realizing automatic label-
ing of large-scale unlabeled data, which can greatly improve
the application efficiency of the proposed algorithm [45–47].

Compared to supervised learning, transfer learning con-
tinues to learn the target domain data on the basis of initial-
ization using the pretraining network parameters, reducing
the training data scale, and greatly decreasing the computa-
tional cost and time consumption of network training [48].
Therefore, in order to realize the processing of microseismic

monitoring data in different work areas more efficiently and
quickly, the follow-up research will combine the ideas of
semisupervised learning and transfer learning to improve
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Figure 21: The sixth trace signal of the actual microseismic record
profile shown in Figure 20 and its intermediate features extracted
by the UNet++. (a) The sixth trace signal of the actual
microseismic record profile shown in Figure 20. (b) Intermediate
features of the signal extracted by C3 layer. (c) Intermediate
features of the signal extracted by C5 layer.
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Figure 22: First-arrival picking result of the signal shown in
Figure 21(a). (a) Local amplification of the signal in the range
from 430ms to 530ms; (b) The picking result in the signal band
from 430ms to 530ms obtained by the UNet++. (c) The picking
result in the signal band from 430ms to 530ms obtained by the
U-Net. (d) The picking result obtained by STA/LTA in the signal
band from 430ms to 530ms, where the long- and short-time
windows were 300 and 100, respectively.

Table 3: Picking time spent comparison of UNet++, U-Net, and
STA/LTA.

Method
Average time consumption of
signals of different lengths

3600ms 4096ms

STA/LTA 150.1 220.5

UNet++ 10.5 10.7

U-Net 18.8 19.3
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the speed of the proposed first-arrival picking algorithm
further.

Sample diversity is one of the important factors affecting
the prediction performance of the network. Using an appro-
priate number of samples can further improve the prediction
accuracy of the network. Recently, many sample enhance-
ment methods have been proposed, such as Unsupervised
Data Augmentation (UDA) [49] and Generative Adversarial
Networks (GAN) [50]. Besides, adversarial training can
reduce the error rate on the original independent and identi-
cally distributed test set and enhance the fault tolerance of the
network by the network training with adversarial training set
samples [51, 52]. Therefore, the follow-up research will com-
bine sample enhancement and adversarial training to realize
high-precision first-arrival picking of microseismic signals
under small sample conditions in order to improve further
the accuracy of the proposed first-arrival picking method.

Hyperparameters have a significant impact on the model
performance, algorithm running time, and storage cost of the
deep neural network. Therefore, automatic configuration and
optimization of hyperparameters are very important. Ghah-
ramani has pointed out that Bayesian optimization is one of
the most advanced and promising technologies in the artifi-
cial intelligence field [53]. Therefore, the following-up
research will further study the fast Bayesian optimization
scheme for a deep neural network [54], optimize the model,
and improve its accuracy [55, 56].

4. Conclusions

In this paper, a first-arrival picking method based on
UNet++ is proposed to meet the requirements for picking
accuracy and efficiency of real-time processing of micro-
seismic signals. In order to test the validity of the proposed
algorithm, Gaussian noise with SNR of -1 dB, -5 dB, and
-8 dB was added to the forward modeling signal succes-
sively, and the proposed algorithm was compared with
the STA/LTA algorithm. Finally, the proposed method,
the U-Net-based method, and the STA/LTA method were
applied to real microseismic monitoring data of the Sichuan
basin and Shengli oil field of China verify the feasibility of
the UNet++-based picking method. The test on simulated
and real data shows that the proposed picking method
can pick the first arrival of the effective signal accurately
and obtain a reliable result for microseismic monitoring
even for noisy signals.

Data Availability

The data and code are available in https://github.com/
RufusGuo/UNet-.

Conflicts of Interest

The author declares that there is no conflict of interest
regarding the publication of this paper.

References

[1] N. Iqbal, E. Liu, J. H. McClellan, A. Al-Shuhail, S. I. Kaka, and
A. Zerguine, “Detection and denoising of microseismic events
using time–frequency representation and tensor decomposi-
tion,” IEEE Access, vol. 6, pp. 22993–23006, 2018.

[2] S. C. Maxwell, J. Rutledge, R. Jones, and M. Fehler, “Petroleum
reservoir characterization using downhole microseismic mon-
itoring,” Geophysics, vol. 75, no. 5, pp. 75A129–75A137, 2010.

[3] C. Song and T. Alkhalifah, “Microseismic event estimation
based on an efficient wavefield inversion,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 12, no. 11, pp. 4664–4671, 2019.

[4] G. L. Feng, X. T. Feng, B. R. Chen, and Y. X. Xiao, “A highly
accurate method of locating microseismic events associated
with rockburst development processes in tunnels,” IEEE
Access, vol. 5, pp. 27722–27731, 2017.

[5] L. Dong, D. Sun, X. Li, and K. Du, “Theoretical and experi-
mental studies of localization methodology for AE and micro-
seismic sources without pre-measured wave velocity in mines,”
IEEE Access, vol. 5, pp. 16818–16828, 2017.

[6] P. M. Duncan and L. Eisner, “Reservoir characterization using
surface microseismic monitoring,” Geophysics, vol. 75, no. 5,
pp. 75A139–75A146, 2010.

[7] L. Eisner, P. M. Duncan, W. M. Heigl, and W. R. Keller,
“Uncertainties in passive seismic monitoring,” The Leading
Edge, vol. 28, no. 6, pp. 648–655, 2012.

[8] R. Allen, “Automatic earthquake recognition and timing from
single trace,” Bulletin of the Seismological Society of America,
vol. 68, no. 5, pp. 1521–1532, 1978.

[9] C. Suhendi, M. R. P. Sudibyo, I. F. Erlangga, and A. P. Arbad,
“Automatic event identification from tectonic earthquakes
with modified Akaike Information Criterion (mAIC),” in
IOP Conference Series: Earth and Environmental Science, Insti-
tut Teknologi Sumatera Campus, vol. 258, Lampung Selatan,
Indonesia, 2019, no. 1, article 012037.

[10] M. Senkaya and H. Karsli, “A semi-automatic approach to
identify first arrival time: the cross-correlation technique,”
Earth Sciences Research Journal, vol. 18, no. 2, pp. 107–113,
2014.

[11] G. Sheng, X. Tang, K. Xie, and J. Xiong, “Hydraulic fracturing
microseismic first arrival picking method based on non-
subsampled shearlet transform and higher-order-statistics,”
Journal of Seismic Exploration, vol. 28, no. 6, pp. 593–618,
2019.

[12] N. Shimoda, A. Reshetnikov, and S. A. Shapiro, “Arrival time
picking on common receiver gather for borehole array datas,”
in SEG Technical Program Expanded Abstracts 2015, pp. 2655–
2659, Society of Exploration Geophysicists, 2015.

[13] Y. Tan and C. He, “Improved methods for detection and
arrival picking of microseismic events with low signal-to-
noise ratios,” Geophysics, vol. 81, no. 2, pp. KS133–KS151,
2016.

[14] V. Karastathis, T. Aspiotis, A. Tselentis, and N. Russill, “Auto-
matic S-wave picking based on time-frequency analysis for
passive seismic applications,” in SEG Technical Program
Expanded Abstracts 2016, pp. 2760–2764, Society of Explora-
tion Geophysicists, 2016.

[15] F. Massin and A. Malcolm, “A better automatic body-wave
picker with broad applicability,” in SEG Technical Program
Expanded Abstracts 2016, pp. 2617–2621, Society of Explora-
tion Geophysicists, 2016.

12 International Journal of Geophysics

https://github.com/RufusGuo/UNet-
https://github.com/RufusGuo/UNet-


[16] J. Akram and D. W. Eaton, “A review and appraisal of arrival-
time picking methods for downhole microseismic data,” Geo-
physics, vol. 81, no. 2, pp. KS67–KS87, 2016.

[17] D. Kim, J. Byun, M. Lee, J. Choi, and M. Kim, “Fast first arrival
picking algorithm for noisy microseismic data,” Exploration
Geophysics, vol. 48, no. 2, pp. 131–136, 2016.

[18] Z. Yu, C. He, G. Hou, and Y. Tan, “Arrival Picking and Refine-
ment for Microseismic Events Based onWaveformCross-Cor-
relation,” in International Geophysical Conference, pp. 1354–
1357, Beijing, China, 2018.

[19] A. G. Raj, M. C. JH, N. Iqbal, A. A. Al-Shuhail, and S. I. Kaka,
“Automatic microseismic event detection using constant false
alarm rate processing in time-frequency domain,” in SEG
Technical Program Expanded Abstracts 2018, pp. 2912–2916,
Society of Exploration Geophysicists, 2018.

[20] S. Qu, Z. Guan, E. Verschuur, and Y. Chen, “Automatic high-
resolution microseismic event detection via supervised
machine learning,” Geophysical Journal International,
vol. 222, no. 3, pp. 1881–1895, 2020.

[21] H. Wu, B. Zhang, F. Li, and N. Liu, “Semi-automatic first
arrival picking of micro-seismic events by using pixel-wise
convolutional image segmentation method,” Geophysics,
vol. 84, no. 3, pp. 1–70, 2019.

[22] L. Gao, Z.-Y. Jiang, and F. Min, “First-arrival travel times pick-
ing through sliding windows and fuzzy c-means,” Mathemat-
ics, vol. 7, no. 3, p. 221, 2019.

[23] S. Li, B. Liu, Y. Ren et al., “Deep learning inversion of seismic
data,” 2020, https://arxiv.org/abs/1901.07733.

[24] G. Zhang, Z. Wang, and Y. Chen, “Deep learning for seismic
lithology prediction,” Geophysical Journal International,
vol. 215, no. 2, pp. 1368–1387, 2018.

[25] M. Zhang, Y. Liu, and Y. Chen, “Unsupervised seismic random
noise attenuation based on deep convolutional neural net-
work,” IEEE Access, vol. 7, pp. 179810–179822, 2019.

[26] B. Liu, S. Yang, Y. Ren, X. Xu, P. Jiang, and Y. Chen, “Deep-
learning seismic full-waveform inversion for realistic struc-
tural models,” Geophysics, vol. 86, no. 1, pp. R31–R44, 2021.

[27] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classi-
fication with deep convolutional neural networks,” Advances
in neural information processing systems, vol. 25, no. 2,
pp. 1097–1105, 2012.

[28] K. Zhang, Y. Guo, X. Wang, J. Yuan, and Q. Ding, “Multiple
feature reweight DenseNet for image classification,” IEEE
Access, vol. 7, pp. 9872–9880, 2019.

[29] L. Han, X. Li, and Y. Dong, “Convolutional edge constraint-
based U-net for salient object detection,” IEEE Access, vol. 7,
pp. 48890–48900, 2019.

[30] Z. Qu, W. Wang, C. Hou, and C. Hou, “Radar signal intra-
pulse modulation recognition based on convolutional denois-
ing autoencoder and deep convolutional neural network,”
IEEE Access, vol. 7, pp. 112339–112347, 2019.

[31] X. Yang, H. Sun, X. Sun, M. Yan, Z. Guo, and K. Fu, “Position
detection and direction prediction for arbitrary-oriented ships
via multitask rotation region convolutional neural network,”
IEEE Access, vol. 6, pp. 50839–50849, 2018.

[32] Z. Xu, T. Wang, S. Xu et al., “Active source seismic identifica-
tion and automatic picking of the P-wave first arrival using a
convolutional neural network,” Earthquake Research in China,
vol. 33, no. 2, pp. 288–304, 2019.

[33] Y. Chen, G. Zhang, M. Bai, S. Zu, Z. Guan, and M. Zhang,
“Automatic waveform classification and arrival picking based

on convolutional neural network,” Earth and Space Science,
vol. 6, no. 7, pp. 1244–1261, 2019.

[34] Y. Chen, “Automatic microseismic event picking via unsuper-
vised machine learning,” Geophysical Journal International,
vol. 222, pp. 1750–1764, 2020.

[35] Y. Chen, “Fast waveform detection for microseismic imaging
using unsupervised machine learning,” Geophysical Journal
International, vol. 215, no. 2, pp. 1185–1199, 2018.

[36] G. Zhang, C. Lin, and Y. Chen, “Convolutional neural net-
works for microseismic waveform classification and arrival
picking,” Geophysics, vol. 85, no. 4, pp. WA227–WA240, 2020.

[37] O. M. Saad and Y. Chen, “Automatic waveform-based
source-location imaging using deep learning extracted micro-
seismic signals,” Geophysics, vol. 85, no. 6, pp. KS171–KS183,
2020.

[38] O. M. Saad and Y. Chen, “Earthquake detection and P-wave
arrival time picking using capsule neural network,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 58,
pp. 1–10, 2021.

[39] D. Peng, Y. Zhang, and H. Guan, “End-to-end change detec-
tion for high resolution satellite images using improved
UNet++,” Remote Sensing, vol. 11, no. 11, p. 1382, 2019.

[40] Y. Chen, W. Xu, J. Zuo, and K. Yang, “The fire recognition
algorithm using dynamic feature fusion and IV-SVM classi-
fier,” Cluster Computing, vol. 22, pp. 7665–7675, 2018.

[41] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang,
“UNet++: redesigning skip connections to exploit multiscale
features in image segmentation,” IEEE transactions on medical
imaging, vol. 39, no. 6, pp. 1856–1867, 2019.

[42] Z. Chu, T. Tian, R. Feng, and L. Wang, “Sea-Land Segmenta-
tion with Res-UNet and Fully Connected CRF,” in IGARSS
2019-2019 IEEE International Geoscience and Remote Sensing
Symposium, pp. 3840–3843, IEEE, Yokohama, Japan, 2019.

[43] H. Chen, R. Guo, J. Liu, Y. Wang, and R. Lin, “Magnetotelluric
Data Denoising with Recurrent Neural Network,” in SEG 2019
Workshop: Mathematical Geophysics: Traditional vs Learning,
pp. 5–7, Beijing, China, Society of Exploration Geophysicists,
2020.

[44] Z. Zhou, M. M. Siddiquee, N. Tajbakhsh, and J. Liang,
“UNet++: A Nested U-Net Architecture for Medical Image
Segmentation,” in Deep learning in medical image analysis
and multimodal learning for clinical decision support, pp. 3–
11, Springer, Cham, 2018.

[45] S. Laine and T. Aila, “Temporal Ensembling for Semi-
Supervised Learning,” 2017, https://arxiv.org/abs/1610.02242.

[46] W. Li, L. Duan, D. Xu, and I. W. Tsang, “Learning with aug-
mented features for supervised and semi-supervised heteroge-
neous domain adaptation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 6, pp. 1134–
1148, 2014.

[47] H. Pan and Z. Kang, “Robust Graph Learning for Semi-
Supervised Classification,” in 2018 10th International Confer-
ence on Intelligent Human-Machine Systems and Cybernetics
(IHMSC), pp. 265–268, Hangzhou, China, 2018.

[48] X. Li, Y. Grandvalet, and F. Davoine, “Explicit Inductive Bias
for Transfer Learning with Convolutional Networks,” in Inter-
national Conference onMachine Learning, Stockholmsmässan,
Stockholm Sweden, 2018.

[49] Q. Xie, Z. Dai, E. Hovy, M. Luong, and Q. V. Le, “Unsuper-
vised Data Augmentation for Consistency Training,” 2019,
https://arxiv.org/abs/1904.12848.

13International Journal of Geophysics

https://arxiv.org/abs/1901.07733
https://arxiv.org/abs/1610.02242
https://arxiv.org/abs/1904.12848


[50] C. Chang, T. Chen, and P. Chung, “Semi-supervised Learning
Using Generative Adversarial Networks,” in 2018 IEEE Sym-
posium Series on Computational Intelligence (SSCI), pp. 892–
896, Bangalore, India, 2018.

[51] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
Harnessing Adversarial Examples,” 2015, https://arxiv.org/
abs/1412.6572.

[52] T. Miyato, S. Maeda, M. Koyama, and S. Ishii, “Virtual adver-
sarial training: a regularization method for supervised and
semi-supervised learning,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 8, pp. 1979–
1993, 2019.

[53] G. Zoubin, “Probabilistic machine learning and artificial intel-
ligence,” Nature, vol. 521, no. 7553, pp. 452–459, 2018.

[54] K. Aaron, “Fast Bayesian Optimization of Machine Learning
Hyperparameters on Large Datasets,” in Artificial Intelligence
and Statistics, pp. 528–536, PMLR, Fort Lauderdale, Florida,
USA, 2017.

[55] A. Karbalayghareh, X. Qian, and E. R. Dougherty, “Optimal
Bayesian transfer learning,” IEEE Transactions on Signal Pro-
cessing, vol. 66, no. 14, pp. 3724–3739, 2018.

[56] A. H. Liu, Z. Cheng, and J. Jiang, “Bayesian Network Learning
for Classification via Transfer Method,” in 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence
(ICTAI), pp. 1102–1109, Portland, OR, USA, 2019.

14 International Journal of Geophysics

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572

	First-Arrival Picking for Microseismic Monitoring Based on Deep Learning
	1. Introduction
	2. Methods
	2.1. UNet++-Based Picking Method
	2.2. Experiment
	2.3. Dataset
	2.4. Hyperparameter Optimization
	2.5. Synthetic Examples
	2.6. Noise-Free Simulated Signal Test
	2.7. Gaussian Noise-Added Signal Test
	2.8. Forward Modeling Profile Test
	2.9. Real Data Examples

	3. Discussion
	4. Conclusions
	Data Availability
	Conflicts of Interest

