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ABSTRACT

Wavelet decomposition of the slowness model allows a multiscale description of the

seismic first-arrival time tomography. We propose the introduction of the so-called

second generation wavelets that could be used for any mesh structure and do not re-

quire a number of samples, such as the power of two in each direction for fast wavelet

transform. A linearized procedure for inverting delayed travel-times considering ei-

ther slowness coefficients or wavelet coefficients has been set up with an efficient

ray tracing at each iteration of the inversion procedure. Wavelet decomposition over

constant patches (Haar wavelet) or over linear patches (Battle-Lemarie wavelet) of

coefficients at different scales are inverted as unknowns of the tomographic linearized

system. Reconstruction of these coefficients depends dynamically on the local reso-

lution when considering dense ray coverage. On simple synthetic examples, it has

been found necessary to perform a local resolution analysis for specifying wavelet

coefficients to be inverted. This resolution analysis could be performed for an ini-

tial smooth reconstructed medium and by designing a bit mask operator it allows

fine scales to be inverted in specific areas of the model where the resolution is high

while not being inverted in other areas where the resolution is poor: the wavelet de-

composition will ease the multiscale reconstruction. A few synthetic examples, such

as crosshole tomography or surface-surface tomography illustrate the multiscale fea-

ture of wavelet tomography. The second generation wavelet approach seems to be a

flexible and rather promising tool for controlling the resolution variation of seismic

first-arrival tomography.

I N T R O D U C T I O N

First-arrival delayed traveltime tomography applied to wide

aperture seismic data has proved to be an interesting tool for

the investigation of the Earth’s structures (Aki and Lee 1976;

Spakman and Nolet 1988; Hole 1992; Zelt and Smith 1992;

Benz et al. 1996; Zhang, ten Brink and Toksöz 1998). The

spatial resolution is controlled both by the theoretical resolu-

tion imposed by the relation between velocity structure and

first-arrival traveltimes and by the data acquisition configura-

tion as well as the structure itself, which may lead to uneven

ray coverage. The theoretical resolution power is limited by the

size of the first Fresnel zone for each ray. There is an antinomy
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between the limited resolution power and the numerical sen-

sitivity kernel corresponding to rays. Rays have no thickness

and, therefore, have an intrinsic infinite sensitivity although

in practise discretization of the model space always smoothes

out this feature (Dahlen 2004). Indeed, one raypath induces

high frequency information along the ray, even at locations

where resolution is expected to be low. Inversion can build

up models that have a high degree of data fitting but which

are far from the true model containing artefacts. The limited

resolution of the traveltime tomography is accounted for by

going through regularized tomographic inversion (Farra and

Madariaga 1988; Delprat-Jannaud and Lailly 1993; Zhang

et al. 1998) often based on the Tikhonov regularization ap-

proach (Tikhonov and Arsenin 1977). The covariance ma-

trices for the model as well as for the data (Tarantola and
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Figure 1 Projection of a 1D signal over 3 levels of wavelets: the wavelet coefficients are kept at each scale while only the final V3 coefficients

are kept for 1D signal reconstruction without loss of information.

Figure 2 2D Mallat representation and storage of a 2D signal after wavelet transforms. Only the coarsest level of space V has been kept while

wavelet coefficients and scale coefficients are deployed inside the same matrix as proposed by Mallat (1989a,b).

Valette 1982; Tarantola 1987) introduce a precise theoreti-

cal background although estimation of these matrices is still

a difficult task (Monteiller et al. 2005). Another alternative

regularization is based on smoothing constraints that are eas-

ier to implement than the Laplacian (Menke 1984; Zhang

et al. 1998). We choose this penalty regularization through

a Gaussian smoothing operator over slowness coefficients as

the standard tomographic procedure that we shall use here

for comparison. Whatever we choose, regularization strate-

gies lack spatial adaptivity. Frequently, when the smoothing

is tuned to remove the footprints of raypaths in poorly illu-

minated areas, short-scale features that could be resolved in

other areas of the model according to the expected resolution

are smoothed simultaneously, leading to a loss of information

in the well-resolved areas.

The resolution varies locally and one could also locally

adapt the Gaussian operator in the penalty procedure. For ex-

ample, considering surface acquisition geometries, the shallow

structures will be sampled both by short- and long-offset rays

running across the heterogeneities with different azimuths,

while the deeper structures will be sampled by long-offset rays,

only with a much narrower range of azimuths. The resolution
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Figure 3 Decomposition of a V0 slowness model for a crosswell experiment onto the Vi spaces using 5 levels of wavelets in order to highlight

the smoothing related to scale changes.

Figure 4 Non-zero Fréchet coefficients of a selected ray for the V4 grid corresponding to the fourth level of wavelet decomposition. Please note

the thickness of the ray related to the discretization at that scale.

decreases quite significantly with respect to depth for this ge-

ometry. Two other factors creating non-uniform ray coverage

are the presence of low velocity anomalies that induces shadow

zones in the ray coverage and non-uniform source and/or re-

ceiver arrays, especially in the case of passive tomography.

In order to consider this spatially varying resolution power,

one could introduce adaptive parameterizations based on non-

structured grids (Vesnaver 1994; Michelini 1995; Vesnaver

1996; Spakman and Bijwaard 1998; Spakman, Bijwaard and

Engdahl 1998; Böhm and Vesnaver 1999; Böhm, Galuppo and

C© 2008 European Association of Geoscientists & Engineers, Geophysical Prospecting, 56, 505–526



508 M. Delost, J. Virieux and S. Operto

Figure 5 Synthetic example: a circular positive anomaly on top of an homogeneous model as shown on the right-hand panel. Please, note the

dense ray coverage on the left-hand panel with a local undersampling centre of the circular anomaly.

Figure 6 Tomographic inversion without any regularization or damping. On the top left-hand panel, the reconstruction anomaly and the

ray sampling. On the top right-hand panel, the misfit behaviour leading to a minimal RMS error of 1.52 ms. Four iterations are enough for

convergence. Please note high frequency noise and the glitch along geometrical axes related to poor ray coverage as shown by the horizontal

section (bottom left panel) and by the vertical section (bottom right panel).
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Figure 7 Tomographic inversion using wavelet with two vanishing moments and two levels. The convergence is obtained with an RMS error of

1.43 ms after eight iterations. See Fig. 6 for the description of the four panels.

Vesnaver 2000; Trinks et al. 2005; Zhang and Thurber 2005).

The size of the elementary cells is adapted to the local ray

coverage such that the amount of control for each model pa-

rameter tends to be uniform. More promising is the multigrid

approach, where the inversion procedure recovers values on

different grids depending on the resolution power (Madych

1999; Chiao and Kuo 2001; Chiao and Liang 2003; Zhou

2003), based on wavelet tools (Mallat 1999). In this article we

shall propose a further investigation of this multigrid approach

using a new wavelet transform named as second-generation

wavelets (Sweldens 1997).

WAV E L E T T R A N S F O R M AT I O N

Over the last few years, many constructions of wavelets have

been introduced both in mathematical analysis and in the sig-

nal processing literature. In mathematical analysis, wavelets

were originally constructed for the analysis and description

of among other signals, geophysical signals by using transla-

tions and dilations of one specified function called the mother

wavelet. A mathematical framework has been set up by the

“French school” (Daubechies, Grossmann and Meyer 1986;

Grossmann and Morlet 1984). In signal processing, wavelets

found their way in the context of quadrature mirror filters

(Mintzer 1985; Vetterli 1986; Nguyen and Vaidyannathan

1989; Vaidyannathan 1993; Woods and O’Neil 1986). The

connection between the two approaches has been performed

through the introduction of multiresolution analysis and the

fast wavelet transform by Mallat (1989a,b) and Meyer (1999).

An important step has been achieved with the construction

of orthogonal, compactly supported wavelets by Daubechies

(1988). Since then, several generalizations to the biorthogonal

or semi-orthogonal cases were presented (Vetterli and Herley

1989; Cohen, Daubechies and Feauveau 1992). Biorthogonal-

ity allows the construction of symmetrical wavelets and thus

the use of linear phase filters.

For seismic tomography, wavelets can be used for the de-

scription of the model at various scales (Chiao and Kuo 2001;

Chiao and Liang 2003; Zhou 2003). The slowness model is

expanded on a wavelet basis and the tomographic system

is solved for wavelet coefficients. The wavelet transform of

the model provides a compact multigrid representation of the
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Figure 8 Tomographic inversion using wavelet with two vanishing moments and four levels. The convergence is obtained with an RMS error of

1.35 ms after thirteen iterations. See Fig. 6 for the description of the four panels.

Figure 9 Synthetic example: a circular negative anomaly on top of an homogeneous model as shown on the right-hand panel. Please, note the

different ray coverage on the left-hand panel compared to the positive anomaly case, essentially at the center of the box. The central value could

not be recovered in the centre and is entirely controlled by the parameterization we shall use.

model, thanks to orthogonal or bi-orthogonal basis functions

built by translating (localization property) and dilating (scal-

ing property) a mother wavelet and a scaling function. These

functions are the basis of functional spaces generally denoted

V i for the scaling functions and W i for the wavelet functions.

The spaces verify certain properties and constitute what is

called a multiresolution analysis (Mallat 1999). Each level i

corresponds to a grid size. Generally, the resolution of each
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Figure 10 Tomographic inversion without any regularization or damping. On the top-left panel, the reconstruction anomaly and the ray sampling.

On the top-right panel, the misfit behaviour leading to a minimal RMS error of 1.50 ms. Four iterations are enough for convergence. Please note

high-frequency noise and the glitch along geometrical axes related to poor ray coverage as well as edge effects for similar reasons as shown by

the horizontal section (bottom-left panel) and by the vertical section (bottom-right panel).

grid decreases by a factor of 2 and the mesh spacing is set

accordingly when the level i increases. The starting point is

the slowness model on the finest grid of the multiresolution

representation (generally V0). The wavelet transform applies a

cascade of orthogonal restrictions of the slowness model over

different approximation grids. The restrictions of the slowness

model on a coarse grid are encoded by the scaling coefficients.

These coefficients are the components along the scaling func-

tions (generally denoted φi), basis functions of space V i. At

each step, the increment of information lost during the restric-

tion on the coarser grid is encoded by the wavelet coefficients

before proceeding to the next grid. Those coefficients are as-

sociated to wavelet functions (generally denoted ψ i), the basis

functions of the spaces W i. At the last iteration of the orthogo-

nal transform, we end up with the wavelet coefficients on each

grid plus the scaling coefficients on the coarser grid (see Fig.

1 for a simple example with a 1D signal). The inverse wavelet

transform proceeds in the other direction from the coarse grids

to the finer ones.

A multidimensional wavelet basis can be built by a tensor

product of 1D basis. The decomposition of the 2D slowness

model of a wavelet basis can be written as:

u(x, z) =

J
∑

j=1

+∞
∑

n=−∞

I
∑

i=1

+∞
∑

m=−∞

cww
j,n,i,mψ j,n(x)ψi,m(z)

+

J
∑

j=1

+∞
∑

n=−∞

+∞
∑

m=−∞

cws
j,n,I,mψ j,n(x)φI,m(z)

+

+∞
∑

n=−∞

I
∑

i=1

+∞
∑

m=−∞

csw
J ,n,i,mφJ ,n(x)ψi,m(z)

+

+∞
∑

n=−∞

+∞
∑

m=−∞

css
n,I,m,J φJ ,n(x)φI,m(z), (1)

where cww, cws, csw and css are the wavelet and scaling coeffi-

cients. The indices i, j and n, m are the scale and localization

indexes, respectively. The indices I and J denote the coarsest

levels of the multiresolution approximation. A compact rep-

resentation of the wavelet coefficients of a 2D signal has been

proposed by Mallat (1989a,b) (Fig. 2).

C© 2008 European Association of Geoscientists & Engineers, Geophysical Prospecting, 56, 505–526



512 M. Delost, J. Virieux and S. Operto

Figure 11 Tomographic inversion using wavelet with two vanishing moments and two levels. The convergence is obtained with an RMS error

of 1.24 ms after ten iterations. See Fig. 10 for the description of the four panels.

As a Fourier driven transformation, wavelet transforma-

tions encounter some relevant drawbacks: the number of sam-

ples has to be a power of two, samples have to be regularly

spaced and one must deal with periodicity which compli-

cates boundary conditions when working on edges or sur-

faces. To overcome these difficulties, the concept of biorthog-

onal wavelets constructed by the lifting scheme has been

introduced (Sweldens 1994; Sweldens and Schroder 1995;

Sweldens 1997), leading to the so-called second generation

wavelets. Wavelets are not necessarily translations and dila-

tions of a defined function. Such wavelets can be adapted

to curved edges and surfaces delimiting quite complex do-

mains. They are concerned by weighted and irregular samples.

The lifting scheme leads to a faster, in-place calculation of the

wavelet transform.

In terms of signal processing, projections on spaces V and

W can be seen as high- and low-pass filtering operators, re-

spectively. A procedure of direct and inverse transforms can

then be interpreted as a perfect reconstruction filter bank (h1,

g1, h2, g2), where (h1, g1) are the filters for the direct trans-

form and (h2, g2) are the filters for the inverse transform. In

the orthonormal transform, h1 = h2 = h and g1 = g2 = g

and (h, g) are called conjugate mirror filters. In the biorthogo-

nal case, relaxing the orthogonality condition implies working

with larger spaces such as Ṽ and W̃ spaces, respectively the

dual spaces of V and W. Dual spaces are used for the direct

transform and normal spaces are used for the inverse trans-

form (or vice versa). The associated perfect reconstruction

filter bank is denoted (h, g, h̃, g̃). The lifting scheme is based

on the very simple property demonstrated by Sweldens (1994):

given a biorthogonal filter, another one can be built as follows:

(h, g, h̃, g̃) ⇒ (h, g1, h̃1, g̃)

⎧

⎨

⎩

H̃1(w) = H̃(w) + S(2w)G̃(w),

G1(w) = G(w) − S(2w)H(w),

where capital letters stand for the trigonometric polynomi-

als associated with script letter filters and the function S is a

simple trigonometric polynomial. This polynomial is chosen

so that the wavelet and dual scaling functions satisfy the de-

sired properties (as the number Ñ of vanishing moments of
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Figure 12 Tomographic inversion using wavelet with two vanishing moments and four levels. The convergence is obtained with an RMS error

of 1.23 ms after twenty iterations. See Fig. 10 for the description of the four panels.

the dual wavelet, for example). Of course, a dual lifting can

also be defined in a similar way:

(h, g, h̃, g̃) ⇒ (h1, g, h̃, g̃1)

⎧

⎨

⎩

H1(w) = H(w) + S̃(2w)G(w),

G̃1(w) = G̃(w) − S̃(2w)H̃(w).

With this operation, the real scaling function and the dual

wavelet functions can then also be attuned with a specific func-

tion S̃ so that they have a requested number N of vanishing

moments. These properties assert that, given a biorthogonal

filter, one can construct another one satisfying chosen proper-

ties. Starting from a simple biorthogonal filter, it is then pos-

sible to bootstrap one’s way up to a multiresolution analysis

with the desired properties on primal and dual wavelets.

The so-called ‘lifting scheme’ proceeds with this strategy:

one starts with the straightforward biorthogonal filter that

does nothing but sets aside odd and even indexed coeffi-

cients (the so-called Lazy Wavelet). Then one does a dual

lifting operation by predicting odd indexed coefficients us-

ing even indexed ones (we use the spatial correlation between

neighbours). We thus ensure that polynomials of degree up to

N − 1 are well predicted. During a second time, we update the

even indexed coefficients using new odd coefficients so that Ñ

moments of the signal are conserved. The algorithm can be

written as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(oddi+1, eveni+1) = Lazy(λi ),

oddi+1− = P(eveni ),

eveni+1+ = Update(oddi ).

The inverse transform can be written similarly as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

eveni+1− = U(oddi ),

oddi+1+ = P(eveni ),

λi = Merge(oddi+1, eveni+1).

This numerical flowchart can be extended because the pre-

dict stage is a simple polynomial interpolation and the update

stage is all but the resolution of linear systems: boundary con-

ditions and number of samples are no longer a limitation of

the wavelet decomposition.
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Figure 13 The synthetic model with a velocity gradient and two circular anomalies on the top panel (one is positive and the other negative). The

middle panel shows only these two anomalies with a central amplitude of 0.5 km/s while the bottom panel displays the ray coverage in the true

synthetic model.

T R AV E LT I M E T O M O G R A P H Y

Once rays have been computed between each source/receiver

pair through an eikonal equation solver (Podvin and Lecomte

1991), the delayed traveltime tomographic system relating

slowness anomaly �u to traveltime residuals �t written

as

�t = A�u, (2)

can be transformed into the new system

�t = AWt�c, (3)

where the A matrix is the sensitivity or Fréchet matrix and

the equation �c = W�u denotes the transformed wavelet pa-

rameters through the transform matrix W. The matrix AWt

can be built by computing the 2D wavelet transform of each

row of the original matrix A. A row of the sensitivity matrix

has n1 × n2 model parameters in a 2D geometry where the

number of horizontal grid points is n1 and the number of ver-

tical grid points is n2: it contains the contribution of one ray

to the Fréchet derivatives. After transformation, we have the

same number of unknowns but they are in the wavelet domain

and partial derivatives are for scale and wavelet coefficients.

Once the system equation (3) has been solved through an it-

erative procedure as the LSQR algorithm (Paige and Saunders

1982), the slowness perturbation coefficients �u in the stan-

dard geometrical space are obtained by the inverse wavelet

transform of �u = Wt�c. We shall plot velocity models from

these slowness values.

Traveltime tomography in the wavelet domain has an in-

teresting feature since coefficients are associated to levels of

the wavelet transform and, consequently, related to scales and

local resolutions, adaptivity strategy is much easier to handle

through scale hierarchy. The decomposition of a simple circu-

lar anomaly leads to a sequence of grids for each scale level

using square wavelet basis functions as shown in the Fig. 3.

Controlling incremental perturbations through wavelet coef-

ficients between these different descriptions of the true model

taken as the one in the V0 space is a hierarchical procedure.

The Fréchet derivatives along a ray will extend their area of

sensitivity depending on the scale where are of the wavelet

coefficients, as shown in the Fig. 4. The sensitivity of a ray is

related to the spatial discretization of the slowness model at

the given wavelet scale.
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Figure 14 Reconstruction in the slowness domain (panel A) whithout any regularization except the one deriving from the iterative procedure for

the matrix inversion. The RMS error goes down to 1.8 ms after 10 iterations (panel B). The small heterogeneity is well recovered, as shown on

the horizontal profile (panel C) and the vertical profile (panel E) while the deeper heterogeneity presents oscillations as shown on the horizontal

profile (panel D) and the vertical profile (panel F). Please note the ray sampling footprint in this undamped inversion: recovering the superficial

anomaly requires too high a resolution for the reconstruction of other areas of the structure.

The adaptivity could arise automatically from the inversion

procedure. As we shall see later, for highly sampled synthetic

examples, this is not the case. Therefore, the adaptivity of the

parameterization should be implemented through a priori con-

straints and we propose the application of a bit mask operator

to each row of the sensitivity matrix AWt, zeroing coefficients

in areas of the model where poor resolution is expected at a

given scale. In other words, this adaptivity selection can be

implemented via a linear operator M applied to the Fréchet

derivatives in the wavelet domain through the following ex-

tended linear system

�t = AMWt�c, (4)

in a quite natural way. Designing this operator will depend on

local resolution which must be estimated. For surface acqui-

sition, one could, for example, define an empirical rule relat-

ing the resolution of the model at a given depth to the min-

imum source-receiver offset of the rays sampling this depth.

The source-receiver offset would provide an estimate of the

width of the first Fresnel zone at a given depth and, hence,

of the expected resolution of the tomography varying with

depth. According to the sampling theorem, only grids with

mesh spacing twice smaller than the width of the first Fresnel

zone would be locally involved in the inversion: a simple rule

for the construction of the M operator. We will discuss later

how we can propose a more general strategy for building this

operator. Let us remark that the wavelet transform also has

the capacity to automatically adapt the parameterization to

the resolution in the case where the real resolution is lower

than the intrinsic one, such as in the case of a shadow zone.

In areas where no rays illuminate the medium, partial deriva-

tives of the traveltime with respect to the wavelet coefficients

at the finest scales will be zero, due to the second generation

property. By contrast, the partial derivative of the traveltime

with respect to the wavelet coefficients of the coarsest scales

will be non-zero, due to the spatially extended sensitivity of

the coarse grid representations of the rays. Hence, only the

coarse-scale wavelet coefficients of the slowness model will
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Figure 15 Reconstruction using a penalty inversion with a Gaussian regularization: the correlation length is uniform and taken as the value

of 500 m in the entire domain. The RMS error reaches the same value of 1.8 ms as the undamped inversion after 12 iterations. The deepest

heterogeneity has a smoother shape than in the Fig. 14, but the shallower one registers a loss of high-frequency content and thus is not well

reconstructed. See the Fig. 14 for a description of the panels.

be non-zero after inversion and will automatically lead to a

smooth representation of the true model.

S Y N T H E T I C E X A M P L E S

We present synthetic examples to illustrate how the wavelet

decomposition enables us to reconstruct P-wave velocity struc-

tures. First, we focus our attention on the capability of the

wavelet tomography to locally adapt the resolution of the re-

construction by considering a well-controlled experience of a

positive or negative anomaly. We then compare results in a

more standard surface-surface configuration between a stan-

dard tomographic approach and the wavelet approach: we

shall see that we need to specify a priori the resolution we

expect locally. We propose a numerical strategy for the con-

struction of an operator for this local resolution analysis. We

illustrate how the resolution is adapted in the image of the

structure for a synthetic crosswell experience. Finally, we com-

pare performances of the standard tomography approach and

the wavelet approach for a real case of a surface-surface con-

figuration.

A densely illuminated model with positive anomalies

We investigate the performance of the wavelet tomography

for automatic tuning of the resolution using a synthetic ex-

ample where the ray density will be quite high. We design an

acquisition system for a complete illumination of the simple

circular positive velocity anomaly of 0.5 km/s that we want

to reconstruct (Fig. 5) from a background model of constant

velocity of 3 km/s. This background velocity model will be

our starting model. The configuration is essentially a trans-

mission configuration. Each side of the square medium has

102 sources, while 51 receivers are lying on the opposite side,

leading to a total of 5 202 rays. For each inversion, we es-

timate the lowest RMS error from the misfit function as it

flattens with linearized iterations. Moreover, we display hor-

izontal and vertical sections for a better appreciation of the

spatial frequency contents of the reconstruction.

C© 2008 European Association of Geoscientists & Engineers, Geophysical Prospecting, 56, 505–526
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Figure 16 Reconstruction using Haar wavelets with four vanishing moments and four levels: a mask ensures that under the depth of 800 m,

the fourth level of wavelet is the only one kept, corresponding to a resolution of 400 m. The RMS error reaches the same value of 1.8 ms as

for the undamped and regularized inversions with 40 iterations. The large heterogeneity is kept smooth and the shallow heterogeneity is well

reconstructed. See the Fig. 14 for a description of the panels.

The standard tomography approach using the regulariza-

tion technique will work nicely for this example, as the reso-

lution is roughly uniform in the central part of the medium.

The wavelet approach should provide similar results. In order

to analyse how high-frequency content will be kept under con-

trol by the multiscale feature of the wavelet approach, we have

performed a standard tomography over a grid of 5 m step size,

which gives us a 101 × 101 regular grid. For our purposes, no

damping is applied to the system. The convergence is obtained

after four iterations and the anomaly is accurately recovered

although with high-frequency artefacts (Fig. 6): these artefacts

will be nicely removed by any regularization, as a penalty, by

a smooth Gaussian operator.

How these high-frequency features will be eliminated by the

wavelet tomography is the question we want to examine.

When considering wavelet decomposition, we select

wavelets with two vanishing moments. We consider two and

four levels for the scale sampling. This means that the coarser

grid size will have 10m resolution and 40m resolution, re-

spectively. The anomaly is well recovered but the convergence

to the flat level of the misfit function is slightly slower than

before (Figs 7 and 8). We need eight and thirteen iterations,

respectively, to reach convergence. We may underline that the

RMS final error decreases as we increase the number of lev-

els, although the decrease is quite small. For real applications

with errors in the picked traveltime, this may not be detected.

More importantly, the high-frequency artefacts are less no-

ticeable, providing a better fit of the model. As we increase

the number of levels, we can see the decrease of the ampli-

tude of the high-frequency artefacts. In other words, when

coarser levels are introduced, the reconstruction is driven by

a better spatial coherence, essentially for broad features. We

may say that the parameterization into the wavelet domain

provides a better conditioning of the system to be inverted,

since it is less sensitive to high-frequency perturbations. As

a partial conclusion, we have found in this very particular

case that the wavelet tomography adapts itself to the local

resolution.
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Figure 17 Resolution analysis: top panel displays the spike anomaly we wish to reconstruct, the medium panel the spreading of the amplitude

with a partial amplitude reconstruction where the expected spike is and the bottom panel related to the characteristic length (circle radius where

95% of the amplitude is recovered) from which we will design a mask operator for wavelet coefficients.

A densely illuminated model with negative anomalies

We may proceed similarly when considering a negative ve-

locity anomaly. The velocity amplitude will be −0.5 km/s and

the background velocity model will be the starting model. The

acquisition distribution is exactly the same as the previous ex-

ample and, therefore, the number of rays is identical, allowing

comparison between reconstructions of positive and negative

anomalies. The reconstruction is more difficult as rays tend

to avoid low-velocity zones, creating shadow zones that are

not sampled by rays (Fig. 9). Velocity anomalies should not

be reconstructed in the centre of the medium because rays

are missing there. Therefore, the reconstructed anomaly in the

centre of the medium comes from the grid discretization (and

the related Fréchet derivative of these nodes if there is one)

and from the starting medium without this negative anomaly

inside, where the centre of the square medium is initially sam-

pled by straight rays.

The negative velocity anomaly is retrieved as for the pre-

vious example, although fundamental differences can be ob-

served (Fig. 10). When considering an inversion of slowness

parameters, we observe high-frequency oscillations in the cen-

tre of the medium where the illumination by rays is poor in

the final model: rays do not sample this zone at the end of

the procedure – they do it at the beginning of the inversion

since the first iteration is performed with straight rays inside

an homogeneous medium. Because of this poor sampling, edge

anomalies were observed and could be hardly seen for positive

anomalies.

By introducing wavelet coefficients with two vanishing mo-

ments, we recover the negative anomaly with an increased

number of iterations (Figs 11 and 12). The final RMS resid-

ual is smaller although the decrease is not significant. Because

the anomaly we want to recover has a smooth wavelength

content, the result is better when considering four levels of

discretization, as we have checked. Partial reconstruction in-

troduces numerical artefacts that spread inside the medium

from edges even when we move to the four levels descrip-

tion. Reconstruction of the wavelet coefficients could not au-

tomatically overcome the aliasing, in spite of the dense ray

coverage.

Using wavelet decomposition leads to a memory increase

by a factor of three for the Haar decomposition with two

vanishing moments as well as a CPU time roughly twice the

one observed for standard tomography.
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Figure 18 Resolution analysis: the left-hand panel shows the quite dense ray sampling of the initial model between two hypothetical wells while

the right panel is divided into (a) the exact model on the left, (b) a smooth version of this model in the middle and (c) a resoluton analysis on the

right, based on the radius of the circular extension for recovering 95% of the small velocity perturbation.

In conclusion of these two simple synthetic tests, the wavelet

transformation contains, as expected, a preconditioning of the

linearized system: high-frequency perturbations are less no-

ticeable and scale decomposition increases the stability of the

reconstructed system at the expense of the number of itera-

tions. Unfortunately, this automatic tuning has been found to

work tediously, especially for poorly sampled negative anoma-

lies and may require an additional strategy for speeding up the

repartition between scales, especially when considering more

standard geometries of acquisition.

We shall examine how to perform this repartition in the

following more realistic synthetic example where resolution is

expected to vary with depth.

A typical surface-surface synthetic example with two different

anomalies

Dealing with uneven ray coverage is a crucial issue in tomog-

raphy and a configuration with sources and receivers on the

free surface is considered: 30 sources with a maximum of 41

receivers per source provide 1030 rays that are bent by the ve-

locity increase with depth in the structure we consider. Hence,

parts of the model are expected to be known precisely, while

other parts will suffer from low resolution. A spatially varying

illumination related to poor ray coverage results for this con-

figuration. In this case, the theoretical resolution is expected

to be heterogeneous: in the shallow part, both long and short

rays spanning across a large range of azimuths make the res-

olution quite high. On the contrary, the deepest parts of the

model are sampled and enlightened only by longer rays with

a mainly horizontal azimuth, leading to low resolution.

Wavelets deal with the multiscale nature of the information

contained in the data but the inversion is not able to auto-

matically focus anomalies on related scales. Working in the

wavelet domain makes the selection of the scales of the param-

eter model by a predefined operator easy. Zeroing wavelet co-

efficients corresponding to scales too fine to be reconstructed

will help in reducing the spatial aliasing of the inversion proce-

dure. By applying a mask operator to each row of the sensitiv-

ity matrix written in the wavelet domain, we may successfully

distinguish well- and poorly-resolved zones in our reconstruc-

tion. Applying a mask does not increase the computational
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Figure 19 Tomographic inversion: the left-hand panel displays the mask operator over the four inverted scale levels from the finest to the coarsest

one (the finest fifth one connected to the sampling of the MARMOUSI model has been zeroed by the mask operator), the middle panel displays

the inverted model using slowness coefficients without any damping and the right-hand panel displays the inverted model using Haar wavelet

coefficients over four scales. Please note that cancelling the entire finest scale level does not harm the inversion procedure and shows us that the

tomography is not able to reconstruct small-scale features.

Figure 20 First-arrival picked time using industrial software for the gather of shot 311; synthetic traveltimes are displayed, illustrating that the

recovered velocity model predicts traveltimes quite well, except at near offsets.

cost, as we perform a multiplication by zeroes or ones for

each term of the matrix. Defining the mask may be quite de-

manding although pre-tabulated masks should be devised for

typical data acquisition configuration.

Because of the linearized formulation, we need a method

that can adapt the resolution to the theoretical one alongside

the natural adaptation of the wavelet reconstruction. Wavelet

parameterization makes it easy to adapt resolution locally, by
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Figure 21 Initial 1D-like model for the traveltime inversion as the 1D

vertical profile starts exactly from the complex topography.

Figure 22 Reconstruction through slowness coefficients inversion us-

ing the penalty procedure based on smooth Gaussian regularization

that varies with depth. In spite of the depth variation of the Gaussian

operator, this constrained inversion necessary for smearing out ray

footprints prevents a highly resolved reconstruction in the superficial

part and illustrates the intricate structure of the different resolution

scales. The RMS final error is 26 ms.

applying a simple mask. Two velocity heterogeneities, a small

one in the shallow part and a wider one in the deep part,

are tentatively reconstructed according to the expected local

resolution. The starting model is the model with a constant

velocity gradient without anomalies (Fig. 13).

Figure 14 shows the reconstruction when considering slow-

ness coefficients without any regularization. One can easily

see the smearing related with ray sampling for the broad,

deepest anomaly (see sections D and F of the Fig. 14). The

small heterogeneity is well reconstructed (see sections C and

E of the same figure) but the model contains high-frequency

perturbations. The amplitude of the widest anomaly is not

well recovered due to ray enlightening, which is not as dense

as in the shallow part. The results contain a reasonable

amount of low-frequency information, reducing the RMS er-

ror down to 1.8 ms. Nevertheless, high-frequency informa-

tion is quite strong and must not appear during the inversion

procedure.

Because the poor ray coverage leads to the under-

determination of the linearized system, we now consider the

inversion procedure with constraints. The one we have se-

lected is the penalty approach, where a Gaussian smoothing

operator between slowness parameters adds rows to the iter-

ative linear system to be solved. The definition of the length

of this operator is a difficult task, as we may over-smooth

the medium by cutting down too small eigenvalues of the lin-

earized system. The level of smoothing needed for removing

high-frequency perturbation in low resolution zones leads to

a loss of high frequency content in better defined parts of

the model (see Fig. 15). A characteristic length of the Gaus-

sian operator of 500 m has been found necessary for removing

high-frequency oscillations and provides the same RMS error

of 1.8 ms as the one observed in the undamped tomography.

The broader, deep anomaly is recovered as previously because

of its low-frequency content, while the shallower anomaly

is not fully recovered as the smoothing operator cancels out

the eigenvalues of the linear system necessary for such recon-

struction. Of course, we may vary the characteristic length

of the Gaussian operator with respect to depth in this simple

example.

Wavelet decomposition allows different resolutions at dif-

ferent places in the model due to the multiscale structure. Once

the Fréchet derivative is computed, we should apply an M op-

erator designed as follows. From the surface down to the depth

of 800 m, wavelet coefficients are retained at all scales. From

the depth of 800 m down to the bottom, only the fourth level

of wavelet coefficients is retained, corresponding to a resolu-

tion of 400 m, coefficients of the finer other, finer three scales

are zeroed out. The inversion provides a reconstruction that

varies in resolution as we move to deeper depths (Fig. 16). We

have chosen the mask operator in order to separate two zones

of different resolutions.

Although we cannot perform this a priori separation for

realistic structures, this simple example illustrates the capacity

of the wavelet decomposition for spatially varying resolution

reconstruction: a high resolution in the shallow part and a

broader resolution at depth. We may obtain the same result

with standard constrained tomography by considering locally

varying smoothing operators, as we have tried, or by defining

covariance matrices. These alternatives do not lead to a simple

implementation as the definition of the M operator.

We may conclude that wavelet decomposition adapts lo-

cally the resolution of the reconstruction by the multiplica-

tion of wavelet coefficients by a bit mask operator, when

the Fréchet derivative matrix is calculated in the wavelet

domain.
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Figure 23 Bit mask construction over the already constructed smooth medium based on an analysis of the numerical estimation of the resolution

matrix. The criterion for having a value of one for the mask is a local reconstruction of 95% of the velocity amplitude. Please note that the mask

is set on only the nearby free surface for the finest scales.

Figure 24 Reconstruction velocity model using the Battle-Lemarie

wavelet decomposition: two vanishing moments have been requested

and the RMS final error is 23 ms. Please note the finest details nearby

the free surface when comparing with the model of Fig. 22.

R E S O L U T I O N A N A LY S I S F O R D E F I N I N G

T H E B I N A RY M O P E R AT O R

For better focusing of the reconstruction through different

scale levels, one has to estimate a priori resolution in order to

overcome difficulties deriving from the linearized inversion.

We assume that a model has been designed for which one

can perform a resolution analysis: a standard damped travel-

time tomography could be such a candidate. Starting with this

model, we may want to have a rough estimation of the resolu-

tion matrix for a better performance of the inversion (Nolet,

Montelli and Vireux 1999). Of course, once done, we may end

up with another medium we shall use again for a new reso-

lution analysis and so on. We cannot rule out this loop over

adapted models.

For small systems, one can use a direct solver and computing

the resolution matrix is quite fast. For large systems, we may

rely on numerical iterative techniques as proposed by Latorre

et al. (2004). As shown in the Fig. 17, a small local velocity per-

turbation is introduced with an amplitude of 0.5 km/s, making

a spike with a given spatial grid extension. This amplitude is

such that we have a perturbation of traveltimes above the nu-

merical noise and rays are kept nearly undeformed. Therefore,

we may keep rays and Fréchet derivatives computed in this

reference model, speeding up dramatically the inversion pro-

cedure: we perform the linear inversion for different spikes in

each zone of the medium. The recovered amplitude is spread

out away from the spike location: a characteristic length is esti-

mated as the radius of the circle where 95% of the amplitude

of the spike has been restored and could be estimated quite

efficiently for the entire medium (Fig. 17). We may zero out

Fréchet derivatives for scales with the finest sampling lengths

rather than the local characteristic length, leading to the bit

mask operator M. Because we have performed a linear inves-

tigation, similar results would have been found with negative

anomalies.

R E A L I S T I C C R O S S W E L L E X P E R I M E N T:

A P P L I C AT I O N T O T H E M A R M O U S I M O D E L

This procedure has been applied to a synthetic crosswell ex-

periment performed inside the Marmousi model (Bourgeois

et al. 1991; Versteeg 1994). Between two wells of 3 km

depth at a distance of 1 km (Fig. 18), ray tracing between

60 sources regularly spaced in the first well and 60 receivers

regularly spaced in the second well was performed for comput-

ing synthetic traveltimes. A reference model was constructed
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Figure 25 Final time residues after thirty iterations. Please note the too fast velocity structure at near offsets. Very local description of a

low-velocity zone below the finest grid mesh should be given and could be performed through statics evaluation.

by smoothing the synthetic model and a resolution analysis

performed on this model, leading to an estimation of a res-

olution map with a 95% threshold level (Fig. 18). This res-

olution analysis has led us to zero out the finest fifth level

of Haar coefficients we are using in our wavelet decomposi-

tion as well as specific zones of other scale levels (Fig. 19).

In other words, we may start from a very fine grid and the

resolution analysis will tell us if this grid could be used for

inversion. Inversion is performed using either slowness co-

efficients or wavelet coefficients with the mask application

(Fig. 19). One can see that where the ray sampling is not fine

enough especially at the bottom of the two wells, a coarser

description of the reconstructed image has been designed

through the resolution analysis. Wavelet procedure seems to

perform better and provides better features than the slowness

reconstruction as long as we are able to specify a priori the

local resolution.

A P P L I C AT I O N T O A R E A L D ATA S E T

We have analysed a real data set with a global offset config-

uration using a surface-surface geometry. We have considered

702 shots with a regular spacing of 25 m recorded by 1440 re-

ceivers along an 18 km 2D profile with a spacing of 12.5 m. Let

us note that the samping over shots is twice those of receivers.

First-arrival traveltimes for 301 shots have been picked and

a tentative macromodel of 18 km long and 4 km deep should

be reconstructed using these traveltimes. As an example, the

Fig. 20 displays one shot gather with an initial picked time

curve and computed time curve. Our slowness inversion grid

has 169 vertical nodes and 725 horizontal nodes with a spatial

step of 25 m. We design an initial model for the tomography by

fitting a mean traveltime curve with a 1D velocity model over

picked times. We consider this 1D model below the given to-

pography typical of a foothill structure (Fig. 21) using a spatial

discretization of 100 m in both directions. The model through

first traveltime tomography has to fit the data as much as pos-

sible and it also has to be smooth, especially for deep zones,

as the ray sampling becomes quite poor.

We consider the standard tomography procedure with a

Gaussian smoothing operator in the penalty approach that

will depend on the depth, as we expect that the resolu-

tion will vary strongly with depth. A 2D velocity structure

has been constructed through slowness coefficients (Fig. 22)

with the same spatial discretization as the initial model. This

penalty standard procedure is considered as the reference for

comparison. No global damping is applied except the inter-

nal iterative procedure of the LSQR algorithm. The num-

ber of the linearized inversion is five and the RMS final er-

ror is 26 ms. This model seems to take into account spa-

tial low-frequency contents while the high-frequency ones are

missing.

This reconstructed model is used in the procedure (see

Fig. 17) for the construction of the M mask operator that

is displayed in the Fig. 23. We have selected three levels of

the wavelet decomposition starting from 100 m spacing. The
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Figure 26 Checker-board test with three middle panels (D,E,F) show-

ing different wavelengths ranging from top to bottom as 500 m, 1 km

and 2 km. The first three panels (A,B,C) show reconstruction using

the standard tomographic procedure while the last three panels (G,

H, I) show reconstruction using the wavelet approach. Please note

the better behaviour especially at short wavelengths when inverting

wavelet coefficients.

coarsest grid is therefore with a spatial discretization of 400 m.

Using these three characteristic lengths, we performed the res-

olution analysis we have described and the bit mask operator

M is shown in the Fig. 23. One can see that the mask fills

the entire domain at the scale of 400 m while the mask only

fills the superficial part at the scale of 100 m. Of course, local

variations depend on the ray sampling in the reference model

(Fig. 22).

We shall consider linear patches, known as Battle-Lemarie

wavelets, with two vanishing moments. After thirty iterations,

a model with a higher spatial frequency content nearby the free

surface was obtained (Fig. 24). Patterns related to the ray sam-

pling have been kept under control and do not overprint the

reconstructed image at depth. The RMS final error of 23 ms

does not show a significant decrease for assessing the quality

of the recovered image through this simple quality criterion.

By displaying residual times between sources and receivers

(Fig. 25), one may notice the better behaviour at far offsets

compared to short offsets. This may lead us to either a picking

difficulty at near offsets or a an insufficient dense grid sam-

pling at the free surface. Decreasing the grid step will increase

dramatically the number of unknowns, especially for the reso-

lution estimation. Therefore by handling time shifts related to

fine details nearby receivers could be captured through statics

as is usually done (Kissling et al. 1994).

Another way to assess the resolution variation could be

through a checker-board test applied to the final best re-

solved model. As shown by the Fig. 26, different scales are

better reconstructed by wavelet decomposition than by slow-

ness decomposition. The checker-board over the smoothest

patch with a characteristic length of 2 km provides similar re-

sults when considering slowness or wavelet decompositions.

Other, smaller, scales are significantly better recovered using

the wavelet decomposition, showing us the interest of this

decomposition.

C O N C L U S I O N

Seismic tomography of first-arrival delayed times could be per-

formed using a wavelet decomposition of the model space. We

have shown that the second generation wavelet decomposition

leads to a simple decomposition scheme that is well-suited for

traveltime tomography.

Simple synthetic tests have shown that the tomographic in-

version does not automatically project traveltime anomalies

into the wavelet coefficients at the right scale and, therefore,

the need for to insert an a priori resolution estimation has

been confirmed. For a surface-surface configuration, the re-

construction of two circular anomalies of different radius has

been performed quite successfully with a simple mask operator

depending on the depth.

From the many ways of designing this binary operator, we

have chosen a simple numerical technique and we have shown
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that a mask operator could be designed over the wavelet de-

composition in order to cancel out coefficients at too small

scales for possible reconstruction. Applications to a synthetic

crosshole experiment and to a surface-surface real experi-

ment illustrate possibilities for better reconstructions of the

medium.

Data misfit reduction is not significant and may be well be-

low the noise level, which leaves us without any clear quality

control criterion. The final resolution related to the a posteri-

ori covariance matrix will be the quantity for assessing a better

reconstruction.

The wavelet decomposition has been unsuccessful for auto-

matically adapting the resolution during the inversion but the

insertion of an a priori resolution is as simple as a binary oper-

ator over wavelet coefficients. Of course, penalty procedures

as we have performed or covariance formulation may lead to

the same final result, as these operators act as continuous func-

tions. The wavelet decomposition might be seen as a simple

way to introduce this spatially varying a priori resolution into

the first-arrival delayed traveltime tomography.

Extension to 3D configuration should be performed and

combining this wavelet decomposition and the finite frequency

tomography (Montelli et al. 2004) will certainly improve local

resolution of seismic imaging in the future, before tackling the

amplitude analysis of seismic traces (Pratt, Shin and Hicks

1998; Operto et al. 2004).
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