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For a class of semilinear parabolic equations with discontinuous coefficients, the strong solvability of the Dirichlet problem is
studied in this paper. 'e problem ∑ni,j�1 aij(t, x)uxixj − ut + g(t, x, u) � f(t, x), u|Γ(QT) � 0, in QT � Ω × (0, T) is the subject of
our study, where Ω is bounded C2 or a convex subdomain of En+1, Γ(QT) � zQT\ t � T{ }. 'e function g(x, u) is assumed to be a
Caratheodory function satisfying the growth condition |g(t, x, u)|≤ b0|u|q, for b0 > 0, q ∈ (0, (n + 1)/(n − 1)), n≥ 2, and leading
coefficients satisfy Cordes condition b0 > 0, q ∈ (0, (n + 1)/(n − 1)), n≥ 2.

1. Introduction

Let En be an n-dimensional Euclidean space of points x �
(x1, x2, . . . , xn) and Ω be a bounded domain in En with
boundary zΩ of the class C2 or simply a convex domain. Set
QT � Ω × (0, T) and Γ(QT) � zQT\ t � T{ }. Consider in QT
the Dirichlet problem:

∑n
i,j�1

aij(t, x)uxixj − ut + g(t, x, u) � f(t, x), (t, x) ∈ QT,

(1)

u|Γ QT( ) � 0. (2)

It is assumed that the coefficients
aij(t, x), i, j � 1, 2, . . . , n, of the operator

L � ∑n
i,j�1

aij(t, x)
z2

zxizxj
−

z

zt
, (3)

are bounded measurable functions satisfying the uniform
parabolicity

c|ξ|2 ≤ ∑n
i,j�1

aij(t, x)ξiξj ≤ c− 1|ξ|2, (4)

for c ∈ (0, 1),∀(t, x) ∈ QT,∀ξ ∈ En, and the Cordes-type
condition

∑ni,j�1 a2ij(t, x)
∑ni�1 aii(t, x)( )2 ≤

1

n − μ2
− δ. (5)

Here, μ � (ess inf ∑ni�1 aii(t, x))/(ess sup∑ni�1 aii(t, x)),
and the number δ ∈ (0, (1/(n + 1))). 'e nonlinear term,
function g(t, x, u): QT⟶ E1, satisfies the Caratheodory
condition, that is, g is a measurable function with respect to
variables (t, x) ∈ Ω, and for almost all (t, x) ∈ QT contin-
uously depend on the variable u ∈ E1. Also, the growth
condition

|g(t, x, u)|≤ b0|u|q, b0 > 0, (6)

is satisfied.
'e space _W

2,1

p (QT), p> 1, is a closure of function class
u ∈ C∞(QT)∩C(QT), u|Γ(QT) � 0 with respect to norm

Hindawi
Journal of Mathematics
Volume 2020, Article ID 1019038, 4 pages
https://doi.org/10.1155/2020/1019038

mailto:aziz.harman@batman.edu.tr
https://orcid.org/0000-0001-8650-9526
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1019038


‖u‖ _W
2,1

p QT( )
�‖u‖Lp QT( ) +∑

n

i�1

zxiu
 Lp QT( )

+ ztu
 Lp QT( )

+ ∑n
i,j�1

zxizxju
 Lp QT( )

. (7)

Here, ui, ut, and uij denote the weak derivatives uxi, ut,
and uxixj, respectively, i, j � 1, . . . , n. 'e conjugate number
is denoted by p′, i.e., 1<p<∞, (1/p′) + (1/p) �� 1. By the
same letter C, we denote different positive constants, and the
value of C is not essential for purposes of this study.

For p ∈ [1,∞], we denote by ‖v‖Lp(QT) or simply ‖v‖p the
norm of a Banach space Lp[0, T; Lp(Ω)] defined as
‖g‖p � (∫T0 ‖g(t, ·)‖pLp(Ω)dt)1/p.

A function u(t, x) ∈ _W
2,1

p (QT) is called the strong so-
lution (almost everywhere) of problems (1) and (2) if it
satisfies equation (1), a.e., in QT.

In this study, we will make essential use of the existence
results given in 'eorem 1.1 of [1] (see, also [2]) for Cordes-
type parabolic equations satisfying (5). In [1], the estimate

‖u‖ _W
2,1

2 QT( )
≤C‖Lu‖L2 QT( ), (8)

was proved for all u ∈ _W
2,1

p (QT), and when T≤T0 with T0 �
T0(n, L,Ω) to be sufficiently small and positive constant C
depends on n,Ω, L.

In the stationary case, i.e., the solution does not depend
on the time variable (the elliptic equation), from examples
([3], p. 48), it is followed that the equation Lu � f is solvable
in _W

2,1

p (QT) for no p> 1 (see [3–8]) if the coefficients are
discontinuous. In the absense of g (t, x, u), the strong
solvability of the Dirichlet problem for quasi-linear para-
bolic equations under more restrictive then (5) conditions
see, e.g. [9, 10].

If the trace of matrix ‖aij(t, x)‖ is constant, condition (5)
is exactly Cordes condition (see, e.g., [7, 11–13]):

∑ni,j�1 a2ij(t, x)
∑ni�1 aii(t, x)( )2 ≤

1

n − 1
− δ. (9)

For the strong solvability problem in _W
2

p(Ω) for any
p> 1 for parabolic equations with discontinuous coeffi-
cients, we refer [8, 14, 15], where the leading coefficients are
taken from the VMO class. We refer [16] on exact growth
conditions for strong solvability of nonlinear elliptic
equations Δu � g(x, u, ux) in _W

2

p(Ω) whenever p> n.
'e aim pursued in this paper is to prove the strong

solvability of Dirichlet problems (1) and (2) in the space
_W
2,1

2 (QT) for T to be sufficiently small, the ‖f(t, x)‖L2(QT)
norm to be sufficiently small, and the coefficients to satisfy
(5).

2. Main Result

In order to carry out the proof of main 'eorem 1, we need
the following assertion from [1].

Lemma 1. Let u(t, x) be a _W
2,1

2 (QT) function in QT � Ω ×
[0, T) and conditions (2), (4), and (5) be fulfilled for u(t, x)
and coefficients of the operator L; the domain Ω is of C2 class

or simply convex. -en, there exists sufficiently small T0
depending onL, n,Ω such that, for T≤T0, estimate (8) holds
with the constant C depending on L, n,Ω.

'e following assertion is the main result of this paper.

Theorem 1. Let n> 4, 0< q< (n + 1/n − 1), and conditions
(4)–(6) be fulfilled, and zΩ ∈ C2. Let T0 be a number in
Lemma 1 and T≤T0. -en, problems (1) and (2) have at least
one strong solution in the space _W

2,1

2 (QT) for any
f(t, x) ∈ L2(QT) satisfying

‖f‖L2 QT( )≤Cb
− 1/(q− 1)
0 mesn+1Q

(((q(n− 1))/(n+1))− 1)(1/2(q− 1))
T .

(10)

Proof. In order to get the solvability of problem (1) and (2),
we apply the Schauder fixed point theorem on completely
continuous mappings of a compact subset in the Banach
space (see, e.g. [4], p. 257, or [17]).

Set L2q(QT) as a basic Banach space. In this space, we

define the set V2 � u ∈ _W
2,1

2 (QT)|‖u‖W2
2,1(QT)
≤K{ }, where

the number K will be chosen later. Show that V2is compact

in L2q(QT). By using the condition 2q< 2(n + 1)/(n − 1) and
Sobolev–Kondrachov’s compact embedding theorem, the

spaceW1
2(QT) is imbedded into L

2q(QT) compactly. On the

contrary, W2,1
2 (QT)W

1
2(QT) is continuous. 'erefore,

V2L
2q(QT) is compact.
Show V2 is convex. For any u1, u2 ∈ V2 and t ∈ [0, 1], it

holds u � tu1 + (1 − t)u2 ∈ V2:

‖u‖W2,1
2 QT( )≤ t u1

 W2,1
2 QT( )

+(1 − t) u2
 W2,1

2 QT( )
≤K.

(11)

For u(t, x) ∈ V2, denote v(t, x) ∈ _W
2,1

2 (QT) the solution
of the Dirichlet problem:

Lv + g(t, x, u) � f(t, x), (t, x) ∈ QT, (12)

v|Γ QT( ) � 0. (13)

For fixed u(t, x) ∈ V2 and f ∈ L2(QT), problems (12)
and (13) are uniquely solvable in the space _W

2,1

2 (QT); be-
cause of the assumptions on domain and q, we get the
Dirichlet problem for equation (1) (for its solvability, we
refer [1, 2, 9, 10]):

Lv � F(t, x), (t, x) ∈ QT, u|Γ QT( ) � 0, (14)

where F � f(t, x) − g(t, x, ) ∈ L2(QT).
We have
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‖F‖L2 QT( )≤ ‖f‖L2 QT( ) +‖g‖L2 QT( )≤ ‖f‖L2 QT( ) + b0 |u|
q

 L2 QT( )
.

(15)
By using the chain of imbeddings,

W2,1
2 (QT)W

1
2(QT)L2q(QT) and u ∈ _W

2,1

2 (QT), the norm
‖|u|q‖L2(QT) is finite.

Insert an operator A: u⟶ v acting on L2q(QT), where
v is a solution of problems (12) and (13):

Au � v. (16)

Show that operator A is completely continuous in
L2q(QT). Let um{ } be a convergence sequence in L2q(QT)
with um⟶ u0. Show that its image is convergent in
L2q(QT) with vm⟶ v0, where v0 � Au0, vm � Aum.

'en,

Lvm � − g t, x, um( ) + f,

Lv0 � − g t, x, u0( ) + f.
(17)

We have

L vm − v0( ) � − g t, x, um( ) − g t, x, u0( )( ). (18)

Set gm � g(t, x, um), g � g(t, x, u), and show that

gm − g
 L2 QT( )

⟶ 0 form⟶∞. (19)

For that, from um⟶ u0 in L2q(QT) follows the con-
vergnce in measure in QT. 'is and the Caratheodory
condition imply that the convergence in measure
(gm − g0)

2⟶ 0. To prove (19), it remains to show the
equicontinuity of g2m, which follows from equicontinuity of
|um|

2q. 'e convergence um⟶ u0 in L2q(QT) implies
equicontinuity of |um|

2q.
Applying Vitali’s theorem, we get

gm − g
 L2 QT( )

⟶ 0 asm⟶∞. (20)

To show vm⟶ v0 in L2q(QT), we use the estimate from
Lemma 1 for sufficiently small T0 with T≤T0:
vm − v0
 W2,1

2 QT( )
≤C L vm − v0( ) L2 QT( )

� C gm − g
 L2 QT( )

⟶ 0.

(21)
By virtue of _W

2,1

2 (QT)↪ L2q(QT), it follows that
vn − v0
 Lr,2(Ω)⟶ 0 as n⟶∞. (22)

'e complete continuity of operator A in L2q(QT) has
been shown.

Now, we have to show u ∈ V2 implies v � Au ∈ V2. For
this, applying Lemma 1, it follows that

‖v‖W2,1
2 QT( )≤C‖F‖L2 QT( )≤C(δ, c, n) ‖g‖L2 QT( ) +‖f‖L2 QT( )[ ].

(23)
Using Holder’s inequality and the imbedding chain

W2,1
2 QT( )↪W1

2 QT( )↪ L2q QT( ), (24)

it follows that

‖g‖L2 QT( )≤ ∫
QT

b20|u|
2qdxdt( )

1/2

� b0‖u‖
q

L2q QT( )

≤Cb0‖u‖
q
2(n+1)/(n− 1) mesn+1QT( )(1/2)− (q(n− 1)/2(n+1))

≤Cb0 mesn+1QT( )(1/2)− (q(n− 1)/2(n+1))‖u‖q
W1

2 QT( )

≤C2b0 mesn+1QT( )(1/2)− (q(n− 1)/2(n+1))‖u‖q
W2,1

2 QT( )
.

(25)
Using Lemma 1, this is exceeded:

C1b0 mesn+1QT( )(1/2)− (q(n− 1)/2(n+1))‖Lu‖q
L2 QT( )

. (26)

Using estimate (26) in (23), we get

‖v‖W2,1
2 QT( ) C1b0 mesn+1QT( )(1/2)− (q(n− 1)/2(n+1))‖Lu‖q

L2 QT( )
[

+‖f‖L2(Ω)]≤C3 K
qb0 mesn+1QT( )(1/2)− (q(n− 1)/2(n+1))‖f‖L2(Ω)[ ].

(27)
Let K be such that

C2.5 K
qb0 mesn+1QT( )(1/2)− (q(n− 1)/2(n+1)) +‖f‖L2(Ω)[ ]≤K.

(28)
For such number K to exist, condition (10) is sufficient.

To prove it, set the notation

a � b0 mesn+1QT( )(1/2)− (q(n− 1)/2(n+1)),
b �‖f‖L2(Ω).

(29)

Inequality (28) takes the form

aKq
+ b≤K,

aKq
− K + b≤ 0,

K> 0.
(30)

'e function f(K) � aKq − K, K≥ 0, takes its minimal
in K0 � (1/qa)

1/(q− 1). Indeed, df/dK � aqKq− 1 − 1; then,
for K

q− 1
0 � (1/qa), (df/dK)(K0) � 0; (d

2f/dK2)(K0)> 0.
'erefore, for b≤f(K0), inequality (30) is solvable with
respect toK. To finish the proof, it remains to set sufficiently
small T0 so that condition (10) is satisfied. It is possible since
mesn+1QT � TmesnΩ, the power on mesn+1QT, is positive,
i.e., (1/2) − (q(n − 1)/2(n + 1))> 0.

'is completes the proof of 'eorem 1. □

3. Conclusion

In this paper, the strong solvability problem for a class of
second-order semilinear parabolic equations is studied.
For the strong solvability of the first boundary value
problem for a class of parabolic equations having a
nonlinear term, a sufficient condition is found for the
power growth condition. In the proof, the Schauder fixed
point theorem in the Banach space is used. Also, some a
priori estimates are shown in order to realize the
legitimate.
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