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Abstract

We describe the distribution of the first finite number of eigenvalues in a newly-forming band of the spectrum
of the random Hermitean matrix model. The method is rigorously based on the Riemann–Hilbert analysis of
the corresponding orthogonal polynomials. We provide an analysis with an error term of order N−2γ where
1/γ = 2ν + 2 is the exponent of non-regularity of the effective potential, thus improving even in the usual case the
analysis of the pertinent literature.

The behavior of the first finite number of zeroes (eigenvalues) appearing in the new band is analyzed and
connected with the location of the zeroes of certain Freud polynomials. In general all these newborn zeroes
approach the point of nonregularity at the rate N−γ whereas one (a stray zero) lags behind at a slower rate of
approach. The kernels for the correlator functions in the scaling coordinate near the emerging band are provided
together with the subleading term: in particular the transition between K and K + 1 eigenvalues is analyzed in
detail.
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1 Introduction

In this paper we consider the Hermitean matrix model in the scaling regime or –which is the same– the orthogonal
polynomials on the real line with a varying weight, in the same spirit as [1, 2]. We address a particular situation
of “nonregular” or “critical” potential: this means that the mean–field electrostatic potential vanishes at some
point ξ0 outside of the support of the equilibrium measure. This situation corresponds to a recent investigation
[3] and is the situation where a band in the spectrum of the corresponding matrix model or a new component of
accumulation of the zeroes of the orthogonal polynomials is about to appear (or has just disappeared).

In the paper we will be mostly taking the point of view of approximation theory and hence we will focus on
the orthogonal polynomial side, but the more physically–oriented reader will have no difficulty in translating those
results; in a picturesque way we will think of the zeroes of the polynomials as a growing population and thus call
“colonies” the first zeroes appearing near the new band, also termed the “outpost”. This should explain the catchy
title.

We will be using a particular (simplified) version of the double–scaling limit: in this approach we keep the
potential V (x) and the total charge T fixed but we add a piecewise constant perturbation of order ln(N)/N to
the potential near the outpost. In due time (App. A) we will explain how this simplified approach yields in fact
identical results to the usual double–scaling.

In order to explain in more detail the setup, suppose that the effective potential [4] ϕ(x) = 1
T (V (x) − 2g + `)

vanish at ξ0 as C(x− ξ0)2ν+2 (with some C > 0); here ξ0 is some point outside of the support of the equilibrium
measure [4]. We then modify the potential (Sect. 3) by adding a step-like perturbation of the form

V (x)→ Ṽ (x) = V (x)− 2κTγ
N

lnNχJ(x) , γ :=
1

2ν + 2
. (1.1)

Here χJ is the characteristic function of a small interval around ξ0. The real parameter κ determines the strength
of the perturbation and the constants are crafted for later convenience.
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For κ < 0 the orthogonal polynomials do not exhibit any peculiar behavior in the large N limit; for positive
values of κ new zeroes of the OPs start appearing near the outpost. It is natural that –since we can have
only an integer number of such roots– there are transition points in the asymptotic behavior for special values
of κ. Specifically the normalizations we have chosen are such that in the asymptotic regime there are K roots
near the outpost, where K is the integer nearest to κ. Clearly transitions must occur at κ ∈ N + 1

2 . The
phenomenon is already captured by the leading order asymptotics (Sect. 3): indeed one can construct a uniform
approximation to the orthogonal polynomials to order N−γ(1−2|δ|). The approximation is best when κ is an integer
and gets progressively worse and worse as κ approaches a half–integer. In particular when κ is a half integer the
approximation breaks down (the error term is no longer vanishing as N → ∞). This apparent obstruction was
noted in [3] (see also [5, 6]).

We then show how to obtain an improved approximation in Sect. 4; indeed we construct a uniform asymptotic
solution with an error term of order N−2γ (uniformly in κ!). Even in the ordinary case κ = 0 (which was dealt
with in [2]) our approximation is better than the one usually provided in the literature (in fact in Sect 4.7 we show
how to obtain an approximation of order N−1 for arbitrary κ).

Using this information we can study in detail the asymptotic behavior of the first roots (Sect. 4.4); in a
scaling parameter ζ ∼ Nγ(z−ξ0) they are related to the roots of the Freud’s polynomials for the weight e−ζ

2ν+2
dζ;

in particular

• if κ ∈ [K,K + 1/2) then they are within a distance O(N−2γδ) from the roots (in the ζ–coordinate) of the
K-th Freud polynomial.

• if κ ∈ (K − 1/2,K) then there are still K roots; however while K − 1 of them are within O(N−2γδ) from the
roots of the (K − 1)-st Freud polynomial, the “last one” lags behind and meanders at a distance O(N2γδ)
in the ζ–coordinate. Note that –while escaping to infinity in the ζ–scaling parameter, such root is actually
converging to the outpost at a rate N−γ+2γδ.

• when κ ∈ N + 1/2 (namely δ = 1
2 ) then there is a stray root that remains at a finite distance from the

outpost, while the remaining converge to it.

In the main body of the paper we make the simplifying assumption that the support of the equilibrium measure
consists of one interval (one–cut assumption). However this is only a simplification and none (or almost) of the
conclusions are at all dependent on it, but of course the formulæ for the outer parametrix are much simpler to
write and easier to handle also for those readers who do not know well the theory of Theta functions.

In App. B we show (in a somewhat sketchy form) how to generalize to an arbitrary number of cuts: only one
detail cannot be fully addressed in this general case, and concerns with the improved asymptotic for some of the
exceptional values of κ ∈ N + 1/2 and exceptional spectral curves, namely the equivalent of formula 4.51 for the
multi–cut case and the corresponding sign. The knowledge of the sign of (the imaginary part of) (4.51) is necessary
to ensure that in particularly exceptional circumstances certain denominators (4.22) do not vanish.

Remark 1.1 In a strange twist of events while the present manuscript was in the latest phases of preparation, a
similar preprint [5] has appeared where the author uses a RH analysis for the simplest nonregular case. Shortly
(two days) after another independent preprint [6] on the same topic has appeared, dealing with a more general type
of nonregularity (of the same type we deal).
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Our work however provides a refined error analysis up to order N−2γ whereas both the previous papers apparently
give only the leading term asymptotics, with an error term of order N−γ(1+2δ), thus not valid at the transition points
(although in [5] an analysis of the half–integer case is also provided but only for the simplest nonregularity exponent).

In addition we provide a detailed analysis of the location of the zeroes of the orthogonal polynomials near the
outpost.

2 General setting

The setting of the present paper will be identical in the most part to [2], [1]. Although we present in a self-contained
way we refer the reader to the pertinent literature for more details on the subject.

Consider the Hermitean matrix model with measure given by

1
ZN

e−
N
T trV (M)dM (2.1)

where ZN is a normalization constant. It is known [7] that the model is “solvable” in terms of orthogonal polyno-
mials (OPs) and that all spectral statistics can be described in terms of suitable kernels constructed in terms of
OPs.

Let {pn(x)} be the corresponding (monic) OPs that satisfy the following orthogonality condition with the
potential V (x) which we assume to be real and analytic.∫

R
pn(x)pm(x)e−

N
T V (x) dx = hnδnm. (2.2)

The spectral statistics of the model is determined by the Christoffel–Darboux kernel [7]

K(x, x′) =
n−1∑
j=0

pj(x)pj(x′)
hj

=
pn(x)pn−1(x′)− pn−1(x)pn(x′)

hn−1(x− x′)
(2.3)

The OP are uniquely characterized by the following Riemann–Hilbert problem. Define for z ∈ C \R the matrix

Y (z) := Yn(z) :=
[

pn(z) φn(z)
−2iπ
hn−1

pn−1(z) −2iπ
hn−1

φn−1(z)

]
, φn(z) :=

1
2iπ

∫
R

pn(x)e−
N
T V (x) dx

x− z
. (2.4)

The above matrix has the following jump-relations and asymptotic behavior that uniquely characterize it

[8, 9, 10, 11] (we drop the explicit dependence on n for brevity)

Y+(x) = Y−(x)
[

1 e−
N
T V (x)

0 1

]
, Y (z) ∼

(
1 +O(z−1)

) [ zn 0
0 z−n

]
. (2.5)

Replacing the orthogonality condition (2.2) by the above jump (and boundary) conditions (2.5) we obtain the
Riemann–Hilbert problem for the OPs. Using this setup we especially want to investigate the asymptotics of the
OPs as their degree n := N + r goes to infinity while r being fixed to an integer.

The first step to solve the problem is to find the g-function, which we will define using the equilibrium

measure below. We briefly recall that, in the simple case where the contour of integration in (2.2) is the real axis
(see [12, 13] for a general approach not relying on a variational problem), the equilibrium measure is obtained from
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the solution of a variational problem for a functional over probability measures on the real axis, in the sense of
potential theory [4]. Indeed define the weighted electrostatic energy [4]

F [µ] := 2
∫

R
V (x) dµ(x) +

∫
R

∫
R

ln
1

|x− x′|
dµ(x) dµ(x′) (2.6)

where dµ is a positive measure supported on the real axis with total mass T =
∫

R dµ(x).
It is known that the functional F attains a unique minimum (under mild assumptions on the growth of V (x)

at infinity) at a measure ρ that is called the equilibrium measure [4, 15].
It is also known [14] that the support of the measure ρ consists of a finite union of disjoint bounded intervals

and that ρ is smooth on the interior of the support.
Taking avail of the equilibrium measure, the g function [15] is then typically defined as

g(z) :=
∫

R
ρ(x) ln(z − x) dx = T ln z +O(z−1), (2.7)

where the logarithm must be defined with an appropriate cut extending –say– from the leftmost endpoint of the
support of ρ to +∞. The derivative of the function g(z) (the “resolvent”) satisfies a pseudo–algebraic equation
which is key to many considerations in a different context but will be mostly irrelevant in this paper.

The main properties that enter the steepest descent analysis are the standard properties of the logarithmic
transform. To this end we note that the representation (2.7) implies immediately that <g(x) is harmonic away
from the support of ρ and continuous on the whole complex plane. The Euler–Lagrange variational equations
equivalent to the optimality of the equilibrium measure ρ [4] can be rephrased in terms of the following conditions
for the g–function

• for x ∈ R we have

<ϕ(x) ≥ 0, ϕ(z) :=
V (z)

2
− g(z) +

`

2
=
V (z)

2
−
∫
ρ(y) ln(x− y) dy +

`

2
(2.8)

for a suitable real constant `. <ϕ is the effective potential of the related electrostatic problem.

• The opposite inequality (and hence the equality) holds on the support of ρ. Especially, ` is chosen such
that <ϕ = 0 on the support of ρ. (The support of ρ will be called the cuts because they form the cuts of
the functions g′(z) and ϕ′(z).) Here and in the previous point, the g–function should be understood as the
analytic function defined by its integral representation (2.7) on the simply connected domain obtained by
removing a half–line starting e.g. at the rightmost endpoint of the support of ρ and extending towards −∞.
Then <ϕ(x) is actually nothing but the boundary-value 1/2(ϕ+(x) + ϕ−(x))

• In suitable finite left/right neighborhoods of the cuts, the function <ϕ(x), which is also harmonic in the
domain of analyticity of V (x), is negative.

The situation we want to address in this paper is the case where the inequality (2.8) is not strict on R outside
the cuts, but at some point ξ0 outside of the cuts, the inequality is an equality. This situation corresponds to the
critical situation where a cut is about to emerge (or has just disappeared) at ξ0. In an optimistic view, we will
look at the situation as of that of an emerging spectral band, being gradually populated by eigenvalues; it is thus
appropriate to refer to the neighborhood of the emerging band as an outpost colony of eigenvalues.
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The pair of potentials V (x) and total charge T for which the inequality (2.8) is not strict either outside or
inside the cuts (this last occurrence corresponding to the merger of two cuts) are called nonregular or, in the
more physical oriented literature, critical. The steepest descent analysis was completely carried out in [2] in
general terms and specific analysis linking with Painlevé theory was carried out in [1] in the case of a merger. For
the “birth of a cut” (i.e. outpost colonization), a heuristic arguments and a double–scaling approach3 were used
in [3]; while the intents of our note and of [3] are clearly the same, the methods employed are radically different.

The conclusion that we achieve in rigorous mathematical way will be –however– parallel to that of [3], namely
to show that we can describe the statistics of the first finite number of eigenvalues that populate the forming cut
in terms of an effective “microscopic” matrix model of the size of the population of the outpost. In addition we
strengthen those result by localizing exactly the relevant, finite number of roots of the orthogonal polynomials.

3 Modified setting: changing chemical potential

κγT ln(N)
N

Ṽ (x)

ϕ̃(x)

Figure 1: The potential Ṽ with the chemical potential
added, and the corresponding effective potential.

In order to study a nontrivial scaling limit we modify
the setting of the problem as follows. As mentioned in
the previous section, we consider the situation when we
have <ϕ(ξ0) = 0 for ξ0 ∈ R outside the cuts. Suppose
that ξ0 is the point where ϕ(z) has the critical point of
order 2ν + 2, i.e.

ϕ(z) = O
(

(z − ξ0)2ν+2
)
, z ∼ ξ0. (3.1)

Then we choose a finite open interval J containing
ξ0 that does not contain any other turning points. We
then consider the following modified orthogonality
relation:

hnmδnm =
∫

R\J
pn(x)pm(x)e−

N
T V (x) dx+

+N2κγ
∫
J

pn(x)pm(x)e−
N
T V (x) dx,

(3.2)

where we have defined the exponent of nonregular-
ity

γ := (2ν + 2)−1. (3.3)

In the above relation the parameter κ ∈ R will eventually determine the size of the population of the colony near
ξ0.

As the reader may realize this amounts simply to a step-wise modification of the potential: if χJ is the
characteristic function of the interval J then we may rewrite (3.2) as a single integral without N2κγ using the
modified potential

Ṽ (x) := V (x)−
(

2κTγ
N

lnN
)
χJ(x). (3.4)

3This means that not only n→∞ but also V, T are let depend on n in a “slow” and fine–tuned way.
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The most interesting regime will turn out to be κ > 0, so that the potential is slightly depressed near ξ0 (Fig. 1).
While this is a “small” perturbation of the potential (which would be irrelevant in a noncritical situation), since
our potential is critical the effect of this perturbation is fine-tuned to obtain a nontrivial perturbation. It will also
become clear that the actual choice of J is irrelevant as long as it contains ξ0 and no cuts.

Although this “discontinuous” deformation may seem quite artificial at first, it should become apparent later on
that it actually makes no difference on the actual behavior near the outpost. In a certain sense this is the essence
of universality, but we will explain in Appendix A how to approach the same problem from a more “canonical”
double–scaling limit, while retaining the main features.

The advantage of this simplified approach is that allows us to immediately concentrate on the significant features
(the actual RHP) without hindering the analysis into details regarding the appropriate g–function.

3.1 Normalized and lens-opened RHP

Taking avail of the general wisdom, in order to streamline the derivation we open the lenses before normalizing
the problem4, thus modifying the jumps as shown in figure 2. Lens opening simply means that we redefine

Ynew := Y

[
1 0

−e
N
T
V (z) 1

]
, on the upper lip, (3.5)

Ynew := Y

[
1 0

e
N
T
V (z) 1

]
, on the lower lip. (3.6)

(
1 0

e
N
T V (z) 1

)
(

1 e−
N
T
V (z)

0 1

)
1

(
1 e−

N
T V (z)N 2γκ

0 1

)
1 (

0 e−
N
T
V

−e−
N
T
V 0

)

(
1 0

e
N
T V (z) 1

)

Figure 2: The jump matrices for Y .

For the time being the jumps
on the green circles are the iden-
tity but later we define separate
RHP problems inside the circles.
Then we will call all the RHP
inside one of the green disks the
local problem whereas we call
the problem outside the outer

problem.
After the lens-opening we define,

Ỹ (z) := e
N`
2T σ3Y (z)e−

N
T g(z)σ3e−

N`
2T σ3 , (3.7)

which satisfies a new, simpler RHP:

Ỹ (x)+ = Ỹ (x)−

[
e
N
T (g−−g+) e−

N
T (V−g+−g−+`)N2κγχJ (z)

0 e
N
T (g+−g−)

]
(3.8)

Ỹ (z) ' (1 +O(z−1))zrσ3 , z ∼ ∞ (3.9)

For simplicity we assume that there is only one finite band in the spectrum, namely the spectral curve is of
genus 0; the generalization to more bands is not conceptually a problem but requires the use of Θ–functions which

4We are of course assuming that V (z) is real-analytic.
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would make the note quite more technical and long. Under this assumption, for x ∈ R,

g+(x) = −g−(x) + V (x) + ` , for x ∈ R on the cut, (3.10)

g+(x) = g−(x)− 2iπT , for x ∈ R on the right of the cut, (3.11)

g+(x) = g−(x) , for x ∈ R on the left of the cut. (3.12)

Everywhere else on the complex plane g(z) is holomorphic. On account of these properties for the g–function the
jumps for Ỹ are shown in the figure 3.

(
1 0

e
N
T (V+2g) 1

)

(
1 0

e
N
T (V+2g) 1

)

(
1 e−

N
T (V+g++g−)

0 1

) (
1 e−

N
T (V+g++g−)N 2κγ

0 1

)

(
0 1
−1 0

)

Figure 3: The jump matrices for Ỹ .

In the following the size of
the green circles will be fixed to
a nonzero value. In this case the
reader can verify that –outside
of the green disks– the jumps on
the black and red lines become
exponentially close to the iden-
tity, and uniformly so in L2 ∩
L∞.

3.2 Outer parametrix

For simplicity of exposition we assume that there is only one spectral band (1-cut) apart from the one that is about
to emerge. Furthermore we assume that the irregular point of the potential problem is set to ξ0 = 0, without loss
of generality.

(
0 1
−1 0

)

Figure 4: Jump matrix for Ψ.

Removing all the jumps that
are exponentially close to the
identity, we are left with the
jump matrix as shown in Figure
4. This provides the asymptotic
RHP that we will use to define
outer parametrix. Below we describe the RHP that the outer parametrix Ψ satisfies. (For a specific solution to
the RHP we will use Ψ with a subscript or a dressing such as in Ψ̃K .)

Ψ(z) ' (1 +O(z−1))zrσ3 , z ∼ ∞, (3.13)

Ψ(z)+ = Ψ(z)−

[
0 1
−1 0

]
, on the cut. (3.14)

It also needs to be supplemented by the boundary conditions at the turning points,

Ψ(z) = O
(
(z − a)−

1
4
)
, Ψ(z) = O

(
(z − b)− 1

4
)
, (3.15)

where a and b are the two turning points. For the specific outer parametrix ΨK that we consider soon, the growth
condition at the outpost is given by

ΨK(z) = [AK ,BK ] zKσ3 :=
[
Ax(z) Bx(z)
Ay(z) By(z)

]
zKσ3 . (3.16)
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The matrix [AK ,BK ] is analytic at z = 0 (note that ξ0 = 0) and det[AK ,BK ] = 1. The above four conditions give
the Riemann–Hilbert problem for Ψ. We now describe a specific solution ΨK (and [AK ,BK ]) to the above RHP.

We now use the fact that there is only one cut so that the two–sheeted cover of the z–plane is a rational (i.e.
genus 0) curve. The modifications needed for the case of an arbitrary number of cuts are sketched in appendix.

Let t be the uniformizing map of the genus-0 Riemann surface. We let t0 on the t-plane to map to the outpost on
z-plane. For the simplicity of the normalization we choose the location of the cut and the outpost in the following
way.

z(t) :=
b− a

4

(
t+

1
t

)
+
b+ a

2
=
a− b
4t0

(t− t0)
(

1
t
− t0

)
, (3.17)

where a < b are the endpoints of the band; in the t–plane they correspond to t = ±1. There are 2 points in the
t–plane projecting to z = 0 namely the two solutions of z(t) = 0. We denote the one outside the unit circle by t0,
the other being 1

t0
.

ξ0

z–plane

t–plane

t0-1 11
t0

Figure 5: The uniformization of the plane sliced along the
support of the equilibrium measure. The pattern region
is the “unphysical sheet”.

Define the spinorial Baker–Akhiezer vectors

Ψ(1)(t) :=

 tr
(

t−t0
t−1/t0

)K √
dt

−itr−1
(

t−t0
t−1/t0

)K √
dt

 ,

Ψ(1),?(t) := Ψ(1)

(
1
t

)
=

 it−r−1
(
t−1/t0
t−t0

)K √
dt

t−r
(
t−1/t0
t−t0

)K √
dt

(3.18)

where K is the closest nonnegative integer to κ
(e.g. if κ = 2.4 then K = 2, if κ = 2.6 then K = 3).
Note that the definition is ambiguous for κ ∈ 1

2 + Z;
indeed it will be seen that for these exceptional val-
ues we cannot obtain a strong asymptotic result using
these methods and we need to use a refinement (Sect.
4), and the asymptotic for of the OPs has a discontin-
uous change, namely the model exhibits a nonlinear
Stokes’ phenomenon in κ.

The advantage of this spinor representation and the
uniformizing coordinate is that we can easily write a
general solution to the RHP (3.13),(3.14),(3.15),(3.16)
of the outer parametrix when there are exceptional
points such as the outpost.

Using (3.18) one can write the following solution.

ΨK(t(z)) :=

(
(b−a)

4

)rσ3+ 1
2

√
dz

[
Ψ(1)(t(z)),Ψ(1),?(t(z))

]
=

(
(b−a)

4

)rσ3√
4z′(t)
b−a

[
tr i

tr+1

−itr−1 1
tr

](
t− t0
t− 1/t0

)Kσ3
∣∣∣∣
t=t(z)

(3.19)

In the above t(z) is the determination of t that lies outside the unit circle for z not on the cut (the physical sheet),

and the appropriate value on the cut viceversa. The squareroot is the determination that behaves as
√

4z′(t)
b−a ∼ 1

near t =∞.
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We see also that the above matrix behaves as follows for large x and has the following jump-discontinuity

ΨK(z) ' (1 +O(z−1))zrσ3 (3.20)

ΨK(x)+ = Ψ(x)−

[
0 1
−1 0

]
(3.21)

It is to be noted that
ΨK(z) = O((z − a)−

1
4 ) , ΨK(z) = O((z − b)− 1

4 ) . (3.22)

More importantly, the parametrix we have constructed behaves as follows in the vicinity of the outpost

ΨK(z) = (C +O(z)) zKσ3 . (3.23)

From the expression of ΨK (3.16) one can also write [AK ,BK ] as follows

[AK ,BK ] = ΨKz
−Kσ3 =: [AK(0),BK(0)] + [A′K(0),B′K(0)]z +O(z2), (3.24)

where we write the first two terms in the expansion for future reference.

[AK(0),BK(0)] =

(
b−a

4

)rσ3
tKσ3
0√

1− t−2
0

[
1 it−1

0

−it−1
0 1

]
trσ3
0

(
b− a
4ab

)Kσ3

, (3.25)

[A′K(0),B′K(0)] =

(
b−a

4

)rσ3
tKσ3
0√

1− t−2
0

[
0 i

t0
√
ab

− i
t0
√
ab

0

]
trσ3
0

(
b− a
4ab

)Kσ3

+ (3.26)

+[AK(0),BK(0)]

(
1

(t20 − 1)
√
ab)

1− r√
ab
σ3 +

K(b+ a)
2ab

σ3

)
. (3.27)

Remark 3.1 In [6, 5] the authors used a scaling limit by removing the charges corresponding to the new zeroes by
adding a point-wise charge with the same total mass. This amounts to multiplying the jump by a factor (x−ξ0)2κ (in
our notation). As a drawback they need to cure the non–constant jump residual after the lens-opening by introducing
a scalar function D(x) (Szëgo function) solving a new (scalar) RHP on the cut. In our case this scalar function is

“built-in” the outer parametrix and corresponds to the term
(
t−1/t0
t−t0

)K
. As a result the outer parametrices are at

first sight of different nature, but -as it should- all terms can be put in correspondence in the three approaches.

3.3 Parametrix near the simple turning points

(
1

0

e N
T (V

+
2g)

1
)

( 1

0

e
N
T
(V

+2g
1

)

(
0 1
−1 0

) (
1 e−

N
T (V+g++g−)

0 1

)
A3

A4

A2

A1

Figure 6: The jumps of the exact
solution Ỹ near the soft-edge.

This part is essentially identical to the established results in [15, 2]. We con-
sider only the right turning point at z = b; the method works for the other
one. Inside the green disk we solve the exact RHP.

For simplicity of exposition we consider the case where the turning point
is simple, namely

ϕ(z) =
1
2
V (z)− g(z) = C(z − b) 3

2 (1 +O(z − b)), (3.28)

for z not on the cut. [We will indicate the trivial modifications needed in case
of nonregular behavior later.]
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We define a local coordinate by

2
3
ξ

3
2 :=

N

T
ϕ(z), (3.29)

where the determination of the root is such that the (blue) cut is mapped to
R− of ζ-plane.

We then introduce the standard Airy parametrix A0(ξ) [15, 2] as the piecewise defined matrix A0
j (see Figure

6) constructed in terms of the Airy function Ai(x) as follows

A0
j (ξ) :=

√
2πe−

iπ
4



(
y0 −y2

y′0 −y′2

)
e

2
3 ξ

3
2 σ3 j = 1

(
−y1 −y2

−y′1 −y2

)
e

2
3 ξ

3
2 σ3 j = 2

(
−y2 y1

−y′2 y′1

)
e

2
3 ξ

3
2 σ3 j = 3

(
y0 y1

y′0 y′1

)
e

2
3 ξ

3
2 σ3 j = 4

, (3.30)

where we have used the definitions,

yj := ωjAi(ωjξ), j = 0, 1, 2, ω = e2iπ/3. (3.31)

Each of the above has the following uniform asymptotic behavior near ξ =∞.

A0(ξ) ∼ ξ−
σ3
4

1√
2

(
1 1
−1 1

)
e
−iπσ3

4 (1 +O(ξ−3/2)). (3.32)

This matrix has jumps on the rays (in the ξ–plane) as indicated in Fig. 7 below.

( 1

0

e
4

3
ξ
2
3

1

)

(
1 e−

4
3ξ

2
3

0 1

)(
0 1

−1 0

)

(
1

0
e 4
3 ξ 2

3

1

)
A0

2

A0
1

A0
4

A0
3

Figure 7: The usual jumps for the
local parametrix

Thus, the final form of the local parametrix is simply

Aj(ξ) :=

:=F (z)︷ ︸︸ ︷
e
iπσ3

4
1√
2

[
1 −1
1 1

]
ξ
σ3
4 A0

j (ξ) (3.33)

Such matrix has the properties

• It solves the exact jump conditions of the RHP in Fig. 6;

• the prefactor F (z) solves a RHP on the left

F (z)+ =
[

0 −1
1 0

]
F (z)− , ξ ∈ R− . (3.34)

• it behaves as A(ξ) = 1+O(N−1) uniformly on the boundary on account
that zKσ3 is analytic and invertible with analytic inverse in the neigh-
borhood. The only point to raise is that Ψ(z)A(z) is bounded inside
the disk; indeed near the turning point we have

Ψ = O((z − c)− 1
4 ), F (z) = O((z − c)− 1

4 ). (3.35)
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Thus the product Ψ(z)F (z) may at most have squareroot singularities: however, comparing the RHP that
they solve, we see that the product is a single-valued matrix, thus must be analytic since at worst it may
have singularities of type (z − c)− 1

2 . Since F (z) is solely responsible for the singularities arising in the local
parametrix at z = b, this proves the assertion.

Remark 3.2 If the turning points are non-regular then we should use the local parametrices for the usual problem
as described in [2]. None of the above considerations (except for the bounds in the error terms) is significantly
modified.

3.4 The local parametrix at the outpost

At the outpost the effective potential behaves as ϕ(z) = V (z)
2 − g(z) + `

2 ' TC0z
2ν+2 with C0 > 0. We define a

new conformal parameter z̃ as follows:

z̃ := C−γ0

1
T
ϕ(z)γ = z +O(z2) (3.36)

We define D to be a finite open neighborhood around z = 0 that maps univalently to a disk centered at z̃ = 0. We
also define the local coordinate

ζ := Cγ0N
γ z̃. (3.37)

The RHP satisfied by the local parametrix R is as follows. (We will use R with a subscript or a decoration such as
in R̃K , to indicate a specific solution to the RHP.)

R+ = R−

[
1 e−ζ

2ν+2
N2κγ

0 1

]
, ζ ∈ R, (3.38)

R ∼ ζ−Kσ3O(1) , ζ → 0
R ∼ 1 +O(N−ε) , z ∈ ∂D. (3.39)

Here ε is some positive number that will be determined in the subsequent analysis. Increasing ε leads to a better
asymptotics. In addition to the above conditions, we also require that ΨR is analytic in D, which implies that
detR = 1.

In section 3.2, we obtain an outer parametrix ΨK which has the pole behavior of order K at the outpost. We
first look for the corresponding local parametrix, which we will call RK .

3.4.1 Case κ < 0

We first observe that if κ < 0, then the solution is immediately written as5

R0 :=

 1
N2κγ

2iπ

∫
R

e−ξ
2ν+2

dξ
ξ − ζ

0 1

 (3.40)

On ∂D we have
R ∼ 1 +O(N2γκ−γ) . (3.41)

This situation is “trivial” from the point of view of the asymptotics and hence we will only focus on the case κ > 0
in the following.

5In fact all the results hold for κ < 1/2 as well.
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Remark 3.3 In fact we observe from the explicit solution that if κ < −2ν − 2 then we may simply use the
identity matrix for the local parametrix, thus committing an error smaller than O(N−1) which anyway arises on
the boundary of the other turning points.

3.4.2 Case κ ≥ 1/2

We recognize in (3.38) the Riemann–Hilbert problem of the orthogonal polynomials for the weight e−ζ
2ν+2

dζ.
Specifically, if we denote by P (ν)

` (ζ) the monic orthogonal polynomials that satisfy∫
R
P

(ν)
` (ξ)P (ν)

`′ (ξ)e−ξ
2ν+2

dξ = η`δ``′ , η` > 0 (3.42)

then the solution of the RHP (3.38), (3.39) is simply given by

RK = z̃−Kσ3HK(ζ), (3.43)

where

HK(ζ) := C−γKσ3
0 Nγδσ3


P

(ν)
K (ζ)

1
2iπ

∫
R

P
(ν)
K (s)e−s

2ν+2
ds

s− ζ
−2iπ
ηK−1

P
(ν)
K−1(ζ)

−1
ηK−1

∫
R

P
(ν)
K−1(s)e−s

2ν+2
dξ

s− ζ

N−Kγσ3N (K−κ)γσ3

= C−κγσ3
0


Γ−KP (ν)

K (ζ)
Γ2κ−K

2iπ

∫
R

P
(ν)
K (s)e−s

2ν+2
ds

s− ζ
−2iπΓK−2κ

ηK−1
P

(ν)
K−1(ζ)

−ΓK

ηK−1

∫
R

P
(ν)
K−1(s)e−s

2ν+2
ds

s− ζ

Cκγσ3
0 , Γ := (C0N)γ (3.44)

It is crucial to point out here that the right multiplier N−γκσ3 is needed to satisfy the correct jump relations (3.38),
while the left multiplier C−γKσ3

0 Nγδσ3 is needed to restore the boundary condition (3.39). One can satisfy the
boundary condition (only) by choosing K as the closest integer of κ. Defining δ := κ −K ∈

(
− 1

2 ,
1
2

)
, we obtain

the following estimate holding uniformly on the boundary.

RK = 1 +O(N−γ+2|δ|γ), z ∈ ∂D. (3.45)

Lastly, ΨKRK is analytic in D, because z−Kσ3 factor in (3.43) cancels out the singularity of ΨK (4.2).
The important observation is that if κ ∈ 1

2 + Z then the error term in (3.45) does not tend to zero (it is O(1)).
It is understandable as these values separate regimes where the value of K jumps by one unit and the whole strong
asymptotic must changes its form. A similar problem arose in [3]. In section 4 we will overcome this obstacle.

Remark 3.4 The orthogonal polynomials we are using here are a particular case of the so–called Freud Orthogonal
Polynomials [16].

3.5 Asymptotic solution for Ỹ and error term

Collecting the results of the above analysis we have the following asymptotic solution for Ỹ .

Ỹas :=


ΨK(z) outside of the disks

ΨK(z)RK z ∈ D

ΨK(z)A inside the disks around the turning points

(3.46)
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To find the error term we define the error matrix as follows.

E(z) := Ỹ Ỹ −1
as =


ỸΨ−1

K (z) outside of the disks

Ỹ R−1
K Ψ−1

K (z) z ∈ D

ỸA−1Ψ−1
K (z) inside the disks around the turning points

(3.47)

1 +O(N−γ+2|δ|)1 +O(N−1)

1 +O(N−∞)

Figure 8: The jumps of E .

The error matrix solves the
residual RHP with the jump ma-
trices as shown in the figure 8.
It follows from the construction
that there is no jump inside the
green disks, and on the cut. On
the disks with airy parametrix
and on ∂D, the jumps converge
to the identity with uniform er-
ror bounds in L2∩L∞. We eval-
uate these error bounds now.

The jump of E on ∂D is evaluated as follows.

E−1
− E+ = ΨKR

−1
K Ψ−1

K = 1 +O(N−γ+2γ|δ|). (3.48)

The jumps of E on the disks of Airy parametrix is similarly evaluated as follows.

E−1
− E+ = ΨKA−1Ψ−1

K = 1 +O(N−1). (3.49)

Therefore, the error matrix has jump matrices that are uniformly close to the identity with the error bound of
O(N−γ+2γ|δ|) in L2 ∩ L∞. A well-known theorem [15] guarantees that error matrix itself is bounded by the same
error bound, i.e. E = 1 +O(N−γ+2γ|δ|). This gives the following error term for the (strong) asymptotics of Ỹ .

Ỹ = Ỹas(1 +O(N−γ+2γ|δ|)). (3.50)

3.6 Necessity of improved approximation: a nonlinear Stokes phenomenon in κ

From the above estimate of the error term it appears that our global parametrix does a poor approximation if κ is
not exactly an integer, and it is no approximation at all if κ ∈ 1

2 + Z since the error term is not vanishingly small.
These transition points are the equivalent of the Stokes’ lines in the standard theory of asymptotics of ODEs, where
two solutions of the same RHP become of the same magnitude whereas off the line one is recessive and the other
dominant.

The phenomenon is similar here: for κ ∈
(
K − 1

2 ,K + 1
2

)
the dominant solution is the one we have constructed

with K, where for κ ∈
(
K + 1

2 ,K + 3
2

)
it is the “next” with K + 1.

For κ = K + 1
2 it is to be expected that both solution are of the same magnitude in a suitable sense and hence

a “linear combination” should be sought for.
We show how to do this in the next section and we will construct hence a parametrix including the subleading

term in the N−γ expansion so as to have a uniform approximation to within O(N−2γ).
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4 Asymptotic solution for κ ∈ R up to O(N−2γ)

4.1 A short digression on Schlesinger transformations

We start by observing that ΨK and ΨK+1 are related by a Schlesinger transformation, as well as the local para-
metrices RK , RK+1. In particular, we consider the “raising” Schlesinger transformation that raises the order of
poles by one

ΨK+1(z) =
(

1 +
SK
z

)
ΨK(z) , (4.1)

for a z-independent matrix SK . To show this, it is sufficient to observe that ΨK+1Ψ−1
K has no jumps, behaves as the

identity at infinity and has at most a simple pole at the outpost. The formula follows immediately from Liouville’s
theorem. Note also that SK is a nilpotent matrix as follows immediately from the fact that det(1 + SK/z) ≡ 1.

For future reference we compute SK . Let us write the outer parametrix ΨK as

ΨK = [AK ,BK ]zKσ3 , (4.2)

where [AK ,BK ] is a 2× 2 matrix holomorphic at z = 0. We also require det[AK ,BK ] ≡ 1 to have det ΨK = 1.
Let us compute SK in the raising Schlesinger transformation; the condition that determines SK is that

AK(z) +
1
z
SKAK(z) = O(z) (4.3)

or, equivalently,{
SKAK(0) = 0

AK(0) + SKA′K(0) = 0
⇒ SKV =

det[V,AK(0)]
det[AK(0),A′K(0)]

AK(0) , ∀V ∈ C2. (4.4)

Similarly the inverse “descending” transform(
1 +

S̃K
z

)
ΨK = ΨK−1, (4.5)

requires the analyticity condition

BK(z) +
1
z
S̃KBK(z) = O(z). (4.6)

This determines S̃K as

S̃KV =
det[V,BK(0)]

det[BK(0),B′K(0)]
BK(0), (4.7)

for an arbitrary vector V. It is also important to note that, since we have explicitly constructed the sequence of
{ΨK |K = 0, 1, · · ·} in (3.19), the Schlesinger transformations between them must exist, and hence

det[BK(0),B′K(0)] 6= 0 6= det[AK(0),A′K(0)] , ∀K ∈ Z. (4.8)

Now let us consider the similar transformation for the local parametrix. Previously in (3.43) we have constructed
the local parametrix RK = z̃−Kσ3HK where

HK '
[

1 −uK/z̃
−`K−1/z̃ 1

]
z̃Kσ3 . (4.9)
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All the components of the matrix in RHS have the multiplicative error bounds of 1 + O(N−2γ z̃−2). The two
variables uK and `K−1 are given by

uK =
ηK
2iπ

N2γδ−γ

C2γK+γ
0

, `K−1 =
2iπ
ηK−1

C2γK−γ
0

N2γδ+γ
. (4.10)

Note the interesting relation uK`K = 1, which will be essential for the consistency of our solution.
From a similar argument used for deriving (4.1) using Liouville theorem, one obtains the following relation

HK+1 =
[

z̃ uK
−`K 0

]
HK . (4.11)

This transform can also be derived from the three-term recurrence relation

ζPK(ζ) = PK+1(ζ) +
ηK
ηK−1

PK−1(ζ). (4.12)

The transformation matrix in (4.11) is LDU decomposed as follows[
z̃ uK
−`K 0

]
= L−1

K z̃σ3UK , LK :=
[

1 0
`K/z̃ 1

]
, UK :=

[
1 uK/z̃
0 1

]
. (4.13)

From this we may view the matrices LK , UK as the “two halves” of the transformation that raises the order of the
Freud’s OP by one. Therefore, these objects will appear for the “half-raising” transform, or more generally for the
continuous transform that is parametrized by δ in the next section.

4.2 Improved parametrices

Here we improve both the outer parametrix ΨK and the local parametrix RK to produce a legitimate asymptotics
at half-integer κ and to produce a better asymptotics for all κ. Especially, we will use certain transformations
that resemble the Schlesinger transformation discussed in the previous section.

Looking back at the error analysis, the dominant error (3.45) originates from the off-diagonal term of HK z̃
Kσ3

(4.9), especially from the terms u/z̃ and `/z̃.
A natural way to correct this problem is to define a new local parametrix,6

Rκ := z̃−Kσ3UKLK−1HK = 1 +O(N−2γ), z ∈ ∂D (4.14)

so as to cancel out the leading off-diagonal terms. We get an improved error bound which is independent of κ.
We may also change the order of LK−1 and UK in the above definition; although the two matrices LK−1 and

UK do not commute, the non-commutativity is within the error bound of O(N−2γ) and, therefore, the order does
not make any difference in the asymptotics.

Given the local parametrix Rκ , we will find the corresponding improved outer parametrix Ψκ . It is notable
that Rκ is constructed out of LK−1 and UK , which appear in the raising transform (4.13). This suggests that
the appropriate outer parametrix Ψκ may come from a “partial 2-step Schlesinger” transformation of ΨK , such as
Ψκ = (1 +F1/z+F2/z

2)ΨK . F1 and F2 are then determined by the analyticity of ΨκRκ at z = 0 or, equivalently,(
1 +

F1

z
+
F2

z2

)
ΨK z̃

−Kσ3UKLK−1 = O(1), in D. (4.15)

Clearly the issue is to remove the possible poles at z = 0, and the problem is addressed in the next section.
6Our notation is not exactly consistent, since Rκ 6= RK when κ = K. However, we believe that this will not make any confusion.
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4.3 Improved outer parametrix

The improved outer parametrix, that we will denote by Ψκ
7, must satisfy the analyticity condition (4.15). Ψκ is

uniquely solved by the condition (4.15), and we will solve it in two steps by writing Ψκ by first writing

Ψκ =
(

1 +
G

z

)(
1 +

F

z

)
ΨK . (4.16)

Remembering ΨK = [AK ,BK ]zKσ3 (4.2), we can rewrite ΨκRκ as follows.

ΨκRκ =
(

1 +
G

z

)(
1 +

F

z

)
[ÃK , B̃K ]

[
1 uK/z
0 1

] [
1 0

`K−1/z 1

]
H̃K . (4.17)

Note that the terms u/z and `/z depend on z and not on z̃. Accordingly we have the following definitions.

[ÃK , B̃K ] := [AK ,BK ](z/z̃)Kσ3

[
1 uKez − uK

z
0 1

]
, (4.18)

which is analytic at z = 0, and

H̃K :=
[

1 0
`K−1ez − `K−1

z 1

]
HK . (4.19)

The first step is to determine F by imposing the analyticity condition: (and we define another notation as
below)

[ÂK , B̂K ] :=
(

1 +
F

z

)
[ÃK , B̃K ]

[
1 uK/z
0 1

]
= O(1). (4.20)

Assuming we solved the above, the second step is to determine G by imposing the new analyticity condition:(
1 +

G

z

)
[ÂK , B̂K ]

[
1 0

`K−1/z 1

]
= O(1). (4.21)

The above two analyticity conditions uniquely determine F and G, which can be written as follows using an
arbitrary vector V.

FV =
uK det[V, ÃK(0)]

1 + uK det[ÃK(0), Ã′K(0)]
ÃK(0), GV =

−`K−1 det[V, B̂K(0)]
1 + `K−1 det[B̂′K(0), B̂K(0)]

B̂K(0). (4.22)

Here we have used the fact that det[ÃK(0), B̃K(0)] = det[ÂK(0), B̂K(0)] = 1.
From the above formulae it is easily noticed that F ∼ O(uK) and G ∼ O(`K−1). This immediately tells that

[ÂK , B̂K ] = [ÃK , B̃K ] +O(uK) from the definition (4.20). This is useful to know because now we can change all
the B̂K ’s into B̃K ’s in the above equation (4.22) while keeping the error under O(uK`K−1) = O(N−2γ). Since
our asymptotic solution will have an error bound of O(N−2γ) any term of that order or lower is meaningless. In
addition, it is useful to observe the following facts for a further simplification.

ÃK(0) = AK(0), det[ÃK(0), Ã′K(0)] = det[AK(0),A′K(0)], (4.23)

B̃K(0) = BK(0), det[B̃K(0), B̃′K(0)] = det[BK(0),B′K(0)] +O(uK). (4.24)

7Note –once more– that Ψκ 6= ΨK when κ = K as for Rκ . However, we believe that this will not make any confusion since we are
now constructing a refinement of the previous setting.
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As a result we obtain (the first column of) Ψκ up to O(N−2γ) as follows.

Ψκ
∣∣
(1)

:=
(

1 +
G

z

)(
1 +

F

z

)
AKz

K (4.25)

' AKz
K +

uK det[AK ,AK(0)]
1 + uK det[AK(0),A′K(0)]

AK(0)zK−1 − `K−1 det[AK ,BK(0)]
1 + `K−1 det[B′K(0),BK(0)]

BK(0)zK−1 +O(N−2γ).

The second column is analogously given. In the last formula, when δ 6= ±1/2, the first term provides the leading
term, which becomes the strong asymptotics for OPs away from the outpost. Therefore, the strong asymptotics is
δ independent.

The subleading term is either from the second or the third term depending on the value of δ; to decide, we
must recall the scaling behaviors of uK ∼ Nγ(2δ−1) and `K−1 ∼ N−γ(2δ+1) (4.10).

At both δ = ±1/2, the leading strong asymptotics changes. At δ = 1/2, uK is no longer scaling with N and,
therefore, the second term also contributes to the leading asymptotic behavior.

ΨK+1/2

∣∣
(1)

= AKz
K +

uK det[AK ,AK(0)]
1 + uK det[AK(0),A′K(0)]

AK(0)zK−1 +O(N−2γ). (4.26)

One also observes that the number of roots at the outpost is still K as for −1/2 < δ < 1/2.
At δ = −1/2, `K−1 is the non-scaling parameter (see (4.10)) and, therefore, the third term contributes to the

leading asymptotic behavior.

ΨK−1/2

∣∣
(1)

= AKz
K − `K−1 det[AK ,BK(0)]

1 + `K−1 det[B′K(0),BK(0)]
zK−1BK(0)zK−1 +O(N−2γ). (4.27)

In this case the number of roots is K − 1; one less than what it is for −1/2 < δ < 1/2. The location of the missing
root can also be found using the above expression.

To summarize,

i) At half-integer κ, the number of roots at the outpost is given by the closest integer that is smaller than κ.

ii) At half-integer κ, the outer parametrix Ψκ cannot be obtained by approaching from either side of κ.

4.4 Roots at the outpost

So far, we have described the strong asymptotics away from the outpost. Now we turn our attention to the inside
of the disk D to look closely at the locations of the roots at the outpost. To this purpose, we evaluate ΨκRκ up
to O(N−2γ) using (4.17). It is a straightforward but long calculation if one tries to obtain the full asymptotics
up to O(N−2γ). Instead, here we will obtain only the leading term and the subleading term. (We write the full
asymptotics in Appendix C for reference.)

Looking at the first column of ΨκRκ one gets

(NγCγ0 )K ΨκRκ
∣∣
(1)

=
(
AK(0) +O(N−γ+2|δ|γ)

)
P

(ν)
K (ζ) (4.28)

−
(
BK(0) +O(N−γ+2|δ|γ)

)
Cγ0N

γ`K−1P
(ν)
K−1(ζ). (4.29)

Note that the above is the sum of two Freud’s OPs. One may object that, say for a positive δ, the second term is
within the error of the first term, and cannot contribute as a subleading term. (For a negative δ it is the first term
that provides the subleading correction.) A closer look shows however that both error terms are ζ-independent up
to O(N−γ) (which is not difficult to see from the general structure of the formula). So the error terms only change
the coefficients of the two polynomials up to O(N−γ).
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N -2 Γ ∆

Ζ

Figure 9: For δ > 0, a schematic plot of poly-
nomial at the outpost. The dashed line is the
plot of P (ν)

K (ζ). The deviation between the
two plots is of the order N−2γδ.

N -2 Γ È∆È

N 2 Γ È∆È

Ζ

Figure 10: For δ < 0, a schematic plot of poly-
nomial at the outpost. The dashed line is the
plot of P (ν)

K−1(ζ). One of the zeros is found
away from the rest. In the z̃-plane, however,
all the zeros converges to z̃ = 0.

From (4.28) we now identify the asymptotic locations of the
roots at the outpost. Let us first consider a positive δ. The roots
are determined by the zeros of P (ν)

K (ζ) at the leading order. Ac-
cording to the explicit value of [AK ,BK ] (3.25), the subleading
term N−2δγP

(ν)
K−1(ζ) contributes with a same sign as the leading

term.
Due to the well-known interlacing property of the OPs, this

means that all the roots are shifted from the zeros of P (ν)
K (ζ) by

the amounts that scale as N−2δγ in ζ-coordinate.
In the figure 9 we show a schematic view of OPs and the roots

where the real OP is shifted (to the left) from the leading asymp-
totics (Freud’s OP; dashed line) by O(N−2γδ).

For negative δ the leading asymptotics is now given by P (ν)
K−1(ζ)

and therefore we only see K − 1 roots to this order. Also from
the explicit value of [AK ,BK ], the subleading term N−2γ|δ|P

(ν)
K (ζ)

contributes with the same sign as the leading term, which means
that all the K − 1 roots shift to the right by O(N2δγ).

Most interestingly there appears another root (let us call it “the
stray root”) to the left of K − 1 roots, distanced by ∼ N2γ|δ|. As
in the schematic view (figure 10) the stray root scales differently
from all the other roots. Though this root escapes to infinity in the
ζ-coordinate, it is actually converging to z = 0, only much more
slowly than the other roots. It is also interesting to observe that,
from the direction of the stray root, it seems to come from the
main cut. The approximate location of the stray root is given by

ζstray ∼
C2Kγ

0

N2γδ

Bx(0)
Ax(0)

2iπ
ηK−1

. (4.30)

Finally let us consider the cases δ = ±1/2. For both cases we get an additional subleading term. As the
formulae are not particularly illuminating we present them in Appendix C.

4.5 Kernel at the outpost

Questions regarding universality hinge on the behavior of the kernel for the correlators [7] in the scaling coordinate
In general the kernel is defined by

Kn(z, z′) :=
1

hn−1

pn(z)pn−1(z′)− pn−1(z)pn(z′)
z − z′

=
1

2iπ
[Y −1(z′)Y (z)]21

z − z′
=

=
1

2iπ
[Ỹ −1(z′)Ỹ (z)]21

z − z′
e−

N
T (g(z)+g(z′)+`). (4.31)
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Using our asymptotics: Ỹ ' ΨκRκ , we evaluate the kernel in the local coordinate near the outpost

Kn(ζ, ζ ′) ' e−
N
T (g(z)+g(z′)+`)

2iπNγCγ0

det
[
ΨκRκ(ζ)

∣∣
(1)
,ΨκRκ(ζ ′)

∣∣
(1)

]
ζ − ζ ′

. (4.32)

' −e−
N
T (g(z)+g(z′)+`)

N2γκ(NC0)γ
P

(ν)
K (ζ)P (ν)

K−1(ζ ′)− P (ν)
K (ζ ′)P (ν)

K−1(ζ)
ηK−1(ζ − ζ ′)

(
1 +O(N−γ+2γ|δ|)

)
. (4.33)

Using the expression of ΨκRκ in the appendix we can in principle obtain the kernel up to O(N−2γ) accuracy. Here
we only show the leading term. The above approximation is valid for κ 6∈ N + 1

2 . This is exactly the kernel for
Freud’s OPs, as we expect from the previous sections.

At κ = K + 1/2 we obtain a different kernel at the leading order.

Kn(ζ ′, ζ) = −e−
N
T (g(z)+g(z′)+`)

N2γκ(NC0)γ

(
P

(ν)
K (ζ)P (ν)

K−1(ζ ′)− P (ν)
K (ζ ′)P (ν)

K−1(ζ)
ηK−1(ζ − ζ ′)

+
αK
ηK

PK(ζ ′)PK(ζ)

)(
1 +O(N−γ)

)
,

(4.34)
where the constant αK is given by

αK :=
uK det[AK(0),A′K(0)]

1 + uK det[AK(0),A′K(0)]
. (4.35)

At κ = K − 1/2 we obtain the following kernel at the leading order.

Kn(ζ ′, ζ) = −e−
N
T (g(z)+g(z′)+`)

N2γκ(NC0)γ

(
P

(ν)
K (ζ)P (ν)

K−1(ζ ′)− P (ν)
K (ζ ′)P (ν)

K−1(ζ)
ηK−1(ζ − ζ ′)

+
βK−1

ηK
PK−1(ζ ′)PK−1(ζ)

)(
1 +O(N−γ)

)
,

(4.36)
where the constant βK−1 is given by

βK−1 := − `K−1 det[B′K(0),BK(0)]
1 + `K−1 det[B′K(0),BK(0)]

. (4.37)

4.6 Some consistency checks

So far we have seen that the various asymptotic properties are drastically changed when κ is a half integer.
For κ = K + 1/2 there are two ways to construct the asymptotics; one can apply a suitable (Schlesinger type)
transformation starting from ΨK or from ΨK+1. In this section, the consistency of the two approaches will be
proved in a completely general setting; without referring to the explicit global parametrix.

When δ = 1/2, we can obtain the same error bound using only UK without LK−1

RK+1/2 := z̃−Kσ3UKHK . (4.38)

Correspondingly, the outer parametrix will then be written as

ΨK+1/2 :=
(

1 +
F

z

)
ΨK , (4.39)

where F has been explicitly solved for in (4.22).
The same state can be approached from K+ 1 by applying the “half-descending” transformation. In this spirit,

the local parametrix may be written as follows.

R
(new)
K+1/2 := z̃−(K+1)σ3LKHK+1. (4.40)
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Consistency means that R(new)
K+1/2 = RK+1/2, which is an elementary consequence of the relations (4.11) together

with the “factorization” (4.13). One realizes that uK`K = 1 is the key identity.
We can then find the corresponding outer parametrix Ψ(new)

K+1/2 by demanding analyticity on Ψ(new)
K+1/2R

(new)
K+1/2. To

prove the consistency of the outer parametrix we write

ΨK+1/2 :=

(
1 +

F̃

z

)
ΨK+1 =

(
1 +

F̃

z

)(
1 +

SK
z

)
ΨK , (4.41)

using the property of the Schlesinger transform.
Therefore, the proof of consistency amounts to the following identity:(

1 +
F

z

)
=

(
1 +

F̃

z

)(
1 +

SK
z

)
. (4.42)

To prove this, remember the following identity(
1 +

SK
z

)
[AK ,BK ] = [AK+1,BK+1]zσ3 . (4.43)

Here we do not use˜above A and B as we are dealing with a generic case. Then F and F̃ are defined by the
following conditions. (

1 +
F

z

)
[AK ,BK ]

[
1 uK/z
0 1

]
= O(1), (4.44)(

1 +
F̃

z

)
[AK+1,BK+1]

[
1 0

`K/z 1

]
= O(1). (4.45)

To prove (4.42) we only need to show that the following quantity is analytic.(
1 +

F̃

z

)(
1 +

SK
z

)
[AK ,BK ]

[
1 uK/z
0 1

]
= O(1)

[
1 0

−`K/z 1

]
zσ3

[
1 uK/z
0 1

]
. (4.46)

It is straightforward to see that the above does not have a pole (hence analytic), using the identity uK`K = 1.
This concludes that Ψ(new)

K+1/2 = ΨK+1/2, as it should.
Now let us look at the kernel obtained in the previous section. At κ = K + 1/2 the kernel has an additional

term to the usual kernel from OPs. To make sense of the additional term we recall the following general identity
for OPs.

Pn(ζ)Pn−1(ζ ′)− Pn(ζ ′)Pn−1(ζ)
ηn−1(ζ − ζ ′)

=
n−1∑
j=0

Pj(ζ)Pj(ζ ′)
ηj

. (4.47)

This tells us that the “raising operation” for the kernel is to add a term of the form ∝ Pn(ζ)Pn(ζ ′), which happens
to be the new term appearing in (4.34).

As the kernel at κ = K + 1/2 can be approached from either Kth kernel by adding αKPK(ζ)PK(ζ ′) or from
K + 1th kernel by adding βKPK(ζ)PK(ζ ′). The consistency of our result means the following identity.(

P
(ν)
K (ζ)P (ν)

K−1(ζ ′)− P (ν)
K (ζ ′)P (ν)

K−1(ζ)
ηK(ζ − ζ ′)

+
αK
ηK

PK(ζ ′)PK(ζ)

)
(4.48)

=

(
P

(ν)
K+1(ζ)P (ν)

K (ζ ′)− P (ν)
K+1(ζ ′)P (ν)

K (ζ)
ηK(ζ − ζ ′)

+
βK
ηK

PK(ζ ′)PK(ζ)

)
. (4.49)
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This is reduced to showing αK − βK = 1 which is easily obtained from the identity uK`K = 1 and

det[AK(0),A′K(0)] =
1

det[B′K+1(0),BK+1(0)]
, (4.50)

which follows from a direct computation using the Schlesinger transformation.
There remains only one very exceptional case to consider: indeed both formulæ in (4.22) may fail if the

denominator appearing there vanishes. This can happen since at κ = K ± 1
2 one of the parameters `, u does not

tend to zero.
However such unlucky situation does not occur with our construction in (3.25). A direct computation shows

that

det[B′K+1(0),BK+1(0)] = −i (b− a)2K+1(t20 − 1)4K+2

t0
6K+2r+642K+1

. (4.51)

Plugging into the denominator of (4.22) we have

1 + `
K

det[B′K+1(0),BK+1(0)] = 1 + 2iπ
C2γK−γ

0

η
K

det[B′K+1(0),BK+1(0)] (4.52)

Since ηK is the norm square of the monic Freud polynomial and given the sign of the imaginary part of (4.51), the
denominator is strictly positive.

4.7 Arbitrarily improved error bound

Here we explain how to construct the outer and the local parametrix that has arbitrary small error bound as one
wants to achieve. Though we will not explicitly carry out the evaluation of the corrections, the method already
yields quite interesting identities which are otherwise hard to see. The main idea is to generalize the Schlesinger
transformation to a higher order.

Remark 4.1 The general framework for arbitrary improvement of the error is not new and appeared in ([17], Sec.
7.2), based on the inversion of an operator close to the identity in terms of a Neumann (geometric) series. The
approach of [5] to the problem was indeed based on those ideas. In a certain sense our approach is a manipula-
tion whose “philosophical” meaning is the same as computing the terms of the above–mentioned Neumann series,
although the practical details may be different.

The Weyl function W (ζ) is defined by

W (ζ) :=
1

2πi

∫
dµ(ξ)
ξ − ζ

=: −N−2κγ
∞∑
j=1

µj
zj
. (4.53)

(Let us write z instead of the correct z̃ as we are not going to deal with the physical coordinate.) The measure was
given by dµ(ξ) = exp(−ξ2ν+2) dξ, but it can be general in the following discussion. {µj} are the set of numbers
defined by the expansion around z =∞. Note that they are also scaling with N as µj ∝ N2κγ−γj .

Then the matrix, [
1 N2κγW (ζ)
0 1

]
, (4.54)
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satisfies the jump condition (3.38) for the local parametrix. Since the jump property remains by any multiplication
to the left, we may multiply a matrix to get:

R̃R :=
[

1
∑R
j=1 µj/z

j

0 1

] [
1 N2κγW (ζ)
0 1

]
= 1 +O(N2κγ−γ(R+1)), z ∈ ∂D (4.55)

which can be made as close to the identity (on the boundary of the disk) as one wishes by increasing R. Especially
at R = 2K we get the most modest error bound N−γ+2γδ, which we obtained in (3.45).

The same error bound can be obtained in a different way, using the following property of the Weyl function
and the Padé approximation provided by the orthogonal polynomials associated to the measure dµ(ξ)

W (ζ) = −Qk(ζ)
Pk(ζ)

+O(ζ−2k−1), (4.56)

where
Qk(ζ) :=

1
2iπ

∫
Pk(ζ)− Pk(ξ)

ζ − ξ
dµ(ξ), (4.57)

is a polynomial of order k − 1.
Then the following matrix also has the same error bound as R̃2K .

R̂K :=
[

1 N2κγQK(ζ)/PK(ζ)
0 1

] [
1 N2κγW (ζ)
0 1

]
= 1 +O(N−γ+2γδ). (4.58)

Now let us find the corresponding outer parametrix. Here it is necessary that we start from Ψ0 which does not
have any pole at the outpost. Defining Ψ0 := [A0,B0] we propose the outer parametrix of the form:

Ψ̃R :=

1 +
R∑
j=1

Fj
zj

 [A0,B0]. (4.59)

For Ψ̃RR̃R to be analytic near z = 0 we demand1 +
R∑
j=1

Fj
zj

 [A0,B0]
[

1
∑R
j=1 µj/z

j

0 1

]
= O(1), (4.60)

which completely determines {Fj}. As shown in the appendix, they are given by the solution of a linear equation.
Now that we have explained the method to obtain an arbitrarily good error bound (on the boundary of the

disk around the outpost) let us deduce a few implications.
As we have seen already, the leading outer parametrix is given by the N–independent ΨK ; viceversa we have

just defined a set of N–dependent outer parametrices Ψ̃R for R ≥ 2K that should all converge to ΨK , i.e.

lim
N→∞

1 +
R∑
j=1

Fj
zj

Ψ0 = ΨK , R ≥ 2K. (4.61)

Remember that {Fj} are determined by (4.60).
Moreover, looking at (4.55), the local parametrix does not contribute to the first column of the full asymptotic

solution Ψ̃RR̃R since R̂K (or R̃R) are upper–triangular. Therefore, all the information about the asymptotics of
the orthogonal polynomials near the outpost in this setting is encoded directly in the outer parametrix itself (4.59).
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5 (New) Universality behavior

We can now examine the result we have obtained in the neighborhood of the outpost.
In particular we want to point out the behavior of zeroes of the the orthogonal polynomials pn(z) in this

particular scaling regime.

• The normalized counting measure of the zeroes {z(n)
1 , . . . , z

(n)
n } of pn(z)

νn(x) :=
1
n

n∑
k=1

δ(x− z(n)
1 ) (5.1)

converges in the sense of measures to the usual equilibrium measure, namely for any continuous function
f(x) ∈ C0(R) ∫

R
νn(x)f(x) =

1
n

n∑
k=1

f(z(n)
1 )→

∫
R
f(x)ρ(x) dx (5.2)

• The fine behavior of those zeroes is precisely that in the scaling s := (C0N)−γ(x − ξ0). For 0 ≤ δ ≤ 1/2
they are converging to the location of the zeroes {s(K)

1 , . . . , s
(K)
K } of the orthogonal polynomial of degree K

of the measure e−s
2ν+2

ds. In measure–theoretical terms, for any compactly supported continuous f(s)∫
nνn(x)f((C0N)γ(x− ξ0)) =

K∑
j=1

f(s(K)
j ). (5.3)

• For −1/2 < δ < 0 they are converging to the location of the zeroes {s(K−1)
1 , . . . , s

(K−1)
K−1 } of the orthogonal

polynomial of degree K − 1 of the measure e−s
2ν+2

ds. (There is also the unique ”stray zero” that scales as
xstray ∼ N−γ+2|δ|γsstray. However, the constant sstray is not universal.)

• the correlation functions are the same –in the same scaling- as for the random matrix model of size K

dµ(HK) := e−Tr(H2ν+2
K ) dHK (5.4)

In a certain picturesque sense, there is a “microscopical” matrix model in the macroscopic background.

• The kernel for the correlation functions Kn(x, x′) = pn(x)pn−1(x′)−pn−1(x)pn(x′)
hn−1(x−x′) can be computed from

Kn(x, x′) =
1

2iπ
[Y −1(x′)Y (x)]21

x− x′
(5.5)

and thus a direct computation gives the new universal kernel near the outpost (in the scaling coordinate):

Kn(ζ ′, ζ) = −e−
N
T (g(z)+g(z′)+`)

N2γκ(NC0)γ

(
P

(ν)
K (ζ)P (ν)

K−1(ζ ′)− P (ν)
K (ζ ′)P (ν)

K−1(ζ)
ηK−1(ζ − ζ ′)

)(
1 +O(N−γ+2γ|δ|)

)
, (5.6)

At δ = ±1/2 there appears a new term – P
(ν)
K (ζ ′)P (ν)

K (ζ) or P (ν)
K−1(ζ ′)P (ν)

K−1(ζ) depending on the sign –
appears.

24



As we see, rather surprisingly, a finite–size matrix model (of particular type) arises naturally as a scaling limit of
a general one.

To conclude we remark that using the same methods employed here it is possible to handle a similar multicritical
phenomenon where the “microscopic” matrix model has any polynomial exponential weight rather than the Freud
one. This requires, however, a more finely–tuned potential, namely we need to introduce a dependence on N into
V and T . Similar considerations, but leading to Freud weights as in the main body of the text, are contained in
Appendix A.

We postpone this analysis to a future publication.

A Double–scaling approach

In this section we explain why our simplified approach using the chemical potential is de facto equivalent to a more
refined double–scaling limit. In [6, 5] the deformation of the g–function was written in terms of the parameter T
by fine-tuning T − Tcr (Tcr being the critical total mass of the measure): in [6] a small dependence on V was also
introduced so that the critical point in the effective potential remains of the same order of vanishing, 2ν + 2. Here
we want to illustrate how our simplified approach can be related to those.

Suppose that V := Vε(x), T := Tε depend on an external parameter which we denote by ε in such a way that
there exist a (finite) disjoint union of bounded intervals J = tJk with endpoints smoothly depending on ε, a point
ξ0(ε) 6∈ J (also smoothly depending on ε and a real function h(x) with the properties

• h(x) is harmonic C \ J and continuous in C and at infinity h(x) ∼ ln |x|;

• 1
T V (x)− h(x) ≡ 0 for x ∈ J ;

• 1
T V (x) − h(x) = C(ε)(x − ξ0)2ν+2(1 +O(x − ξ0)) − f(ε), with f(ε) a smooth function in a neighborhood of
ε = 0 with R 3 f ′(0) 6= 0;

• other than the negative sign implied by the previous bullet-point in a neighborhood of ξ0 (for small ε) the
sign of V (x)− h(x) on R \ J is strictly positive (see Fig. 11).

• The sign of 1
T <V (z)− h(z) is negative on a left/right neighborhood of each component of J , and the size of

this neighborhood is uniform in ε for small ε’s.

In the above C > 0 may depend on ε as long as it is smooth and bounded away from 0, and all the Lan-
dau symbols should be uniform in ε. The function h here is nothing but the real part of the g–function (up
to addition of the Robin constant) and the last bullet-point is equivalent to saying that h is the logarithmic
energy of a positive measure supported on J (a consequence of Cauchy–Riemann equation for harmonic functions).
In this framework then we could repeat verbatim the analysis by fine–tuning ε via the implicit equation

f(ε) = 2κγ
lnN
N

(A.1)

This equation defines ε(N) (for suitably large N) since f(ε) has nonzero derivative at ε = 0 and hence invertible
near 0.

25



V

ϕ

T f (ε)

ν = 1

Figure 11: An example with ν = 1 and V of degree 6.
This is a numerically correct plot, although the axis are
scaled differently for V and ϕ.

All the construction would still apply verbatim with
the caveats that the turning points are (slowly) moving
in N and hence the outer parametrix, the local coor-
dinates ζ used to define the local parametrices (includ-
ing the one at the outpost ξ0) depend (smoothly and
slowly) on N8.

The situation is not dissimilar to the one in [18]
where an N–dependent g–function (with N–dependent
turning points) was employed. None of the analysis we
have carried out is significantly affected. In particu-
lar the local RHP for the parametrix at the outpost is
identical with the only understanding that the confor-
mal parameter ζ(z) depends on N but only through ε

and hence in a uniformly bounded way.
To convince the reader that the above list of require-

ments is not insanely restrictive we show how to con-
struct one such family of potentials V and total charges
T . For simplicity we restrict to a one–cut situation but
this is purely in the interest of conciseness. Methods similar to [13] could be used to construct a family for an
arbitrary number of cuts.

Suppose that V (x) is a (real) polynomial of even degree and that V0, T0 is a multicritical pair as the one used
in the main text. It is not difficult to show that we must have in general deg V ≥ 2ν + 4.

We now define a deformation depending on the parameter ε = T −Tcr. Here we have chosen for transparency
of exposition the deformation parameter as the deviation from the critical total charge, but in general it may be
an abstractly introduced parameter.

As explained for example in [13] we can write the (complex) effective potential ϕ0 as

ϕ0(z) =
∫ z

b0

M0(x)(x− ξ0)2ν+1
√

(x− a0)(x− b0), a0 < b0 < ξ0. (A.2)

where degM0 = deg V ′ − 2ν − 2 and it is determined by the (algebraic) equation

M0(z)(z − ξ0)2ν+1
√

(z − a0)(z − b0) = V ′0(z)− T0

z
+O(1/z2) . (A.3)

For simplicity in what follows we assume that the roots µj,0 of M0(z) are simple. It is clear that V0 cannot be a
totally arbitrary potential (a simple parameter counting confirms this).

The criticality condition amounts to∫ ξ0

b0

M0(x)(x− ξ0)2ν+1
√

(x− a0)(x− b0) = 0 (A.4)

which implies that M0(x) has an odd number of zeroes in (b, ξ0)9. Other than this (unless other critical phenomena
occur) M0(x) > 0 on [a, b] and M0(ξ0) > 0.

8By “smoothly and slowly” we mean that they are smooth functions of ε which –in turn– is of order lnN/N
9Since degM0 ≥ 1 the assertion on the minimal degree of V follows.
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Define now
P0(z) := M0(x)2(x− ξ0)4ν+2(x− a0)(x− b0) : (A.5)

we will define a first–order ODE for Pε with Cauchy data Pε|ε=0 = P0. Since we want to preserve the multiplicity
of the root at the outpost ξε we must have Ṗε = (z − ξε)4ν+1(1 + ...) and hence Ṗε must be at least a polynomial
of that order; moreover, since it should also preserve the square of Mε, it must be divisible by Mε. The simplest
choice is to take directly

Ṗε := A−1Mε(z)(z − ξ)4ν+1 . (A.6)

The constant A is determined by the requirement that res
∞

Ṗ
2
√
P

= Ṫ = 1, namely

res
z=∞

(z − ξ)2ν

2
√

(z − a)(z − b)
= A (A.7)

This determines A as a (rather cumbersome) polynomial in ξ, a, b: note that since we have chosen the deter-
mination of the squareroot that is positive on the real positive axis near ∞, then A < 0.

The potential Vε undergoes the evolution according to

Ṗε

2
√
Pε

= V̇ ′ε (z)− 1
z

+O(z−2). (A.8)

Hence the coefficients of Vε up to degree 2ν will necessarily depend on ε. Only for the simplest case of ν = 0 we
can keep the potential fixed.

The full ODE is thus either eq. (A.6) or –in terms of the position of the zeroes of P–

ξ̇ε = − Ṗ
(4ν+1)
ε (ξ)

(4ν + 2)P (4ν+2)
ε (ξ)

=
−A−1

(4ν + 2)M(ξ)(ξ − a)(ξ − b)
,

ȧ = − Ṗε(a)
P ′(a)

=
−A−1

M(a)(ξ − a)(a− b)
, ḃ = − Ṗε(b)

P ′(b)
=

−A−1

M(b)(ξ − b)(b− a)

µ̇j = − Ṗ ′ε(µj)
2P ′′(µj)

(A.9)

The theorem of existence for ODE guarantees that the above equation has solution for ε in a suitable interval
around ε = 0 (with P0 as IVP).

The only point we verify in addition is the claim about the behavior of the effective potential near the outpost
ξ; but this is an elementary application of Taylor theorem since (noting that ϕε(bε) ≡ 0)

ϕε(x) =

=:Tf(ε)︷ ︸︸ ︷∫ ξ

b

ϕ′ε(s) ds+
Mε(ξ)

√
(ξ − a)(ξ − b)
2ν + 2

(x− ξ)2ν+2(1 +O(x− ξ)) (A.10)

The derivative of f(ε) at ε = 0 is

ḟ(0) =
1
T0

∫ ξ0

b0

A(x− ξ0)2ν√
(x− a0)(x− b0)

dx < 0 (A.11)

This implies that for ε > 0 (T > Tcr = T0) the effective potential is negative in a small neighborhood of the
outpost ξ, with a minimum value that should be fine–tuned as detailed above.
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B Construction of the outer parametrix for arbitrary number of cuts

We only sketch the construction since the details would require a good deal of notation to be set up. We will use
the same notation and ideas contained in [12].

We denote by w double-cover of the z–plane branched at the endpoints of the support of the equilibrium measure

w2 :=
2g+2∏
j=1

(z − αj) (B.1)

This is a hyperelliptic algebraic curve of genus g. We denote by ∞± the two points above z = ∞ in the usual
compactification of the curve, and by p± the two points projecting to the location of the outpost10. We denote by
ωj the first–kind differentials normalized along the a–cycles: explicitly

ωj(z) = σj`
z`−1 dz
w

, (B.2)

where the summation over repeated indices is understood (and they range from 1 to g) and σj` is an invertible
matrix such that

∮
ak
ωj = δjk.

Using the standard notation for divisors on Riemann surfaces [19] we consider the unique (up to multiplicative
constant) sequence of spinors with the divisor properties

(ψ(0)
r ) ≥ −(r − 1)∞+ + r∞− +K(p+ − p−) , r ∈ Z (B.3)

ψ(0)?
r (p) := ψ(0)

r (p?) (B.4)

where p 7→ p? is the holomorphic involution of the hyperelliptic curve. The spinors (and their starred counterparts)
are also sections of the line bundles L,L−1 with character χ (χ−1 respectively) defined by

χ(γ) :=

 e2iπAj :=
j∏
`=1

eiNε` for γ = aj

e2iπBj := 1 for γ = bj .

εj :=
2
T

∫ α2j

α2j−1

ρ(x) dx = j-th filling fraction (B.5)

These are the generalization to arbitrary genus of the spinorial Baker–Akhiezer vector used earlier: the char-
acteristics ~A, ~B ∈ Cg are defined up to integers.

The matrix

Ψr,K :=
1√
dz

[
ψr,K(p) iψr,K(p?)

−iψ̃r−1,K(p) ψ̃r−1,K(p?)

] ∣∣∣∣
p=p−1(z)

(B.6)

solves the model RHP with quasi–permutation monodromies on the cuts and on the gaps (antidiagonal on the cuts,
diagonal on the cuts). Here p−1(z) is the point (z, w+(z)) where w+(z) is determination of w(z) that behaves like
zg+1 at infinity, analytically extended to the complex plane sliced along the support of the equilibrium measure
(i.e. the physical sheet).

The spinor
√

dz is defined on the double cover of the hyperelliptic curve (it has
√

branch-behavior at the
Weierstrass points in terms of the local parameter

√
z − αj , hence has singularities of type 4

√
z − α when thought

of as a spinor on the plane).
10The point ∞+ is characterized by w > 0 as z ∈ R+ near ∞. The point p+ is the point on the Riemann surface of w obtained by

analytic continuation of w on the complex plane slit along (α2j−1, α2j)
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z0

ag

b1
α1

α2

α3

α4 α2g+2

α2g+1

a1

a2

The first column has a zero of order K
at z(p+) = ξ0 (the outpost) and the sec-
ond column a pole of order (at most) K: at
infinity it behaves as zrσ3 (up to left multi-
plicative constants).

The expression in terms of Θ functions
is

ϕr,K :=
Θr

∆
(p−∞−)ΘK

∆
(p− p+)Θ

[
A
0

]
(p+ r∞− − (r + 1)∞+ +K(p+ − p−))

Θr+1
∆

(p−∞+)ΘK
∆

(p− p−)
h∆(p)√

dz
(B.7)

ψr =
ϕr,K(p)
Cr,K

, ψ̃r =
ϕr,K(p)

C̃r,K
(B.8)

Cr,K = lim
p→∞+

ϕr,K

zr
√

dz
, C̃r,K = lim

p→∞−

ϕr,K

zr
√

dz
(B.9)

h∆ :=

√√√√ g∑
j=1

∂zjΘ∆(0)ωj (B.10)

The notation (rather standard) is lifted from [12] and [20]: the Abel map is understood when writing points as
arguments of Θ and it is based at one of the Weierstrass points (for example α1) ∆ is an arbitrary odd non-singular
half-period. Recall that (pag. 23 of [20]) all such characteristics ∆ are in one-to-one correspondence with partitions
of the Weierstrass points into g−1 and g+ 3 points {αk1 , . . . , αkg−1}t{αk1

, . . . , αkg+3
} It is to be noted that (pag.

23 of [20])

h∆(p)√
dz

=
√
−∂`Θ∆(0)σ`g

4

√∏g−1
`=1 (z − αk`)

4

√∏g+3
`=1 (z − αk`)

(B.11)

and that
Θ
[
A
0

]
(p+ r∞− − (r + 1)∞+ +K(p+ − p−))h∆(p)

Θ∆(p−∞+)
√

dz
=

F (z)
4

√∏2g+2
j=1 (z − αj)

(B.12)

where F (z) is an analytic function with jump discontinuities on the cuts11 and it is independent of the choice of
∆, it is bounded in the finite region of the z–plane and growing like z

g+1
2 at infinity. Moreover, straightforward

computations show that (with some overall ambiguity of signs)

Θ∆(p−∞±) ∼
p→∞±

∓1
z
∂`Θ∆(0)σ`g (B.13)

h∆(p)
Θ∆(p−∞±)

√
dz
−→
p→∞±

(∓∂`Θ∆(0)σ`g)
− 1

2 (B.14)

CK,r =
Θr

∆
(∞+ −∞−)ΘK

∆(∞+ − p+)Θ
[
A
0

]
(r(∞− −∞+) +K(p+ − p−))

(−∂`Θ∆σ`g)r+
1
2 ΘK

∆(∞+ − p−)
(B.15)

C̃K,r =
(∂`Θ∆σ`g)

r+ 1
2 ΘK

∆(∞− − p+)Θ
[
A
0

]
((r + 1)(∞− −∞+) +K(p+ − p−))

Θr+1
∆

(∞− −∞+)ΘK
∆(∞− − p−)

(B.16)

11 Of course this is a bit vague description since we should first stipulate how the fourth-roots have been defined.
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The constant Cr,K is simply the normalization so that ψr behaves as zr at ∞+ while C̃r,K is chosen so that
ψ̃r(p?) behaves as z−r−1 at ∞+.

Remark B.1 The fact that these formal expression do not vanish identically follows from the fact that

Θ
[
A
0

]
(r(∞− −∞+) +K(p+ − p−)) 6= 0 (B.17)

for arbitrary A ∈ Rg, as these correspond to positive divisors of degree g with g points in the gaps. This is proved
in a more general setting in [Prop. 6.3, pag. 111 of [20]]. Of course for K = 0 = r the nonvanishing of this
expression is precisely the same that appears in [2] although maybe not clearly stated.

From a point of view of isomonodromic theory, the above theta function is intimately related to the isomon-
odromic tau function [21], whose vanishing determines the (non)solvability of a Riemann–Hilbert problem. In this
example the RHP is the model problem for the OPs. If the spectral curve had no real-structure then in general it
could happen that for exceptional values the problem does not admit a solution (see [12])

We conclude this section with a few important remarks and shortcomings of these formulas

• the construction of the improved parametrix in Sect. 4 did not use the specific form of the outer parametrix
but just the jet-expansion near the outpost, thus it applies verbatim to the general case, with the proviso of
the next point;

• the description of the behavior of the roots at the outpost remains generically valid in this case: however the
direction of approach of the stray zero (in eq. (4.30)) depends on the actual sign of the expressions involved,
hence in this general case it cannot be easily identified12;

• for the Stokes’ values κ ∈ Z+ 1
2 there is the potential for the denominators of formulæ (4.22) to vanish under

exceptional circumstances (i.e. for special spectral curves and special values of K). This would make the
approximation (4.25) unbounded in N and hence invalidate it. For the one–cut case as in the main text it was
rather simple to directly verify that the determinants in (4.22) have a suitable sign so that the denominators
are bounded away from zero, but for the case of multi-cut solutions a similar computation requires a deep
manipulation of Θ functions and we could not determine a similar property. We suspect that such property
should hold here too on account of the reality conditions of the cuts and the Jacobian of the spectral curve.

C Asymptotics: long results

We write the full asymptotics for the first column of Ỹ up to O(N−2γ).

(NγCγ0 )K ΨκRκ
∣∣
(1)

(C.1)

= P
(ν)
K (ζ)

(
ÃK +

uK det[ÃK , ÃK(0)]

1 + uK det[ÃK(0), Ã′K(0)]

ÃK(0)
z

− `K−1 det[ÃK , B̃K(0)]

1 + `K−1 det[B̃′K(0), B̃K(0)]

B̃K(0)
z

+
`K−1

z
B̃K

)
12 Nor it should be expected to always come from one side. On a heuristic level, the stray zero should come from the “closest”

spectral band, and hence it depends on the location of the outpost.
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+P (ν)
K (ζ)

(
`K−1

z̃
− `K−1

z

)(
B̃K −

`K−1 det[B̃K , B̃K(0)]

1 + `K−1 det[B̃′K(0), B̃K(0)]

B̃K(0)
z

)

−`K−1N
γCγ0P

(ν)
K−1(ζ)

(
B̃K +

uK det[B̃K , B̃K(0)]

1 + uK det[ÃK(0), Ã′K(0)]

ÃK(0)
z

− `K−1 det[B̃K , B̃K(0)]

1 + `K−1 det[B̃′K(0), B̃K(0)]

B̃K(0)
z

+
uK
z

ÃK

)
+O(N−2γ).

At half integer κ we have the following leading and the subleading behavior.

(NγCγ0 )K ΨκRκ
∣∣
(1)
' AK(0)

1 + uK det[AK(0),A′K(0)]
P

(ν)
K (ζ) (C.2)

−`K−1C
γ
0N

γ

(
BK(0) +

uK det[B′K(0),BK(0)]
1 + uK det[AK(0),A′K(0)]

AK(0) + uKA′K(0)
)
P

(ν)
K−1(ζ)

+
(

A′K(0) +
uK det[ 1

2A′′K(0),AK(0)]
1 + uK det[AK(0),A′K(0)]

AK(0)
)
ζP

(ν)
K (ζ)

Cγ0N
γ

+O(N−γ),

(NγCγ0 )K ΨκRκ
∣∣
(1)
' − `K−1C

γ
0N

γBK(0)
1 + `K−1 det[B′K(0),BK(0)]

P
(ν)
K−1(ζ)(

AK(0) + `K−1B′K(0)− `K−1
det[A′K(0),BK(0)]− [z/z̃]1
1 + `K−1 det[B′K(0),BK(0)]

BK(0)
)
P

(ν)
K (ζ)

−`K−1

(
B′K(0)− `K−1 det[B′′K(0),BK(0)]

1 + `K−1 det[B′K(0),BK(0)]
BK(0)

)
P

(ν)
K−1(ζ)ζ +O(N−γ).

for κ = K + 1/2 and κ = K − 1/2, respectively.
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