
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9979  | https://doi.org/10.1038/s41598-021-89034-5

www.nature.com/scientificreports

First comprehensive quantification 
of annual land use/cover from 1990 
to 2020 across mainland Vietnam
Duong Cao Phan1,2*, Ta Hoang Trung3, Van Thinh Truong4, Taiga Sasagawa1, 
Thuy Phuong Thi Vu5, Dieu Tien Bui6, Masato Hayashi7, Takeo Tadono7 & 
Kenlo Nishida Nasahara8

Extensive studies have highlighted a need for frequently consistent land cover information for 
interdisciplinary studies. This paper proposes a comprehensive framework for the automatic 
production of the first Vietnam-wide annual land use/land cover (LULC) data sets (VLUCDs) from 
1990 to 2020, using available remotely sensed and inventory data. Classification accuracies ranged 
from 85.7 ± 1.3 to 92.0 ± 1.2% with the primary dominant LULC and 77.6 ± 1.2% to 84.7 ± 1.1% 
with the secondary dominant LULC. This confirmed the potential of the proposed framework for 
systematically long-term monitoring LULC in Vietnam. Results reveal that despite slight recoveries 
in 2000 and 2010, the net loss of forests (19,940  km2) mainly transformed to croplands over 30 years. 
Meanwhile, productive croplands were converted to urban areas, which increased approximately 
ten times. A threefold increase in aquaculture was a major driver of the wetland loss (1914  km2). The 
spatial–temporal changes varied, but the most dynamic regions were the western north, the southern 
centre, and the south. These findings can provide evidence-based information on formulating and 
implementing coherent land management policies. The explicitly spatio-temporal VLUCDs can be 
benchmarks for global LULC validation, and utilized for a variety of applications in the research of 
environmental changes towards the Sustainable Development Goals.

Information about land use/land cover (LULC) and its dynamic changes are fundamental to a variety of studies 
on environmental  issues1 such as climate  change2, drought and  �ood3, and carbon  emissions4. �at is, frequently 
updated accurate LULC products provide policymakers with a profound understanding of the complex interplay 
between land use/cover change (LUCC) and its risk, which helps to inform coherent policies for the sustainable 
management of land  resources5–7.

�e ready availability of remote sensing data and computing technologies opens a great era in cost-e�ective 
mapping LULC at a broad scale. Numerous algorithms have been developed to improve LULC classi�cation, e.g. 
Spatial Temporal Adaptive  Algorithm8, Automatic Land Cover Classi�cation  Method9, and Apply Change-vector 
Analysis in Posterior Probability  Space10. Together with the development of these complex algorithms, special 
projects have been designed for large-scale land cover assessment. For example, at the 10-m spatial resolution, 
several attempts have been made to publish 13-category LULC maps of  Europe11,12 and global LULC  maps13 
using a great set of Sentinel MSI images. For a coarser spatial resolution (30 m), there are quality multi-category 
LULC products, including the National Databases of the United  States14–17, and the GlobeLand30 global product 
of 10-category  LULC18. Nonetheless, owing to the computational restriction and the limitations of representa-
tive reference data to train and test classi�ers, these products have not re�ected consistently and frequently the 
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detailed patterns and characteristics of LULC at local or national  scales19,20. Also, due to the prede�ned research 
periods and di�erences in the land cover classi�cation systems (LCCSs), these products seldom meet the prime 
requirement of projects’ speci�c objectives.

Recently, a remarkable performance in cloud computing has advanced LULC observation sciences. For 
example, the National Aeronautics and Space Administration Earth Exchange (NASA-NEX) and Amazon Web 
Service (AWS) allow analysts to access and process the NASA Earth Observation (EO) data on the  cloud21. More 
importantly, Google Earth Engine (GEE) provides an outstanding cloud computing platform with open access to 
a variety of EO data. �anks to the potential of big data processing of these platforms, researchers have completed 
extensive studies at greater extent, for example, on urban change  monitoring22, cultivated land  mapping23, and 
forest disturbance  detection24. Multi-category land cover products were also produced such as a 13-category 
land cover map of South-east Asia covering 11  nations25. Although the overall accuracy of such products reaches 
up to 86%, the authors identify limitations regarding the insu�ciency of high-quality reference data for time-
series  analyses26. �erefore, very few studies have conducted for multi-temporal LULC mapping at a broad scale.

�e quantity and quality of training data play an essential role in the production of LULC maps. Yet, collecting 
su�cient and precise training data requires considerable e�orts, especially at large scales and multiple  periods27. 
Several attempts have been proposed methods that allow to collect cost-e�ectively high-quality training data. 
Bagan et al. (2019) extracted training data from a previous land cover map and utilized them for mapping new 
LULC  products28. While the authors applied a bi-temporal spectral measurement to decrease the bias of extracted 
training data, the accuracy of these data may not be ensured due to the inherent classi�cation errors of the previ-
ous  maps29. To enhance the e�ectiveness of training data collection, Huang et al. (2020) used spectral similarity 
and distance indicators to detect the changed and unchanged training sites, and thus kept the unchanged ones 
as migrated training  data27. �e measurement was applied for the availability of Landsat TM images. Results 
showed that the accuracies of the migrated training data obtained over 92.98% and the classi�cation map which 
used the migrated training data had a similar overall accuracy of 71.42% to that used ground-truth data in 
2010. Nevertheless, these results were validated by outdated maps, namely the ESA global CCI land cover data 
sets, which may contain inherent classi�cation errors. In addition, using the Sentinel MSI images, Ghorbanian 
et al. (2020) employed the same approach to migrate Iran-wide training data from 2017 to  201926. �e classi�ed 
map that utilized the migrated training data obtained a great accuracy of 91.35%. Despite the potential of the 
automatic training migration method, it is still not known whether this method can be applied for multi-sensor 
data sources such as the di�erent Landsat sensors or the harmonized Landsat and Sentinel  images27. �erefore, 
an exploration of the potential training migration method for multi-sensor remote sensing data is integral for a 
time-series assessment of multi-category LULC dynamics at a large scale.

Given the ideas, this research aim is to explore the potential training migration method for multi-sensor 
remote sensing data and then produce the �rst Vietnam-wide annual land use/cover data sets (VLUCDs) from 
1990 to 2020 as a case study. In Vietnam, remotely sensed data have been utilized to produced quality LULC 
products, but most products cover a small area of the country or a few prede�ned  periods30–32. �e previous 
inter-provincial LULC data sets were seven-category LULC maps for the central and southern Vietnam in 2007 
and 2017, and the northern Vietnam in 2007 and  201520. More recently, Vietnam-wide maps were produced 
to map annual forest cover from 2015 to  201919,33. Despite the potential of these products, due to the primary 
focus on forest monitoring, the classi�cation accuracy of non-forest LULC categories may be insu�cient for 
other applications. Meanwhile, there has been a highly dynamic LUCC which varies among di�erent regions 
in Vietnam. Despite the report of continuous net forest gain by the Ministry of Agricultural and Rural Devel-
opment (MARD)34, a systematically comprehensive review has reported forest loss in  Vietnam35,36. We do not 
know exactly the rates and patterns of changes at the nation scale. Hence, timely, accurate, and comprehensive 
LULC products can provide a profound understanding of LUCC patterns and processes. �is information can 
supports policymakers in forming crucial decisions on sustainable development and resource management. �e 
maps may be benchmarks for quantifying regional and global land cover products.

�e central novelty of this paper is to propose a new framework for the automatic nationwide annual LULC 
monitoring and provide the results of the �rst VLUCDs and LUCC over the recent three decades. �ere are major 
tasks: (1) Data preparation; (2) Design a proper LCCS and reference data; (2) Proposing a consistent framework 
for the automatic production of the VLUCDs; (3) Creating and validating the VLUCDs, and; (4) Detecting 
profound changes in LULC since 1990. We developed a new random-forest-based classi�cation approach to 
classify the wide availability of Landsat �ematic Mapper (TM), Enhanced �ematic Mapper Plus (ETM+) and 
Operational Land Imager (OLI), and Sentinel C-band Synthetic Aperture Radar Ground Range Detected (SAR 
GRD) and MultiSpectral Instrument (MSI) time-series images over the study period. We describe fully our 
implementation in the method section.

Results
The accuracy of the first VLUCDs. Utilizing ground-based data and all the freely available remotely 
sensed images, we have provided a coherent method and the results of the �rst VLUCDs. �e proposed method 
generated consistently spatio-temporal LULC maps, using a de�nitive LCCS designed with reference to end-
users’ recommendations and a standard  LCCS37. For a visual presentation, level-1 VLUCDs of the year 1990 and 
2020 are presented in Fig. 1. �e 5-year-interval maps (1990, 1995, 2000, 2005, 2010, 2015, and 2020) of level-2 
VLUCDs are presented in Fig. 2. �e level-1 and level-2 VLUCDs included ten categories of primary dominant 
land use/cover (PDLC) and eighteen categories of secondary dominant land use/cover (SDLC), respectively (see 
detail in Supplementary Table S1).

�e reliability of the VLUCDs was evaluated by using both visual interpretations and statistical approaches. 
Based on high-resolution satellite images in Google Earth, we found that the VLUCDs were clear and noise-free. 
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A confusion matrix method with strati�ed random sampling (1050 points/LULC category) was utilized to inde-
pendently validate classi�cation accuracy. Statistical metrics were measured, namely producer accuracy (PA), 
user accuracy (UA), F1 score, overall accuracy (OA), standard error (SE), and kappa coe�cient (KC). �ese 
metrics of the level-1 and level-2 LULC maps of the year 2020 are fully described in Tables 1 and 2. Meanwhile, 
overall obtained OA, KC, and uncertainty of the level-1 and level-2 VLUCDs are presented brie�y in Figs. 3 and 
4. Uncertainty of measurement was estimated with a 95% con�dence interval. Speci�cally, the OA of the level-1 
and level-2 LULC maps ranged from 77.6 ± 1.2% to 84.7 ± 1.1%, and 85.7 ± 1.3% to 92.0 ± 1.2% over the study 
period, respectively.

With the numerous LULC types and long-term observation, these results constituted an outstanding 
 achievement38. For the detailed LULC products (Level 2), open water and mangrove had the highest levels of 
accuracy, accounting for over 96% in both the PA and UA. �is successful classi�cation may be explained by the 
bene�ts of spectral indices (Table 4) such as the NDWI, WRI, and NDPI, which could distinguish open water 
from land, aquaculture ponds, and others, whereas mangrove can be accurately identi�ed with the  MVI39. �is 
was followed by rice paddies, which had an accuracy of above 90%. It seems possibly that rice is frequently cul-
tivated in �at terrain, where is not be a�ected by topographic problems such as the shadows of mountainsides. 
�e spectral re�ectance of rice is also  stable40. Although the model could separate forests from others, it tended 
to misclassifying di�erent forests. Another limitation is to classify plantation forests from woody crops, which is 
also found by numerous  studies41,42. Likewise, the model could not entirely divide the di�erent types of residential 
areas, but it showed a clear separation of the residential areas from others. To increase the accuracy of the maps 
for further analyses, we combined these mixed categories. �is combination obtained an increase in accuracy 
of approximately 6% with a few losses of detail in LULC types.

Distribution and trend of LUCC . Change detection was conducted to comprehend LUCC patterns and 
processes. To this end, the level-1 (PDLC) Vietnam-wide annual LULC data sets (L1-VLUCDs) was utilized for 
further analysis in this study. Although the annual maps are integral to obtain the process of LULC dynamic 
changes in Vietnam, the �ve-year-interval land cover products in 1990, 1995, 2000, 2005, 2010, 2015, and 
2020 were utilized to acquire a more profound change visualization. A post-classi�cation analysis method was 
employed to measure the spatio-temporal LUCC and the percentage of changes.

�e spatial distributions and the patterns of Vietnam LULC are shown in Fig. 1. �e temporal distribution 
of the net changes in LULC from 1990 to 2020 is presented in Fig. 5. �e most dominant LULC was forests, 
accounting for approximately half area of the entire country. �is was followed by croplands (16.3%), rice �elds 
(14.2%), and open water (including parts of saltwater, 8.1%). Grassland and scrubland occupied a relatively 
similar proportion (2.8%) while the smallest LULC was residential areas (1.3%).

Figure 1.  (a, b) show the level-1 Vietnam-wide LULC maps in 1990 and 2020 produced from a fusion of 
Landsat TM, ETM + and OLI, and Sentinel SAR GRD and MSI images with the random-forest-based algorithm. 
(c) presents a spatial–temporal dynamic change in LULC from 1990 to 2020 in Vietnam. �is �gure is generated 
using QGIS 3.18.0-Zurich (https:// qgis. org/ en/ site/) while the country boundary is extracted from the GADM 
(https:// gadm. org/ about. html).

https://qgis.org/en/site/
https://gadm.org/about.html
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Figure 2.  �e level-2 Vietnam-wide LULC maps in 1990, 1995, 2000, 2005, 2010, 2015 and 2020 produced 
from a fusion of Landsat TM, ETM + and OLI, and Sentinel SAR GRD and MSI images with the random-forest-
based algorithm. �is �gure is generated using QGIS 3.18.0-Zurich (https:// qgis. org/ en/ site/) while the country 
boundary is extracted from the GADM (https:// gadm. org/ about. html).

https://qgis.org/en/site/
https://gadm.org/about.html
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What can be clearly seen in Fig. 5 is the steady decline of forest area from 170,458  km2 in 1990 to 150,517  km2 
in 2020. �e area of wetlands experienced a slight increase from 4404  km2 in 1900 to 5138  km2 in 1995, followed 
by a continual decrease to 2490  km2 in 2020. In contrast, there was a sharp increase in the area of aquaculture 
and residential land, accounting for approximately three and ten times over the three decades. �e area of open 
water showed a slight rise while there was a small �uctuation in the area of the other land types.

Meanwhile, Fig. 6 reveals the highly dynamic change in LULC in Vietnam. �e most considerable change 
was the area of urban land, which increased by about 50% over each �ve-year interval. Interestingly, the graph 
shows substantially opposite trends between aquaculture and wetlands. �e area of aquaculture decreased 8% 
whereas the wetlands expanded 17% from 1990 to 1995, followed by a 50% increase in aquaculture but a 22% 
decrease in wetlands by 2000. Forest cover had undergone an up-and-down variation by 2015, but it has presented 
a remarkable drop until now. It is noticed that the percentage of change in the forest cover was insigni�cant, but 
its dynamic areas were remarkable (Fig. 7).

Major spatio-temporal LULC dynamics. Vietnam’s LULC has experienced a considerable change over 
the past 30 years. Figure 1c shows the spatio-temporal dynamic changes. �e north and south were the most 
dynamic areas, especially the western north and the most south. �e dynamic conversions among di�erent 
LULC can be seen in Fig. 7. �ere was a fundamentally dynamic conversion between forests and croplands. 
Forest areas remarkably reduced while residential and aquaculture land signi�cantly increased. To easily visu-
alize the LULC transformation, we created additional data in Fig. 8. It is noticed that a considerable propor-
tion of forests was converted into croplands while a major driver of wetland loss resulted in the expansion of 
aquaculture. Residential lands mainly expanded on the areas of rice, croplands, and barren lands, which are 
located nearby coastlines. To acquire a more detailed visualization of change patterns, few hotspot regions were 
extracted throughout the country to discuss the change pattern and processes.

Discussion
Large-scale annual LULC information is integral for understanding the land dynamic process, thus supporting 
the strategies of land management. In reviewing the literature, little consistent multi-spatio-temporal LULC data 
was found on a national or regional scale. In this study, a comprehensive framework is developed to produce 
consistently Vietnam-wide annual LULC data sets, using remote sensing and ground-based data. Results show 
that surface re�ectance images can provide a coherent time-series data set as long as they are atmospherically 
corrected. Surprisingly, although all available Landsat images of the entire year are utilized, there are data gaps 
due to cloud and shadow masking areas. �ese gaps might a�ect the accuracy of classi�ed maps even though gaps 
have been �lled by ancillary data such as terrain indices. �is issue may be explained by the fact that Vietnam is 
one of the cloudiest countries in the  world43. However, the harmonious blend of Landsat OLI, Sentinel SAR GRD 
and MSI has �lled such missing-data gaps since 2015, which can also improve the accuracy of mapping (Figs. 3, 
4). Besides, the training migration model signi�cantly reduced the cost and e�orts in collecting training data.

Regarding change patterns, the rapid development of urbanization is considered an essential interest in Viet-
nam. �e expansion of urban areas has frequently occurred in the capital and regional capitals, namely Hanoi, 
Hai Phong, Da Nang, Ho Chi Minh (HCM), and Can �o cities. Herein, we analyse the process of change in 

Table 1.  Confusion matrix of the 2020 Vietnam-wide land use/cover map (Level 1) created from the 
integration of Landsat OLI, Sentinel SAR GRD and MSI satellite images with the random-forest-based 
algorithm. PA: Producer accuracy (%); PA: Producer accuracy (%); UA: User accuracy (%); SEM: Standard 
error of the mean for UA; F1: F1 score; Overall accuracy: 91.6%, and Kappa coe�cient: 90.7 (%). RL: 
Residence; RP: Rice paddies; CL: Cropland; GL: Grassland; BL: Barren land; SL: Scrubland; FL: Forest land; 
WL: Wetland; OW: Open water; AC: Aquaculture.

Land cover map

RL RP CL GL BL SL FL WL OW AC

Reference data

RL 988 3 21 1 6 4 0 2 0 2

RP 1 988 26 1 4 1 8 0 0 1

CL 27 18 772 1 28 38 17 1 0 0

GL 1 15 57 990 15 8 64 0 0 0

BL 25 8 14 44 980 11 11 0 0 1

SL 0 4 23 13 17 986 44 1 0 3

FL 1 2 14 0 0 2 853 0 0 0

WL 3 2 119 0 0 0 53 1040 0 44

OW 0 3 0 0 0 0 0 1 1031 4

AC 4 7 4 0 0 0 0 5 19 995

PA 96.2 95.9 85.6 86.1 89.6 90.4 97.8 82.5 99.2 96.2

UA 94.1 94.1 73.5 94.3 93.3 93.9 81.2 99.0 98.2 94.8

SEM 0.7 0.7 1.4 0.7 0.8 0.7 1.2 0.3 0.4 0.7

F1 0.95 0.95 0.79 0.90 0.91 0.92 0.89 0.90 0.99 0.96
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Table 2.  Confusion matrix of the 2020 Vietnam-wide LULC map (Level 2) created from the integration of 
Landsat OLI, and Sentinel SAR GRD and MSI satellite images with the random-forest-based algorithm. PA: 
Producer accuracy (%); UA: User accuracy (%); SEM: Standard error of the mean for UA; F1: F1 score; Overall 
accuracy: 84.7%, and Kappa coe�cient: 83.8 (%). R1: Residence 1; R2: Residence 2; RP: Rice paddies; WC: 
Woody crops; OC: Other crops; IC: In-house crops; GL: Grassland; BL: Barren land; SL: Scrubland; DBF: 
Deciduous broadleaf forest; EBR: Evergreen broadleaf forest; ENF: Evergreen needleleaf forest; PL: Plantation 
land; MF: Mangrove forest; IW: Inland wetland; OW: Open water; AC: Aquaculture; BA: Bamboo areas.

Land cover map

R1 R2 RP WC OC IC GL BL SL

Reference data

R1 804 137 3 0 10 0 2 6 1

R2 212 848 4 17 12 3 1 7 8

RP 0 1 932 5 27 1 3 5 0

WC 0 2 12 674 45 0 6 3 6

OC 0 2 27 26 801 2 1 5 11

IC 15 34 9 15 26 1044 0 26 84

GL 0 0 14 39 45 0 975 17 9

BL 16 14 11 8 12 0 40 960 10

SL 0 1 3 13 8 0 17 16 898

DBF 1 0 1 21 5 0 0 2 17

EBF 0 0 1 8 1 0 2 1 1

ENF 0 0 0 37 0 0 0 0 5

PL 0 0 12 12 16 0 1 1 0

MF 0 6 2 7 2 0 0 1 0

IW 0 3 7 160 35 0 0 0 0

OW 1 0 2 0 0 0 0 0 0

AC 1 2 10 0 3 0 0 0 0

BA 0 0 0 8 2 0 2 0 0

PA 83.2 76.1 95.0 84.6 89.4 82.9 83.4 88.2 88.4

UA 76.6 80.8 88.8 64.2 76.3 99.4 92.9 91.4 85.5

SEM 1.3 1.2 1.0 1.5 1.3 0.2 0.8 0.9 1.1

F1 0.80 0.78 0.92 0.73 0.82 0.90 0.88 0.90 0.87

Land cover map

DBF EBF ENF PL MF IW OW AC BA

Reference data

R1 0 0 0 0 0 0 0 3 0

R2 0 0 0 0 0 2 0 1 0

RP 2 0 0 5 0 0 0 0 0

WC 5 7 0 35 2 0 0 0 0

OC 3 2 0 15 0 1 0 0 0

IC 6 0 0 0 0 0 0 0 0

GL 2 24 0 43 0 0 0 0 1

BL 6 1 0 5 0 0 1 4 0

SL 33 12 0 13 0 0 0 2 0

DBF 980 30 4 35 0 0 0 0 0

EBF 2 355 1 41 0 0 0 0 6

ENF 9 202 1045 19 0 0 0 0 0

PL 2 39 0 603 2 3 0 0 0

MF 0 2 0 17 1036 1 1 3 0

IW 0 0 0 100 2 1042 0 95 0

OW 0 0 0 0 1 0 1028 3 0

AC 0 0 0 0 6 1 20 939 0

BA 0 376 0 119 1 0 0 0 1043

PA 89.4 84.7 79.3 87.3 96.1 72.2 99.3 95.6 67.2

UA 93.3 33.8 99.5 57.4 98.7 99.2 97.9 89.4 99.3

SEM 0.8 1.5 0.2 1.5 0.4 0.3 0.4 0.9 0.3

F1 0.91 0.48 0.88 0.69 0.97 0.84 0.99 0.92 0.80
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HCM as a typical example. As shown in Fig. 9a, the growth of urban land has remarkably increased since the 
1990s. �is may be explained by the fact that the introduction of new policies known as “Renovation” (1986), 
which has promoted the development of socio-economic factors, followed by a massive population migration 
to  cities44. �e urbanization has primarily taken place on croplands, which agrees with the �ndings of previ-
ous  studies30,44–46. �e development is predicted to accelerate over developing regions, which causes the loss of 
croplands, and thus may threaten sustainability and  livelihoods45.

Another considerable change is the uncontrolled development of agricultural and aquaculture land, espe-
cially in the Vietnamese Mekong Delta (VMD). As part of the third-largest basin in the world, the VMD plays 

Figure 3.  �e overall accuracy (OA) and kappa coe�cient (KC) of the level-1 Vietnam-wide annual LULC 
maps produced from the all freely available Landsat TM, ETM + and OLI, and Sentinel SAR GRD and MSI 
images with the random-forest-based algorithm. �e OA and KC are obtained by using a confusion matrix 
and a strati�ed validation method with independent samples (1050 points/LULC category). �e bars indicate 
uncertainties of OA measured with a 95% con�dence interval.

Figure 4.  �e overall accuracy (OA) and kappa coe�cient (KC) of the level-2 Vietnam-wide annual land use/
cover maps produced from all the freely available Landsat TM, ETM + and OLI, and Sentinel SAR GRD and 
MSI images with the random-forest-based algorithm. �e OA and KC are obtained by using a confusion matrix 
and a strati�ed validation method with independent samples (1050 points/LULC category). �e bars indicate 
uncertainties of OA measured with a 95% con�dence interval.
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an integral role in the contribution of agricultural products, due to its favourable natural condition of 700 km 
coastline and a dense network of rivers. In fact, rice and shrimp have contributed to a vital position in Vietnam’s 
economic development for  decades47,48. However, the intensi�cation of uncontrolled aquatic farming has caused 
signi�cant changes in LULC across the region, especially along coastal zones since 2000 (Fig. 9b). �ere are 
several possible explanations for this �nding. In 2000 and 2001, the Vietnamese government proposed resolu-
tions 09/ND-CP and 1116, which replaced low-value (e.g. rice) to high-value (e.g. shrimp and fruit) agricultural 
production, encouraging farmers to transform certain coastal areas into aquatic production. Also, due to the high 
pro�ts of shrimp (200,000 VND/kg) in comparison to traditional crops such as rice (5000 VND/kg)30, numer-
ous inland areas were converted into aquatic farming. Local people illegally cut mangrove forests to expand 
aquaculture in several coastal  regions49. Since 2010, there was not only an increase in aquaculture, but also a 
signi�cant conversion of other croplands into rice paddies (Fig. 9b). �ese changes resulted in the formulation 
of another policy aiming at the increase of intensive rice and �sh farming in  201250,51. �ese �ndings indicate 
that the development of socio-economic policies is considered as the primary reasons driving LUCC. Land 
policies, therefore, should be formed and implemented in serious consideration of regional socio-economic 
and environmental development.

Contrary to the expectations, this study indicates a net area loss of forests instead of the constant increase 
reported by the Vietnamese Ministry of Agriculture and Rural Development (MARD). Despite the net forest 
regrowth in 2000 and 2010, the forest cover has undergone a decrease in recent years. Also, the area of forests 
in this study is greater than the data reported by the MARD. �ese inconsistencies are due to several reasons, 
especially the di�erence of forest de�nitions. �e MARD excluded agricultural (e.g., rubber), aqua-cultural 
ecosystems, scattered trees, bamboos, and palms, etc. from  forests34. �ese non-forest lands, covering a relatively 
large area of the country (e.g., 10  km2 of rubber only; 2017), were highly  dynamic19 but not fully reported by 
the MARD. In 2008, the revised de�nition of forests set a minimum of 10% tree cover as forests, instead of 30% 
tree cover in the previous  de�nition34. Since 2016, they started to include certain agricultural lands managed 
by the Vietnam Administration of Forestry in the forest lands but without forest  cover51. �ese revisions likely 
resulted in an increase in the reporting data of forests. Furthermore, our results show that deforestation occurred 
in numerous regions. Figure 9c presents a representative example of forest loss in the central highlands. �ere 
has been a constant decrease in forest cover due to the expansion of rice paddies, barren lands, and croplands. 
�is �nding of forest loss corroborates the discoveries of a great deal of previous work in LULC observation 
covering  Vietnam52,53.

Regarding limitations of this study, we could not estimate the bene�t of the individual sensor’s characteristics 
although the harmonious blend of the Landsat OLI, Sentinel SAR GRD and MSI images can �ll data gaps and 

Figure 5.  Temporal distribution of LULC across Vietnam extracted from the level-1 Vietnam-wide annual 
LULC data sets. �e data labels represent the area of each LULC category  (km2) in the year 1990, 1995, 2000, 
2010, 2015, and 2020.
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Figure 6.  Temporal dynamics of net changes in LULC across Vietnam, extracted from the level-1 Vietnam-
wide annual LULC data sets in the years 1990, 1995, 2000, 2010, 2015, and 2020. �e data labels represent the 
percentage of changes (%) within �ve-year intervals. �e positive and negative values indicate an increase and a 
decrease, respectively.

Figure 7.  LULC gain/loss and conversions between 1990 and 2020; “ + ” means gain and “-” means loss in area 
 (km2).
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improve the accuracy of mapping classi�cation. Moreover, instead of using ground-truth data, we validated 
the annual maps of the year 1990 to 2014 with the data collected by visual interpretation. Although great and 
careful e�orts were applied in the collection procedure, errors might not be inevitable due to the restricted 
high-resolution images in Google Earth, especially before 2000. In addition, we have utilized the random forest 
algorithm to eliminate the less important input features, but there are relatively numerous remaining features, 
resulting in a high computational cost. For future work, the nationwide annual multi-category LULC maps and 
overall change detection were successfully developed, but further research should be undertaken to investigate 
the drivers of LULC changes in more detail for individual land cover. Finally, deep learning neural networks are 
expected to be applied for large-scale LULC mapping.

Figure 8.  Temporal gross land use/cover conversions in Vietnam. (a, b) represent transitions among di�erent 
land types from 1990 to 2010, and from 2010 to 2020, respectively. �e numbers indicate the areas of forests 
 (km2).
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Figure 9.  Spatial–temporal dynamics (le�) and change pattern (right) of LULC in (a) residential land, (b) 
aquaculture land, and (c) forests land in Vietnam. �is �gure is generated using QGIS 3.18.0-Zurich (https:// 
qgis. org/ en/ site/) while the country boundary is extracted from the GADM (https:// gadm. org/ about. html).

https://qgis.org/en/site/
https://qgis.org/en/site/
https://gadm.org/about.html
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Conclusion
Regularly updated and accurate LULC information is fundamental to interdisciplinary studies. �e recent 
advancement of remote sensing and computational science has improved the mapping capacity of LULC. �is 
study set out to develop a new framework for automatically monitoring nationwide annual LULC and provide 
the �rst VLUCDs over the past 30 years. To this end, we utilized ground-based data, the informative Landsat TM, 
ETM + and OLI, and Sentinel SAR GRD and MSI images, a�er comprehensively assembled and preprocessed on 
the GEE platform. �en, we developed a new random-forest-based method and an automatic training migration 
model (ATMM) to map Vietnam LULC. �e obtained VLUCDs had overall accuracies ranging from 85.7 ± 1.3% 
to 92.0 ± 1.2% with the ten primary dominant land use/cover and 77.6 ± 1.2% to 84.7 ± 1.1% with the eighteen 
secondary dominant land use/cover. �is con�rms the potential of the proposed framework for systematically 
long-term monitoring of LULC in Vietnam. Results reveal that there was a decrease in the area of forests (19,940 
 km2) and wetlands (1914  km2) whereas the area of aquaculture and urban increased approximately three and ten 
times over the three decades, respectively. �e deforestation was mainly due to the expansion of croplands, which 
were in return replaced by numerous built-up areas. �e rapid growth of aquaculture was considered as a main 
driver of wetland loss. �e explicit spatio-temporal benchmark of the VLUCDs can be utilized for a tremendous 
variety of applications in the research of environmental changes towards the Sustainable Development Goals. 
In addition, the ATMM allows analysts to remarkably save time, cost, and labour for collecting su�cient and 
representative training data. �is proposed method is possible to apply for a multi-temporal LULC assessment 
at a broader scale.

Materials and methods
�e overall method is presented in Fig. 10 with major steps: (1) Data preparation; (2) De�ning a proper LULC 
classi�cation system and reference data; (3) Proposing a consistent framework for the automatic production 
of Vietnam-wide annual LULC data sets from 1990 to 2020; (4) Creating and validating the VLUCDs, and; (5) 
Generating major change pattern and processes of LULC over the past three decades.

Study area. �e study area is mainland Vietnam with a population of 97 million people (2018; Fig. 11). �e 
country covers an area of over 300,000  km2 including the Red River Delta, and the Mekong River Delta which 
is the third-largest delta in the world. �e topography of Vietnam is diverse (up to 3300 m altitude) with over 
75% of the total area being hills and mountains. �ese areas are covered by mainly tropical rainforests. Climate is 
changeable but dominated by a tropical monsoon type with mean annual humidity of 84%, mean annual rainfall 
from 1200 to 3000 mm, and mean annual temperature from 5 to 37 °C54. �e complex patterns of climate and 
topography create the rich biodiversity and landscape heterogeneity of Vietnam’s LULC. Nonetheless, there are 
the identifying characteristics of LULC in di�erent regions. While the southern region is principally occupied 
with rice, orchards and aquaculture lands, the northern region is primarily covered by forests and plantations, 
except for the Red River Delta. Dominant LULC types in the northern centre are evergreen broadleaf forests and 
annual croplands whereas woody crops, deciduous broadleaf forests, and evergreen needle-leaf forests dominate 
the southern centre. In this study, to reduce the complexity of the landscape information, we divided the whole 
country into �ve main regions and separately classi�ed for each region. �ese regions are presented in Fig. 11.

Land cover classification system. De�ning a standard land cover classi�cation system (LCCS) is a cru-
cial step in the practical land cover assessment. It should be delineated precisely depending on the objectives 
of users and the availability of mapping resources. Most LULC maps employ the theory and framework of the 
International Geosphere-Biosphere Programme (IGBP)55, the Land Cover Classi�cation System (LCCS)37, and 
the Coastal Change Analysis Program (C-CAP) Land Cover  Classi�cations56. Meanwhile, the most updated 
LCCS of previous LULC products, covering entire Vietnam, includes 18 land cover  categories57. However, some 
categories are inappropriate for Vietnam’s LULC. For example, snow and ice do not exist, while one cropland 
category does not represent the diverse croplands in Vietnam. Although detailed classi�cations of high and low 
developed built-up areas play a fundamental role in urban planning and management for the rapid urbanization 
of Vietnam, they are not in the previous LULC products. In this study, therefore, a new LULC classi�cation sys-
tem or topology was developed by remaining the appropriate categories of the Food and Agriculture Organiza-
tion (FAO) LCCS and adding new proper categories based on the local biophysical environment and end-users’ 
recommendations in Vietnam. First, we classi�ed a 10-category system of primary dominant land use/cover 
(PDLC/Level-1). �e PDLC was then separated into more detailed land types to generate an 18-category system 
of secondary dominant land use/cover (SDLC/Level-2). We found that this system is appropriate for practi-
cally mapping and applications. �e categories and descriptions of the system are presented in Supplementary 
Table S1.

Remote sensing data. Multi-sensor remote sensing data were used in this study. �e data were pre-pro-
cessed and derived from the GEE. �e data were re-projected to Universal Transverse Mercator (UTM) projec-
tion (Zone 47-49 N and WGS-84 datum) and then resembled into a 30-m spatial resolution using a bicubic 
interpolation  method58. �e Geospatial Data Abstraction Library (GDAL), the Geographic Resources Analysis 
Support System, and Python were utilized for these processing tasks. Speci�cally, the data included the United 
States Geological Survey (USGS) Landsat TM, ETM+, and OLI Surface Re�ectance Tier 1 with a 30-m spatial 
resolution, Sentinel MSI Level-2A and SAR GRD with a 10-m spatial resolution. �e Landsat and Sentinel MSI 
have been atmospherically corrected while each scene of Sentinel SAR GRD was preprocessed using Sentinel-1 
Toolbox for thermal noise removal, radiometric calibration, terrain correction using the Shuttle Radar Topogra-
phy Mission (SRTM)59, and then converting to  decibels60. Landsat ETM + images, a�er the Scan Line Corrector 
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failure in 2003, were removed from this study since the failure may result in inconsistently time-series compari-
son. Over 99% of the datasets from the GEE archive are reported to have high geometric accuracy with the error 
being less than half a  pixel27. Otherwise, the images were eliminated from our image collection to reduce the 
obvious bias of further analysis.

For reliable and consistent time-series analysis, further processing is integral. For the optical data, to reduce 
illumination impacts from elevation, aspect and slope, the topographic correction was performed using the 
Modi�ed Sun-Canopy-Sensor Topographic Correction  algorithm61. While the Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS) 62 was applied to perform atmospheric correction for Landsat TM and 
ETM+, the Land Surface Re�ectance Code (LaSRC)63 was adopted for Landsat OLI. All Landsat images were 
masked and removed clouds, cloud shadows and saturation pixels utilizing the Function of Mask (CFMASK)64. 

Figure 10.  �e overall work�ow for automatic Vietnam-wide annual land use/cover mapping and monitoring, 
using Landsat TM, ETM + and OLI, and Sentinel SAR GRD and MSI images with the random-forest-based 
algorithm. �is �gure is generated using yEd Graph Editor (https:// www. yworks. com/ produ cts/ yed). �e logos 
of the Google Earth Engine, pyQGIS, Google Earth, and Machine Learning is taken from https:// earth engine. 
google. com/, https:// autom ating- gis- proce sses. github. io/ site/ devel op/ lesso ns/ L7/ overv iew. html, https:// logos. 
fandom. com/ wiki/ Google_ Earth, and https:// www. pngit em. com/ middle/ hRJJR RJ_ machi ne- learn ing- course- 
near- me- machi ne- learn ing- logo/, respectively.

https://www.yworks.com/products/yed
https://earthengine.google.com/
https://earthengine.google.com/
https://automating-gis-processes.github.io/site/develop/lessons/L7/overview.html
https://logos.fandom.com/wiki/Google_Earth
https://logos.fandom.com/wiki/Google_Earth
https://www.pngitem.com/middle/hRJJRRJ_machine-learning-course-near-me-machine-learning-logo/
https://www.pngitem.com/middle/hRJJRRJ_machine-learning-course-near-me-machine-learning-logo/
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Sen2Cor was adopted to correct atmospheric issues and mask clouds for Sentinel  MSI65. Finally, because of 
the di�erent solar and view angles of Landsat OLI and Sentinel MSI, normalizing the bidirectional re�ectance 
distribution function (BRDF) was applied for the data. Although numerous approaches have developed for 
BRDF correction, the recent technique generated by Roy et al.66 is frequently utilized due to its reliability and 
e�ective  implementation67. �is method, therefore, was employed for the BRDF correction of all selected optical 
images in this study. For the Sentinel SAR GRD data, a further process was speckle �ltering. �e �ltering was 
done using Lee �lter, which is superior due to its capacity of maintaining point targets, edge, linear spaces and 
texture  information68.

To increase the availability of cloud-free composite data, the harmonization of di�erent Landsat satellite 
sensor images, and the Landsat OLI with Sentinel MSI into a congruent time-series was desirable for a cloudy 
region such as Vietnam. �e harmonization allows to accurately compare across all years and to measure the 
spectral similarity and spectral distance between di�erent years. �e measurement of spectral similarity and 
spectral distance was applied for an automatic training migration model, which was described in the following 
sections. A linear transformation with band-respective coe�cients was applied for the harmonization of Landsat 
TM and ETM + spectral feature to OLI spectral  feature69. In the meantime, the harmonized Landsat OLI and 
Sentinel MSI images were processed by employing a method developed by Claverie et al.70. �e band-respective 
coe�cients with slope and intercept image constants are presented in Table 3. A�er that, we generated composites 
of seven bands including blue, green, red, nir, swir 1, swir 2 and thermal bands for two seasons, the dry season 
from April to September and the wet season from October to March of the following year. �ese composites 

Figure 11.  Location of mainland Vietnam in the world: major division zones (bold lines), distribution of 
validation data points across the country. �ese points are independent from the training data. �is �gure is 
generated using QGIS 3.18.0-Zurich (https:// qgis. org/ en/ site/) while the country boundary is extracted from the 
GADM (https:// gadm. org/ about. html).

https://qgis.org/en/site/
https://gadm.org/about.html
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were adopted to measure a variety of covariates, which is represented in the following paragraphs. In addition, 
seasonal composites of VV and VH polarization in ascending and descending orbits of Sentinel SAR GRD were 
handled in this research.

Satellite-based covariate calculation
In this section, a series of covariates was calculated from the band composites. For the optical data, we calcu-
lated the  medoid71 and the standard deviation for the six bands (Table 3). Following the successful application 
of numerous features extracted from original satellite image bands, this study also added the medoid of the 
20th and 80th  percentile57 of the six bands into the seasonal composites to detect the seasonal changes in the 
biophysical environment.

�e ratios between spectral bands were calculated; they are blue/green, red/blue, red/green, red/nir and nir/
(red*swir 1). Besides, a great number of spectral indices were also measured from Landsat TM, ETM + and OLI, 
and Sentinel MSI images (Eqs. (1–17); Table 4). In addition, we calculated the seasonal mean of VH, VV, and 
the normalized di�erence between VH and VV polarizations from the Sentinel SAR GRD images. Finally, we 
generated seasonal composite collections of covariates.

Ancillary data sets. Extensive research has shown that ancillary information can improve the accurate 
performance of LULC  classi�cation20,82,83. In this study, we �rst added terrain indices including slope, aspect and 
elevation. �ese indices were computed from ALOS Global Digital Surface Model or “ALOS World 3D-30 m 
(AW2D30)”84. Also, distance to rivers, coastlines, transport systems and buildings, and soil types were included 
in the covariate collections. �e buildings and transport systems were generated from the OpenStreetMap, while 
soil types and river networks were extracted from the  OpenDevelopmentMekong86.

Reference data. Reference data of 18 LULC categories (Supplementary Table S1) was created from �eld 
surveys, provincial LULC statistics, and visual interpretations. We conducted nationwide comprehensive sur-

Table 3.  Band-respective coe�cients are de�ned with slope and intercept image constants and used for the 
harmonized Landsat OLI and Sentinel MSI images.

Band-respective Blue Green Red NIR SWIR 1 SWIR 2

Harmonizing Landsat TM, ETM + and OLI
Intercept 0.0003 0.0088 0.0061 0.0412 0.0254 0.0172

Slope 0.8474 0.8483 0.9047 0.8462 0.8937 0.9071

Harmonizing Landsat OLI and Sentinel MSI
Intercept - 0.0107 0.0026 -0.0015 0.0033 0.0065 0.0046

Slope 1.0946 1.0043 1.0524 0.8954 1.0049 1.0002

Table 4.  Spectral indices derived from Landsat TM, ETM + and OLI, and Sentinel MSI satellite images to 
enhance the accurate performance of Vietnam-wide annual LULC mapping from 1990 to 2020.

Name Equation No. Ref

Atmospherically Resistant Vegetation Index ARVI =
Bnir−2Bred+Bblue

Bnir+2Bred+Bblue
(1) 72

Di�erence Vegetation Index DVI = Bnir − Bred (2) 99

Enhanced Built-Up and Bareness Index EBBI = Bswir−Bnir

10
√
Bswir+Bnir

(3) 100

Enhanced Vegetation Index EVI = 2.5
Bnir−Bred

Bnir+6Bred−7.5Bblue+1
(4) 101

Green Chlorophyll Index GCI =
Bnir
Bgreen − 1 (5) 102

Mangrove Vegetation Index MVI =

Bnir−Bgreen
Bswir−Bgreen

(6) 80

Normalized Burn Ratio NBR =
Bnir−Bswir

Bnir+Bswir
(7) 81

Normalized Di�erent Bareness Index NDBaI =
Bswir−Btir

Bswir+Btir
(8) 79

Normalized Di�erence Built-Up Index NDBI =
Bswir−Bnir

Bswir+Bnir
(9) 91

Normalised Di�erence Pond Index NDPI =
Bgreen−Bswir
Bgreen+Bswir

(10) 92

Normalized Di�erence Turbidity Index NDTI =
Bred−Bgreen
Bred+Bgreen

(11)  92

Normalized Di�erence Vegetation Index NDVI =
Bnir−Bred

Bnir+Bred
(12) 93

Normalized Di�erence Water Index NDWI =
Bgreen−Bnir
Bgreen+Bnir

(13) 94

Soil Adjusted Vegetation Index SAVI = 1.5
Bnir−Bred

Bnir+Bred+0.5
(14) 95

Structure Insensitive Pigment Index SIPI =
Bnir−Bblue

Bnir−Bred
(15) 96

Urban Index UI =
Bswir−Bnir

Bswir+Bnir
(16) 97

Water Ratio Index WRI =
Bgreen+Bred+Bnir

Bblue
(17) 98
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veys in 2015, 2016, 2018, 2019, and 2020 to collect 3078, 2659, 10,550, 41,986 and 32,853 reference samples, 
respectively. Along with these ground-observed data, previous outdated LULC  maps19,20,87, provincial LULC 
statistics and high-resolution satellite images available in the Google Earth were also considered. Herein, we 
generated approximately 9360 polygons of single homogeneous LULC types (Fig. 11) throughout the country for 
each year from 2015 to 2020. From these polygons, we extracted up to 120,000 reference pixels (points) for each 
of the years. Meanwhile, due to the non-availability of ground-truth data, reference data from 1990 to 2014 were 
collected using provincial LULC statistics, the natural-color images of Landsat TM, ETM + and OLI, Sentinel 
MSI, and high-resolution satellite images available in the Google Earth. For each year, we randomly extracted 
1050 points per LULC category for validating the classi�cation models and the others were used for training the 
classi�cation model.

�e reference data of the year 2020 were utilized not only for creating and validating the LULC map of the 
year 2020 but also for implementing the automatic training migration model from this reference year to any 
target years. �e migration model is described in more detail in the following section.

Automatic training migration model. Training data is tremendously essential in mapping LULC; how-
ever, collecting su�ciently accurate training samples is challenging, especially for large-scale areas, long-term 
history analyses, and data-scarce environments such as  Vietnam73. If training data are not collected consistently, 
it can result in misclassi�cation or low  accuracies74. �us, it is paramount to propose a practical approach for 
training data collections.

In this study , we utilized an automatic model to migrate from the reference data of a reference year to target 
years. �e method had three essential steps. First, we created a set of training data from a reference year (2020). 
�en, for each pixel, we computed its surface re�ectance values from its corresponding Landsat TM, ETM +, 
and OLI images of the reference year and target years. �e surface re�ectance values of six bands (Table 3) were 
utilized for the measurement of Euclidean distance (ED)75 and spectral angle distance (SAD)76. Finally, with the 
ED (Eq. 18) and SAD (Eq. 19), we distinguished changed pixels and unchanged pixels by running a trial and 
error model to determine thresholds. Although the thresholds can be estimated by analysts, the experimented 
thresholds of ED and SAD in this study was 0.05 and 0.95, respectively. �ese thresholds were successfully applied 
to migrate the training data of the year 2020 to target years. �e unchanged pixels were preserved and utilized 
as training data for the target years.

where X is spectral signature vector of an image pixel in the reference year; Y is spectral signature vector of an 
image pixel in the target year; N is the number of image bands (N = 6).

Machine learning modelling. A�er completing the data preprocessing task, we generated covariate col-
lections, including (1) optical-image-based covariates in dry seasons and (2) in wet seasons, and (3) SAR-based 
covariates in dry seasons and (4) in wet seasons. �e ancillary information was also added to these covariate 
collections. It is worth noting that some of these covariates or features may not signi�cantly contribute to the 
enhancement of classi�cation performance while overabundant features can a�ect the performance speed or 
run out of computing capacity of the classi�cation model. Hence, random forest  algorithm77 was employed to 
estimate important features. We removed some less important features and kept essential features which were 
represented in Supplementary Table S2.

For classi�cation, we applied a random forest algorithm for several reasons. First, it has previously been 
observed that the random forest algorithm can handle principal drawbacks that a single-tree-based method 
may face such as an over-�tting and non-optimal  solution78. Also, the random forest shows the outperformance 
of its rivals such as fuzzy adaptive resonance theory-supervised predictive mapping (Fuzzy ARTMAP), support 
vector machine (SVM), arti�cial neural network (ANN), Mahalanobis distance (MD), and spectral angle map-
per (SAM)39.

A new random-forest-based approach was developed in this study. Unlike the common use of single-time 
classi�cation, for each pixel, we independently estimated prior probability values belonging to each of the speci-
�ed land covers for each of the covariate collections. �ese prior probability values were then joined to create 
a set of posterior probability values. �e largest value of the posterior probabilities corresponding to a speci�c 
land cover was utilized to label the predicted land cover. However, the predicted prior probability of a pixel, for 
example, p(Ck), might reach almost zero or zero because of ‘No data’ of that pixel at that covariate collection. If 
this occurs, the posterior probability of that pixel will be nearly zero or zero. �at is, although the prior prob-
ability of most other collections equals 100% voting for a speci�ed land cover, the probability product of this 
pixel might be almost zero, causing misclassi�cation. Hence, the prior probability of a pixel corresponding to a 
particular land cover must not be extremely tiny. To this end, Eq. (20) was developed to adjust the prior prob-
ability values while posterior probability values were calculated as Eq. (21).

(18)ED =

√

√

√

√

N
∑

i=1

(Xi − Yi)
2
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where p’(Ck) is the adjustment of prior probability value of a land cover Ck; c is a constant value (c = 0.7) which 
was evaluated by trial and error experiments in this study; N is the number of land cover categories (N = 18); 
pc(Ck) is the posterior probability value of category Ck; and I is the number of covariate collections (I = 4).

�e random-forest-based model was performed using Scikit-Learn 0.22 and Python 3.8.5. Since the input data 
of multi-sensor image bands and covariates dramatically varied over the 30-year period, we could not optimize 
all the parameters of the random forest algorithm. �e number of trees (n_estimators) in the forest and the size 
of the random subsets of features (max_features), however, are highly recommended to be  adjusted77. Using 
RandomizedSearchCV in the Scikit-Learn, we found that n_estimators = 200 (trees) and max_features = 8 were 
optimal in this work. �e other parameters were set as the default values.

Accuracy assessment. Following the wide-ranging recommendations of instruction  manuals88,89, a statis-
tic-based testing data set (Reference data section) was independently generated to estimate the accuracy of �nal 
LULC products. We utilized a strati�ed sampling (1050 points/LULC category) method and a confusion matrix 
to assess Vietnam-wide annual LULC products from 1990 to 2020. �e matrix produced profound accuracy 
metrics, namely overall accuracy (OA), user accuracy (UA), standard error (SE), and kappa coe�cient (KC). 
�e uncertainty of accuracy was measured with a 95% con�dence interval. �ese metrics are fully described in 
Tables 1 and 2.

Change analysis. �e analysis of changes in LULC is to measure the di�erences including spatio-temporal 
dynamic patterns, the magnitude, and rate of variations observed over the study period. First, we estimated 
the diversity of LULC within each 30-m pixel width by counting the number of times that LULC changes over 
30 years (Fig. 1c). We then estimated the area of each LULC within a �ve-year interval from 1990 to 2020 to 
observe the trend of LULC change (Fig. 5). We also computed the percentage of net change (Eq. 22) and then 
rescaled the percentage to a rank between 0 and 100% to monitor the most dynamic LULC (Fig. 6). Finally, we 
employed a Sankey diagram to emphasize the major transfers of  LULC90.

where p is the percentage of net change; and At1 and At2  (km2) are the area of the LULC type in the observation 
years t1 and t2, respectively (t1 < t2).
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