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First Direct Evidence of Long-
distance Seasonal Movements and 
Hibernation in a Migratory Bat
Theodore J. Weller1, Kevin T. Castle2, Felix Liechti3, Cris D. Hein4, Michael R. Schirmacher4 & 

Paul M. Cryan5

Understanding of migration in small bats has been constrained by limitations of techniques that were 

labor-intensive, provided coarse levels of resolution, or were limited to population-level inferences. 

Knowledge of movements and behaviors of individual bats have been unknowable because of 

limitations in size of tracking devices and methods to attach them for long periods. We used sutures 

to attach miniature global positioning system (GPS) tags and data loggers that recorded light levels, 

activity, and temperature to male hoary bats (Lasiurus cinereus). Results from recovered GPS tags 

illustrated profound differences among movement patterns by individuals, including one that 
completed a >1000 km round-trip journey during October 2014. Data loggers allowed us to record 
sub-hourly patterns of activity and torpor use, in one case over a period of 224 days that spanned an 
entire winter. In this latter bat, we documented 5 torpor bouts that lasted ≥16 days and a flightless 
period that lasted 40 nights. These first uses of miniature tags on small bats allowed us to discover that 
male hoary bats can make multi-directional movements during the migratory season and sometimes 

hibernate for an entire winter.

Individuals of several species of North American bats make biannual migratory journeys between winter and 
summer habitat1, yet compared to birds, our understanding of the details and destinations is nascent. In relative 
terms, we have extensive knowledge of bird migration that stems from the ease with which humans can observe 
seasonal changes in species occurrence and obvious group movements over continental scales, as well as the 
ability of larger animals to carry tracking devices2–4. Studying migration in the smallest �ying animals remains 
a challenge. Long-distance movements of small (< 30 g) birds were initially revealed through extensive banding 
(ringing) e�orts2, and later by incorporating isotope analyses5. Recently, breakthroughs concerning the seasonal 
whereabouts, �ight paths, and long-term activity patterns of small migratory birds have also been made possible 
by miniature global-positioning-system (GPS) tags6 and data-recording environmental sensors (herea�er data 
loggers7–9). Recent increases in our understanding of bird-migration discoveries were made using miniaturized 
(1–2 g) tracking and sensor devices10–12, which augurs well for advancing understanding of migration and sea-
sonal behaviors in a particularly di�cult-to-study group of long-distance migrants—small bats. As in birds13, 
there is growing recognition that e�ective conservation of bats requires understanding of their needs beyond the 
summer breeding season and winter hibernation periods when they are easiest to study14.

It has long been known that certain species of bats migrate15,16, but studying bats is extremely challenging 
because of their ubiquitously cryptic nocturnal activity patterns and secretive roosting. �ese di�culties have le� 
broad gaps in our understanding of many bats, but particularly the small-bodied, long-distance migrants. E�orts 
to study bat migration have employed methods such as banding individuals17–19, visual observations and cap-
tures20,21, compiling seasonal maps of occurrence records22,23, genetic analyses24,25, radiotracking26,27, and stable 
isotope analyses28–32. However, the success rates and spatial or temporal resolution of such methods remain low. 
Although new technology recently enabled following the long-distance movements of large (> 100 g) bats33,34, 
data on the movement patterns and behaviors of small migratory bats do not exist. Yet, as with birds3,6, knowledge 
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of movements and behaviors of individual animals can provide important insights into their ecology and ulti-
mately help provide for their conservation.

In North America, so-called “migratory tree bats” (sensu35) are thought to undertake some of the longest 
seasonal movements of any bat species. Hoary bats (Lasiurus cinereus) roost individually in the foliage of trees at 
low density and, despite a wider distributional range than most mammals, are rarely encountered through vast 
areas of their range36; these characteristics combine to make them one of the most poorly understood migratory 
tree bats. Seasonal distribution patterns inferred from occurrence records and stable isotope analyses indicate 
that hoary bats generally migrate southward and towards coasts from their summer range to overwinter22,23,28,29,37. 
Migration is o�en de�ned as seasonally mediated, directional movements between habitats2. Hence, although it 
can be expected that animals select migratory routes that minimize energetic costs, the precise movements of 
individual hoary bats were unknown. Conventional understanding has been that hoary bats move to areas of 
moderate climate for the winter which allows them to make frequent use of daily torpor interspersed with occa-
sional feeding when insects are active38. However, evidence of extensive cold-season activity by hoary bats in any 
of their potential wintering areas is lacking.

Here, we describe our successful use of two types of miniature data-recording devices that allowed us to gain 
new insights into the ecology and behavior of individual hoary bats. We sutured GPS tags to male hoary bats 
and obtained multiple site locations that allowed us to infer long-distance movements of individuals during the 
autumn migration period. To other bats, we attached data loggers that recorded light level, temperature, and 
activity, from which we obtained detailed information on individual hoary bats over periods spanning as long as 
an entire winter. �ese data recorded from small, free-ranging, migratory tree bats are the �rst of their kind and 
allow us to challenge two assumptions about hoary bats: (1) that their autumn migration routes are directional 
and generally linear and (2) that, unlike smaller cave-dwelling bats, they do not hibernate or use sequential bouts 
of multi-day torpor during winter.

Results
Autumn Movements. We attached GPS tags to 8 male hoary bats in late September 2014 and recovered 3 
of them a�er they had recorded GPS locations (herea�er ‘�xes’). In total, we obtained 2, 4, and 6 GPS �xes per 
bat that were recorded during October 2014. GPS data revealed 3 di�erent behaviors of the bats we tracked: site 
�delity, local (< 100 km) movements, and long-distance (> 100 km) movements. We recaptured Bat 479 on 4 dif-
ferent nights and obtained 4 GPS �xes from it over a period of 26 days. �e longest movement recorded for Bat 
479 was 6.4 km between its �rst GPS �x and its �rst recapture location. We recaptured Bat 481 twice following tag 
attachment leading us to document movements of 51.4 km and then a further 16.4 km southeast of our study area. 
�e recapture of Bat 481 on Oct 5 2014 revealed it had traveled 67.8 km from its last GPS �x, recorded 25 hours 
earlier. We tagged Bat VHF5 on Sep 27 2014 and recaptured it on Apr 30 2015, 213 days a�er tag attachment. �e 
resulting 6 GPS �xes, document that Bat VHF5 �ew > 1000 km during October 2014 in a large circuit that began 
and ended in the vicinity of the capture area (Fig. 1).

Activity Patterns and Torpor Use. We attached data loggers to 6 male hoary bats on Sep 26 and 27 2014. 
We recovered 1 of them that had recorded 9 days of data during autumn 2014 and another that had recorded 
224 days of data from autumn 2014 through spring 2015 (Fig. 2). We obtained simultaneous activity data from 
both bats from Sep 27 to Oct 6 2014 (Fig. 3). While both bats were mostly active throughout the entire night, on 

Figure 1. Locations of a free-ranging hoary bat (Lasiurus cinereus) recorded using a miniature GPS tag 
in October 2014. General location of sites where the male bat was captured and �t with GPS tag in September 
2014 and then recaptured in April 2015 are illustrated with white star. Dates of bat locations (white circles) were: 
(1) Oct 1, (2) Oct 5, (3) Oct 12, (4) Oct 21, (5) Oct 25, and (6) Oct 28 2014. Inset map shows distribution of 
hoary bats in North America (hatched area) and region of detail (black rectangle). Map created using ArcGIS 
version number 10.3.1 (http://www.esri.com/so�ware/arcgis).

http://www.esri.com/software/arcgis
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Sep 30 and Oct 1 both were only active during the �rst half of the night. Ambient temperatures on both of these 
nights reached as low as 9 °C, whereas they remained ≥ 12 °C on other nights during this period (Fig. 3). Both bats 
entered torpor on the evening of Oct 1 as evidenced by cessation of activity and tag temperatures conforming to 
ambient temperatures. Di�erences in temperature sensor readings between the bats carrying data loggers were 
sometimes noted. We speculate that di�erences in tag temperature sensor readings between bats carrying data 
loggers could be associated with them occupying di�erent areas. For example, on the evening of Oct 4, when the 
blue-tagged bat was active and presumably �ying in an area that was about 10 °C warmer than the area where the 
yellow-tagged bat was active (Fig. 3).

Figure 2. Activity of a male hoary bat during autumn 2014 – spring 2015 in relation to local environmental 
conditions. Relative activity levels (red lines) < 6 are not associated with �ight. Exploded view above shows tag 
temperature during January 2015 (yellow line), which tracked ambient temperatures at a nearby weather station 
(KFOT; gray line) except during 2 brief periods of rewarming by the bat without �ight.

Figure 3. Comparison between activity patterns by two male hoary bats in northern California during 
autumn 2014. Relative light levels recorded by data loggers are depicted in red, ambient temperature from 
KFOT weather station in grey. Relative activity levels for blue-tagged bat (top panel), yellow tagged bat  
(middle panel), and tag temperatures for both bats (bottom panel). Date labels are centered on midnight.
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We obtained a near-continuous record of activity, light exposure, and tag temperatures of a male hoary bat 
over 224 days from autumn through spring. Activity occurred on 31 of 34 nights in September and October, but 
then declined sharply in early November and did not increase substantially until late April (Fig. 2, Table 1). �e 
bat was inactive on most nights during winter. Between Nov 3 2014 and Apr 12 2015, the bat exhibited levels of 
activity associated with �ight on only 16 (10%) of the 160 nights monitored. �e longest period of inactivity lasted 
40 nights, from Dec 26 2014 to Feb 03 2015. We recorded 19-, 18-, and 18-night periods of inactivity separated by 
single nights of activity between Feb 16 and Apr 12 2015. When the bat was active between December 2014 and 
March 2015, it was generally active for < 10% of each night (Table 1). During the period from Feb 03 to Apr 12 
2015 the bat began �ight activity an average of 53 minutes (range: 37–77 minutes) a�er sunset and was active for 
an average of 54 minutes (range: 30–80 minutes) (Fig. 4).

By comparing tag temperatures to ambient temperatures at weather stations in the region (Figs S1 and 2) we 
inferred that the yellow-tagged bat likely overwintered in the vicinity of where we captured it. Excluding two 
arousals that were not associated with �ight, mean temperature of the tag during the 40-day inactive period that 
included January was 10.1 °C (range =  1–23). On average, the tag was 0.9 °C (range =  − 7.0–9.0) warmer than air 
temperatures at KFOT station (25 km NNW of capture area) and there was strong temporal correlation between 
the two temperatures (r =  0.88, Fig. 2) indicating that the bat was in torpor during this time. Similarly the bat 
remained in torpor during an 18-day period in mid-March despite the mean temperature of the tag reaching 
14.3 °C (range =  8–27). We recorded 20 arousals from torpor by the bat between Nov 02 2014 and Apr 12 2015 
(Fig. 4), 4 of which were not associated with �ight. Arousals were more frequent and generally longer in duration 
during November and December than during January–April when they occurred, on average, 12 days apart. �e 
mean duration of arousals over the entire winter was 199 (range 55–385) minutes.

Month
Nights 
Tagged

Active 
Nights

Percent 
Nights Active

Mean (range) Proportion 
of Night Active*

September 3 3 100.0 0.705 (0.251–0.938)

October 31 28 90.3 0.443 (0.013–0.959)

November 30 7 23.3 0.293 (0.097–0.847)

December 31 5 16.1 0.095 (0.005–0.227)

January 31 0 0.0 0.000

February 28 4 14.3 0.074 (0.037–0.103)

March 31 2 6.4 0.097 (0.094–0.101)

April 30 9 30.0 0.302 (0.039–0.626)

May 8 6 75.0 0.359 (0.067–0.517)

Table 1.  Number of nights on which a male hoary bat (yellow-tagged) exhibited activity from 28 Sept 
2014–8 May 2015, as recorded by a data logger on the bat’s back. *Mean proportion of 5-minute periods 
during the night that the bat was active were calculated only for nights when bat was active.

Figure 4. Arousal and �ight events by a male hoary bat from 6 Nov. 2014–12 April 2015. Each arc extends 
between the beginning and end of an arousal from torpor. Darker shades represent the time period in which the 
bat was active, likely in �ight, and lighter shades represent periods without �ight activity, but when the tag was 
at arousal temperatures before and a�er a �ight event. On 4 occasions, 2 in December and 2 in January, the bat 
aroused without exhibiting activity levels associated with �ight.
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Discussion
We used two new types of technology to assess the ecology and behavior of hoary bats during migration and 
over-wintering. GPS tags allowed us to determine that some individuals make long distance, multi-directional 
movements during autumn while data loggers allowed us to demonstrate that hoary bats can engage in 
winter-long hibernation.

�e three male hoary bats we followed exhibited a variety of movement behaviors during autumn. For one 
bat we had no evidence that it vacated the general vicinity of where it was captured, whereas another bat �ew at 
least 68 km straight line distance in single night and a third completed a > 1000-km circumnavigation of northern 
California, Oregon, and Nevada over the course of a month. Hence our results demonstrate the possibility that 
some individuals may not engage in relatively simple, directional movements during autumn. �e reason for 
long-distance, round trip travel exhibited by the male hoary bats in our study is enigmatic. It is possible that the 
long-distance movements we documented were associated with bats seeking favorable conditions of temperature 
and humidity for roosting and foraging39. Although this explanation may account for movements to and from 
areas dozens of km away, it does not seem su�cient, energetically, to explain movements of > 300 km from the 
study area. Another hypothesis, based on synchrony between autumn migration and mating readiness in hoary 
bats40, is that the male bats we tracked were trying to intercept and mate with females migrating to wintering 
grounds.

Hoary bats are inarguably a migratory species, yet we have shown with a single individual that they are capable 
of hibernating for a period of 6 months during winter. Although early laboratory research indicated that species 
of Lasiurus may be well-adapted for hibernation41, subsequent observations of free-ranging hoary bats using 
radio-telemetry had only documented multi-day bouts of torpor during summer42 and periods lasting less than 
one month during winter in eastern red bats (Lasiurus borealis)43,44. �e number and length of torpor bouts and 
frequency of arousal we observed in a male hoary bat, particularly in late-winter, was generally similar to what has 
been observed for bats hibernating in caves and mines45–47. In fact, the bat we monitored remained in hibernation 
despite ambient temperatures at which it was active in the study area during autumn and which insect prey was 
likely available. Furthermore, the bat appeared to retain its circadian rhythm, because its arousals coincided with 
sunset (Fig. 4). Maintenance of a dusk-arousal circadian rhythm throughout winter has also been documented in 
cave-hibernating bats that live in regions with mild winters, whereas hibernating cave bats in regions with harsher 
winters tend to lose dusk-arousal rhythms during mid-winter45,48,49. Further, on 4 occasions the bat re-warmed 
without taking �ight demonstrating that, as in other hibernating bats, arousals can be motivated by needs other 
than feeding49. �ese observations support the suggestion that hibernation is a conserved trait in temperate-zone 
bat species50. Knowledge that hoary bats can move long distances in non-linear ways and hibernate during win-
ter may have practical impacts. For example, hoary bats frequently collide with wind turbines during autumn51 
and are currently presumed to be safe from white-nose syndrome, an emerging disease that heretofore has only 
impacted cave-hibernating bats52. Continued use and enhancement of the tracking technologies we demonstrated 
on hoary bats could help advance understanding of bat biology, as well as some of the most important conserva-
tion issues currently involving bats.

Methods
Tag Attachment. We attached two types of tags to bats: programmable GPS tags with and without VHF 
transmitters (Pinpoint 8, Lotek Wireless, Newmarket, Ontario, Canada), and data logger tags (GDL3, Swiss 
Ornithological Institute, Sempach, Switzerland). The GPS-only tags weighed 1.1 g and had dimensions of 
22.0 mm ×  11.0 mm ×  4.5 mm with a posterior-extending antenna 43 mm in length. �e GPS tags were pro-
grammed to record location on 8 specified dates and times. Five GPS tags also included VHF transmitters 
(PicoPip AG317, Lotek Wireless, Newmarket, Ontario, Canada). �ose tags weighed 1.4 g, and had dimensions 
of 20.5 mm ×  15.0 mm ×  6.0 mm with an additional posterior-extending antenna 145 mm in length. VHF trans-
mitters were intended to help establish which animals were still in the study area during the �rst month a�er 
attachment. Both types of GPS tags were re-chargeable and re-programmable without removing the tag from the 
bat. We programmed GPS tags to record nighttime locations approximately 1 hour a�er local sunset, and day-
time locations at noon. Data from GPS tags consisted of date and time of position, an estimate of tag location in 
3 dimensions, PDOP a measure of location accuracy, and the time required to acquire position information. We 
estimated GPS location precision as approximately ± 200 m based on tests conducted at ground level using tags 
that were both stationary and in motion.

We also attached 1.14 g data loggers with dimensions of 24.0 mm ×  10.0 mm ×  4.0 mm to hoary bats. �e 
tags included a 5 mm long light sensor that extended dorso-caudally. Data loggers recorded light-level and ani-
mal activity via accelerometer, every 5 minutes similar to those used by Liechti et al.11; both values are relative, 
dimensionless, values. Temperature (°C) was measured at the dorsal surface of the tag every 30 minutes and 
was a mixture of ambient temperature and bat body temperature. Although temperature readings did not allow 
us to precisely determine bat body temperature, we were able to determine when hoary bats were euthermic 
either by comparison of tag temperature data to patterns in ambient temperature measured by weather stations 
(Fig. 2, Supplementary Information) and/or corresponding patterns in tag activity data indicating bat movement 
(Fig. 3). Tag temperature approximated ambient temperature when a bat was inactive and thermoconforming 
and increased above ambient when the bat was inactive but euthermic (Fig. S3) and when the tag was in direct 
sunlight.

We attached both types of tags to bats from Sep 22–27 2014. We captured hoary bats in mist nets along the 
channel of Bull Creek in Humboldt Redwoods State Park, California (latitude: 40.35, longitude: − 124.01). Bats 
were captured in standard 2.6-m high mist nets and in a triple-high con�guration with three standard mist nets 
stacked on top of one another. We attached tags to adult male hoary bats, which comprise > 95% of captures at 
this site, selecting individuals with the highest mass captured on a given night. We attached tags to the dorsum, 
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caudal to the scapulae and cranial to the pelvis using sutures following the methods of Castle et al.53. Bats were 
released at the capture site a�er allowing them 20 minutes to recover from anesthesia. Bats to which tags were 
attached did not exhibit unusual levels of mass loss, skin irritation, or mobility while entering roosts53.

We attempted to recapture tagged individuals using mist net surveys along the Bull Creek waterway on 19 
nights between Sep 26 and Oct 19 2014, 13 nights between Oct 27 2014 and Apr 02 2015, and 22 nights between 
Apr 12 and 28 May 28 2015. When bats carrying GPS tags were recaptured during autumn 2014 we downloaded 
data and recharged and reprogrammed tags while they were attached to bats53. In contrast, recovery of data from 
data loggers required removal of the tag.

Bat capture and handling were carried out in accordance with guidelines of American Society of 
Mammalogists54 under permit with the California Department of Fish and Wildlife (#SC-002911). Our exper-
imental methods were approved by the Institutional Animal Care and Use Committee of the U.S. Geological 
Survey Fort Collins Science Center (FORT IACUC 2014-08).

Data Analysis. For data analysis we considered bats to be active when 5-min activity values exceeded a rela-
tive activity level of 6 (on a scale of 0–74), based on a comparison with activity levels logged during daylight hours 
when the bats were roosting. We considered the nighttime period to be the 5-minute observations between sunset 
and sunrise in our study area, although this will be inaccurate if bats moved > 100 km from our study area. We 
considered the bat to be torpid when it was inactive and within 4 °C of the temperature at a nearby weather station 
(Figs S1 and 2). We de�ned an arousal as a total increase of ≥ 3 °C in tag temperature that occurred at night in the 
absence of similar increase in ambient temperatures at nearby weather stations.
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