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1. Introduction

In this paper we introduce the notion of first eigenvalue for fully nonlinear
operators which are nonvariational but homogeneous. It is unnecessary to
emphasize the importance of knowing the spectrum of a linear operator.
When the operator is a uniformly elliptic operator of second order Lu =
tr(A(x)D2u) associated with a Dirichlet problem in a bounded domain Ω the
spectrum is a point spectrum bounded from below and the first eigenvalue
λ̄ is paramount. It is well known that λ̄ is positive and it satisfies:

• There exists a positive function φ satisfying{
Lφ + λ̄φ = 0 in Ω
φ = 0 on ∂Ω.

• For any λ < λ̄ and for any f ∈ LN (Ω) there exists a unique u such
that {

Lu + λu = f in Ω
u = 0 on ∂Ω.

See e.g. [13] for the proof of these results under suitable conditions on
A(x) and Ω. Berestycki, Nirenberg and Varadhan, in [3], have characterized
the first eigenvalue of −L in Ω by the fact that it is the supremum of the
values λ such that L + λ satisfies the maximum principle in Ω. Let us recall
that L+λ satisfies the maximum principle in Ω if any solution of Lu+λu ≥ 0
in Ω which is nonpositive on the boundary of Ω is nonpositive in Ω.
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Of course the notion of eigenvalue is really connected with the linearity
of the operator; on the other hand it is possible to extend this notion to
nonlinear operators F provided they still are homogeneous.

The idea is to find real values λ and some homogeneous operator Ĩ such
that F + λĨ has a nontrivial kernel.

In particular, when Fu := Δpu := div(|∇u|p−2∇u) this has been success-
fully done; see [2, 19]. More precisely the value

λ̄ = inf

∫
Ω |∇u|p∫
Ω |u|p

has been called the first eigenvalue of −Δp for the Dirichlet problem in Ω.
Indeed λ̄ is such that

• There exists a positive function φ satisfying{
Δpφ + λ̄φp−1 = 0 in Ω
φ = 0 on ∂Ω.

• For any λ < λ̄ and for any f ∈ Lp′(Ω) there exists a unique u such
that {

Δpu + λ|u|p−2u = f in Ω
u = 0 on ∂Ω.

Observe that if we call Ĩu = |u|p−2u, λ̄ coincides with the extended notion
of eigenvalue. It is important to remark that here the definition and the
properties of λ̄ are related to the variational nature of the p-Laplacian and
its homogeneity.

Since we want to define the notion of first eigenvalue for singular fully non-
linear elliptic operators which are nonvariational but homogeneous we shall
follow the idea of Berestycki, Nirenberg and Varadhan [3] and this so-called
eigenvalue will be defined through the maximum principle as characterized
above and it will coincide with the “eigenvalue” of −Δp when F = Δp.

In the next section we shall give the precise conditions on the operator
Fu := F (∇u, D2u) for which we define the notion of eigenvalue, but for the
sake of simplicity the results obtained in this paper will be stated in this
introduction for

F (∇u, D2u) = |∇u|αtr(D2u) or F (∇u, D2u) = |∇u|αMa,A(D2u),

where α > −1 and Ma,A is one of the Pucci operators, i.e., either

Ma,A(D2u) = M+
a,A(D2u) = sup

aId≤A(x)≤AId
tr(A(x)D2u)
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or
Ma,A(D2u) = M−

a,A(D2u) = inf
aId≤A(x)≤AId

tr(A(x)D2u).

In other words we are considering fully nonlinear elliptic operators which
may be singular or degenerate as the p-Laplacian but are not variational.
Of course the convenient notion of solution in this context will be that of
viscosity solution. The precise definition of viscosity solution used will be
given in the next section (see [8] for similar definitions).

Before going into details, let us mention that several interesting papers
treat viscosity solutions for equations involving the p-Laplacian. In [16, 17]
Juutinen, Lindqvist and Manfredi opened the way to this topic. We would
like to emphasize that in those papers the variational structure of the p-
Laplacian is used. This cannot be the case here since the operators that we
consider are not in divergence form.

The main aim of this paper is to prove that λ̄ defined by

λ̄ = sup{λ ∈ R : ∃ φ > 0 in Ω̄,

F (∇φ, D2φ) + λφα+1 ≤ 0 in the viscosity sense }.
is the first eigenvalue of −F in Ω, with the meaning proposed above.

The first key ingredient is the following:

Theorem 1.1. Suppose that Ω is a bounded open domain of R
N . Suppose

that for λ ∈ R there exists a function v > 0 such that

F (∇v, D2v) + λvα+1 ≤ 0 in Ω.

Suppose that τ < λ, then every viscosity sub solution of{
F (∇σ, D2σ) + τ |σ|ασ ≥ 0 in Ω
σ ≤ 0 on ∂Ω,

satisfies σ ≤ 0 in Ω.

In other words, this theorem states that if we denote by Iα(u) := |u|αu,
λ̄ is the supremum of the values λ such that F + λIα satisfies the maximum
principle in Ω. Clearly the set

E = {λ ∈ R : ∃ φ > 0 in Ω̄, F (∇φ, D2φ)+λφα+1 ≤ 0 in the viscosity sense}
is an interval. Furthermore it is bounded from above since the following
proposition gives a bound on E.

Proposition 1.2. Suppose that R is the radius of the largest ball contained
in the bounded set Ω. Then, there exists some constant C, which depends
only on N and α, such that λ̄ ≤ C

Rα+2 .
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The next two theorems justify the name of “eigenvalue” given to λ̄

Theorem 1.3. There exists φ a continuous positive viscosity solution of{
F (∇φ, D2φ) + λ̄φα+1 = 0 in Ω
φ = 0 on ∂Ω.

Hence F + λ̄Iα has a nontrivial kernel. Furthermore, we have:

Theorem 1.4. Suppose that λ < λ̄. If f ≤ 0 in Ω and bounded, then there
exists u, a non-negative viscosity solution of{

F (∇u, D2u) + λuα+1 = f in Ω
u = 0 on ∂Ω.

(1.1)

If moreover f is continuous and < 0 in Ω, the solution is unique.

Let us notice that in order to prove Theorems 1.3 and 1.4 we need to
obtain some estimates which are interesting in their own right:

Theorem 1.5. Suppose that f is a bounded function in Ω̄. Then if u is a
bounded nonnegative viscosity solution of F (∇u, D2u) = f in Ω, it is Hölder
continuous:

|u(x) − u(y)| ≤ M |x − y|γ .

The proof of this result uses some of the features used by Ishii and Lions
in [15]. We also obtain local Lipschitz regularity under some additional
assumptions on F that will be made explicit in section 4.

Finally, let us mention that it is possible to give a sort of “variational”
characterization of λ̄ that somehow recalls the definition of first eigenvalue
for the p-Laplacian:

λ̄ = inf
σ>0

sup
x∈Ω

inf
(p,X)∈J2,−(σ(x)),p�=0

(
− F (p, X)

σ(x)α+1

)
,

where J2,− is the semi-jet as defined in the next section. This characteriza-
tion will be justified by Proposition 3.2.

After the completion of this work we learned that the eigenvalue problem
for Pucci’s operators has been treated by Busca, Esteban and Quaas in [6];
this corresponds to the case α = 0 here. In that paper the authors denote
by μ+

1 the eigenvalue here denoted λ̄, but they also define

μ−
1 = sup{μ : ∃ψ < 0 in Ω : M+

a,A(ψ) + μψ ≥ 0}.
This could be done in our case as well.
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Indeed let

λ = sup{μ : ∃ φ < 0 , F (∇φ, D2φ) + μ|φ|αφ ≥ 0 in the viscosity sense}.
If G(p, X) = −F (p,−X) then λ = λ̄(G). Furthermore if F satisfies (H2)
then so does G. Hence it is possible to prove for λ the same results as for λ̄;
i.e.:

(1) For any λ < λ any viscosity super solution of

F (∇u, D2u) + λ|u|αu ≤ 0 in Ω

with u ≥ 0 on the boundary, is nonnegative in Ω.
(2) There exists ψ, a continuous negative viscosity solution of{

F (∇ψ, D2ψ) + λ|ψ|αψ = 0 in Ω
ψ = 0 on ∂Ω.

(3) Suppose that λ < λ. If f ≥ 0 in Ω and bounded, then there exists
u, a non-positive viscosity solution of{

F (∇u, D2u) + λ|u|αu = f in Ω
u = 0 on ∂Ω.

(1.2)

In general F (p,−X) �= −F (p, X) hence λ �= λ̄. It is interesting to remark
that there is a sort of “Fredholm alternative,” even though very weak :

Remark 1.6. Suppose that λ �= λ̄. Without loss of generality we can
suppose λ < λ̄, then for μ ∈ (λ, λ̄) if f ≥ 0 with f �≡ 0 then there are no
solutions {

F (∇u, D2u) + μ|u|αu = f in Ω
u = 0 on ∂Ω.

Indeed if such u exists, then u ≤ 0 by the maximum principle; then by the
strict maximum principle u < 0 and using the definition of λ we would get
μ ≤ λ, a contradiction.

Let us mention some open problems related to the results of this paper
• Simplicity of the eigenfunction. The eigenfunction φ is simple both

for linear second-order elliptic operators and for the p-Laplacian. It is a
natural question to ask if this is true also in the case treated here. More
precisely, suppose that ψ > 0 is another eigenfunction. Does this imply that
there exists t ∈ R

+ such that ψ = tφ?
• Fredholm alternative. Suppose that f is a continuous function which

doesn’t change sign in Ω and is not identically zero, then is it possible to
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prove that there exist no solutions for{
F (∇u, D2u) + λ̄|u|αu = f in Ω
u = 0 on ∂Ω? (1.3)

Observe that when f < 0, just using the definition of λ̄, there is no solution
of (1.3).

On the other hand if λ̄ < λ then for f ≥ 0 there exists a solution of (1.3),
(see 3. above).

• λ̄ is isolated. Suppose that λ > λ̄ but sufficiently close. Does problem
(1.1) have a solution?

In the next section we state the precise hypothesis on F and we give
the notion of viscosity solution adapted to the operators considered here.
In the third section we prove the maximum principle (Theorem 1.1) and a
comparison principle. In the fourth section we give global Hölder and local
Lipschitz estimates for the solutions. Finally the last section provides dif-
ferent existence results, including that of a first eigenfunction; i.e., we prove
Theorem 1.3 and 1.4. Some properties of the distance function, required for
the existence results, are proved in the appendix.

2. Preliminaries

Let F be a continuous function defined on R
N \ {0} × S, where S is the

space of symmetric matrices in R
N . In the whole paper, for some α > −1,

F satisfies:
(H1) F (tp, μX) = |t|αμF (p, X), for all t ∈ R, μ ≥ 0 and F (p, X) ≤

F (p, Y ) for any p �= 0, and X ≤ Y .
We shall also suppose in most results that the operator satisfies also the

following hypothesis
(H2) a|p|αtrN ≤ F (p, M + N) − F (p, M) ≤ A|p|αtrN for 0 < a ≤ A,

α > −1 and N ≥ 0.
When condition (H2) is required we shall state it explicitly.
Let us recall that (H2) implies that

|p|αM+
a,A(M) ≥ F (p, M) ≥ |p|αM−

a,A(M),

where, if ei are the eigenvalues of M , M+
a,A(M) = a

∑
ei<0 ei + A

∑
ei>0 ei

and M−
a,A(M) = A

∑
ei<0 ei + a

∑
ei>0 ei are the Pucci operators (see e.g.

[7]). Let us also remark that the monotonicity of F is implied by (H2).
In [4] many examples of operators satisfying (H2) are given.
We shall now give the definition of viscosity sub or super solutions suited

to operators that may be singular.
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It is well known that in dealing with viscosity respectively sub and super
solutions one works with

u�(x) = lim sup
y,|y−x|≤r, r→0

u(y)

and
u�(x) = lim inf

y,|y−x|≤r r→0
u(y).

It is easy to see that u� ≤ u ≤ u� and u� is uppersemicontinuous (USC)
while u� is lowersemicontinuous (LSC). See e.g. [9, 14].

Definition 2.1. Let Ω be an open set in R
N ; then v bounded on Ω is a

viscosity super solution of F (∇v, D2v) = g(x, v) in Ω if for all x0 ∈ Ω,
-Either there exists an open ball B(x0, δ), δ > 0 in Ω on which v = cte = c

and g(x, c) ≥ 0;
-Or for all ϕ ∈ C2(Ω), such that v� − ϕ has a local minimum on x0 and

∇ϕ(x0) �= 0, one has

F (∇ϕ(x0), D2ϕ(x0)) ≤ g(x0, v�(x0)). (2.1)

Similarly u is a viscosity sub solution if for all x0 ∈ Ω,
-Either there exists a ball B(x0, δ), δ > 0 on which u = cte = c and

g(x, c) ≤ 0,
-Or for all ϕ ∈ C2(Ω), such that u� − ϕ has a local maximum on x0 and

∇ϕ(x0) �= 0, one has

F (∇ϕ(x0), D2ϕ(x0)) ≥ g(x0, u
�(x0)). (2.2)

u is a viscosity solution if it is both a sub and a super viscosity solution.

See e.g. [8] for similar definition of viscosity solutions for equations with
singular operators.

For convenience we recall the definition of semi-jets given e.g. in [9]

J2,+u(x̄) = {(p, X) ∈ R
N × S : u(x) ≤ u(x̄) + 〈p, x − x̄〉

+
1
2
〈X(x − x̄), (x − x̄)〉 + o(|x − x̄|2)}

and

J2,−u(x̄) = {(p, X) ∈ R
N × S : u(x) ≥ u(x̄) + 〈p, x − x̄〉

+
1
2
〈X(x − x̄), (x − x̄)〉 + o(|x − x̄|2}.

In the definition of viscosity solutions the test functions can be replaced by
the elements of the semi-jets in the sense that in the definition above one can
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restrict the function φ to φ(x) = u(x̄) + 〈p, x − x̄〉 + +1
2〈X(x − x̄), (x − x̄)〉

with (p, X) ∈ J2,−u(x̄) when u is a supersolution and (p, X) ∈ J2,+u(x̄)
when u is a subsolution.

3. Maximum principle and comparison results

As we pointed out in the introduction, we want to generalize the concept
of eigenvalue for the Dirichlet problem in a bounded domain Ω associated
to the operator F (u) = F (∇u, D2u) satisfying (H2) . It will be defined
following the main ideas introduced in [3] for uniformly elliptic operators.

Throughout the paper we shall denote

E = {λ ∈ R : ∃ φ, φ� > 0 in Ω̄,

F (∇φ, D2φ) + λφα+1 ≤ 0 in the viscosity sense }
and λ̄ = supE.

Remark 3.1. Of course E is nonempty, since any λ ≤ 0 obviously belongs
to E. In fact E is an interval since if λ ∈ E, every λ′ < λ is also in E.

Moreover, λ̄ > 0 if and only if there exists X ≥ 0 and p �= 0 such that
F (p,−X) < 0, which is the case when F satisfies (H2).

In fact one has a sharper estimate when F satisfies (H2). Suppose that
R is such that Ω ⊂ [−R, R]×R

N−1, then there exists a constant C > 0 such
that λ̄ > C

Rα+2 . Indeed, let us define ϕ(x) = 3Rx1 − x2
1 + 5R2, 7R2 ≥ ϕ ≥ 0

in Ω. On the other hand

F (∇ϕ, D2ϕ) ≤ −2a|3R − 2x1|α ≤ −2aRα sup(1, 4α).

Taking λ = 2aRα sup(1,4α)
(7R2)1+α = C

R2+α , one obtains that λ̄ > C
R2+α .

The next proposition proves that λ̄ �= +∞.

Proposition 3.2. Suppose that R is the radius of the largest ball contained
in Ω and that F satisfies (H2). Then, there exists some constant C which
depends only on N and α, a and A such that λ̄ ≤ C

Rα+2 .

Proposition 3.2 is a consequence of the maximum principle stated in the
following Theorem 3.3 and Lemma 3.5 below.

Theorem 3.3. Suppose that Ω is a bounded open domain of R
N . Suppose

that τ < λ̄, then every viscosity solution of{
F (∇σ, D2σ) + τ |σ|ασ ≥ 0 in Ω
σ ≤ 0 on ∂Ω

satisfies σ ≤ 0 in Ω.
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Remark. In this theorem we do not require F to satisfy (H2), but only
(H1).

An immediate consequence of Theorem 3.3 is

Corollary 3.4. If λ < λ̄ and F (p,−X) = −F (p, X), then every solution of

F (∇φ, D2φ) + λ|φ|αφ = 0,

which is zero on the boundary, is identically zero.

Proof. Both φ and −φ are solutions of the equation and this implies that
they are both nonpositive. This concludes the proof. �
Lemma 3.5. Suppose that Ω = B(0, R), and let q = α+2

α+1 and

σ(x) =
1
2q

(|x|q − Rq)2.

Let F satisfy (H2). Then there exists some constant C which depends only
on N , α and A, a, such that

sup
x∈B(0,R)

−F (∇σ, D2σ)
σα+1

≤ C

Rα+2
.

Proof of Proposition 3.2. Suppose that Theorem 3.3 and Lemma 3.5
hold. Without loss of generality we can suppose that B(0, R) ⊂ Ω. We shall
prove that

λ̄ ≤ sup
x∈B(0,R)

−F (∇σ, D2σ)
σα+1

= τ ;

by Lemma 3.5 this will end the proof.
Suppose by contradiction that τ < λ̄ and let u = σ for |x| ≤ R and 0

elsewhere. Then one would have

F (∇u, D2u) + τ |u|αu ≥ 0 in Ω.

Indeed, for |x| ≤ R, u is a solution by the definition of τ ; for |x| > R the
definition of viscosity solution gives the result immediately, and for |x| = R
all the test functions have zero gradient and so they don’t need to be tested.
Now since u = 0 on ∂Ω, this would imply by Theorem 3.3 that u ≤ 0 in Ω,
a contradiction with the definition of σ which is nonnegative inside the ball.
This ends the proof of Proposition 3.2.

�
Proof of Lemma 3.5. Let us first remark that for x �= 0, σ is C2 and
hence J2,+σ(x) = J2,−σ(x) = {(∇σ(x), D2σ(x))}, while ∇σ(0) = 0 which
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implies that all test functions at the origin have their gradient equal to zero
and hence need not be considered.

For simplicity, for r = |x|, let g(r) = σ(x). Hence, g′(r) = r2q−1 − rq−1Rq

and g′′(r) = (2q − 1)r2q−2 − (q − 1)rq−2Rq. Clearly, g′ ≤ 0, while g′′ ≤ 0 for
r ≤ ( q−1

2q−1)
1
q R := R1 and positive elsewhere.

By condition (H2) and using the fact that for radial functions the eigen-
values of the Hessian are g′

r with multiplicity N-1 and g′′ the following holds:
For r ≤ R1,

−A|g′|α
[
g′′(r) + (

N − 1
r

)g′(r)
]
≥ −F (∇σ, D2σ)

≥ −a|g′|α
[
g′′(r) + (

N − 1
r

)g′(r)
]
,

while for r ≥ R1

−|g′|α
[
Ag′′(r) + a(

N − 1
r

)g′(r)
]
≤ −F (∇σ, D2σ)

≤ −|g′|α
[
ag′′(r) + A(

N − 1
r

)g′(r)
]
.

More precisely, for r ≤ R1

|g′|αrq−2a(−B1r
q + B2R

q) ≤ −F (∇σ, D2σ) ≤ |g′|αrq−2A(−B1r
q + B2R

q)
(3.1)

with B1 = (N + 2q − 2) and B2 = (N + q − 2); while for r ≥ R1

−F (∇σ, D2σ) ≤ |g′|αrq−2(−B3r
q + B4R

q) (3.2)

with B3 = a(2q − 1) + A(N − 1) and B4 = a(q − 1) + A(N − 1).
Let us observe that q−1

2q−1 ≤ B4
B3

< 1 and then for r ≥ R3 := (B4
B3

)
1
q R, the

quantity on the right-hand side of (3.2) is negative. But, by (3.1), −F is
positive for r ≤ R2 := (B2

B1
)

1
q R ≤ R3.

Hence the supremum is achieved for R1 ≤ r ≤ R3, from which one obtains
that there exists a universal C such that

−F (∇σ, D2σ)
σα+1

≤ CRqRq(α+1)−α−2R−q(α+2) = CR−α−2.

This ends the proof of Lemma 3.5. �
Proof of Theorem 3.3. We assume that τ < λ̄. Then taking λ such that
τ < λ < λ̄, there exists v, a viscosity sub solution of

F (∇v, D2v) + λv1+α ≤ 0 in Ω,
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with v� > 0 in Ω. Suppose that σ is a viscosity solution of

F (∇σ, D2σ) + τ |σ|ασ ≥ 0 in Ω,

and σ ≤ 0 on ∂Ω. We need to prove that σ ≤ 0 in Ω. It is sufficient to
prove that σ� ≤ 0. Using the definition of viscosity solution, one can assume
without loss of generality that σ ∈ USC and v ∈ LSC and hence drop the
stars.

Let us suppose by contradiction that σ(x)
v(x) has a positive supremum inside

Ω. For some q > 2, let us consider the function

ψj(x, y) =
σ(x)
v(y)

− j

qv(y)
|x − y|q

which is uppersemicontinuous. Then ψj also has a positive supremum,
achieved on some pair of points (xj , yj) ∈ Ω2. One easily has that (xj , yj) →
(x̄, x̄), x̄ ∈ Ω which is a supremum for σ

v . One can also prove that j|xj −
yj |q → 0, and that x̄ is a continuity point for σ. To prove this last point let
us note that

σ(xj) − j
q |xj − yj |q

v(yj)
≥ σ(x̄)

v(x̄)

and using the lowersemicontinuity of v on x̄, together with lim j
q |xj−yj |q = 0

one gets that
lim inf σ(xj) ≥ σ(x̄).

Assume for the moment that xj �= yj for j large enough. Take j large enough
in order that

σ(xj)1+α ≥ 3σ(x̄)1+α

4
and

j

q
|xj − yj |q ≤ σ(x̄)1+α(λ − τ)

4λ
.

Using ψj(x, y) ≤ ψj(xj , yj), one gets that

σ(x)v(yj) − v(y)
(
σ(xj) −

j

q
|xj − yj |q

)
≤ v(yj)

j

q
|x − y|q. (3.3)

Then defining

βj = σ(xj) −
j

q
|xj − yj |q

(3.3) becomes, after some simple calculation:(
σ(x + xj) − σ(xj) − j|xj − yj |q−2(xj − yj .x)

)
v(yj)
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−
(
v(y + yj) − v(yj) − j|xj − yj |q−2(xj − yj .y)

v(yj)
βj

)
βj (3.4)

≤ v(yj)
(j

q
|xj + x − yj − y|q − j

q
|xj − yj |q − j|xj − yj |q−2(xj − yj , x − y)

)
.

We define the functions

U(x) =
(
σ(x + xj) − σ(xj) − j|xj − yj |q−2(xj − yj .x)

)
v(yj)

and

V (y) = −
(
v(y + yj) − v(yj) − j|xj − yj |q−2(xj − yj .y)

v(yj)
βj

)
βj .

With these notations (3.4) can be written as

U(x) + V (y) ≤ (x, y)A(x, y),

where

A = jv(yj)
(

Dj −Dj

−Dj Dj

)
and

Dj = 2q−3q|xj − yj |q−2
(
I +

(q − 2)
|xj − yj |2

(xj − yj) ⊗ (xj − yj)
)
.

Noting that

A ≤ 2jv(yj)|Dj |
(

I −I
−I I

)
and using Lemma 2.1 in [4], one gets that(

j|xj − yj |q−2(xj − yj),
Xj

v(yj)

)
∈ J2,+σ(xj)

and (
j|xj − yj |q−2(xj − yj)

v(yj)
βj

,
−Yj

βj

)
∈ J2,−v(yj)

with, for some ε > 0, (
Xj 0
0 Yj

)
≤ A + εA2.

In particular, Xj + Yj ≤ 0. We can conclude using the fact that v and σ are
respectively a super and a sub solution and the properties of F .

−τσ(xj)1+α ≤ F (j|xj − yj |q−2(xj − yj),
Xj

v(yj)
)
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≤ F (j|xj − yj |q−2(xj − yj),
−Yj

v(yj)
)

≤
β1+α

j

v(yj)1+α
F (j|xj − yj |q−2(xj − yj)

v(yj)
βj

,
−Yj

βj
)

≤ −λβ1+α
j = −λ[σ(xj) −

j

q
|xj − yj |q]1+α.

This gives a contradiction; indeed, by passing to the limit, the previous
inequality yields

−τσα+1(x̄) ≤ −λσα+1(x̄).
It remains to prove that xj �= yj for j large enough. If one assumes that
xj = yj one has

σ(xj) ≥ σ(x) − j

q
|xj − x|q

and

v(x) ≥ v(xj) −
jv(xj)|xj − x|q

qσ(xj)
.

In that case one uses Lemma 2.2 in [4] to get a contradiction. This ends the
proof of Theorem 3.3. �

Let us recall that in [4] we give a comparison principle for continuous vis-
cosity solutions. It is not difficult to see that it can be extended to bounded
viscosity solutions. We now prove a further extension adapted to our con-
text.

Theorem 3.6. Suppose that λ < λ̄, f ≤ 0, f is upper semicontinuous and
g is lower semicontinuous with f ≤ g and

- either f < 0 in Ω,
- or g(x̄) > 0 on every point x̄ such that f(x̄) = 0.

Suppose that there exist v bounded and nonnegative, and σ bounded, respec-
tively satisfying

F (∇v, D2v) + λv1+α ≤ f, F (∇σ, D2σ) + λ|σ|ασ ≥ g

in the viscosity sense, with σ ≤ v on ∂Ω. Then σ ≤ v in Ω.

As a consequence one has

Corollary 3.7. Suppose that λ < λ̄; there exists at most one nonnegative
viscosity solution of{

F (∇v, D2v) + λv1+α = f in Ω
v = 0 on ∂Ω (3.5)
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for f < 0 and continuous.

Proof of Theorem 3.6. First, since F (∇v, D2v) ≤ 0 and v ≥ 0 in Ω, using
the strict maximum principle (see [5] ) v� > 0 in Ω since it is not identically
zero. Without loss of generality one can assume that σ and v are respectively
USC and LSC.

Suppose by contradiction that σ > v somewhere in Ω. Let x̄ be a point
such that

1 <
σ(x̄)
v(x̄)

= sup
x∈Ω

σ(x)
v(x)

.

Clearly, x̄ ∈ Ω since σ
v ≤ 1 on ∂Ω.

Doing exactly the same construction as in the proof of Theorem 3.3 we
similarly get:

g(xj) − λσ(xj)1+α ≤ F (j|xj − yj |q−2(xj − yj),
Xj

v(yj)
)

≤
β1+α

j

v(yj)1+α
F (j|xj − yj |q−2(xj − yj)

v(yj)
βj

,
−Yj

βj
)

≤ −λβ1+α
j +

β1+α
j

v(yj)1+α
f(yj).

Passing to the limit we obtain

g(x̄) ≤
(σ(x̄)

v(x̄)

)α+1
f(x̄).

Either f(x̄) = 0, and then we have reached a contradiction because in that
case by hypothesis g(x̄) > 0, or, f(x̄) < 0, and then we get

0 < f(x̄)
[
1 −

(σ(x̄)
v(x̄)

)α+1]
≤ f(x̄) − g(x̄) ≤ 0.

This concludes the proof. �
Proof of Corollary 3.7. Let us consider u and v, two solutions of (3.5).
Then uε = u

1+ε satisfies{
F (uε) + λu1+α

ε = f
(1+ε)1+α in Ω

uε = 0 on ∂Ω.

Noting that f
(1+ε)1+α > f and applying the comparison theorem, one gets

that uε ≤ v. Passing to the limit when ε goes to zero, one obtains that
u ≤ v, and exchanging u and v, that u = v.
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4. Hölder and Lipschitz regularity

In all this section we assume that F satisfies (H2) and Ω is a bounded C2

domain in R
N .

Suppose that u is a viscosity solution of{
F (∇u, D2u) = f in Ω
u = 0 on ∂Ω.

(4.1)

Theorem 4.1. Suppose that Ω is a C2 domain. Let f be a bounded function
in Ω. Let u be a nonnegative viscosity solution of (4.1). Then, for any
γ ∈ (0, 1), there exists C > 0, such that

|u(x) − u(y)| ≤ C|x − y|γ .

Before proving Theorem 4.1 we shall state a Lipschitz regularity result
which holds if F also satisfies a Hölder continuity hypothesis with respect
to p �= 0. Precisely:

(H3) There exists λ ∈]1/2, 1] and ν > 0 such that for all |p| = 1, for all q,
|q| < 1

2 , and for all B ∈ S
|F (p + q, B) − F (p, B)| ≤ ν|q|λ|B|.

The following theorem holds:

Theorem 4.2. Suppose that F satisfies (H1), (H2), (H3). Suppose that
f is bounded and let u be a nonnegative viscosity solution of equation (4.1).
Then u is Lipschitz continuous inside Ω.

Remark 4.3. Let us note that (H3), together with the homogeneity with
respect to p, implies that for all |p| �= 0, q, |q| < |p|

2 , for all B ∈ S
|F (p + q, B) − F (p, B)| ≤ ν|q|λ|p|α−λ|B|.

It is under this form that we shall use assumption (H3) in order to prove
the Lipschitz continuity result. In the rest of the paper we shall only use
the Hölder continuity of the solution, hence condition (H3) is required only
in Theorem 4.2.
Proof of Theorem 4.1. The proof relies on ideas used to prove Hölder
and Lipschitz estimates in [15].

First we will prove that u is Hölder near the boundary using the regularity
of the boundary and of the distance function near the boundary.

Let d(x) be the distance from the boundary; i.e., d(x) = inf{|x − y| : y ∈
∂Ω}.
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Claim: For any 0 < γ < 1 there exist δ > 0, Mo > 0 such that u(x) ≤
Mod(x)γ for d(x) ≤ δ .

In order to prove the claim we need to show that g(x) = d(x)γ is a super
solution of (4.1) in Ωδ = {x ∈ Ω : d(x) < δ}. It is well known (see [11, 12, 18])
that d is C2 on Ωδ for δ small enough since ∂Ω is C2. Furthermore the C2

norm of d is bounded. Then for δ small enough and d(x) < δ,

F (∇g, D2g) ≤ γ1+αd(γ(α+1)−α−2)(γ − 1 + cd(x)|D2d(x)|∞) ≤ −ε < 0

for some constant c which depends on a and A and for some constant ε > 0
which depends on γ, N , α and ∂Ω.

We now define Mo such that

Moδ
γ = sup

∂Ωδ∩Ω
u and M1+α

0 >
|f |∞

ε
.

By the comparison principle (Theorem 3.6) u� ≤ Mod(x, ∂Ω)γ in Ωδ and the
claim is proved.

We now prove Hölder’s regularity inside Ω.
We construct a function Φ as follows: Let Mo and γ be as in the Claim,

M = sup(Mo,
2 sup u

δγ ) and Φ(x) = M |x|γ .
We shall consider

Δδ = {(x, y) ∈ Ω2 : |x − y| < δ}.
Claim 2: For any (x, y) ∈ Δδ,

u�(x) − u�(y) ≤ Φ(x − y). (4.2)

If Claim 2 holds this completes the proof; indeed, taking x = y we would
get that u� = u� and then u is continuous. Therefore, going back to (4.2)

u(x) − u(y) ≤ 2 supu

δγ
|x − y|γ ,

for (x, y) ∈ Δδ, which is equivalent to the local Hölder continuity.
Let us check first that (4.2) holds on ∂Δδ. On that set,
- either |x − y| = δ and then, since Mδγ ≥ 2u, u�(x) − u�(y) ≤ Mδγ =

Φ(x − y)
-or (x, y) ∈ ∂(Ω × Ω).
In that case, for (x, y) ∈ (Ω × ∂Ω) we have just proved that u�(x) ≤

Mod
γ ≤ M |y − x|γ , while for (x, y) ∈ ∂Ω × Ω, −u(y) ≤ 0 ≤ M |x − y|γ .

Now we consider interior points. Suppose by contradiction that u�(x) −
u�(y) > Φ(x − y) for some (x, y) ∈ Δδ. Then there exists (x̄, ȳ) such that

u�(x̄) − u�(ȳ) − Φ(x̄ − ȳ) = sup(u�(x) − u�(y) − Φ(x − y)) > 0.
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Clearly, x̄ �= ȳ. Then using Lemma 2.1 in [14] there exist X and Y in S such
that

(γM(x̄ − ȳ)|x̄ − ȳ|γ−2, X) ∈ J2,+u�(x̄),
(γM(x̄ − ȳ)|x̄ − ȳ|γ−2,−Y ) ∈ J2,−u�(ȳ)

with (
X 0
0 Y

)
≤

(
B −B
−B B

)
and B = D2Φ(x̄ − ȳ).

In particular, this proves that X +Y ≤ 0, while taking vectors of the form
(x,−x) one gets X + Y ≤ 4B. We need a more precise estimate, as in [15].
For that aim let:

0 ≤ P :=
(x̄ − ȳ ⊗ x̄ − ȳ)

|x̄ − ȳ|2 ≤ I.

Remarking that trAB ≥ 0 if A and B are symmetric semi-positive definite
matrices then

tr(−(X + Y )(I − P )) ≥ 0 and tr ((4B − (X + Y))P) ≥ 0.

Hence,

tr(X + Y ) ≤ tr(P (X + Y ) ≤ 4tr(PB) = 4γM(γ − 1)|x̄ − ȳ|γ−2 < 0. (4.3)

Now we can use the fact that u is both a sub and a super solution of (4.1)
and applying condition (H2)

f(x̄) ≤ F (∇xΦ, X) ≤ a|∇xΦ|αtr(X + Y ) + F (∇yΦ,−Y )

≤ f(ȳ) + a|∇xΦ|αtr(X + Y ).

This implies, using (4.3),

a|∇xΦ|α4γM(1 − γ)|x̄ − ȳ|γ−2 ≤ f(ȳ) − f(x̄).

Recalling that |∇xΦ| = γM |x̄ − ȳ|γ−1 the previous inequality becomes:

aMα+14γ1+α(1 − γ)|x̄ − ȳ|γ(α+1)−(α+2) ≤ 2|f |∞. (4.4)

Using M ≥ 2(sup u)
δγ and |x̄ − ȳ| ≤ δ one obtains

a(2 supu)1+α4γ1+α(1 − γ)δ−(α+2) ≤ 2|f |∞.

This is clearly false for δ small enough and it concludes the proof. �
Proof of Theorem 4.2. The proof proceeds similarly to the proof given
by Ishii and Lions in [15]. This proof requires use of the fact that we al-
ready know that u is Hölder continuous by Theorem 4.1, together with the
additional assumption (H3):
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For the sake of simplicity and without loss of generality we assume that
in hypothesis (H2) a = A = 1. Let γ be in ( 1

2λ , 1) and c such that by the
Hölder continuity proved before

|u(x) − u(y)| ≤ c|x − y|γ .

Let μ be an increasing function such that μ(0) = 0 and μ(r) ≥ r, let

l(r) =
∫ r

0
ds

∫ s

0

μ(σ)
σ

dσ,

and let us note that since μ ≥ 0 for r > 0, l(r) ≤ rl′(r). Let r0 be such that
l′(r0) = 1

2 , M such that Mr0 = 4 sup |u|. Let also δ > 0 be given, K = r0
δ ,

and z be such that d(z, ∂Ω) ≥ 2δ.
We define ϕ(x, y) = Φ(x−y)+L|x−z|k, where Φ(x) = M(K|x|−l(K|x|)),

and
Δz = {(x, y) ∈ R

N × R
N : |x − y| < δ, |x − z| < δ}.

We shall now choose all the constants above.
- k is such that k > 1

1− 1
2γλ

> 2;

- L is such that M ≥ 2 sup u
r0

and L = cδγ−k; using the Hölder continuity
of u, one has

u(x) − u(y) ≤ ϕ(x, y)
on ∂Δz.

Suppose by contradiction that for some point (x̄, ȳ):

u(x̄) − u(ȳ) > ϕ(x̄, ȳ).

Clearly, x̄ �= ȳ. Note that L|x̄−z|k ≤ c|x̄− ȳ|γ . Proceeding as in the previous
proof, there exist X, Y such that

(MK(x̄− ȳ)|x̄− ȳ|−1(1− l′(K|x̄− ȳ|))+kL|x̄− z|k−2(x̄− z), X) ∈ J2,+u(x̄),

and
(MK

x̄ − ȳ

|x̄ − ȳ|(1 − l′(K|x̄ − ȳ|)),−Y ) ∈ J2,−u(ȳ),

where the matrices X and Y satisfy(
X 0
0 Y

)
≤

(
B + L̃ −B
−B B

)
(4.5)

with B = D2Φ(x̄ − ȳ) and

L̃ = kL|x̄ − z|k−2
(
I + (k − 2)

(x̄ − z) ⊗ (x̄ − z)
|x̄ − z|2

)
.
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Let us note that similarly to the Hölder case (4.5) implies that X +Y − L̃ ≤
4B and then

tr(X + Y − L̃) ≤ 4tr(PB)

with P = (x̄−ȳ)⊗(x̄−ȳ)
|x̄−ȳ|2 . This gives

tr(X + Y − L̃) ≤ −MKμ(K|x̄ − ȳ|)
|x̄ − ȳ| ≤ −MK2. (4.6)

Let us note that

∇xϕ(x̄, ȳ) = MK(1 − l′(K|x̄ − ȳ|)) x̄ − ȳ

|x̄ − ȳ| + kL|x̄ − z|k−2(x̄ − z),

∇yϕ(x̄, ȳ) = MK(1 − l′(K|x̄ − ȳ|)) x̄ − ȳ

|x̄ − ȳ|
and

L|x̄ − z|k−1 = O(δγ−kδk−1) = O(K1−γ).
From this we get in particular that

2MK ≥ |∇xϕ(x̄, ȳ)|, |∇yϕ(x̄, ȳ)| ≥ MK

4
.

Finally, observe that |L̃| ≤ L|x̄ − z|k−2 ≤ (Cδγ−k)
2
k (δ)γ(k−2)/k = O(δγ−2) =

O(K2−γ), from which we derive using (4.6) that for K large enough tr(X +
Y ) ≤ 0 and

|tr(X + Y )| ≥ C(K2)
for some positive universal constant C, and |L̃| ≤ |tr(X + Y )| for K large
enough.

In the following we shall need a bound from above for |X|.
For simplicity the constants C below will indicate constants that depend

only on the data and they may vary from one line to the other. Note that
Lemma 2.1 in [14] ensures the existence of some universal constant such that

|X − L̃| + |Y | ≤ C(|B| 12 |tr(X + Y − L̃)| 12 + |tr(X + Y − L̃)|)
with B = D2Φ. The considerations on L̃ with respect to |tr(X + Y )| also
give

|X| + |Y | ≤ C(|B| 12 |tr(X + Y )| 12 + |tr(X + Y )|).
Let us note that |B| ≤ CK

|x̄−ȳ| and then with the assumptions on μ, and using

|tr(X + Y )| ≥ CK|tr(X + Y )| 12 one derives that

|X| ≤ |tr(X + Y )|(1 +
1

K
1
2 |x̄ − ȳ| 12

).
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We need to prove that

|∇yϕ(x̄, ȳ)|α−λ(L̃|x̄ − z|k−1)λ|X| = o(|tr(X + Y )||∇ϕ|α).

For that aim we write

Kα− γλ
k |x̄ − ȳ|γ(λ)(1− 1

k
)|X| = Kα− γλ

k |x̄ − ȳ| 12 |tr(X + Y )|
(
1 +

1

K
1
2 |x̄ − ȳ| 12

)

≤ |tr(X + Y )|(Kα− γλ
k
− 1

2 ) = |tr(X + Y )|KαK−γλ− 1
2

=o(|tr(X + Y )||∇ϕ|α).

We now write, using assumption (H3) and the calculations above

f(x̄) ≤ F (∇xϕ(x̄, ȳ), X)

≤ F (∇yϕ(x̄, ȳ), X) + ν[L|x̄ − z|k−1]λ|∇xϕ|α−λ|X|
≤ F (∇yϕ(x̄, ȳ),−Y ) + o(|tr(X + Y )||∇ϕ|α) + |∇ϕ|αtr(X + Y )

≤ f(ȳ) − CKα+2 + o(Kα+2).

From this one gets a contradiction for K large.
We have proved that for all x such that d(x, ∂Ω) ≥ 2δ and for y such that

|x − y| ≤ δ

u(x) − u(y) ≤ 2 supu

r0

|x − y|
δ

.

Recovering the compact set Ω by a finite number of C2 sets Ωi, Ωi ⊂ Ωi+1

such that d(∂Ωi, ∂Ωi+1) ≤ 2δ, the local Lipschitz continuity is proved.

5. Existence results

5.1. The case λ < λ̄. The main result of this section is the following exis-
tence result in a bounded smooth domain:

Theorem 5.1. Assume that F satisfies (H1), (H2). Suppose that f is
bounded and f ≤ 0 on Ω. Then, for λ < λ̄ there exists u a nonnegative
viscosity solution of{

F (∇u, D2u) + λu1+α = f in Ω
u = 0 on ∂Ω.

Moreover, if f < 0 in Ω and continuous, the solution is unique.

To prove this theorem, we need the two following propositions.
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Proposition 5.2. Suppose that f is bounded and nonpositive, and λ ∈ R.
Suppose that there exists v1 ≥ 0 and v2 ≥ 0, respectively a sub solution and
super solution of {

F (∇v, D2v) + λv1+α = f in Ω
v = 0 on ∂Ω (5.1)

with v1 ≤ v2. Then there exists a viscosity solution v of (5.1), such that
v1 ≤ v ≤ v2. Moreover, if f < 0 inside Ω the solution is unique.

Proposition 5.3. Suppose that F satisfies (H1), (H2). For any f bounded
and nonpositive in Ω, there exists a viscosity solution w of{

F (∇w, D2w) = f in Ω
w = 0 on ∂Ω.

(5.2)

Of course w is nonnegative by the maximum principle and Hölder continu-
ous. Moreover, if f < 0 and continuous in Ω the solution is unique.

By Proposition 5.2, Proposition 5.3 will be proved if we construct a sub
and super solution for (5.2). Since the null function is clearly a sub solution,
it is sufficient to construct a viscosity solution u of F (∇u, D2u) ≤ −1 which
is positive and zero on the boundary. Then multiplying by the right constant
we get the required super solution of (5.2). This is what we do in the next
proposition .

Proposition 5.4. Let Ω be a bounded C2 domain in R
N . Assume that F

satisfies (H1), (H2). Let d(x) = d(x, ∂Ω) be the distance to the boundary.
Then for any β < 0, there exist k ∈ N, γ ∈ (0, 1), such that

u(x) =
(
1 − 1

(1 + d(x)γ)k

)
is a viscosity super solution of

F (∇u, D2u) ≤ β.

This result is proved in the appendix, together with some properties of the
distance function required here, while the proof of Proposition 5.2 is given
at the end of this section.
Proof of Theorem 5.1. For λ ≤ 0, one can apply directly Proposition 5.2,
since 0 is a sub solution for (5.6) and the solution constructed in Proposition
5.3 is a super solution.

We now treat the case λ > 0.
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We define the sequence un = Tn
f (0) where Tf (u) is defined as the unique

viscosity solution of{
F (∇Tf (u), D2Tf (u)) = f − λu1+α in Ω
Tf (u) = 0 on ∂Ω.

Proposition 5.3 implies that Tfu is well defined.
By the comparison principle and the maximum principle for F in [4], un is

increasing and nonnegative. We want to prove that it is bounded. Suppose
not; then, by the homogeneity of F wn := un

|un|∞ satisfies

F (∇wn+1, D
2wn+1) + λ

( u1+α
n

|un+1|1+α∞

)
=

f

|un+1|1+α∞
.

Furthermore,

F (∇wn+1, D
2wn+1) + λw1+α

n+1 = λ
( u1+α

n+1

|un+1|1+α∞
− u1+α

n

|un+1|1+α

)
+

f

|un+1|1+α∞

≥ f

|un+1|1+α∞
.

Clearly, ∣∣∣λ( u1+α
n+1

|un+1|1+α∞
− u1+α

n

|un+1|1+α∞

)
+

f

|un+1|1+α∞

∣∣∣ ≤ 2λ +
|f |

|u1|1+α∞

since 0 ≤ u1+α
n

|un+1|1+α
∞

≤ 1.
By the Hölder estimates in the previous section, the sequence wn is rela-

tively compact in C(Ω̄); extracting a subsequence from (wn) and passing to
the limit one gets in particular

F (∇w, D2w) + λw1+α ≥ 0.

Moreover, w = 0 on the boundary .
We are under the hypothesis that λ < λ̄, hence, we can apply the maxi-

mum principle and conclude that w ≤ 0. We have reached a contradiction
since w ≥ 0 and |w|∞ = 1.

So the sequence un is bounded. Since it is also increasing it converges
and the convergence is uniform on Ω, by the Hölder estimates. Using the
(obvious) properties of uniform limit of viscosity solutions, one gets that the
limit u is a nonnegative solution of

F (∇u, D2u) + λu1+α = f.
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Proof of Proposition 5.2. The proof relies on Perron’s method applied
to viscosity solutions as is done in [14].

Let us define v = sup{v1 ≤ u ≤ v2 : u is a SUB}. We want to prove first
that v� is a sub solution. Let un be an increasing sequence of sub solutions,
v1 ≤ un ≤ v2, un converging to v�.

Suppose that x̄ is some point such that v is equal to a constant C on a
ball B(x̄, r). Since C ≥ 0, it satisfies the condition required in that case.

We now treat the points where v is not locally constant. Suppose by
contradiction that v is not a sub solution, then there exist x̄, a C2 function
ϕ, and r > 0, such that ∇ϕ(x̄) �= 0 and

(v� − ϕ)(x) ≤ (v� − ϕ)(x̄) = 0,

and
F (∇ϕ, D2ϕ)(x̄) + λϕ(x̄)1+α ≤ f(x̄) − r. (5.3)

Let δ be small enough in order that the following inequalities hold, for |x̄ −
y| ≤ δ,

|F (∇ϕ, D2ϕ)(y) − F (∇ϕ, D2ϕ)(x̄)| ≤ r

4
, (5.4)

|ϕ(y)1+α − ϕ(x̄)1+α| ≤ r

4λ
, (5.5)

|f(y) − f(x̄)| ≤ r

4
. (5.6)

One can assume that the supremum of v� − ϕ on x̄ is strict, so that there
exists αδ > 0 with

sup
|y−x̄|≥δ

(v� − ϕ) ≤ −αδ.

Finally, take N large enough in order that by the simple convergence of
un(x̄) toward v�(x̄) one has for n ≥ N

un(x̄) − v�(x̄) ≥ −αδ

4
,

then

sup
|x−x̄|≤δ

(un −ϕ)(x) ≥ −αδ

4
≥ −αδ ≥ sup

|x−x̄|≥δ
(v� −ϕ)(x) ≥ sup

|x−x̄|≥δ
(un −ϕ)(x).

Furthermore, the supremum of un − ϕ is achieved inside B(x̄, δ), on some
xn. Then one has, using (5.3), (5.4), (5.5), (5.6),

f(x̄) − r ≥ F (∇ϕ, D2ϕ)(x̄) + λϕ(x̄)1+α

≥ F (∇ϕ, D2ϕ)(xn) + λϕ(xn)1+α − r

2
≥ f(xn) − r

2
≥ f(x̄) − 3r

4
,
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a contradiction.
We now prove that v� is a super solution. If not, there would exist x̄ ∈ Ω,

r > 0 and ϕ ∈ C2(B(x̄, r), with ∇ϕ(x̄) �= 0, satisfying

0 = (v� − ϕ)(x̄) ≤ (v� − ϕ)(x)

on B(x̄, r), and ε > 0, such that

F (∇ϕ, D2ϕ)(x̄) + λϕ(x̄)1+α > f(x̄) + ε.

We prove first that ϕ(x̄) < v2(x̄). If not one would have ϕ(x̄) = v�(x̄) = v2(x̄)
and then

(v2 − ϕ)(x) ≥ (v� − ϕ)(x) ≥ (v� − ϕ)(x̄) = (v2 − ϕ)(x̄) = 0,

hence since v2 is a super solution and ϕ is a test function for v2 on x̄,

F (∇ϕ, D2ϕ)(x̄) + λϕ(x̄)1+α ≤ f(x̄),

a contradiction. Then ϕ(x̄) < v2(x̄). We construct now a sub solution which
is greater than v and less than v2.

Let δ be such that for |x − x̄| ≤ δ

|F (∇ϕ, D2ϕ)(x)−F (∇ϕ, D2ϕ)(x̄)|+|f(x)−f(x̄)|+λ|ϕ(x)1+α−ϕ(x̄)1+α| ≤ ε

2
.

Then
F (∇ϕ, D2ϕ)(x) + λϕ1+α(x) ≥ f(x) +

ε

2
.

One can assume that
(v� − ϕ)(x) ≥ |x − x̄|4.

We take r < δ4 and such that 0 < r < inf |x−x̄|≤δ(v2(x) − ϕ(x)) and define

w = sup(ϕ(x) + r, v�);

w is LSC as the supremum of two LSC functions.
One has w(x̄) = ϕ(x̄) + r, and w = v for r < |x − x̄| < δ. w is a sub

solution, since when w = ϕ + r one can use ϕ + r as a test function, and
since ϕ(x) > 0,

F (∇ϕ, D2ϕ)(x)+λ(ϕ(x)+ r)1+α ≥ F (∇ϕ, D2ϕ)(x)+λϕ1+α(x) ≥ f(x)+
ε

2
.

Elsewhere, w = v�, hence it is a sub solution. Moreover, w ≥ v, w �= v and
w ≤ g. This contradicts the fact that v is the supremum of the sub solutions.
Using Hölder regularity we get that v is Hölder and hence v� = v�.
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5.2. The case λ = λ̄. In all this section we still assume that Ω is a bounded
C2 domain in R

N .

Theorem 5.5. Let F satisfy (H1) and (H2). Then, there exists φ > 0 in
Ω such that φ is a viscosity solution of

{
F (∇φ, D2φ) + λ̄φ1+α = 0 in Ω
φ = 0 on ∂Ω.

Moreover, φ is γ-Hölder continuous for all γ ∈ (0, 1) and locally Lipschitz if
(H3) is satisfied by F .

Proof of Theorem 5.5. Let λn be an increasing sequence which converges
to λ̄. Let un be a nonnegative viscosity solution of{

F (∇un, D2un) + λnu1+α
n = −1 in Ω

un = 0 on ∂Ω.

By Theorem 5.1 the sequence (un) is well defined. We shall prove that (un)
is not bounded. Indeed suppose by contradiction that it is. Then by the
Hölder estimate, there exists a subsequence, still denoted un, which tends
uniformly to a nonnegative continuous function u which would be a viscosity
solution of

F (∇u, D2u) + λ̄u1+α = −1.

This contradicts the definition of λ̄. Indeed u > 0 and one can choose ε > 0
small enough that

F (∇u, D2u) + (λ̄ + ε)u1+α ≤ −1 + εu1+α ≤ 0.

We have obtained that the sequence |un|∞ → +∞. Then defining wn =
un

|un|∞ one has

F (∇wn, D2wn) + λnw1+α
n =

−1
|un|1+α

and then extracting as previously a subsequence which converges uniformly,
one gets that there exists w, such that |w|∞ = 1 and

F (∇w, D2w) + λ̄w1+α = 0.

The boundary condition is given by the uniform convergence.
Clearly, w is Hölder and if (H3) is satisfied it is locally Lipschitz continu-

ous.
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6. Appendix: Properties of the distance function

In all this section Ω is a bounded C2 domain in R
N . We want to recall

some known and new facts about the distance function in order to construct
the sub solution requested in Proposition 5.4.

Proposition 6.1. Suppose Ω is a bounded C2 domain in R
N .

1. d is differentiable at x if and only if there exists only one point y =
y(x) ∈ ∂Ω such that d(x) = |x − y|. In that case |∇d(x)| = 1.

2. d is semi-concave; i.e., there exists C1 such that d(x) − C1|x|2 is
concave. This implies in particular that on a point where d is dif-
ferentiable, then (p, X) ∈ J2,−d(x0) implies that p = ∇d(x0) and
X ≤ C1Id.

3. If the distance is achieved on at least two points, then J2,−d(x0) = ∅.
Almost all these facts are contained in [1]. For completeness’ sake we shall

recall the proof of the last assertion.
Suppose that x = 0 and let y1 and y2 be two distinct points in ∂Ω such

that d(0, ∂Ω) = d = |0−y1| = |0−y2|. It is sufficient to prove that J2,−d2(0)
is empty. Suppose that e and E are in R

N × SN such that for all x in a
neighborhood of 0

d2 + e.x +t xEx ≤ d(x, ∂Ω)2.
In particular, this must be satisfied for all x = ty1 and |t| < r small enough.
This implies in particular

d2 + t(e.y1) + t2(Ey1, y1) ≤ inf
|t|<r

(|ty1 − y1|2, |ty1 − y2|2).

In particular one gets first

(e.y1)t ≤ −2d2t + O(t2)

which implies a.y1 = −2d2 and secondly one has

(e.y1)t ≤ −2(y1.y2)t + O(t2)

which implies that (e.y1) = −2(y1.y2) = −2d2, a contradiction since y1 �= y2

implies that y1.y2 �= d2.

Proposition 6.2. Let Ω be a bounded open C2 set in R
N . Suppose that F

satisfies (H1), (H2). Then for any constant β < 0 there exists a function u
which is a viscosity super solution of{

F (∇u, D2u) ≤ β in Ω
u = 0 on ∂Ω.
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Proof of Proposition 6.2. Let K > diamΩ. Then d ≤ K. Let γ ∈ (0, 1)
and let k be large enough to be chosen later.

We construct the following function

u(x) = 1 − 1
(1 + d(x)γ)k

.

Clearly, u = 0 on the boundary, u is continuous and it is C1 on the points
where d is achieved on a unique point and according to Proposition 6.1 in
the other points J2,−u = ∅. Hence we only have to test the points where the
distance function is achieved only on one point. Let φ be a test function at
x0 ∈ Ω; i.e.,

u(x) ≥ φ(x), u(x0) = φ(x0).
Then clearly there exists a test function ψ defined by

φ(x) = 1 − 1
(1 + ψ(x)γ)k

which is a test function for d; i.e., d(x) ≥ ψ(x) and d(x0) = ψ(x0). We shall
now compute the gradient and the Hessian of φ in terms of ψ. Using the
fact that ∇ψ(x0) = ∇d(x0), one has

∇φ(x0) =
kγdγ−1∇d

(1 + dγ)k+1

and

D2φ(x0) =
kγdγ−2

(1 + dγ)k+2

[
(γ − 1 − (k + 2 − γ)dγ)∇d ⊗∇d + d(1 + dγ)D2ψ

]
.

We need to study the eigenvalues of D2φ.
Clearly ∇d ⊗ ∇d ≥ 0 and tr(∇d ⊗ ∇d) = 1, while D2ψ ≤ C1Id. Using

condition (H2) and these considerations, we obtain that

F (∇φ(x0), D2φ(x0))

≤
( kdγ−1

(1 + dγ)k

)α kγdγ−2

(1 + dγ)k+2
[a(γ − 1 − dγ(k + 2 − γ)) + AC1Nd(1 + dγ)]

≤ k1+α dγ(α+1)−(α+2)

(1 + dγ)k(α+1 + 2
[a(γ − 1 − dγ(k + 2 − γ)) + AC1Nd(1 + dγ)]

≤ k1+α Kγ(α+1)−(α+2)

(1 + Kγ)k(α+1)+2
[a(γ − 1 − dγ(k + 2 − γ)) + AC1Nd(1 + dγ)]

≤ β < 0



118 Isabeau Birindell and Françoise Demengel

since the function dγ(α+1)−(α+2)

(1+dγ)k(α+1+2
is decreasing and choosing k large enough in

order that a(γ − 1 − dγ(k + 2 − γ)) + AC1Nd(1 + dγ) < 0. Hence for β < 0
fixed, and the right choice of k one gets

F (∇φ, D2φ) ≤ β.
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XIII, n‘2 (2004), 261–287.

[5] I. Birindelli, F. Demengel, and J. Wigniolle, Strict maximum principle, to appear in
the Proceedings of Workshop on Second Order Subelliptic Equations and Applications
Cortona, (2003).

[6] J. Busca, M.J. Esteban, and A. Quaas, Nonlinear eigenvalues and bifurcation problems
for Pucci’s operator, to appear in Annales de l’Institut H. Poincaré, Analyse non-
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1994), 33–54, Report, 68, Univ. Jyväskylä, Jyväskylä, 1995.
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