

First Events from the CNGS Neutrino Beam Detected in the OPERA Experiment

Maria Teresa Muciaccia Università degli Studi & INFN Bari

Summary

- Aim and strategy of the experiment
- OPERA detector
- Nuclear emulsion analysis
- CNGS run results
- Conclusion

The Oscillation Project with Emulsion tRacking Apparatus

OPERA

Long baseline experiment searching for the $\nu_{_{\!\tau}}$ appearance in a pure $\nu_{_{\!u}}$ beam

CNGS beam, **<E>** = 17 **GeV**, **L** = 732 km

Hybrid set-up (nuclear emulsions + electronic detectors)

Detection of v_{τ} CC interactions and *direct* observation of τ decays

Provide an unambiguous evidence for $\nu_{\mu} \to \nu_{\tau}$ oscillations in the parameter region indicated by the atmospheric neutrino data

Neutrino oscillations in the atmospheric sector

SKI+II

state-of-the-art

1.9 × 10⁻³ eV² < Δ m² < 3.1 × 10⁻³ eV² sin² 2 ϑ > 0.93 (90% C.L.) best fit: Δ m² = 2.5 × 10⁻³ eV², sin² 2 ϑ = 1 SK oscillation signal confirmed by:

MINOS

All the experiments indicate $v_{\mu} \rightarrow v_{\tau}$ dominant oscillation mode....

but still missing: <u>direct</u> observation of oscillated v_x $2.48 \times 10^{-3} \text{ eV}^2 < \Delta m^2 < 3.18 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\vartheta > 0.87 \text{ (90\% C.L.)}$ best fit: $\Delta m^2 = 2.74 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\vartheta > 0.87$

K2K

1.9 × 10⁻³ eV² < Δ m² < 3.5× 10⁻³ eV² sin² 2 ϑ =1 (90% C.L.) best fit: Δ m² = 2.8 × 10⁻³ eV², sin² 2 ϑ =1

Experimental signature of the v, appearance

Topology selection:

kink signature

$\nu_{\mu} \rightarrow \nu_{\tau}$ Oscillation Search

τ decay channel	Si	Pookaround	
	$\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$	$\Delta m^2 = 3.0 \times 10^{-3} eV^2$	Background
$\tau \to \mu$	3.6	5.6	0.23
$\tau \to \mathbf{e}$	4.3	6.7	0.23
$\tau \rightarrow h$	3.8	5.9	0.32
au o 3h	1.1	1.7	0.22
ALL	12.8	19.9	1.0

Main background sources:

- charm production and decays
- hadron re-interactions in lead
- large-angle muon scattering in lead

full mixing, 5 year run @ 4.5x10¹⁹ pot/year

Detection of the v_{τ}

Two conflicting requirements:

large mass

→ low cross-section

high granularity

signal selection

background rejection

lead-nuclear emulsion target segmented into basic units called *bricks*

Nuclear emulsions

- 3D particle reconstruction
- Sub-micron spatial resolution
- High granularity (~300 hits/mm)

Target: 1800 tons, 5 year running

- · 30,000 neutrino interactions
- \cdot ~150 v_{τ} interactions
- · ~15 v, identified
- · <1 event of background

What the brick cannot do:

- signal a neutrino interaction
- identify muons

Structure of the OPERA Detector

Installation started in

May 2003

First observation of CNGS

beam neutrinos:

August 18th, 2006

31 lead/emulsion brick walls, alternated to scintillator planes, T T, to select the brick containing neutrino interaction

Muon Spectrometer

Magnet equipped with RPC,HPT planes: ID muons, charge and momentum measurement

Brick Target

- Micro-metric space resolution (emulsion) + target mass (lead)
- Compact and modular structure

TT

Brick (basic unit)

56 Pb plates + 57 emulsion films

CS doublet (connection T T- brick)

two double refreshed emulsion films,vacuum packed and glued onto the bottom of each brick

Total target mass : ~ 1800 t (~200000 bricks, 12M emulsions and Pb plates)

Brick Assembly Machine

Robots will pile up bricks at a rate of ~ 800 bricks/day

Brick Manipula to r System

OPERA running

Automated microscopes for nuclear emulsions

~ 30 bricks will be daily extracted from target and analyzed using high-speed automatic systems

European Scanning System

S-UTS (Japan)

Customized commercial optics and mechanics + asynchronous DAQ software

Track Reconstruction and Interaction search

The search for interactions in the brick is fully automated

position residuals between

vertex reconstruction

Automated Vertex Search

- 1) Cosmic alignment
- 2) Scan Back
- 3) Vertex analysis

Data-MC companson

Data-MC comparison

Reconstructed vertices

OPERA at INGS

Largest underground laboratory for a stro-particle physics

OPERA (CNGS1)

underground area: 18 000 m² external facilities

CERN

GRAN SASSO

easy access

The CERN Neutrino to Gran Sasso beam CNGS

400 GeV/c protons (CERN SPS) on graphite target ν beam produced in the decay in flight of secondary π , K's in 1km-long decay tunnel towards LNGS

optimized for appearance

<Ε _{ν_μ>}	17 GeV
$(v_e + \overline{v_e})/v_{\mu}$	0.87%
\overline{v}_{μ} / v_{μ}	2.1%
v_{τ} prompt	negligible

4.5x10¹⁹ p.o.t./year, 200days/year ε = 55% shared mode

August 2006 run: integrated intensity (pot) as a function of time

First CNGS neutrinos sent towards LNGS on August 18th

Low intensity run from August 18th to 30th

EXT1: 3.81 E17 pot EXT2: 3.79 E17 pot

TOTAL : 7.6 E17 pot

Time Selection of Beam Events

GPS Time Stamp resolution ~ 100 ns

22

Beam Events

320 events registered, 300 expected

Beam Direction Measurement

 $<\theta>=3.4\pm0.3$ (statistically dominated)

as expected

Number of on-time beam events registered in the August run ~320

MC: simulation from MACRO parametrization,
ABSOLUTE normalization

Muon momentum measurement

Changeable Sheets in the August run

In the August run:

one target wall was partially equipped with dummy bricks with Changeable Sheet (CS) doublet, to test the Target Tracker to Brick connection

9 rock-muons crossed the CS surface

muon crossing a CS doublet

Target Tracker to Brick connection

 $TT \rightarrow CS \rightarrow brick$

Muon crossing the CS doublet

Muon track predicted by target tracker found in the CS doublets.

Difference between prediction and found track dominated by electronic detector resolution

TT-CS

T T Predicted position CS Located position

AUGUST RUN

CS to brick connection accuracy

$$TT \rightarrow CS \rightarrow brick$$

low density cosmic ray exposure at LNGS few minutes (~100 tracks per brick)

to study CS – brick connection in *realistic* conditions

Octoberrun

Starting October 25th in the morning Stop October 27th in the morning

0.6 E17 pot, collected 29 on time events

Found a leak in the closed water cooling circuit of the reflector: broken the insulating ceramic part of the most downstream tube connecting the outer conductor with the water drain pipe

Horn-Reflector Repair Schedule

End of works before CNGS start (26/5/07)

Immediately followed by two weeks of **CNGS** commissioning

No contingency in the planning

Eve nt 1064775/Bric k 1000370

TT prediction
X(cm) Y(cm) Z (cm) SX(rad) SY(rad)
181.5 -288.0 -401.8 -0.0839 0.0259

First OPERA event recorded in emulsion

OCTOBER RUN

1 candidate found by automatic scanning in the CS doublet (confirmed by visual inspection)

TT-CS differences:

DX(cm) DY(cm) -0.550 0.0415

DSX(rad) DSY(rad) -0.0166 -0.0248

Event 1064775 (Rock muon) Brick 1000370

MTM

Venice, March 7, 2007

Track reconstruction in emulsion

Tracks in the brick

Tracks in one emulsion sheet

Study in emulsion of the event 10643775/Brick1000370

Rock-muon aligned using Cosmic Rays

RMS of position displacement ~ 1micron.

RMS of angle center displacement ~ 2-3mrad

Momentum measurement by Multiple Scattering (Coordinate Method) 6.4 +1.2 -0.9 GeV/c

Momentum measurement by Spectrometer 7.05 +/- 0.4 GeV/c

2007 Run Problems in the PS extraction

The extraction intensity is limited to 70% of the nominal intensity due to beam losses, mainly at the level of the extraction from the PS

The problem is more acute for the CNGS running, because it requires a high intensity beam

For 2007, in order to « survive », some fixes, which will allow the lost beam to be dispersed over a larger area, are foreseen. These should allow us to run in stable conditions with limited intensity for a long period

important radioprotection problems severe radiation damage to the equipment

The problem can be solved only by changing the PS extraction scheme to the multi-turn extraction

Multi-turn extraction scheme

Virtually lossless

2001 First proposal (linked to 1.5 intensity increase for CNGS)

R&D and tests 2002-2004

Implementation study group 2005

March 2006 TDR October 2006 Project approved

2008 completion

2007 OPERA Run

Assumptions:

3 CNGS cycles (39.6 s, 1.56^E17 p.o.t/day)

700 bricks/day by the End of March

Bricks
PS physics program
S art: End:
41000 112000

Interaction rate

Official SPS schedule: 135.15 useful days

1.7 E13 p.o.t/extraction, 70% efficiency for the machines complex

Option	Bricks at the start of the run 26/5/07	Bricks at the end of the run 11/11/07	Integrated p.o.t	Bricks with interactions	Rock muons
3 CNGS	40738	111982	2.1 ^E 19	1001	3360
1 CNGS	40738	111982	1.65 ^E 19	787	2640

Completion of the detector filling: End of March 2008

due to the lack of funding in Japan, 20% of the emulsions are missing for the time being, maximum number of bricks to be produced 170000

OPERA in the 2007 Run

not only neutrino events but also rock muon events

TT accuracy location test TT-CS

Brick finding Vertex finding

Delta rays, scattering,
Shower development
Brick to Brick connection

CNGS beam cross check

Check of decay search Kinematical analysis tuning

Conclusions

at atmospheric Δm^2 scale using a complex detector combining visual and electronic detection techniques

In the August run, the low intensity CNGS beam operated smoothly for both beam and detector with good quality and stability

The electronic detectors of OPERA took data almost continuously (95% live time) and with the expected tracking performances

319 neutrino-induced events were collected for an integrated intensity of 7.6 E17 pot in agreement with the expectation of 300 events

The zenith angle distribution for rock-muon tracks was measured and found to be in agreement with the expectation

The October run was unfortunately very short due to a leak in the water cooling circuit of the CNGS reflector: in about 24 hours we recorded 30 events

The first event detected in emulsion was analyzed: the momentum was measured in the emulsion and found to be in agreement with the spectrometer measurement

The detector is ready for the next phase

... waiting for the first neutrino interaction in emulsion....