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Abstract. We report on the first detection of CO2 flux pre-

cursors of the till now unforecastable “major” explosions

that intermittently occur at Strombolivolcano (Italy). An

automated survey of the crater plume emissions in the pe-

riod 2006–2010, during which 12 such explosions happened,

demonstrated that these events are systematically preceded

by a brief phase of increasing CO2/SO2 weight ratio (up to

> 40) and CO2 flux (> 1300 t d−1) with respect to the time-

averaged values of 3.7 and ∼500 t d−1 typical for standard

Stromboli’s activity. These signals are best explained by

the accumulation of CO2-rich gas at a discontinuity of the

plumbing system (decreasing CO2 emission at the surface),

followed by increasing gas leakage prior to the explosion.

Our observations thus supports the recent model of Allard

(2010) for a CO2-rich gas trigger of recurrent major explo-

sions at Stromboli, and demonstrates the possibility to fore-

cast these events in advance from geochemical precursors.

These observations and conclusions have clear implications

for monitoring strategies at other open-vent basaltic volca-

noes worldwide.

1 Introduction

Steady or/and mildly explosive eruptive activity at many

open-vent basaltic volcanoes is occasionally interrupted by

sudden large-scale explosions that constitute a major haz-

ard. These currently unforecastable discrete events thus raise

dramatic issues to volcano hazard managers and pose still
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unanswered questions to volcanologists: what are the trig-

ger mechanisms for such events? Could they be preceded,

and hence forecasted, by signals detectable from monitoring

networks?

The Stromboli volcano (Fig. 1), in southern Italy

is an archetype for this explosive pattern at open-vent

basaltic volcanoes. Its regular activity consists of ∼5–20

“Strombolian”-type mild explosions per hour, characterized

by 50–200 m high jets of gas and lava clots that produce

only ∼1 m3 of scoriae and ash (e.g. Chouet et al., 1974;

Ripepe et al., 2008). Intermittently, however, this standard

activity is interrupted by more energetic explosive events,

which range in magnitude from (i) major explosions (∼2–

4 per year, jets > 200 m high, ∼100 m3 of erupted material)

to (ii) more powerful but rarer “paroxysmal explosions” (∼1

every 5 years, km-sized columns, and ∼104–106 m3 of de-

posits) (Barberi et al., 1993; Bertagnini et al., 1999, 2003,

2008; Rosi et al., 2006). These latter explosions are very

sudden and eject much coarser (including ballistic blocks)

and more widely dispersed tephra than regular activity. They

thus represent a great hazard to the thousands of visitors per

year attracted by the spectacular activity of Stromboli and

even, occasionally, to the inhabitants of the island. This high

volcanic risk has motivated enhanced interest in the scien-

tific community for a better understanding of both major ex-

plosions and paroxysmal events, focused on their dynamics

(Rosi et al., 2006; Ripepe and Harris, 2008; Andronico et

al., 2008; Andronico and Pistolesi, 2010), triggering mecha-

nisms (Métrich et al., 2005, 2010; Allard, 2010) and possible

precursors (Falsaperla and Spampinato, 2003; Aiuppa and

Federico, 2004).
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Fig. 1. (a) Map of Stromboli with locations of MultiGAS and

UV scanner stations; the typical dispersal area of fallout deposits

of Stromboli’s major explosion is given by the 24 November 2009

major explosion example (modified from Andronico and Pistolesi,

2010): red area: pumice fallout; yellow area: spatter and bombs;

back dashed line, limit of the area affected by ballistic lithic fallout;

(b) Position of Stromboli relative to mainland.

The recent occurrence of two violent paroxysmal explo-

sions, on 5 April 2003 and 15 March 2007, has deeply im-

proved our state of knowledge for such events. In particular,

detailed investigations of melt inclusions entrapped in olivine

crystals of the erupted products have led to the conclusion

that these paroxysmal explosions were produced by the rapid

ascent and decompression of small batches of gas-rich, low

porphyric (LP) basaltic magma (Métrich et al., 2005, 2010) –

erupted at the surface as highly vesiculated “blond” pumice

– from a 7–10 km deep magma storage zone (all depths be-

ing referred to as below summit vents, bsv). In contrast,

the source mechanism of the “major” explosions is not yet

understood, even though these are far more frequent and,

therefore, potentially even more hazardous than paroxysmal

events. Recently, Allard (2010) argued that a CO2-rich gas

triggers most of these major explosions: periodic accumu-

lation of deeply-derived CO2-rich gas bubbles in the sub-

volcano plumbing system would lead to the growth of bub-

ble foams which, upon collapse, can trigger the fast ascent

of large CO2-rich gas slugs driving the explosions (Jaupart

and Vergniolle, 1989; Woods and Cardoso, 1997; Menand

and Phillips, 2007). According to Allard (2010), major ex-

plosions should be heralded by increasing leakage of CO2-

rich gas as the bubble foam approaches instability (Jaupart

and Vergniolle, 1989), and the magnitude of each explosion

should be proportional to its source depth or/and the stored

gas amount.

It is noteworthy that Aiuppa et al. (2010a) already detected

large increases in Stromboli’s CO2 plume flux (> 10 times

larger than normal) during the 1–2 weeks preceding the 15

March 2007 paroxysmal explosion (Fig. 2a). These unusu-

ally large CO2 emissions were interpreted as reflecting pas-

sive gas leakage from decompressing LP magma emplaced

at > 4 km depth, just prior to its eruption during the parox-

ysm (Métrich et al., 2010). In this paper, we report on CO2

flux variations measured on Stromboli in the period 2006–

2010, during which 12 major explosions occurred. We find

that each of these explosions actually happened after a brief

period (days to weeks) of increasing CO2 flux at the crater,

following a previous phase of reduced CO2 emission. We

show that this pattern is consistent with periodic accumula-

tion and release of deeply-derived CO2-rich bubbles in the

plumbing system. Our observations thus demonstrate the key

role of CO2-rich gas in triggering these events, and provide

the first experimental evidence in support of the model of

Allard (2010). We finally discuss their implications for the

forecasting of major explosions in the future.

2 Recorded explosive activity and methods

In a previous work (Aiuppa et al., 2010a), we have reported

on results for the May 2006 to November 2008 period, focus-

ing on observations made during the 2007 effusive eruption

(27 February to 2 April), during which the 15 March 2007

paroxysmal explosion occurred. Here, we extend our obser-

vations to the following 3 years of Stromboli’s activity, from

July 2007 to July 2010, during which 12 major explosions

took place (Fig. 2). All these events were highly impulsive,

generally consisting of a sequence of cannon-like blasts from

one vent or several vents simultaneously (Andronico and Pis-

tolesi, 2010), and had durations of a few tens of seconds to

a few minutes at most. They showered the volcano slopes

with coarse lithic blocks, lava bombs and pumice lapilli up to

1–2 km distance from the summit (Andronico and Pistolesi,

2010; Fig. 1) but causing neither casualties nor damage to

human settlements. Pumiceous LP basaltic magma erupted

only during the strongest five explosions, on 3 May 2009, 8

and 24 November 2009, and 25 and 30 June 2010. These

events were actually the largest in terms of pyroclastic tephra

dispersal, erupted volumes, and recorded amplitude of syn-

eruptive seismic and infrasonic signals (web reports from

INGV-Catania and Università di Firenze). Figure 2 shows

that, apart from isolated events (e.g., the 3 May 2009 ex-

plosion), most of the major explosions succeeded within rel-

atively short intervals: 6–17 December 2008 (2 events), 8

November 2009 to 21 January 2010 (4 events), and 25–30

December 2010 (2 events). Such a clustering in their occur-

rence suggests a common source process or instability in the

plumbing system.
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Fig. 2. (a) Daily averages of CO2 plume fluxes (in tonnes per day)

from Stromboli’s summit crater, between May 2006 and July 2010

(the weekly mobile average is given as a light grey line). The period

from 15 September 2008 to 30 July 2010 is detailed in (b). The

dashed areas labelled I to IV denote the 4 main phases of CO2

flux increase, discussed in the text. Major explosions, indicated by

the vertical grey lines (and crosses for the strongest ones), typically

clustered during these phases of high CO2 flux.

Our daily record of the CO2 plume flux from the Stromboli

summit crater (Fig. 2) has been obtained following the pro-

cedure previously described by Aiuppa et al. (2010a). The

CO2 plume flux is given by simultaneous measurement of

the CO2/SO2 plume ratio (semi-continuous survey with three

fully automated Multi-GAS instruments; Aiuppa et al., 2009)

and the SO2 mass flux, determined by a remotely-controlled

network (Fig. 1) of four UV scanning DOAS spectrometers

(Burton et al., 2009). CO2 and SO2 concentrations in the

volcanic plume are measured and recorded every six hours,

for 30 min and at a frequency of 9 s, during four sequential

intervals per day (01:00–01:30, 07:00–07:30, 13:00–13:30

and 19:00–19:30 UTC). We evaluate – from analysis of data

taken within individual days – that precision of our calculated

CO2 fluxes is likely in the order of ≤20 %.

3 Data analysis

Figure 2a shows the results for > 4 years of daily survey of

the CO2 plume flux from Stromboli, which constitutes one

of the most complete and systematic CO2 flux records ever

acquired on an active volcano. The most prominent feature

of the dataset is the exceptional CO2 degassing rate that char-

acterized the February-April 2007 effusive eruption: the high

(> 6000 t d−1) CO2 fluxes during this period were attributed

to a large supply of CO2-rich gas bubbles from the deep

LP magma reservoir (Aiuppa et al., 2010a, b), as a conse-

quence of its likely depressurisation following copious lava

drainage since 27 February 2007 (Bonaccorso et al., 2008).

This depressurization-induced CO2 degassing event was thus

precursory to the fast ascent and eruption of the LP magma

during the 15 March 2007 paroxysm (Aiuppa et al., 2010a;

Métrich et al., 2010). Figure 2a also shows that, as the 2007

effusive eruption ended on 2 April 2007, CO2 fluxes progres-

sively but slowly decreased, recovering their pre-2007 erup-

tion levels only by late summer 2008.

We thus consider the post-September 2008 period

(Fig. 2b) as representative of the regular degassing regime

of Stromboli. From the measured daily CO2/SO2 ratios and

SO2 fluxes we computed a cumulative degassing of ∼0.36

Mtons of CO2 and ∼0.098 Mtons of SO2 between September

2008 and July 2010. Over this period the CO2/SO2 mass ra-

tio thus averaged ∼3.7 and the CO2 emission rate ∼550 t d−1

(a factor ∼2 lower than the time-averaged value estimated

by Allard, 2010). However, one also observes (Fig. 2b)

that the CO2 flux displayed wide temporal fluctuations (from

60 t d−1 to 7000 t d−1) and, in particular, increased notice-

ably (> 1300 t d−1) during 4 main phases (I to IV in Fig. 2b)

in which virtually all the major explosions have occurred.

In order to examine in detail the relationship between these

phases of high CO2 degassing and the occurrence of major

explosions, we focus in Fig. 3 on the period from 22 January

to 22 July 2010, during which 3 such events took place. This

time interval starts just after a major explosion on 21 Jan-

uary that marked the end of the phase III (Fig. 2b). Figure 3

shows that over the entire period the SO2 flux remained rel-

atively steady and low (mean: 105 ± 46 t d−1). In contrast,

the CO2 flux varied significantly in function of the explo-

sive activity. After the 21 January explosion it dropped to a

low level for about one month then moderately increased un-

til a small-scale major explosion that occurred on 12 March

(among the smallest scale events in the dataset; Ripepe, pers.

comm.). Afterwards, it tended to decrease again and pre-

served a moderate level until early June 2010. Then, it began

to sharply increase (phase IV) by a factor ≥3, keeping high

values for ∼2 weeks until 25 June when a strong major ex-

plosion happened (Fig. 3c). After this event, the CO2 flux

slowly decayed, but 5 days later a second major explosion

succeeded on 30 June. The phase IV ended with an ultimate

CO2 flux peak increase, yet without any consequent explo-

sive event.
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Fig. 3. A detail of plume observations taken in the 22 January to

30 July 2010 period. (a) CO2/SO2 ratios of the syn-explosive gas

phase (the gas phase released during the discrete and short-lived ex-

plosions of the regular Strombolian activity); (b) CO2/SO2 ratios

of the Stromboli’s bulk plume, which is dominantly contributed by

passive (quiescent) degassing in-between Strombolian explosions

(Burton et al., 2007a); and (c) Daily record of SO2 fluxes (grey

line; derived from the FLAMES network of UV scanning spectrom-

eters; Burton et al., 2009) and CO2 fluxes (black curve). CO2 fluxes

were calculated by combining the daily averages of the bulk plume

CO2/SO2 ratio and SO2 flux.

Since the SO2 flux remained quite steady during the 6-

month period considered, the CO2 flux increases registered

before and especially during that phase IV essentially re-

flect net increases of the CO2/SO2 ratio (from ∼5 to > 20)

in Stromboli’s bulk plume emissions, as shown in Figure 3b.

This is also verified by the composition of the gas phase driv-

ing the recurrent Strombolian-type explosions in the same

period (Fig. 3a). As previously shown (Burton et al., 2007a),

the gas phase driving the Strombolian explosions is richer in

CO2 than the non-explosive passive gas emission, with the

latter contributing most of the bulk gas output and hence de-

termining the bulk plume composition (Allard et al., 1994:

Mori and Burton 2009). Our systematic determinations in

January–July 2010 (using the technique detailed in Aiuppa

et al., 2010b) actually demonstrate an increasing CO2/SO2

ratio (> 40) also during single Strombolian outbursts prior

to the strong 25 June major explosion (Fig. 3a). Therefore,

we evidence that an anomalous CO2-rich gas phase, recorded

in both quiescent (∼bulk) and explosive standard emissions,

was reaching the surface days to weeks before this event. We

emphasize that similar observations apply to the most sig-

nificant major explosions in the period 2008–2010 (phases I

to III; Fig. 3b), evidencing a systematic process. Owing to

both our sequential analysis of the volcanic plume each day

and the brief duration of major explosions, we did not get the

chance to measure the CO2/SO2 gas ratio right during any of

these event.

4 Discussion

Our observations, detailed in Figs. 2 and 3, provide experi-

mental support to the proposed model by Allard (2010) that

major explosions at Stromboli would be systematically an-

ticipated by a phase of increasing CO2 degassing. The mag-

nitude of this enhanced degassing would however be smaller

in size and duration, and thus a less obvious precursor, than

for more energetic paroxysms (Aiuppa et al., 2010a): our

dataset shows indeed that CO2 flux increase prior to the 15

March 2007, by far the largest-scale event during the over-

all 2006–2010 period, was a factor ∼10 greater than the

increases recorded prior to any of the major explosions in

2008–2010 (Fig. 2). In spite of this limitation and while ad-

ditional measurements are required to strengthen our conclu-

sions, our present results already emphasise that major explo-

sions at Stromboli (the strongest ones at least) are preceded

by a still-detectable CO2 flux increase and tend to cluster in

periods when CO2 is being degassed at rates exceeding a crit-

ical level, which we tentatively set at ∼1300 t d−1 (Fig. 2b).

This opens new promising perspectives for the forecasting of

such events in future.

The association between major explosions and high CO2

degassing phases also brings novel lines of evidence to con-

strain the source mechanisms of these events. Allard (2010)

argued that CO2 is heavily implicated in triggering these ex-

plosions. He pointed out that, due to their very high orig-

inal CO2 content (∼2 wt %), Stromboli’s magma batches

likely coexist with a large fraction of CO2-rich gas bub-

bles at crustal conditions. Combined with the low viscos-

ity of Stromboli HK-basalt (∼20 Pa s at 10 km depth; Al-

lard, 2010), such a high CO2 content should favour the seg-

regation and hence separate ascent of deeply-derived CO2-

rich gas bubbles through the magma column. Differential

bubbly gas flow across the magma column (quiescent de-

gassing) is actually responsible for most of the volcanic gas

discharge (Allard et al., 1994, 2008). However, bubble coa-

lescence at depth is required to generate the large gas pock-

ets or slugs whose fast ascent, followed by bursting, drive the

periodic Strombolian-type explosions (Burton et al., 2007a)

and probably the intermittent major explosions as well (Al-

lard, 2010). One common mechanism able to generate large

gas slugs through bubble coalescence is bubble accumulation

at the roof of a magma ponding zone or at a feeder discon-

tinuity (Jaupart and Vergniolle, 1989; Menand and Phillips,

2007). Beneath Stromboli, olivine-hosted melt inclusions in-

dicate the presence of such discontinuities, potentially acting

Solid Earth, 2, 135–142, 2011 www.solid-earth.net/2/135/2011/



A. Aiuppa et al.: First observational evidence for the CO2-driven origin 139

as “gas traps”, at 7–10 km depth bsv, where a main magma

storage zone likely occurs, and at about the volcano-crust

interface (2–4 km depth bsv), where magma may pond and

CO2-rich gas bubbles may accumulate to contents > 5 wt %

(Allard et al., 2008; Métrich et al., 2010). This shallow

magma-gas ponding zone is the probable source area for the

gas slugs producing the regular explosive activity (Burton

et al., 2007a). If “gas trapping” regularly occurs at those

discontinuities, the accumulation of CO2-rich bubbles will

lead to the growth of bubble-melt foam layers (Jaupart and

Vergniolle, 1989; Woods and Cardoso, 1997; Menand and

Phillips, 2007). When approaching a critical thickness such

foams increasingly leak in a connected conduit, first pas-

sively, then catastrophically as they collapse and coalesce,

generating large gas slugs that rapidly rise to the surface

(Jaupart and Vergniolle, 1989). Allard (2010) proposed that

Stromboli’s major explosions may typically result from that

process, however no field validation had yet been obtained to

date.

We show below that our CO2 flux dataset actually supports

a process of gas bubble retention, foam leakage and slug-

driven explosion. Figure 4a reports the cumulative masses of

degassed SO2 and CO2 in the months preceding the 25 and

30 June major explosions. Note that the CO2 scale (left axis)

was fitted to be 3.5 times greater than the SO2 scale (right),

in order to clearly reflect the time-averaged CO2/SO2 weight

ratio typical for the whole period from January to July 2010

(3.7; see above).

The mass of degassed SO2 is a proxy for magma degassing

and convective transport in the shallow (< 3−4 km bsv) con-

duit system (Allard et al., 1994; Burton et al., 2007b), be-

cause sulphur exsolves only in this shallow system (Métrich

et al., 2010; Allard, 2010). Figure 4a shows a relatively flat

cumulative trend for the SO2 flux and, in particular, no ap-

preciable change in its gradient prior to the 25–30 June ex-

plosions. This is fully consistent with the idea (Bertagnini

et al., 1999; Allard, 2010) that the shallow magmatic sys-

tem is not or very marginally involved in the generation of

major explosions, as indicated by the lack of forerunners in

surface volcanic activity and seismicity, and by the fast re-

turn to standard activity after each major explosion. We then

conclude that the rates of SO2 degassing and hence magma

transport were in steady-state conditions during the months

preceeding the June 2010 major explosions.

Instead, a more dynamic scenario emerges when the CO2

cumulative trend is considered in concert with SO2. We

note, in fact, that the SO2 and CO2 flux cumulative trends

remained almost overlapping in the January–March 2010 pe-

riod (the CO2/SO2 mass ratio remaining close to its time-

averaged value of 3.7), but clearly diverged after the 12

March explosion when the cumulative CO2 flux decelerated

relative to the SO2 flux. Since the CO2 flux is a proxy

for magma supply from the deep LP magma storage zone

(Aiuppa et al., 2010b), and SO2 flux is a proxy for a magma

supply from 2–4 km depth, we attribute this CO2-specific

Fig. 4. (a) Cumulative CO2 (black curve) and SO2 (grey curve)

fluxes (in tonnes), from 22 January to 30 July 2010. Note that the

CO2 scale (left) is 3.5 times greater than the SO2 scale in order to

normalize to the time-averaged CO2/SO2 mass ratio of Stromboli’s

emissions. The two cumulative trends are fairly parallel and over-

lapping in January–March 2010. After the 12 March 2010 major

explosion, the cumulative CO2 flux first decelerates (during March

to May) and then accelerates (in May–June) relative to the SO2 flux.

This suggests an episode of gas retention, followed by passive gas

leakage, prior to the major explosions on 25 and 30 June (see text).

The cumulative masses of stored CO2 (e.g., CO2 segregated deep in

the system, possibly as a bubble foam layer) are calculated (in b) as

the difference between the amount of CO2 which would have been

degassed in time-averaged conditions (CO2/SO2 of 3.7) and the ac-

tual (measured) amount of degassed CO2. Cumulative storage of

CO2 occurs at a mean rate of 1.4 kg s−1 from 13 March to 22 April,

then 2.5 kg s−1 from 23 April to 20 May, resulting in bulk accu-

mulation of ∼11 000 t of carbon dioxide. From 21 May to 10 June

(20 days), the stored CO2 mass remains nearly steady or slightly

decreases. Afterwards it suffers a rapid decrease (at a mean rate of

7.7 kg s−1) until the two major explosions on 25 and 30 June (pas-

sive bubble foam leakage widely prevails over bubble storage). A

similar (but smaller) cycle of CO2 storage-leakage is observed prior

to the 12 March weaker explosion.

deceleration to a phase of partial CO2-rich bubble retention

(and accumulation) somewhere at depth in the plumbing sys-

tem. This CO2 accumulation phase persisted until late May

2010 (Fig. 4a). From the magma flow rate constrained by

SO2 degassing and the difference between the amount of

CO2 that would have been emitted for a steady CO2/SO2 of

3.7 and the actual amount of CO2 degassed until late May,

we calculate the retention of ∼11 000 t of CO2 (Fig. 4b) in

the system, likely accumulated in a growing foam layer. By

early June 2010 the CO2 flux accelerated with respect to the

SO2 flux (Fig. 4a), at a quite constant rate, suggesting that

gas leakage from the foam was now prevailing over gas ac-

cumulation (Fig. 4b). This gas leakage did not provoke a

significant change in the explosive regime of the volcano,

www.solid-earth.net/2/135/2011/ Solid Earth, 2, 135–142, 2011
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suggesting that it was very gradual and did not produce sig-

nificant coalescence events.

Strikingly, it was when the accumulated CO2 mass had

been nearly exhausted that the 25 June major explosion

occurred (Fig. 4b). However, we also observe that, even

though decaying after this event, the CO2 flux (and thus

the CO2/SO2 plume ratio; Fig. 3b andc) remained much

higher than its mean background level in the following days

and weeks, concomitantly with another major explosion on

30 June. Therefore, carbon dioxide in excess to its time-

averaged supply rate was still available and being released

for a while after the 25 June explosion.

It is noteworthy that we observed a similar (but smaller)

cycle of CO2 flux decrease then increase prior to the 12

March major explosion (Fig. 4b), despite (but coherent with)

its lower energy and duration than with the 25 and 30 June

events. We thus conclude that the trends of decreasing fol-

lowed by increasing CO2 flux in the days or weeks preced-

ing major explosions are fully compatible with passive gas

leakage from a previously accumulated, increasingly insta-

ble bubble foam layer soon destined to erupt (Jaupart and

Vergniolle, 1989; Woods and Cardoso, 1997; Phillips and

Woods, 2001).

Further illustration of this pattern is provided by Fig. 5,

in which we have plotted the ‘normalised’ cumulative CO2

and SO2 trends for 5 different periods of activity which all

ended with at least one major explosion in the period 2006–

2010. The horizontal scale describes the “normalised” time

elapsed since a previous explosive event, at the beginning

of which we assume the clock of “gas accumulation” in the

system is reset to 0; in other words, the time lag between

0 and 1 denotes the repose interval between one explosive

phase and the following, and is ultimately the period over

which a complete cycle of gas bubble accumulation-leakage

may occur. We find that the normalised cumulative gas flux

trends show similar behaviour in all the 5 considered inter-

vals: all cumulative SO2 flux curves describe strikingly sim-

ilar flat trends, while the cumulative CO2 flux trends show

(clearly in 4 of the 5 cases) a phase of deceleration (relative

to the SO2 flux), followed by an acceleration prior to (at t

> 0.8) the onset of a new explosive phase (t = 1). Such sim-

ilarities in the shapes and timing of the cumulative gas flux

curves highlight a systematic and reproducible behaviour in

the volcano degassing regime, strongly supporting that a re-

current sequence of CO2-rich gas accumulation, leakage and

then explosive release regulates the periodical occurrence of

major explosions at Stromboli, as actually proposed by Al-

lard (2010).

However, a novel and striking implication of our results

is that, in terms of mass balance, passive CO2 bubble re-

lease due to foam leakage before a major explosion could

by far prevail over instantaneous explosive gas release dur-

ing the event itself (Fig. 4b). In other words, slug genesis by

foam collapse would involve a comparatively minor quantity

of the accumulated gas, and the explosions would represent

Fig. 5. Normalised cumulative CO2 (black curve) and SO2 (grey

curve) flux trends for 5 periods of activity of Stromboli. The peri-

ods over which the cumulative curves were drawn were all selected

in order to start (t = 0) on the day after the previous explosive event

and to end (t = 1) with one (or more) major explosions (numbers

1–5 denote the specific explosion(s) occurring at t = 1). Curves 5

for CO2 and SO2 are totally analogous, in the normalised form, to

those shown in Fig. 4a, and have t = 0 on 13 March and t = 1 on

30 June. The time interval between 0 and 1 is thus the period over

which a complete cycle of gas segregation-gas leakage can occur.

The 5 sets of normalised cumulative curves show similar shapes

which indicate a reproducible degassing regime prior to each major

explosion and, hence, a common recurrent source mechanisms for

these events. A less pronounced difference between SO2 and CO2

cumulative trends is observed for case 3, implying that while the in-

volved source processes were probably the same, a smaller volume

of CO2 was accumulating/leaking prior to the to 3 May 2009 event.

brief ultimate events superimposed on a dominant process of

quiescent gas drainage from the plumbing system. This un-

expected observation does not fit well with the foam collapse

model, in which much of the foam empties upon collapse

(Jaupart and Vergniolle, 1989). Its quantitative interpretation

will require additional measurements and falls beyond the

scope of this paper. Here we just outline that the behaviour

of a bubble foam over time strongly depends on the geome-

try of the gas accumulation zone, on the evolution of the gas

supply rate from depth, and on the balance between the rates

of foam growth and foam leakage (Jaupart and Vergniolle,

1989). These latter two rates may even equilibrate when the

total gas flux approaches a critical value, thus maintaining

the foam in a nearly steady sate. Beneath Stromboli, whose

eruptive regime involves the generation of small slugs every

15 minutes on average (driving the Strombolian explosions)

and of larger slugs 1–3 times per year (producing the ma-

jor explosions), one cannot exclude that a bubble foam layer

(or bubble foams) persistently exists at depth, whose leakage

could contribute to the time-averaged CO2 emission rate of

6.4 kg s−1 (550 t d−1). In that case, much more gas would be

available for generating a major explosion than inferred, for

instance, from our data for cumulative CO2 storage prior to

the 25 June 2010 major explosion (Fig. 4b).
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5 Conclusions

We have analysed a > 4 years long record of systematic

(daily) measurements of SO2 and CO2 gas fluxes from the

Stromboli volcano in 2006–2010. The results show that

the major explosions which punctuate the volcano’s regular

(mildly explosive) activity apparently cluster in periods when

CO2 is emitted at a higher rate than normal (> 1300 t d−1).

Inspection of gas flux cumulative trends reveals that these

explosions appear to be systematically preceded by cycles of

CO2 retention (CO2 flux decelerates relative to SO2 flux) and

then passive release (CO2 accelerates relative to SO2). These

cycles are compatible with phases of accumulation and then

leakage of a bubble-melt foam layer at depth, until its sudden

collapse and the generation of CO2-rich gas pockets which

rapidly rise to the surface and produce a major explosion.

Our observations are thus fully consistent with the proposed

model (Allard, 2010) of a CO2-rich gas trigger of Strom-

boli’s major explosions. However, we do not discard the pos-

sibility that non-linear magma flow (e.g. Melnik and Sparks

1999), or/and a variable magma supply rate (and pressuriza-

tion conditions) could also account for (or contribute to) the

observed CO2 degassing patterns, and admit that further ex-

perimental/model efforts will definitely be required before

all dynamical aspects of major explosion generation can be-

come clearly understood. We highlight, however, that CO2

flux monitoring can provide key warning signals for risk mit-

igation at Stromboli in the future. Finally, we propose that

systematic CO2 flux observations be extended to other open-

vent basaltic volcanoes in order to verify whether the pro-

cesses described here are specific to Stromboli or, instead, of

general relevance.
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Liuzzo, M., Murè, F., and Salerno, G.: Unusually large magmatic

CO2 gas emissions prior to a basaltic paroxysm, Geophys. Res.

Lett., 37(17), L17303, doi:doi:10.1029/2010GL043837, 2010a.
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