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A new type of ECR ion source—a gasdynamic ECR ion source—has been recently developed at the

Institute of Applied Physics. The main advantages of such device are extremely high ion beam current

with a current density up to 600–700 emA/cm2 in combination with low emittance, i.e., normalized

RMS emittance below 0.1 π mm mrad. Previous investigations were carried out in pulsed operation

with 37.5 or 75 GHz gyrotron radiation with power up to 100 kW at SMIS 37 experimental facility.

The present work demonstrates the first experience of operating the gasdynamic ECR ion source in

CW mode. A test bench of SMIS 24 facility has been developed at IAP RAS. 24 GHz radiation of

CW gyrotron was used for plasma heating in a magnetic trap with simple mirror configuration. Initial

studies of plasma parameters were performed. Ion beams with pulsed and CW high voltage were

successfully extracted from the CW discharge. Obtained experimental results demonstrate that all

advantages of the gasdynamic source can be realized also in CW operation. C 2015 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4934208]

I. INTRODUCTION

Investigations in the field of gasdynamic ECR plasma

confinement in recent years resulted in development of pulsed

high current ion sources capable to deliver ion beams with

100-500 mA current and normalized RMS emittance below

0.1πmm mrad.1–6 Such results became possible, thanks to key

features of quasi-gasdynamic plasma confinement in the case

of heating with mm-waveband gyrotron radiation, namely,

high plasma density and low plasma lifetime.7,8 While the

pulsed operation of gasdynamic ion sources was studied in

details,1–8 such devices have not been tested in CW mode

before. In recent years, a new SMIS 24 experimental facility

was installed at the Institute of Applied Physics of Russian

Academy of Sciences (Nizhniy Novgorod, Russia). At SMIS

24, the plasma is heated by 24 GHz radiation of CW gyrotron

and confined in a simple mirror trap similarly to SMIS 37

facility which was used for pulsed operation experiments. In

this paper, the first results on CW ECR discharge ignition,

study of plasma parameters, and ion beam extraction are

presented.

II. SMIS 24 EXPERIMENTAL FACILITY

The photograph and scheme of SMIS 24 is shown in

Fig. 1. The microwave radiation is produced by CW 24 GHz

5 kW gyrotron (manufactured by GYCOM9). Radiation goes

through microwave transmission line to a water-cooled DC-

Note: Contributed paper, published as part of the Proceedings of the 16th In-
ternational Conference on Ion Sources, New York, New York, USA, August
2015.
a)Author to whom correspondence should be addressed. Electronic mail:

skalyga@ipfran.ru

break which is designed up to 100 kV. Following the DC-

break, the radiation passes through a specially developed

microwave coupling system optimized to maximize the

electric field distribution on trap axis and minimize microwave

reflection.

Plasma is created in the plasma chamber with 380 mm

length and 38 mm diameter. The magnetic field is produced

by a pair of water-cooled Bitter solenoids. The maximum

magnetic field on trap axis reaches the value of 1.1 T. The

ratio between magnetic field at the magnetic mirror and the

trap center is 5 and the distance between magnetic mirrors

(trap length) is 180 mm. The magnetic field distribution inside

the plasma chamber is shown in Figure 2.

A two-electrode extraction system was used in the

beam extraction experiments. In the first experiments, the

plasma electrode and puller had 4 mm and 10 mm apertures,

respectively. The available extraction voltage was in the range

of 20–60 kV. Due to low power of the power supply, the

extraction system was placed far behind the magnetic mirror to

reduce the ion current density so that the total extracted current

could meet the power supply maximum output. The plasma

electrode (extractor) position together with the magnetic field

distribution on axis and calculated expected ion current density

is shown in Figure 3. The calculations are made by assuming

1013 cm−3 plasma density and electron average energy on the

order of 100 eV. According to the estimation, we expected

approximately 5.6 mA of total extracted ion current.

A Langmuir probe and a Faraday cup were used as

diagnostic tools. The probe was used for the measurement

of plasma flux parameters (electron temperature and spatial

distribution). The Faraday cup was used to measure the total

beam current. Argon was used in the experiments as a feeding

gas in the pressure range of 10−6–10−4 Torr.

0034-6748/2016/87(2)/02A715/3/$30.00 87, 02A715-1 © 2015 AIP Publishing LLC
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FIG. 1. SMIS 24 experimental facility. Gyrotron is on the left side

(not shown).

FIG. 2. Magnetic field structure of SMIS 24. Plasma electrode of the extrac-

tion system is schematically shown.

FIG. 3. Magnetic field distribution behind the magnetic mirror (blue). Cal-

culated ion current density (red). Plasma electrode position (green).

FIG. 4. Probe I-V curve. Microwave power= 200 W. Argon pressure

= 6×10−6 Torr.

III. FIRST EXPERIMENTAL RESULTS

As the first experimental step, Langmuir probe I-V curves

were collected from the plasma flux escaping the trap in order

to determine the electron temperature and spatial distribution

of the flux density. An example of typical I-V curve is shown

in Figure 4 in the case of 200 W microwave power and

6 × 10−6 Torr neutral gas pressure. The measured electron

temperature is 55 eV.

By moving the probe along the axis and measuring the

ion saturation current, we measured the plasma flux density

distribution, which is shown in Figure 5 together with the

magnetic field distribution. It could be concluded from the

figure that the plasma flux density approximately follows

the magnetic field strength. This means that the plasma flux

density at the magnetic mirror of the trap could be obtained

by scaling the magnetic field. The corresponding maximum

plasma flux density in our experiments reached 1 eA/cm2 at

the magnetic mirror. This value fits our initial calculations on

probable plasma parameters. Measured plasma flux density

in the case of 55 eV electron temperature under quasi-

gasdynamic confinement corresponds to 1 × 1013 cm−3 plasma

density inside the trap.

The first ion beam was extracted with the configuration

described above. All results shown in this paper were

collected with 25 kV extraction voltage. The total ion

current dependence on neutral gas pressure is shown in

Figure 6 for two microwave power levels. The flat part of

the dependence probably corresponds to discharge conditions

FIG. 5. Ion saturation current at different probe positions behind the mag-

netic mirror (red dots) and magnetic field distribution (blue line).
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FIG. 6. Extracted ion current dependence on argon pressure for different

microwave power levels.

FIG. 7. Extracted ion current dependence on microwave power.

Argon pressure= 6×10−6 Torr.

with too high pressure for effective ECR heating with the given

microwave power.

In this case, one could expect a plasma of cut-off density

with electron temperature close to 10 eV without observable

pressure dependence. More effective plasma heating was

obtained at lower pressure, which led to electron temperature

growth and reduction of quasi-gasdynamic plasma lifetime,

thus increasing the total current.

The same growing dependence of the extracted ion

current was observed with the microwave power increase (see

Figure 7).

The maximum beam current reached in the experiments

was 3.2 emA through 4 mm hole. It is of note that

the total current could be significantly increased by shifting

the extraction system closer to the magnetic mirror, up to the

values demonstrated in pulsed operation mode at SMIS 37.

IV. CONCLUSION

The first experimental study of CW ECR discharge

with quasi-gasdynamic confinement sustained by 24 GHz

gyrotron radiation demonstrated that results similar to those

obtained in pulsed mode at SMIS 37 could be reached. Stable

operation with 1 eA/cm2 (estimated) of plasma flux density

was observed in the experiments. This makes a formation of

CW high current beams possible in close future in the frame

of upcoming experiments. One of the most important steps

will be an increase of the microwave power which becomes

possible after an improvement of the plasma chamber cooling.
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