First Fullerene[60]-Containing Thermotropic Liquid Crystal

Preliminary Communication

by Thierry Chuard and Robert Deschenaux*

Université de Neuchâtel, Institut de Chimie, Av. de Bellevaux 51, CH-2000 Neuchâtel

The synthesis and liquid-crystalline and thermal properties of a fullerene[60] functionalized by a framework containing two cholesterol derivatives through a methanofullerene structure are reported. The targeted fullerene derivative showed high thermal stability.

Introduction. – Owing to its aesthetic structure [1] and remarkable properties, buck-minsterfullerene (C_{60}) has generated enthusiastic studies at the frontiers of chemistry (rationale of synthetic strategies for the development of new derivatives [2]), physics (investigation of electrochemical [3], photophysical [4], and magnetic properties [5]), and biology (inhibition of HIV protease (HIVP) [6] and DNA cleavage [7]).

The search for fullerene-based new materials has also attracted much attention [8], and important developments are expected in forthcoming years [2a] [9]. Of particular importance, regarding possible applications, would be the development of fullerene derivatives exhibiting mesomorphic behavior (noncrystalline materials were obtained by combining a fullerene derivative with classical mesogenic groups; however, no liquid-crystalline properties were observed [10]). Such materials could be used in liquid-crystal technology for the elaboration of novel electro-optical devices. Furthermore, fullerene-containing liquid crystals would provide much fundamental information for a better understanding of the factors which govern the formation of supramolecular structures obtained from the organization of fullerene-containing molecular units. Organized molecular films were successfully prepared by either the *Langmuir-Blodgett* technique

[11] or the self-assembly method [12]; however, further evidence concerning the *structure* (of the molecular unit)-supramolecular organization relationship are required for obtaining ordered assemblies with tailor-mode properties.

In this communication, we describe the design, synthesis, and mesomorphic properties of C_{60} derivative 1, which represents, to our knowledge, the first fullerene-containing thermotropic liquid crystal. The synthesis and liquid-crystalline behavior of cholesterol intermediates, from which 1 was prepared, are also reported.

Results and Discussion. – The following structural requirements were applied for the successful design of a mesomorphic fullerene[60] derivative: i) to generate strong intermolecular interactions between the mesogenic units, a twin cholesterol framework was selected for the formation of a C_{60} derivative; ii) to lower the transition temperatures, a flexible chain was used as a spacer between the cholesterol derivative and the C_{60} moiety; and iii) owing to the well-established synthetic procedure, the formation of a methanofullerene [2] [13] was chosen to connect the cholesterol fragment to the C_{60} .

The preparation of 1 is illustrated in the *Scheme*. Treatment of cholesteryl 4-hydroxybenzoate (2) [14] with 10-bromodecan-1-ol led to cholesterol intermediate 3. Condensation of this latter with malonyl chloride gave 4, which was transformed into the bromo derivative 5. Finally, reaction of 5 with C_{60} yielded the targeted compound 1, which was purified by column chromatography (silica gel, toluene) and crystallization (toluene). Its structure and purity were confirmed by 1 H- and 13 C-NMR spectroscopy and, elemental

Scheme

Scheme

AD
$$CO_2Chol$$

AD $CholO_2C$

Chol O_2C

Chol $O_$

a) 10-Bromodecan-1-ol, K_2CO_3 , DMF/THF 3:1, 120°, 20 h; 80%. b) Malonyl chloride, Et_3N , CH_2Cl_2 , reflux, 20 h; 75%. c) 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), CBr_4 , THF, -40°, 5 h; 51%. d) C_{60} , NaH, toluene, reflux, 4 d; 40%.

analysis. Of the four possible isomers which can be formed [2a], ¹³C-NMR indicated that the expected [6,6]-closed one was obtained.

The thermal and liquid-crystalline properties of 1 and 3–5 were investigated by a combination of differential scanning calorimetry (DSC), thermogravimetry, and polarized optical microscopy. The results reported below for 3 and 4 are those obtained during the first heating-cooling cycle.

Cholesterol derivative 3 [C (S_{C^*} 93) 125 S_A 148 TGB A 151 N* 206 BP 207 I]¹) presented interesting mesomorphism. On heating, two crystal-to-crystal modifications were observed at 105 and 112° before a S_A phase formed. Then, a TGB A \rightarrow N* \rightarrow BP phase sequence preceded the formation of the isotropic fluid. On cooling, a supplementary monotropic S_{C^*} phase was observed at 93°. The liquid-crystalline properties obtained for 3 are similar to those reported for corresponding OH-free analogues [15]. Malonate derivative 4 [C 112 S_A 214 N* 224 BP 225 I]¹) gave enantiotropic S_A , N*, and BP phases. Because 5 lacked thermal stability, no reproducible DSC thermograms for successive heating-cooling cycles were obtained. Its liquid-crystalline properties were, therefore, not investigated. The above liquid-crystalline phases were identified from their optical textures²).

The DSC thermograms (onset temperatures, if not stated otherwise) registered during the first heating-cooling cycle and second heating run for fullerene derivative 1 are displayed in the *Figure*. During the first heating (*Fig.*, top), three endotherms were

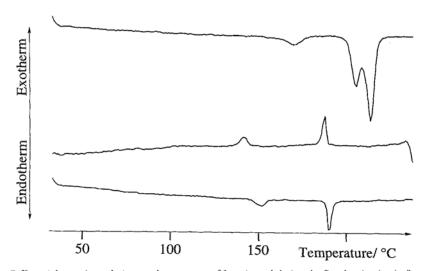


Figure. Differential scanning calorimetry thermograms of 1 registered during the first heating (top), first cooling (middle), and second heating (bottom) run. Experimental conditions: sample weight: 2.792 mg; rate: 10°/min; temperature range: 30-240°; under N₂.

C: crystalline state; S_{C*}: chiral smectic C phase; S_A: smectic A phase; TGB A: twist grain boundary smectic A phase; N*: chiral nematic (cholesteric) phase; BP: blue phase; I: isotropic liquid. Monotropic transitions are reported in parentheses. The transition temperatures (in °C) were determined by polarized optical microscopy.

²⁾ S_{C*} phase: schlieren texture; S_A phase: focal-conic and homeotropic textures; TGB A phase: filament texture (see Figs. 2-5 in [16]); N* phase: plane texture (see Plate 109 in [17] and Plate 21 in [18]); BP: platelet texture (see Plates 114 and 115 in [17]).

detected at 170° (peak transition temperature; $\Delta H = 7.8 \text{ kJ/mol}$), 200°, and 209° (ΔH (overall value for the last two endotherms) = 61.7 kJ/mol). From polarized optical microscopy, the first transition did not give apparent modifications and was associated to a crystal-to-crystal transition. The second and third endotherms corresponded to the melting of two different crystalline forms into an isotropic fluid. On cooling (Fig., middle), two transitions were observed at 190° ($\Delta H = 6.8 \text{ kJ/mol}$) and 146° ($\Delta H = 4.6 \text{ kJ/mol}$) kJ/mol) and were indicative of mesomorphic behavior. Polarized optical microscopy revealed the formation of a viscous liquid-crystalline phase between the two exotherms. Identification of the mesophase was not straightforward as a typical texture did not develop; this is often the case for viscous materials. Observation of small droplets pointed to the presence of a focal-conic texture and homeotropic zones. Only a homeotropic texture was observed when optical examinations (temperature stage preheated to 218°) of the liquid-crystalline phase were made with silanized glasses [19]. The mesophase was thus tentatively identified as a monotropic S_A phase. Further characterization will be provided by X-ray diffraction studies. A poorly defined texture, corresponding to the solidification, appeared near 145°. The viscosity of the mesophase might have prevented a neat crystallization of the sample. During the second heating (Fig., bottom), two endotherms were detected: at 153° (peak transition temperature, $\Delta H = 4.4 \text{ kJ/mol}$), the liquid-crystalline phase appeared, and cleared at 189° ($\Delta H = 7.4 \text{ kJ/mol}$). Most likely, the different thermal behavior observed during the first and second heating is a consequence of the cooling process which led to a solid of different nature in comparison with the native crystals.

Importantly, the thermal stability of 1 was confirmed by thermogravimetry (10° /min, under N₂), which indicated that no decomposition occurred up to ca. 280° (1, 5, and 10% weight loss were measured at 294, 313, and 322°, resp.).

The limited mesomorphic behavior of 1, in comparison with that of 4, is due to the C_{60} core which acts as a spacer between the mesogenic molecules. The presence of a strong liquid crystal promoter, the twin cholesterol framework in this case, is, therefore, of prime importance to thwart the unfavorable effects of the C_{60} unit. These results are in agreement with data reported for other mesomorphic systems which also contain a bulky unit, e.g. ferrocene-containing thermotropic liquid crystals [20]. Furthermore, despite the use of flexible alkyl chains, a high-melting compound was obtained. Reduction of the melting point should lead to fullerene derivatives with enhanced liquid-crystal properties.

The first fullerene-containing thermotropic liquid crystal reported herein represents a finding of great importance in view of developing new anisotropic materials. The design and study of further examples will allow to rationalize the *structure-mesomorphic properties* relationship and to engineer liquid-crystalline behavior for this novel class of thermotropic liquid crystals.

We acknowledge Dr. V. Vill, University of Hamburg, for helpful discussions concerning the mesomorphism of compound 3.

Experimental Part

General. Instrumentation, see [14] [21]. Themogravimetry: Mettler-TG-50 thermobalance connected to a Mettler-TA-4000 processor. Cholesteryl 4-hydroxybenzoate was prepared following a literature procedure [14]. Toluene (distilled over NaH), CH₂Cl₂ (distilled over P₂O₅), and THF (distilled over LiAlH₄) were dried prior to use. The syntheses were performed under N₂ (except for the preparation of 3). Fullerene[60] (99.5%) was purchased from Lancaster. Column chromatography (CC): SDS 60 A CC Chromagel (0.060-0.200 mm). DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene.

Cholest-5-en-3 β -yl 4-(10-Hydroxydecyloxy) benzoate (3). A mixture of cholesteryl 4-hydroxybenzoate (14.0 g, 27.6 mmol), 10-bromodecan-1-ol (8.40 g, 35.4 mmol), K_2CO_3 (11.5 g, 83.2 mmol), DMF (210 ml), and THF (70 ml) was stirred at 120° for 20 h. The mixture was cooled to r.t. and the solid filtered off and washed with THF. Evaporation gave a solid residue which was purified by CC (CH₂Cl₂) and crystallization from EtOH: 3 (14.7 g, 80%). [α]₃₆₅ = +31 (c = 0.5, CHCl₃). ¹H-NMR (200 MHz, CDCl₃): 7.98 (d, J = 8.9, 2 arom. H); 6.90 (d, J = 8.9, 2 arom. H); 5.42 (d, J = 4.1, C=CH (Chol)); 4.77-4.92 (br. m, CHO (Chol)); 4.00 (t, J = 6.5, CH₂O); 3.65 (t, J = 6.5, CH₂OH); 2.45 (d, J = 7.7, 2 H, Chol); 0.69-2.06 (57 H, Chol, (CH₂)₈). Anal. calc. for C₄₄H₇₀O₄ (663.05): C 79.71, H 10.64; found: C 79.83, H 10.81.

Bis {10-{4-[(cholest-5-en-3 β -yloxy)carbonyl]phenoxy}decyl} Propanedioate (4). A soln. of propanedioyl chloride (0.27 g, 1.92 mmol) in CH₂Cl₂ (5 ml) was added dropwise to a soln. of 3 (2.50 g, 3.77 mmol) and Et₃N (0.48 g, 4.71 mmol) in CH₂Cl₂ (40 ml). The mixture was stirred at reflux for 20 h, cooled to r.t., washed successively with 1N HCl and sat. aq. NaHCO₃ soln., dried (MgSO₄), and evaporated. Purification of the solid residue by CC (CH₂Cl₂) and crystallization from CH₂Cl₂/hexane gave 4 (1.97 g, 75%). [α] $_{365}^{265}$ = +28 (c = 0.3, CHCl₃). 1 H-NMR (200 MHz, CDCl₃): 7.98 (d, J = 8.9, 4 arom. H); 6.90 (d, J = 9.0, 4 arom. H); 5.41 (d, J = 4.1, 2 H, C=CH (Chol)); 4.77–4.87 (br. m, 2 H, CHO (Chol)); 4.14 (t, J = 6.7, 4 H, CO₂CH₂); 4.00 (t, J = 6.5, 4 H, CH₂O); 3.37 (t, O₂CCH₂CO₂); 2.45 (t, t = 7.5, 4 H, Chol); 0.69–2.05 (114 H, Chol, (CH₂)₈). Anal. calc. for C₉₁H₁₄₀O₁₀ (1394.10): C 78.40, H 10.12; found: C 78.57, H 10.03.

Bis $\{10-\{4-[(cholest-5-en-3\beta-yloxy)carbonyl]phenoxy\}decyl\}$ 2-Bromopropanedioate (5). A soln. of CBr₄ (0.45 g, 1.36 mmol) in THF (20 ml) was added dropwise to a soln. of 4 (1.89 g, 1.36 mmol) and DBU (0.21 g, 1.36 mmol) in THF (120 ml) cooled to -40° . The mixture was stirred at -40° for 5 h and hydrolyzed with 1n HCl. Et₂O was added to favor phase separation, the aq. phase extracted twice with CH₂Cl₂, the combined org. phase dried (MgSO₄) and evaporated, and the solid residue purified by CC (CH₂Cl₂/hexane 9:1) and crystallization from acetone: 5 (1.02 g, 51%). [α] $_{365}^{20} = +29$ (c = 0.3, CHCl₃). 1 H-NMR (400 MHz, CDCl₃): 7.98 (d, J = 9.0, 4 arom. H); 6.89 (d, J = 9.0, 4 arom. H); 5.41 (d, J = 3.7, 2 H, C=CH (Chol)); 4.77-4.87 (br. m, 2 H, CHO (Chol)); 4.83 (s, CHBr); 4.22 (t, J = 6.7, 4 H, CO₂CH₂); 3.99 (t, J = 6.5, 4 H, CH₂O); 2.44 (d, J = 7.7, 4 H, Chol); 0.69-2.03 (114 H, Chol, (CH₂)₈). Anal. calc. for C₉₁H₁₃₉BrO₁₀ (1473.00): C 74.20, H 9.51, Br 5.42; found: C 74.42, H 9.37, Br 5.12.

Bis {10-{4-[(cholest-5-en-3β-yloxy)carbonyl]phenoxy}decyl} 1,2-Methanofullerene[60]-61,61-dicarboxylate (1). To a soln. of fullerene[60] (0.162 g, 0.225 mmol) in toluene (180 ml), a 60% NaH oil dispersion (ca. 0.130 g, ca. 3.25 mmol) and 5 (0.465 g, 0.316 mmol) were added. The mixture was stirred under reflux for 4 days, cooled to r.t., and hydrolyzed with IN HCl. The org. phase was dried (MgSO₄) and evaporated: dark residue. Purification of this latter by CC (toluene) gave a purple band (unreacted C60) followed by a deep-red band which contained the desired product (a 3rd brown-red fraction containing probably fullerene bis-adducts was also collected; so far, this fraction has not been investigated). The 2nd fraction was concentrated under vacuum to ca. 10 ml and left at -30° overnight. A solid, which crystallized, was recovered by filtration and dried to yield 1 (0.191 g, 40%). VIS (λ_{max} in nm (ε in $1 \cdot \text{mol}^{-1}$ cm⁻¹), CHCl₃): 426 (2500), 490 (1540), 687 (200). ¹H-NMR (400 MHz, CDCl₃): 7.97 (d, J = 8.9, 4 arom. H); 6.87 (d, J = 8.9, 4 arom. H); 5.41 (d, J = 3.7, 2 H, C=CH (Chol)); 4.78-4.86 (br. m, 2 H, CHO (Chol)); $4.49(t, J = 6.5, 4 \text{ H}, \text{CO}_2\text{CH}_2); 3.98(t, J = 6.5, 4 \text{ H}, \text{CH}_2\text{O}); 2.45(d, J = 7.6, 4 \text{ H}, \text{Chol}); 0.69-2.03(114 \text{ H}, \text{Chol}, \text{Chol}, \text{Chol}); 0.69-2.03(114 \text{ H}, \text{Chol}, \text$ (CH₂)₈). ¹³C-NMR (100 MHz, CDCl₃): 166.47, 164.38, 163.46, 146.05, 145.93, 145.85, 145.55, 145.36, 145.31, 145.28, 144.54, 143.76, 143.70, 143.65, 142.86, 142.58, 141.63, 140.46, 139.65, 132.21, 123.72, 123.36, 114.64, 74.87, 72.36, 68.82, 68.12, 57.38, 56.82, 53.15, 50.73, 43.01, 40.43, 40.21, 39.00, 37.75, 37.35, 36.88, 36.49, 32.63, 32.57, 30.23, 30.20, 30.08, 29.91, 29.83, 29.29, 28.93, 28.71, 28.64, 26.71, 26.69, 24.99, 24.53, 23.52, 23.26, 21.75, 20.10, 19.41, 12.56. Anal. calc. for C₁₅₁H₁₃₈O₁₀ (2112.75): C 85.84, H 6.58; found: C 85.68, H 6.82.

REFERENCES

- H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature (London) 1985, 318, 162.
- [2] a) F. Diederich, L. Isaacs, D. Philp, Chem. Soc. Rev. 1994, 23, 243; b) A. Hirsch, Synthesis 1995, 895.
- [3] C. Boudon, J.-P. Gisselbrecht, M. Gross, L. Isaacs, H. L. Anderson, R. Faust, F. Diederich, Helv. Chim. Acta 1995, 78, 1334, and ref. cit. therein.
- [4] C.S. Foote, Topics Curr. Chem. 1994, 169, 347.
- [5] P.-M. Allemand, K. C. Khemani, A. Koch, F. Wudl, K. Holczer, S. Donovan, G. Gruner, J. D. Thompson, Science (Washington) 1991, 253, 301; P. W. Stephens, D. Cox, J. W. Lauher, L. Mihaly, J. B. Wiley, P.-M. Allemand, A. Hirsch, K. Holczer, Q. Li, J. D. Thompson, F. Wudl, Nature (London) 1992, 355, 331.
- [6] S.H. Friedman, D.L. DeCamp, R.P. Sijbesma, G. Srdanov, F. Wudl, G.L. Kenyon, J. Am. Chem. Soc. 1993, 115, 6506; R. Sijbesma, G. Srdanov, F. Wudl, J. A. Castoro, C. Wilkins, S. H. Friedman, D. L. DeCamp, G. L. Kenyon, ibid. 1993, 115, 6510.
- [7] H. Tokuyama, S. Yamago, E. Nakamura, T. Shiraki, J. Sugiura, J. Am. Chem. Soc. 1993, 115, 7918; A.S. Boutorine, H. Tokuyama, M. Takasugi, H. Isobe, E. Nakamura, C. Hélène, Angew. Chem. Int. Ed. 1994, 33, 2462
- [8] A. G. Avent, P. R. Birkett, C. Christides, J. D. Crane, A. D. Darwish, P. B. Hitchcock, H. W. Kroto, M. F. Meidine, K. Prassides, R. Taylor, D. R. M. Walton, Pure Appl. Chem. 1994, 66, 1389.
- [9] D. R. Huffman, Mater. Lett. 1994, 21, 127.
- [10] S. Ravaine, F. Vicentini, M. Mauzac, P. Delhaes, New. J. Chem. 1995, 19, 1.
- [11] U. Jonas, F. Cardullo, P. Belik, F. Diederich, A. Gügel, E. Harth, A. Herrmann, L. Isaacs, K. Müllen, H. Ringsdorf, C. Thilgen, P. Uhlmann, A. Vasella, C. A. A. Waldraff, M. Walter, Chem. Eur. J. 1995, 1, 243, and ref. cit. therein.
- [12] L. M. Lander, W. J. Brittain, V. A. DePalma, S. R. Girolmo, Chem. Mater. 1995, 7, 1437, and ref. cit. therein.
- [13] C. Bingel, Chem. Ber. 1993, 126, 1957.
- [14] R. Deschenaux, C. Masoni, H. Stoeckli-Evans, S. Vaucher, J. Ketterer, R. Steiger, A. L. Weisenhorn, J. Chem. Soc., Dalton Trans. 1994, 1051.
- [15] V. Vill, J. Thiem, Z. Naturforsch., A 1990, 45, 1205.
- [16] A. J. Slaney, J. W. Goodby, J. Mater. Chem. 1991, 1, 5.
- [17] G. W. Gray, J. W. Goodby, 'Smectic Liquid Crystals', Leonard Hill, Glasgow, 1984.
- [18] D. Demus, L. Richter, 'Textures of Liquid Crystals', Verlag Chemie, Weinheim, 1978.
- [19] A. Soldera, J.-F. Nicoud, A. Skoulios, Y. Galerne, D. Guillon, Chem. Mater. 1994, 6, 625.
- [20] R. Deschenaux, J.W. Goodby, in 'Ferrocenes', Eds. A. Togni and T. Hayashi, VCH Verlagsgesellschaft, Weinheim, 1995, Chapt. 9.
- [21] R. Deschenaux, I. Kosztics, B. Nicolet, J. Mater. Chem. 1995, 5, 2291.