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1 KU Leuven University, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium
2 Normandie Univ., ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France
3 Universität Münster, Institut für Kernphysik, Wilhelm-Klemm-Strasse 9, D-48149 Münster, Germany
4 Karlsruhe Institute of Technology, Institut für Kernphysik, Postfach 3640, 76021 Karlsruhe, Germany
5 FAIR, Planckstr. 1, 64291 Darmstadt, Germany
6 PH Department, CERN, CH-1211 Geneva 23, Switzerland
7 TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3, Canada
8 GANIL, CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen, France
9 Atomic Physics Laboratory, RIKEN, Saitama 351-0198, Japan

10 Nuclear Physics Institute, ASCR, 250 68 Rez, Czech Republic

Received: 3 June 2016
Published online: 27 July 2016
c© The Author(s) 2016. This article is published with open access at Springerlink.com
Communicated by C. Broggini

Abstract. The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum
following the β+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at
CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP)
detector with a time-stamp precision of 2 ns and position resolution of 0.1 mm due to the newly upgraded
data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for
more than 15 different settings of the retardation potential, complemented by dedicated background and
half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency
of the main MCP and a radiation-induced time-dependent background, have been identified and incorpo-
rated into the analysis. However, further understanding and treatment of the radiation-induced background
requires additional dedicated measurements and remains the current limiting factor in extracting a beta-
neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

1 Introduction

The Standard Model (SM) is a pillar of modern physics,
successfully describing not only the experimentally ob-
served fundamental particles [1,2], but the strong and elec-
troweak interactions as well [3]. Despite its success, how-
ever, the SM remains an incomplete theory, with parity
violation and the excess of matter over antimatter, for ex-
ample, remaining unexplained. Being a parameter-based
model, it is left up to experiments to place constraints
on, or hopefully expose, new parameters which may shed
light on some of these as yet unexplained observations.
The weak interaction, for example, is prescribed as purely
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vector (V) minus axial-vector (A), but the most general β-
decay Hamiltonian consistent with Lorentz invariance [4,
5] also allows for scalar (S), tensor (T), and pseudoscalar
(P) type interactions. While the weak interaction has been
shown experimentally to be predominantly of a V-A na-
ture, the presence of S and T currents has not been ruled
out, with the present limits (at 95% confidence level)
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coming from the most recent global fit of selected experi-
mental results in nuclear β and neutron decay [6] (see also
e.g. [7–10]).

It is possible to search for these exotic currents via
careful study of the kinematics and correlations follow-
ing β-decay and making comparisons to SM predictions.
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Fig. 1. (Colour online) Overview of (top) the Penning traps,
retardation spectrometer, re-acceleration section, and main
MCP detector and (bottom) the magnetic field strength (black
line) and electric potentials with the spectrometer at 600V (red
dashed line) and 0V (blue dot-dashed line) throughout this re-
gion. The oscillating line (top) represents a typical daughter-
ion trajectory from the decay Penning trap to the main MCP.

In recent years atom and ion traps have been adopted
in these searches [11–18], particularly for β-ν correlation
measurements as they enable the preparation of isotopi-
cally pure, well-localized sources which are easily manip-
ulated and have well-understood properties. The condi-
tions present in atom and ion traps reduce the effects
of scattering of the β particles and recoil ions, which
is a limitation when sources are implanted in materials.
Whereas most β-ν correlation experiments measure co-
incidences between the recoil ions and the β particles to
infer the neutrino momenta, the Weak Interaction Trap for
CHarged particles (WITCH) experiment [19–25], situated
at CERN-ISOLDE [26], uses a double Penning trap and
retardation spectrometer (fig. 1) to measure the energy
spectrum of the recoiling daughter nuclei, in singles. The
advantages of this approach for a β-ν angular correlation
measurement are twofold: high statistics due to the focus-
ing of the recoil ions towards the main detector by the
magnetic field, and sensitivity to systematic effects which
differ from those encountered in experiments that depend
on a coincidence measurement. The latter of these char-
acteristics is crucial in any search for new physics in order
to cross-check results and establish confidence in limits
imposed, or discoveries made, by other experiments.

The WITCH experiment, first described in 2003 [19,
20], has seen many technical developments and upgrades
over its lifetime [27–31]. The first recorded recoil-ion spec-
trum, measured for 124In, was reported in 2008 [23], while
the first result for the β-ν correlation in 35Ar decay was
reported in 2014 [25], albeit with limited statistics. Re-
cent efforts have been focused on an improved measure-
ment for the β-ν correlation in 35Ar decay as its SM value
can be calculated to better than 1%, the half-life of 35Ar
(T1/2 = 1.7752(10) s [32]) is in a range appropriate for

this technique, and 35Ar is produced in large quantities at
ISOLDE.

In this paper we present the first high-statistics and
high-resolution recoil-ion data obtained with the WITCH
spectrometer for 35Ar. Several major upgrades, imple-
mented since the result reported in ref. [25], have enabled
the improvement in resolution and statistics which have
ultimately led to the exposition of previously unobserved
systematics associated with this measurement technique.
A comprehensive analysis of the data, as well as a detailed
study of these new systematic effects and their impact on
the β-ν correlation measured with a retardation spectrom-
eter, is presented.

2 Experiment

The ions of interest, 35Ar, were produced by ∼2µA of
protons at 1.4GeV from the proton synchrotron booster
(PSB) impinging on a CaO micro-structured target con-
nected to a versatile arc discharge ion source (VADIS) [33].
With a cold transfer line elements other than noble gases
were suppressed. Following magnetic separation the A =
35 beam was delivered to the REXTRAP [34] Penning
trap, where the ions were cooled via collisions with neon
buffer gas before being extracted as a bunched ion beam
at 30 kV. Starting with the ejection of the ion bunch from
REXTRAP, the WITCH experimental cycle can be sub-
divided into three distinct phases: accumulation, prepara-
tion, and recoil-ion measurement. The voltage sequences
associated with each phase, as well as the data from a typ-
ical recoil-ion energy measurement, are displayed in fig. 2.

2.1 Accumulation phase

The properties of the ion cloud following ejection from
REXTRAP are not suited to a precision measurement of
the recoil-ion energy. Therefore WITCH contains a dedi-
cated cylindrical Penning trap for the accumulation and
preparation of 35Ar ions with the desired properties. Be-
fore reaching this so-called “cooler” Penning trap (CT)
the ion bunch is steered and focused through a horizontal
section of the beam line (HBL), followed by a 90◦ bend
to a vertical section of the beam line (VBL), illustrated
in fig. 3. The VBL contains a pulsed drift tube (PDT),
a 70 cm long electrode [28] which is initially biased to a
potential of 21 kV. Upon entering the PDT region the ion
bunch thus has a kinetic energy of 9 keV, at which point
the PDT is switched within 2µs to −9 kV, leaving the
ion bunch with a net energy of approximately 0 keV. The
PDT is followed by a series of electrodes whose potentials
range from −5 kV to 0 kV leading up to injection of the
ion bunch into the CT, which is located in the 13 cm di-
ameter bore of a 6T Oxford Instruments superconducting
magnet. A blocking potential of approximately 100V is
applied to the CT end caps in order to confine the low-
energy ions in this region, while the upstream end cap is
lowered briefly to 0V to allow the injection of a new ion
bunch. This process of accumulation in REXTRAP fol-
lowed by pulsing down the ion bunch’s energy in the PDT
before injection into the WITCH CT was performed three
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Fig. 2. (Colour online) Top: graphical depiction of the time
structure for a typical recoil-ion cycle showing (a) the triggers
from REXTRAP, i.e. when the ion bunches are injected into
the WITCH cooler trap, (b and c) the lowering (0) and raising
(1) of the voltages on the lower and upper endcaps, (d) the
gate applied to one of the steerer quadruplets in the vertical
beamline, with 0 indicating normal operation and 1 indicating
that the element was grounded, (e) the radial ejection of the
ions from the decay trap via a dipole excitation, (f) the accu-
mulation of the ions in the cooler trap and (g) the period when
the ions are in the decay trap. A typical retardation voltage se-
quence (h) is also shown for comparison (vertical scale in volts).
Bottom: MCP data from a typical recoil-ion run. Note that the
part of the cycle following the radial ejection of the ions from
the decay trap is used to measure background components.

times at the beginning of each cycle to improve statis-
tics, necessitated by the relatively poor transmission ef-
ficiency of 1–5% that was achieved between REXTRAP
and WITCH during this beam time.

2.2 Preparation phase

The accumulated ions’ energy is further reduced dur-
ing the preparation phase via collisions with He buffer
gas which is being continuously flowed into the CT trap.
During cooling of the ions’ energy the end caps are low-
ered and a quadrupolar trapping potential with a depth

Fig. 3. (Colour online) Schematic drawing of the WITCH
setup. See text for details.

of between 10V and 15V is applied to confine the low-
energy ion cloud in the center of the trap. As the colli-
sional cooling process results in an increase of the cloud’s
magnetron radius [35], an RF sinusoidal excitation poten-
tial is applied at the free-particle cyclotron frequency to
the central segmented ring electrode of the CT to counter-
act the increase in magnetron radius and facilitate further
cooling and centering of the cloud. After a few 100ms the
cloud is sufficiently cooled and centered that it can then
be transferred through a 2mm diameter, 7 cm long pump-
ing diaphragm to the second cylindrical Penning trap of
the WITCH system, the so-called “decay” trap (DT). The
purpose of the narrow pumping diaphragm is to confine
the He buffer gas to the CT region and ensure the ambi-
ent pressure in the DT and retardation region is as low as
possible.

2.3 Recoil-ion measurement phase

The ion cloud in the DT now has sufficiently low en-
ergy (0.025 eV [36]) and localization in space to act as
a scattering-free point-like radioactive source. Recoil ions
which have enough energy to overcome the shallow 15V
trapping potential are able to escape from the decay trap
and be detected. These recoil ions with trajectories to-
wards the downstream end of the DT will enter the re-
tardation spectrometer of the MAC-E filter type [37,38]
(similar to e.g. the KATRIN [39] and aSPECT [40] exper-
iments), where their energy is probed. The transition from
the high magnetic field of 6T in the trapping region to the
low magnetic field of 0.1T in the retardation spectrome-
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ter section causes an adiabatic transformation of the recoil
ions’ radial energy into axial energy with high efficiency
(i.e. ≈ 98.3%) [20], thus allowing the total recoil energy to
be probed via the retardation electrode. The recoil ions’
energy is not measured directly, but rather the retardation
electrode is set to a potential between 0V and the recoil-
ion endpoint energy for 35Ar decay of ≈ 452 eV [25], such
that the fraction of recoil ions with energy above the re-
tardation potential are able to pass through this section,
where they are post-accelerated to a few keV and focused
onto a position-sensitive MCP detector. In this way an in-
tegrated energy spectrum is obtained by counting the ions
as a function of the height of the potential barrier.

At the midpoint of the recoil-ion measurement phase
of the cycle the DT is emptied by ejecting any remain-
ing 35Ar upstream while simultaneously applying a dipole
excitation at the magnetron frequency to drive the ions
to larger radii so they may be neutralized on the walls of
the trap and subsequently pumped away. The remaining
half of the cycle is then dedicated to measuring residual
backgrounds in the spectrometer (see sect. 3.2.2).

2.4 Dedicated background measurement cycle

To further characterize the background components
present in these measurements a dedicated background
cycle was measured following each of the decay data cy-
cles described so far (fig. 2). All of the steps in the cycle
described in sects. 2.1, 2.2, and 2.3 were executed in the
dedicated background cycle as well, however, while the ion
beam was traversing the HBL in the accumulation phase
an electrostatic kicker was engaged to deflect the ions to
the walls of the beam line, thus preventing any radioac-
tivity from entering the system.

In addition to the sequences described above for recoil-
ion and dedicated background measurement cycles, sev-
eral runs devoted to the measurement of the half-life of
35Ar were also performed during this beam time. The
unique cycle structures for the half-life runs are described
in sect. 3.1.

2.5 Technical upgrades

Following the previous experimental campaign [25] it was
decided to upgrade the existing data acquisition system,
based on a MCS card and CAMAC-based analog elec-
tronics [23], to a fast digital system capable of handling
a high event rate with minimal dead time. The FASTER
(Fast Acquisition SysTem for nuclEar Research) system is
a modular, triggerless, digital DAQ designed to fully re-
place standard NIM and CAMAC/VME modules used in
nuclear physics applications [41]. Time and charge mea-
surements (TDC/QDC) are executed on modular CARAS
daughter cards which digitize the signal for on-board pro-
cessing [42]. After digitization, the signal is timestamped,
discriminated and the charge integrated, yielding time and
charge information. The digitization is performed on a
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Fig. 4. The full retardation voltage sequence (inset) for a typ-
ical run, and a portion of the same sequence around 2 s shown
with 2 ms/bin resolution. While the precision with which the
retardation voltage is recorded is somewhat poor, the superior
timing resolution of FASTER allows for precise monitoring of
relative changes in the applied potential versus time. During
the offline analysis this allows for the exclusion of periods in
the cycle during which the retardation voltage is in transition.

12 bit 500MHz analog-to-digital converter, with a time-
stamp accuracy of 2 ns. The particular FASTER configu-
ration employed at WITCH consists of 8 TDC/QDC chan-
nels to accommodate the four MCP delay lines, the main
MCP signal, the pulse associated with the ejection of the
ion bunch from REXTRAP to time the execution of the
control sequences associated with the cycle, and a signal
proportional to the applied retardation voltage (fig. 4) to
monitor the time evolution of the applied potential.

One immediate advantage of the low deadtime asso-
ciated with FASTER is the ability, for the first time, to
reconstruct the recoil data event by event. Events recorded
with very high QDC values that cause the FASTER charge
integration to saturate were found to be uniformly dis-
tributed in time throughout the cycle (fig. 5). These events
are most likely associated with background ionization
rather than true recoil events, and are thus safely rejected
in the offline analysis via the FASTER QDC saturation
flag.

3 Analysis

The TDC and QDC information for the seven FASTER
channels were recorded event by event in a proprietary
FASTER format, which was then converted into ROOT
trees [43] for further analysis. These data were then sorted
to include only events for which each of the four delay
line signals was present in addition to the main MCP
signal [44], and none of the QDC channels had their
saturation flag set. The delay-line signals were used to
reconstruct the position information for the event, while
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Fig. 5. (Colour online) The QDCs (inset) for all data (red),
those events which do not saturate the FASTER QDC (black),
and all events which do saturate the QDC (blue). The distri-
bution of the saturation events in time is uniform, likely as-
sociated with background ionization, and thus safely rejected
during the offline analysis.

the cycle-by-cycle main MCP signal versus time was ex-
tracted from the sorted ROOT files and placed into matri-
ces for each run. Further cycle-rejection procedures were
carried out on the main MCP matrices prior to fitting,
as discussed in sect. 3.2.1. The fitting routine used is
based on a Levenberg-Marquardt algorithm from Numeri-
cal Recipes in C [45] and has e.g. been used extensively in
the superallowed Fermi beta-decay program at TRIUMF
(see ref. [46] and references therein).

3.1 Dedicated half-life runs

With a radioactive half-life of 1.7752(10) s [32] most of
the 35Ar initially confined in the DT will have decayed
away by the end of the 6 s cycle, and these losses must
be precisely accounted for in order to extract the correct
recoil-ion amplitudes. Unfortunately additional loss mech-
anisms are present for the 35Ar which are particular to this
experiment, negating the advantage of a precisely deter-
mined 35Ar half-life. Dedicated measurements were thus
performed during this beamtime to determine the effective
half-lives associated with the various signals in our detec-
tor. Due to the particularities of both the apparatus and
the cycle structure, the signals registered with the MCP
can be characterized by three distinct half-lives.

3.1.1 Implant half-life

While loading the CT at the beginning of the cycle the
downstream end cap is left at a high potential in order to
prevent the ions from escaping. In principle the ions have
very little kinetic energy following their passage through
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Fig. 6. (Colour online) Dedicated implant (bottom),
beta/implant (middle) and ion/beta/implant (top) half-life
runs with resulting fits overlaid. The five implantation decay
curves are staggered horizontally to aid the eye. See text for
details.

the PDT and should therefore be blocked by a modest po-
tential, however, the fringes of the ion bunch will not be
properly pulsed down in energy due to the finite size of the
PDT and as a result they overshoot the trap and are de-
posited on the surface of the MCP. Calculations performed
with SRIM [47] show that at 30 keV the 35Ar penetrates
to an average depth of 28(8) nm into the surface of the
MCP [48], but the actual penetration depth will be shal-
lower as most of the 35Ar ions will have had their energy
at least partially reduced when passing through the PDT.
This implanted activity on the MCP, present throughout
the entire cycle, does not decay with the true 35Ar half-
life, but rather an effective half-life due to diffusion of the
noble gas from the surface of the MCP. Also important to
note is that this activity is downstream of the spectrome-
ter and thus does not react to changes in the retardation
potential.

In order to quantify the effect of diffusion on the mea-
sured 35Ar half-life a dedicated run was performed with
the trap electrode settings as they were for a typical cycle,
but without pulsing down the ion bunch in the PDT before
“loading” the trap, effectively depositing all the activity
on the surface of the MCP. The data is presented in the
lower panel of fig. 6. There are five separate curves, each
with a gap towards the end, due to the switching of the re-
tardation voltage on the spectrometer from 600V to 100V
during this portion of the cycle. This switching of the po-
tential has no impact on the implanted activity, but does
result in a different focusing of the background of ionized
rest gas onto the MCP. Since no dedicated background
run was performed for these settings, these sections of the
decay data had to be omitted when fitting. To compound
the issue, the retardation sequence lost synchronization
with the cycle, and so the switch from 600V to 100V did
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not take place at exactly the same time in every cycle,
but appeared at five separate times. All the cycles where
the retardation voltage switched at the same time in the
cycle were summed, and these five groups of implantation
decay data, with fit overlaid, are presented in the bottom
panel of fig. 6.

3.1.2 Beta half-life

The high energy of the beta particles following the decay
of the 35Ar ions in the DT (Qβ+ = 5966.1(7) keV [49]) pre-
vents them from being blocked by the spectrometer. The
recent addition of a −10mT air-cooled magnet (magnetic-
field vector opposite to those of the superconducting mag-
nets) after the post-acceleration region of the spectrome-
ter helps reduce the beta intensity reaching the MCP by
breaking up the magnetic-field lines in this region [25],
but the betas’ contribution to the recorded MCP signal
cannot be completely eliminated and must be accounted
for in the fits.

A dedicated beta half-life run was performed by load-
ing the traps in the usual manner for a measurement cycle,
but the retardation spectrometer was left at 600V in order
to block all recoiling ions exiting the trap. While loading
the trap, some 35Ar activity will always overshoot the end-
cap and be implanted into the MCP surface, so the beta
and implant half-lives must be fit together. The dedicated
implantation half-life run presented in sect. 3.1.1 was thus
used to constrain the implantation half-life. While the ions
are confined to the CT trap only background and implan-
tation activity are effectively registered by the MCP due
to the small size of the pumping diaphragm’s aperture,
thus the 30ms before the ions are transferred to the DT
from the CT are used to constrain the implantation ac-
tivity. These data, including fit and dedicated background
measurement, are presented in the middle panel of fig. 6.

3.1.3 Ion half-life

The final signal with an effective half-life to be considered
is that of the recoil ions themselves. Ideally the recoil-ion
activity would decay with the true 35Ar half-life, but neu-
tralization of the ions due to charge exchange with the
trap walls or residual gas can free them from the confin-
ing potential of the DT and they can then be pumped
away, leading to additional losses and affecting the result-
ing half-life. To quantify this effective half-life a dedicated
run was performed with all cycle parameters the same as
a typical recoil-ion run, but with the retardation voltage
sequence replaced with a constant retardation potential of
50V. With radioactivity in the system a large count rate is
observed if the spectrometer is switched below 50V, much
larger than expected from the trapped ions alone, and is
likely due to ionized rest gas which becomes trapped in a
pseudo Penning trap established between the spectrome-
ter and PDT [50]. Further discussion of such a background
appears in sect. 4.2.

Table 1. Values for the various effective half-lives of 35Ar mea-
sured at WITCH.

Year Trapped Ions (s) Implanted Ions (s) Betas (s)

2007 [50] – 1.38(8) –

2009 [50] 1.10(17) 1.31(6) 1.12(3)∗

2011 [51] 1.32(6) – 0.67(1)∗∗

2012† 1.194(15) 1.311(31) 0.607(30)

2012‡ – 1.282(11) –

∗ This beta half-life was fit without regard for the underlying

implanted activity.

∗∗ This “background” half-life value was not divided into betas and

implanted ions.

† Obtained from fits to the dedicated half-life runs (sect. 3.1).

‡ Obtained from fitting the recoil spectrum (sect. 3.2.3).

Since 50V on the retardation spectrometer is insuf-
ficient to block the beta particles, their activity as well
as the implantation activity need to be accounted for in
this fit. The implantation activity was constrained in the
same way as was done when determining the beta half-life.
The beta activity was constrained during the 170ms pe-
riod after the ions were transferred to the decay trap but
before the retardation voltage was switched from 600V,
when no ions could pass, down to 50V. This final run
with all three signals present, including a dedicated back-
ground measurement, is displayed with fit overlaid in the
top panel of fig. 6.

Due to the convoluted nature of the signals impinging
on the MCP, these three dedicated half-life runs were fit
simultaneously with a single function describing separate
amplitudes for all the components in the various measure-
ments, but three global parameters for the implant, beta,
and ion half-lives, which are common to all runs. The im-
plantation half-life of 1.311(31) s and the recoil-ion half-
life of 1.194(15) s measured during this beam time agree
well with previous values measured at WITCH on simi-
lar MCPs (see table 1). An anomalously low value for the
effective half-life of the “background” signal, which was
composed primarily of betas, was also recorded at WITCH
during a beam time in 2011 (table 1), but the reason for
such a low value for the beta half-life, and why this com-
ponent has a half-life different from the recoil-ion half-life,
is still not fully understood. One possible explanation is
that this effect could be caused by the particular motion
of the ions in the trap, as the ion cloud was found to not be
perfectly centered in the trap due to a misalignment of the
electric and magnetic fields and thus exhibits a magnetron
oscillation about the center of the trap. Since the trajecto-
ries of the beta particles and recoil ions are very different
both within the trap itself and through the spectrometer,
then it is possible that betas from different proportions
of the cloud are transmitted to the MCP during different
phases of the magnetron motion in the trap, thus look-
ing like an additional loss mechanism for betas. Evidence
for this hypothesis is discussed further in sect. 3.2.3, and
the empirical value for the beta half-life measured here is
adopted during the recoil-ion analysis.
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Table 2. Details of the 12 recoil-ion runs used in the analysis
for extracting aβν in 35Ar decay. Retardation potential values
of 50V and 600V were also used in every cycle for normaliza-
tion purposes in addition to the retardation potentials listed.
For details on the bad-cycle rejection procedure see sect. 3.2.1.

Run # Total Rejected cycles Retardation

cycles potentials (V)

96 266 40 120, 260

97 268 42 20, 200

98 267 46 100, 420

99 268 18 80, 300

100 267 13 160, 360

101 273 40 300, 220

102 268 10 500, 20

103 268 31 340, 120

104 267 24 260, 60

106 268 22 40, 340

107 267 24 140, 280

108 268 22 460, 320

3.2 Recoil-ion runs

A total of 90 recoil-ion runs comprising 25 million events
were taken over the course of the experiment. However,
due to relatively poor transmission efficiency, lower-than-
expected isotope production, and ionization of the rest
gas in the system, the full data set is of mixed quality and
contains many runs with a very poor signal-to-noise ra-
tio and/or spontaneously emitted or wildly varying back-
ground. Thus a sequence of 12 of the highest quality runs
was used to extract amplitudes for the recoil-ion intensi-
ties. These runs and their associated statistics are tabu-
lated in table 2.

3.2.1 Cycle selection

An initial event selection was done during the offline sort-
ing of the raw data, where events within a cycle were re-
jected if the saturation flag of the FASTER QDC was set.
The individual recoil-ion cycles comprising a run did not
have a sufficient signal-to-noise ratio to fit directly for the
recoil-ion amplitudes, and thus the cycles for each run had
to be summed and fit. Since fluctuating background and
“noise bursts” were still present, though to a lesser degree,
in the 12 highest-quality runs, a cycle rejection procedure
was carried out prior to fitting this data. Background cy-
cles which did not display a constant rate were rejected,
and recoil-ion cycles were kept only if the background rate
was the same both immediately before and immediately
after that cycle, and the recoil-ion cycle itself did not ex-
hibit any obvious noise or anomalous behaviour such as
counting rates fluctuating wildly with time (see fig. 7).
The number of cycles omitted for each run can be found
in table 2.
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Fig. 7. (Colour online) Typical rejected recoil-ion cycle, where
a spike occurs around 1.75 s in the middle of the Vret.2 mea-
surement (top) and rejected background cycle, where the back-
ground level changes after 2 s (bottom). The total number of
cycles which were rejected are listed for each run in table 2.

3.2.2 Recoil-ion fits

Independent amplitudes for all of the recoil-ion intensities,
the beta intensity, and the implantation intensity were
included in the fitting routine, as well as separate back-
ground parameters for each voltage applied to the retarda-
tion spectrometer during that run. Separate backgrounds
were found to be necessary due to different amounts of
background being focused on the MCP for different volt-
ages applied to the retardation spectrometer, as can be
seen from the variations in count rate between t = 3.0 s
and t = 5.5 s in fig. 2. The components included when
fitting particular portions of the cycle are listed and de-
scribed in table 3.

A typical experimental run, including both decay ra-
diation and dedicated background cycles, is presented in
fig. 8 with the resulting fit overlaid. Rather than fix the
ion, beta, and implantation half-lives to those determined
from fitting the dedicated half-life runs in sect. 3.1, those
runs were fit simultaneously with each recoil-ion run listed
in table 2 with single parameters for each of the ion, beta,
and implantation half-lives common to all runs. This ap-
proach has the advantage that the uncertainties associated
with the fitted half-life parameters are easily propagated
to the uncertainties on the extracted intensities, which ul-
timately are the relevant parameters to be extracted.

A so-called “chop plot” is included in fig. 9, where it
becomes clear that there are issues at the beginning of the
experimental cycle. Though the exact cause for the slope
during the first 50V normalization measurement (see line
two of table 3) is not fully understood, this feature is dis-
cussed in sect. 4.2, and the first 50V measurement for all
runs has been omitted in the final analysis.

Following the fit, the recoil-ion intensities for the two
retardation voltage values from each run are extracted
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Table 3. Components of the recoil-ion fit function. The first and last 10ms of each region defined by the applied retardation
potential are omitted from the fit to account for the finite charging time of the retardation spectrometer. Due to focusing
effects each retardation voltage has its own background activity parameter, B, which is constrained by a dedicated background
measurement cycle immediately following each recoil-ion cycle. The half-life parameters λimp, λion, and λβ are common to the
dedicated half-life runs described in sect. 3.1, and are determined by fitting those runs simultaneously with each recoil-ion run.

Time in Retardation Fit components Description

cycle (s) potential (V)

0.76–0.79 600 Aimp · e−λimpt + B600 V Implantation activity only, before ions

are transfered to the decay trap.

0.81–0.99 50 A50 V · e−λiont + Aβ · e−λβt + Aimp · e−λimpt + B50 V Ion normalization measurement at 50 V.

1.01–1.19 600 Aβ · e−λβt + Aimp · e−λimpt + B600 V Beta normalization measurement at

600V, all ions are blocked.

1.21–1.59 Vret1 AVret1 · e
−λiont + Aβ · e−λβt + Aimp · e−λimpt + BVret1 First retardation voltage measurement,

actual value varies run to run.

1.61–1.99 Vret2 AVret2 · e
−λiont + Aβ · e−λβt + Aimp · e−λimpt + BVret2 Second retardation voltage measurement,

actual value varies run to run.

2.01–2.19 50 A50 V · e−λiont + Aβ · e−λβt + Aimp · e−λimpt + B50 V Repeat ion normalization measurement.

2.21–2.39 600 Aβ · e−λβt + Aimp · e−λimpt + B600 V Repeat beta normalization measurement.

2.41–2.59 Vret1 AVret1 · e
−λiont + Aβ · e−λβt + Aimp · e−λimpt + BVret1 Repeat first retardation voltage

measurement.

2.61–2.79 Vret2 AVret2 · e
−λiont + Aβ · e−λβt + Aimp · e−λimpt + BVret2 Repeat second retardation voltage

measurement.

2.81–2.99 50 A50 V · e−λiont + Aβ · e−λβt + Aimp · e−λimpt + B50 V Final ion normalization measurement.

3.01–3.19 600 Aβ · e−λβt + Aimp · e−λimpt + B600 V Final beta normalization measurement.
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Fig. 8. (Colour online) Summed decay (black circles) and
background (blue diamonds) cycles from run 96 with fit (red
squares) overlaid. The top panel shows the retardation voltage
sequence applied during this run.

and compared with a simulation (fig. 10). These inten-
sities are expressed relative to the intensity measured at
50V for each run, which allows for a normalization run-
to-run and removes any dependence on the initial number
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Fig. 9. (Colour online) Resulting half-lives for the ion, im-
plant, and beta components for run 96 as a function of the
number of leading channels removed. The vertical dashed lines
indicate a change in the retardation potential.

of ions present in the traps. The simulations for the ex-
pected number of recoil ions at each experimental retarda-
tion voltage are performed using the SIMBUCA [30] and
SimWITCH [51,52] simulation packages. The SIMBUCA
simulation package models the behaviour of multiple ions
in a Penning trap, and is used to obtain the initial posi-
tion and velocity of the 35Ar ions stored in the decay trap
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Fig. 10. (Colour online) Experimental recoil-ion intensities
generated in the analysis described in sect. 3.2.2 and normal-
ized to 50 V (black circles), and simulated values assuming pure
vector (red dashed line) and pure scalar (red dotted line) inter-
actions. The standard model value for the β-ν correlation pa-
rameter in 35Ar decay is 0.9004(16) [32], and the experimental
data would thus be expected to closely follow the a = 1 curve.
The error bars for the experimental data reflect statistical un-
certainties only.

prior to their decay. Following decay, the recoiling daugh-
ter nucleus’ trajectory is tracked through the retardation
spectrometer, re-acceleration section, and ultimately to
the surface of the MCP detector using the SimWITCH
tracking program.

As is evident from fig. 10, the recoil-ion data is com-
pletely at odds with the Standard-Model value for the β-ν
correlation in 35Ar decay. Not only do some data points
fall below the possible lower limit imposed by a pure scalar
interaction, but the excess of counts at low voltage also
indicates that further systematics need to be treated in
order to reconcile this data set with the simulations. A
possible source for this discrepancy is given in sect. 4.2.

3.2.3 Independent cycle analysis

An independent analysis with respect to the one detailed
in sect. 3.2.2 was also carried out using ROOT and the Mi-
nuit fitting routine [43]. Apart from the use of a separate
fitting routine, several other features of the experimental
spectra were incorporated into the fit.

i) Magnetron motion

In fig. 11 a portion of the experimental cycle slightly
before and immediately after the transfer of the ions from
the cooler trap to the decay trap at 0.8 s is displayed with
a fine binning of 0.1ms. With this resolution it is clear
that the signal from the decay trap is modulated with an
oscillation of 172Hz (period of 5.8ms), which is approx-
imately equal to the magnetron frequency of argon in a
6T, 15V Penning trap of 180Hz. Since this oscillation
does not react to changes in the retardation voltage, i.e.

Fig. 11. Portion of the experimental cycle immediately follow-
ing the transfer of the ions from the cooler trap to the decay
trap. A bin size of 0.1 ms is used to resolve the magnetron oscil-
lation, which has a period of approximately 5ms. Note that the
magnetron oscillation is absent from the signal below t = 0.8 s
(i.e. the time of the transfer from the CT trap to the DT trap
shown in fig. 2), and therefore must be associated with activ-
ity from the trap, while the amplitude of the oscillation does
not change when the retardation voltage is switched at 1 s and
1.2 s.

the amplitude does not change at 1 s in the cycle when the
retardation voltage is switched from 50V to 600V, and
persists in regions which are free of recoil ions, it must
be associated with the β particles coming from the decay
trap. The fact that an oscillation with the magnetron fre-
quency is visible in the activity suggests that the ion cloud
is not perfectly centered in the decay trap. It is possible
that there is a small misalignment between the electric
and magnetic fields, an effect which was confirmed in a
previous experimental campaign [51], and although steps
were taken to correct the misalignment, it appears that it
has not been completely eliminated.

The effect of the magnetron oscillation was modeled in
the fit function by an underdamped harmonic sinusoidal
oscillator with frequency f and phase φ multiplied by a
decreasing exponential with half-life Tmag. and amplitude
Amag. The half-life that was fit to the decay component
of the oscillation lies around 0.6 s–0.7 s for most runs, in
excellent agreement with the β half-life measured in the
dedicated half-life runs, and further supports the conclu-
sion that the magnetron oscillation is solely associated
with the β activity.

ii) Desorption

Between 3.20 s and 3.21 s in the measurement cycle
the ions are ejected from the center of the decay trap with
a dipole excitation of 180Hz and an amplitude of 10V,
pushing them to larger radii and onto the electrode walls
of the trap, while the trapping potential is simultaneously
switched to enable upstream ejection toward the pumping
diaphragm. The remaining low-energy 35Ar ions undergo
charge exchange with these surfaces, neutralize, and then
desorb back into the trap volume. The growth in activ-
ity after 3.21 s as seen in fig. 12 is most likely the β+

particles emitted from the neutralized 35Ar, rather than
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Fig. 12. Portion of the experimental cycle immediately before
and after the ejection of the ions from the decay trap via a
radial excitation. In order to illustrate the effect all the exper-
imental runs have been summed with a bin size of 2 ms, and a
desorption curve generated from eq. (2) with λd = 1 s−1 and
λp = 20 s−1 is overlaid.

35Ar recoils, as the spectrometer is switched from 50V to
600V at 3.4 s, yet there is no visible change in the activ-
ity at this point. Assuming that the 35Ar that interacts
with the walls can either decay in the walls or desorb back
into the trap volume, and the neutralized 35Ar which des-
orbs can either decay or be pumped away, the differential
equation for the desorbed 35Ar is

dNd

dt
= λdN0e

−t(λ+λd)
− λNd − λpNd, (2)

with N0 the initial amount of adsorbed 35Ar, λd the des-
orption rate, λp the pumping rate, and λ the nuclear de-
cay constant of 35Ar. Incorporating this model into the fit
function nicely reproduces the data around 3.2 s, and re-
sults in values for the rates of 1–4 s−1 for λd and 6–20 s−1

for λp.

iii) Free implantation half-life

By incorporating the desorption of the ions into the
fitting function it is possible to extend the analysis of the
experimental spectrum into the region between 3.2 s and
5.6 s (see fig. 2). In this portion of the cycle the activity
is dominated by the ions implanted in the MCP during
the loading of the traps, and in this analysis the half-life
for this activity was thus left free to be determined by the
fit. The weighted average of the implantation half-lives
measured in these runs was found to be 1.282(11) s, in ex-
cellent agreement with the value of 1.311(31) s obtained
from the dedicated half-life runs (see table 1), and pro-
vides a complementary determination of this important
experimental parameter.

While the implantation half-life deduced from the re-
coil runs themselves is nearly a factor of three more precise
than that which is determined from the dedicated half-life
runs, the need to incorporate the desorption model, and
the explicit treatment of the magnetron oscillation rather
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Fig. 13. (Colour online) Experimental recoil-ion intensities
normalized to 50V (black circles), and simulated values as-
suming pure vector (red dashed line) and pure scalar (red dot-
ted line) interactions. The standard model value for the β-ν
correlation parameter in 35Ar decay is 0.9004(16) [32]. The
error bars for the experimental data reflect statistical uncer-
tainties only. These data result from the analysis described in
sect. 3.2.3, and with the exception of the inflated error bars
are very similar to the data presented in fig. 10, despite the
incorporation of additional features into the fitting routine.

than re-binning to average it out, result in somewhat less
precise values for the recoil-ion amplitudes as displayed in
fig. 13. The agreement between the two independent meth-
ods for the recoil-ion amplitudes themselves, however, is
quite good and suggests that the deficiency in the curve
for the recoil-ion amplitudes lies in some as-yet-untreated
systematic effect, rather than in any deficiency in either
of the particular methods employed in the experimental
analysis.

4 Systematics

In a recent publication presenting the first results for aβν

in 35Ar decay with WITCH [25], a table was included
outlining the main sources of systematic uncertainty in
the value for aβν determined with this setup, and how
well these sources were under control at the time. As the
current data set represents a vast improvement in overall
statistics, number of retardation potentials sampled, and
timing resolution, several new effects which could not be
identified from the previous data, such as the magnetron
oscillation and desorption etc., have been uncovered. Two
additional effects, which have the largest impact on the
extraction of aβν , will be presented in this section.

4.1 Energy-dependent MCP efficiency

The recoil ions with enough kinetic energy to overcome
the retardation potential are focused via a series of elec-
trodes and an Einzel lens onto the large diameter MCP for
detection (see sect. 2). Since the recoil ions typically have
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Fig. 14. Background-subtracted QDC distribution for events
in the cycle between 0.8 s and 3.2 s. The sharp edge is unchar-
acteristic of a normal MCP pulse height distribution for ions,
which should have a Gaussian shape.

very low kinetic energies (Emax ≈ 452 eV [25]), they are
re-accelerated to 3.2 · q keV, where q is the charge state
of the ion, before impinging on the MCP surface. Typi-
cally, MCP detectors provide good efficiency for ions above
3 keV [44], however, they can be affected by variations of
the efficiency across the surface as well as gradual deteri-
oration caused by impinging energetic particles, resulting
in decreased efficiency. Careful investigation of the pulse
height distributions for recoil events from this experiment
(fig. 14) reveal a skewed Gaussian shape characteristic of
a damaged MCP, which has been shown to correlate with
reduced detection efficiency [44].

Due to the charge-dependence of the re-acceleration
section, the lowest charge states of the recoil-ion dis-
tribution will be most affected by an energy-dependent
efficiency for detection. Such an effect will alter the
measured shape of the recoil-ion intensities vs. applied
retardation potential because the different charge states
(ranging from 1+ to 5+ [53]) will not be uniformly
distributed throughout the full recoil-ion energy range
when measured with a retardation spectrometer. For
example, while a 1+ recoil ion with 300 eV will pass a
250V potential and thus contribute to the measured
count rate, a 2+ ion with 300 eV will not. Even though
the 2+ recoil ion has an excess of kinetic energy above
the retardation potential, its charge state of 2+ ensures
it effectively experiences twice the applied potential, in
this case 500V, and so would not contribute to the count
rate for a retardation potential of 250V.

The upper half of the recoil-ion energy distribution
will thus only contain 1+ ions, and these ions will be re-
accelerated towards the MCP with at most half the en-
ergy of the rest of the ions. If the MCP has an energy-
dependent efficiency for detection, the upper portion of
the recoil-ion intensity plot will thus be most affected. A
reduced efficiency was modeled by fitting the experimen-
tal data using the simulated data assuming the Standard-
Model value for aβν in 35Ar decay, and using coefficients

100 150 200 250 300 350 400 450 500

Retardation voltage (V)

0

10

20

30

40

50

60

70

80

N
u
m

b
er

 o
f 

io
n
s 

(a
rb

.)

Eff.(1
+
) = 3.6(4)%

Eff.(2
+
) = 13(1)%

Eff.(3
+
) = 13(8)%

Eff.(1
+
) = 10.4(7)%

Eff.(2
+
) = 38(6)%

Eff.(1
+
) = 18.5(5)%

Fig. 15. (Colour online) Fit to the 1+ (red), 1+ and 2+ (blue),
and 1+, 2+, and 3+ (green) regions of the recoil-ion amplitudes
vs. retardation voltage assuming the standard model value for
aβν in 35Ar decay and allowing for a variable detection effi-
ciency for each of the charge states.

for the detection efficiency of each charge state as parame-
ters. The results of these fits, which suggest this as a valid
hypothesis only if the efficiency is reduced by more than
approximately 80%, are illustrated in fig. 15. In order to
verify and quantify the reduction, if any, in ion-detection
efficiency as a function of energy for our MCP, dedicated
offline measurements were performed following the beam
time.

4.1.1 Experimental setup

The MCP efficiency measurements were performed at
LPC Caen, where existing infrastructure for testing MCPs
was installed [44]. The setup consisted of a cross-shaped
vacuum chamber with the WITCH MCP and an ion source
(IS) opposite one another. The chamber was evacuated by
a turbomolecular pump connected to a prevacuum scroll
pump, with typical pressures of 10−7 mbar achieved. The
ion source stack (fig. 16) consisted of an exchangeable
heat-activated pellet that produces positive alkali ions for
beam manipulation, in this case 6Li, 23Na, and 85Rb. The
IS was biased to a high positive potential (1.7–2.7 kV)
to accelerate the ions, with one lens electrode for focus-
ing and three steering electrodes available for moving the
beam spot across the MCP surface. The ion source stack
was also fitted with an attenuating grid (factor 104) to
reduce the beam intensity to a few kHz of event frequency
registered by the MCP in order to avoid saturation and
damage. The grid was also used to measure the beam cur-
rent via a Keithley Systems Electrometer, and was en-
closed in a pseudo Faraday cup that captured most of
the secondary electrons. This device deviates from a true
Faraday cup in that a hole is present at the end in order to
allow the ions to pass through to the MCP. This resulted
in a loss of some of the secondary electrons produced in
the grid and causes a systematic error in the current nor-
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Fig. 16. (Colour online) The ion source stack. Faraday cup
with an opening on top (1), beam steering electrodes (2), drift
electrode (3), electrostatic lens (4), extraction electrode (5) and
ion source heater (6) are indicated.

malizations. For this reason only relative efficiencies are
reported here.

Since the secondary emission properties depend on the
ion-source energy, the ion source was maintained at a con-
stant potential (2.7 kV or 1.7 kV) to minimize the varia-
tion of secondary electron emission intensity, resulting in
a more reliable run to run normalization. The MCP’s volt-
age divider was thus modified to allow independent set-
tings of the front and back plate voltages, while keeping
the voltage over the plates constant at 3150V as was the
case during the online experiment. This provided incident
ions in an energy range of 1.7 keV to 6.7 keV, which en-
compasses the re-accelerated energies of the 1+ and 2+

35Cl ions from the online experiment.

4.1.2 Measurements

Each measurement for a particular ion species at a par-
ticular kinetic energy was done with a beam spot of ap-
proximately 1 cm radius focused on the region of the MCP
onto which the recoil ions were focused during the 35Ar
beam time. In order to account for background, particu-
larly from neutralized ions passing through the attenua-
tion grid, the beam spot was steered to the edge of the
MCP following each ion measurement and a background

Fig. 17. (Colour online) Overview of the background subtrac-
tion process. Top-left: ion measurement at the approximate
position of the beam spot during the online 35Ar experiment.
Top-right: measurement of the background contribution at the
position of the beam spot. The ions are deflected to the MCP
rim. Bottom-left: a cut on the position of the beam spot in
the background measurement showing a small concentration
of neutral atoms which are not affected by the electrostatic
deflectors. Bottom-right: the final histogram of the normalized
beam spot with the neutral background subtracted.

measurement was taken. This series of efficiency measure-
ment followed by background measurement was repeated
for each acceleration voltage to verify reproducibility.

In addition to the ion measurements at varying in-
cident energy, calibration measurements were also per-
formed to ensure linearity of the grid current vs. recorded
ion intensity on the MCP. While the slope of the collected
charge vs. number of ions is generally linear, there is much
more scatter in the data points when the front plate of the
MCP is fixed to 0V, and for the same amount of charge
collected by the grid many more counts are recorded on
the MCP. This is likely caused by an excess of electrons
coming from the grid, which are normally repelled when
the MCP front plate is set to a negative potential, but
not when set to 0V. This effect precludes the possibility
of an absolute normalization, but should not affect the
background subtraction.

The 2D histograms for the beam spot and background
measurements were constructed and normalized to the to-
tal charge collected on the grid. A cut was made on the
beam spot position and the respective cut on the back-
ground was subtracted, as the background contains ions
as well as neutral particles originating from the ion source
that are not affected by the electrostatic steering elements
(see fig. 17). These normalized and background-subtracted
count rates for each ion species were then compared as a
function of accelerating potential.
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Fig. 18. (Colour online) Relative detection efficiency for the
WITCH MCP as a function of incident ion energy. The mass
scaling of the different curves conforms well with theory [54],
and indicates that the WITCH MCP has a detection efficiency
for 35Cl1+ which is no less than 85% for 35Cl2+ recoil ions.

4.1.3 Results

For all three ion species the count rate was found to in-
crease up to an ion energy of approximately 4.2 keV before
saturation, a significantly higher value than 3 keV found
in ref. [44]. The count rates for 23Na and 85Rb were found
to be stable in the plateau region up to 5.5 keV, while the
data in the region from 5.5 keV to 6.7 keV fluctuated sig-
nificantly about the saturation plateau. For these data the
points from 4.25 keV to 5.5 keV were thus used to estimate
the saturation efficiency in the plateau region. The data
for 6Li was found to be much more erratic in the plateau
region, likely due to instabilities in the ion source, and thus
only the point at the start of the plateau at 4.5 keV was
used for normalization in this case. The resulting relative
efficiency curves for each ion species is displayed in fig. 18.

From the relative efficiency curves it can be seen that
a constant efficiency as a function of incident energy is
not achieved before 4.5 keV, and exhibits a definite slope
in the 3.1 keV to 3.6 keV energy region corresponding to
the energy range for 35Cl1+ recoils. From these data it
is difficult to extract a precise value for the reduction in
detection efficiency over this range, but it is clearly no
worse than 85% of the efficiency for the 2+ and higher
charge states which would be incident with a minimum
energy of 6.2 keV. Although the normalization procedure
was found to be unsuitable for a precise determination of
the absolute efficiency of the MCP, the fact that all count
rates plateaued after approximately 4.5 keV suggests that
beyond this energy ions are detected by the MCP with
full efficiency.

The effect of a reduced efficiency for the detection of 1+

ions is incorporated into the simulated data in fig. 19, as it
is impossible to separate charge states in the experimental
spectra. It is evident that adopting a relative efficiency of
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Fig. 19. (Colour online) Experimental recoil-ion intensities
normalized to 50 V (black circles) and simulated curves for
aβν = 1 assuming a 100% (red dashed line) and 85% (red
dotted line) relative detection efficiency for the 35Cl1+ recoil
ions.

85% for the 1+ recoil ions is not sufficient to resolve the
observed discrepancy between the experimental data and
the SM value for aβν in 35Ar decay.

4.2 Radiation-induced background

It has been observed in other experiments utilizing retar-
dation spectrometers that neutral rest gas, or buffer gas
in the case of a Penning trap, can become ionized when
radiation is introduced into the system [55,56]. Such a
background will be absent from any dedicated background
measurements, as its creation requires the presence of ra-
diation to ionize it.

Identifying such a radiation-induced background com-
ponent, which may or may not be time-dependent, with
offline measurements is extremely challenging as it would
not only require several radioactive sources of varying in-
tensity which can closely mimic the characteristics of the
online activity, but the exact same vacuum and buffer gas
conditions encountered in the online experiment must be
reproduced as well. Moreover, it is impossible with an of-
fline radioactive source to mimic the spatial distribution
of ions in the trapped ion cloud. Such an intensive system-
atic investigation has not been possible with the current
WITCH setup, thus Monte Carlo simulations were per-
formed in order to investigate the plausibility of such a
background producing the type of systematic effect which
is observed in the present data set.

4.2.1 Monte Carlo for recoil-ion runs

Recoil-ion runs were simulated with a C++ program that
produced the time between subsequent decay events ac-
cording to a random distribution − ln(r)/λ, where r is a
random 48 bit floating-point number between 0 and 1 gen-
erated by the drand48() routine. The experimental half-
lives Timp, Tbeta, and Tion from sect. 3.1 were used, while
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Fig. 20. (Colour online) A Monte Carlo generated version
of the recoil-ion run presented in fig. 8, assuming all of the
components present in the fit function of table 3, with the
recoil ions in proportion according to the SM value of aβν for
35Ar decay.

the beta and implantation activities were chosen to be in
the same proportion relative to the recoil-ion intensities
as determined from fitting the experimental data.

The recoil-ion amplitudes for the range of retardation
voltages probed in the experiment were determined using
SimWITCH assuming the SM value for aβν in 35Ar de-
cay. In this way SM recoil-ion runs were created assuming
only the presence of components already defined in the
fitting model from table 3. Fitting such a spectrum with
the function defined in table 3 will thus return the SM
value for aβν (fig. 20).

Before proceeding to investigate the influence of un-
accounted for background on the extracted values of the
recoil-ion amplitudes, the generated decay curves were fit
using the function in table 3 to ensure the input values
for the half-lives and amplitudes were returned. Both the
ROOT-based and C-based fitting routines described in
sect. 3.2 were found to reliably extract the simulated val-
ues to within 1σ for all simulated runs.

4.2.2 Background models

In order to test the hypothesis that the systematic devia-
tion from the SM seen in the recoil-ion amplitude versus
retardation potential plot of fig. 10 is caused by an unac-
counted for background component which is present only
when ions are in the system, two separate background
models where considered:

– a background constant in time throughout the ion cy-
cle, but absent in the background cycle, with an energy
spread according to a Gaussian distribution with mean
and σ in the 0 eV to 200 eV range;

– a background time-correlated to the decay of the ion
cloud, and hence absent in the background cycle, with
an energy spread according to a Gaussian distribution
with mean and σ in the 0 eV to 200 eV range.
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Fig. 21. (Colour online) Experimental recoil-ion amplitudes
from fig. 10 (black circles) and the recoil-ion amplitudes ex-
tracted from Monte Carlo data (blue open squares) assuming
the SM value for aβν in 35Ar decay and the presence of a time-
dependent background, which is unaccounted for in the fitting
routine.

The choice to confine the distributions to this partic-
ular energy range stems from the fact that the activity
in the spectrometer is seen to go to zero at the end-point
of the 35Ar recoil energy, and thus all background must
be below this energy as well. Energy distributions were
created with mean and σ spanning the range described
above, and for each combination the energy distribution
was integrated to include all ions with energies higher
than the particular retardation voltage being simulated.
This approach assumes that the background ions are cre-
ated somewhere between the decay trap and the analysis
plane, so that only those ions with enough energy to over-
come the retardation barrier are counted in the cycle. This
radiation-induced background component was then added
to the simulated SM decay curves, which were then fit
again with the function from table 3 to see how the result-
ing recoil-ion amplitudes are affected by this additional
source of background which is not explicitly included in
the fit function.

Fits of the generated spectra revealed that it is possible
to find a single energy distribution of background ions that
reproduces the experimentally observed spectrum fairly
well (see fig. 21). The best agreement was found for a
time-dependent energy distribution with mean of 50 eV
and σ of 100 eV. Reasonable agreement was also achieved
with a constant energy distribution, but the resulting re-
duced chi-squares are much too high (∼ 20), while the
reduced chi-squares for the time-dependent distribution
were on the order of 1.1–1.2, in excellent agreement with
the range of reduced chi-squares from the fits to the exper-
imental data, and further supporting the hypothesis of an
unaccounted for time-dependent background component
in the decay data.

The fact that the addition of a reasonable Gaussian-
distributed time-dependent background to the Monte
Carlo data not only reproduces the experimental ampli-
tudes, but the χ2/ν from the fits as well, strongly supports
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the hypothesis that there is a time-dependent background
component in the data set which is currently not ac-
counted for in our fitting model. Unfortunately the proce-
dure used to identify and categorize this background relies
on the assumption of the SM value for aβν in 35Ar decay,
negating the possibility of using this information to ex-
tract the value of aβν from the current data set. Detailed
systematic studies of this effect in the WITCH spectrom-
eter would need to be performed to further characterize
this background before another data set could be taken
with the hope of yielding an accurate value for aβν in
35Ar decay. Improving the conditions which lead to such a
background, however, is of even more importance. In par-
ticular the vacuum conditions in the system, which were
two orders of magnitude worse in this measurement than
during the previous campaign [25] where this effect was
below the level of statistical uncertainty, would need to
be drastically improved to minimize the impact of this
systematic on the extracted value of aβν .

5 Summary and conclusions

The first high-statistics high-resolution recoil-ion data
for 35Ar decay was taken in November 2012 at CERN-
ISOLDE with the WITCH spectrometer. A number of
electronics upgrades, most notably moving from an MCS
and Lab View-based data acquisition system to the
FASTER DAQ developed at LPC Caen, enabled the de-
tection of decay products on an event-by-event basis with
negligible dead time. Despite low production yields of 35Ar
and relatively poor transmission efficiency to the WITCH
Penning traps, well over 25 million recoil events were reg-
istered over the course of the experiment, although poor
background conditions resulted in an acceptable signal-to-
noise ratio for only 13% of the data.

Fitting the highest-quality recoil-ion runs and extract-
ing the recoil-ion amplitudes yields a result for aβν in 35Ar
decay which is completely at odds with the SM prediction,
indicating further sources of systematic effects not previ-
ously considered with this apparatus. A worn and dam-
aged MCP detector, which resulted in a reduced detec-
tion efficiency for 1+ recoil ions, was found to be the sec-
ond largest systematic effect affecting this data set. Pre-
cisely and accurately characterizing the absolute energy-
dependent efficiency of this MCP in order to correct for
the damage has proven to be very difficult, and in the fu-
ture a careful assessment of the state of the MCP prior
to the experiment, with replacement an option in case of
damage, would be warranted.

The largest systematic effect observed in the present
data set was found to be a time-dependent radiation-
induced background. Due to the nature of such a back-
ground, which is known to affect retardation spectrome-
ters, direct observation was not possible, and its presence
was thus inferred via Monte Carlo simulations which ver-
ified that reasonable assumptions about the properties of
such a background would indeed have precisely the effect
on the extracted recoil-ion amplitudes as is observed in the
present data set. As verification of the presence of such a

background depended on the assumption of the SM value
for aβν in 35Ar decay, correcting for this background and
extracting an experimental value for aβν in 35Ar decay is
not possible with the present data set. While this back-
ground could be studied and characterized in dedicated
offline measurements, the impact of such a background
depends critically on the conditions in the spectrometer,
which were very poor during this beamtime compared to
previous campaigns, and thus correcting for this back-
ground in the present data is not possible.

Other retardation spectrometers have had some suc-
cess treating these backgrounds via careful offline study,
and using the results of these studies to minimize their
impact, but they have also found that completely elim-
inating a radiation-induced background component is
not feasible [56]. With other experiments such as LPC-
Trap [17] making great strides in precision aβν mea-
surements, the massive effort and time commitment that
would be involved in characterizing and minimizing a
radiation-induced background at WITCH, and the strong
competition for radioactive beam time at ISOLDE which
would be required in order to pursue such studies, the col-
laboration has decided that the WITCH spectrometer will
be repurposed for other fundamental symmetries studies
and will no longer be focused on recoil-ion measurements
for the extraction of aβν for 35Ar decay.
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Note added in proofs: After the acceptance of the paper
the authors became aware of the publication of new results
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(Berlin) 525, 600 (2013).

8. V. Cirigliano, S. Gardner, B. Holstein, Prog. Part. Nucl.
Phys. 71, 93 (2013).

9. B.R. Holstein, J. Phys. G: Nucl. Part. Phys. 41, 114001
(2014).

10. K.K. Vos, H.W. Wilschut, R.G.E. Timmermans, Rev.
Mod. Phys. 87, 1483 (2015).

11. A. Gorelov et al., Phys. Rev. Lett. 94, 142501 (2005).
12. D. Melconian et al., Phys. Lett. B 649, 370 (2007).
13. P.A. Vetter et al., Phys. Rev. C 77, 035502 (2008).
14. J. Pitcairn et al., Phys. Rev. C 79, 015501 (2009).
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