
FIRST IMPRESSIONS MATTER:

A MODEL OF CONFIRMATORY BIAS*
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Psychological research indicates that people have a cognitive bias that leads
them to misinterpret new information as supporting previously held hypotheses.
We show in a simple model that such confirmatory bias induces overconfidence:
given any probabilistic assessment by an agent that one of two hypotheses is true,
the appropriate beliefs would deem it less likely to be true. Indeed, the hypothesis
that the agent believes in may be more likely to be wrong than right. We also show
that the agent may come to believe with near certainty in a false hypothesis
despite receiving an infinite amount of information.

The human understanding when it has once adopted an
opinion draws all things else to support and agree with it. And
though there be a greater number and weight of instances to
be found on the other side, yet these it either neglects and
despises, or else by some distinction sets aside and rejects, in
order that by this great and pernicious predetermination the
authority of its former conclusion may remain inviolate.

Francis Bacon^

I. INTRODUCTION

How do people form beliefs in situations of uncertainty?
Economists have traditionally assumed that people begin with
subjective beliefs over the different possible states of the world
and use Bayes' Rule to update those beliefs. This elegant and
powerful model of economic agents as Bayesian statisticians is the
foundation of modern information economics.

Yet a large and growing body of psychological research
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suggests that the way people process information often departs
systematically from Bayesian updating. In this paper we formally
model and explore the consequences of one particular departure
from Bayesian rationality: confirmatory bias. A person suffers
from confirmatory bias if he tends to misinterpret ambiguous
evidence as confirming his current hypotheses about the world.
Teachers misread performance of pupils as supporting their
initial impressions of those pupils; many people misread their
observations of individual behavior as supporting their prior
stereotypes about groups to which these individuals belong;
scientists biasedly interpret data as supporting their hypotheses.

Our simple model by and large confirms an intuition common
in the psychology literature: confirmatory bias leads to overconfi-
dence, in the sense that people on average believe more strongly
than they should in their favored h5^otheses. The model also
3delds surprising further results. An agent who suffers from
confirmatory bias may come to believe in a hypothesis that is
probably wrong, meaning that a Bayesian observer who was
aware of the agent's confirmatory bias would, after observing the
agent's beliefs, favor a different hypothesis than the agent. We
also show that even an infinite amount of information does not
necessarily overcome the effects of confirmatory bias: over time an
agent may with positive probability come to believe with near
certainty in the wrong hypothesis.

In Section II—which readers impatient for math may wish to
skip—we review some of the psychological evidence that humans
are prone to confirmatory bias. In Section III we present our
formal model and provide examples and general propositions
illustrating the implications of confirmatory bias. In our model, an
agent initially believes that each of two possible states of the
world is equally likely. The agent then receives a series of
independent and identically distributed signals that are corre-
lated with the true state. To model confirmatory bias, we assume
that when the agent gets a signal that is counter to the hypothesis
he currently believes is more likely, there is a positive probability
that he misreads that signal as supporting his current hypothesis.
The agent is unaware that he is misreading evidence in this way
and engages in Bayesian updating that would be fully rational
given his environment if he were not misreading evidence.̂

2. Researchers have, of course, documented many other biases in information
processing. We develop a model ignoring these other biases, assuming complete
rationality except for this one bias, so as to keep our model tractable and because
we feel that incorporating documented biases into the Bayesian model one at a
time is useful for carefully identifying the effects of each particular bias.
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Because we assume that the agent always correctly interprets
evidence that confirms his current heliefs, relative to proper
Bayesian updating he is biased toward confirming his current
hypothesis.

So, for example, a teacher may believe either that Marta is
smarter than Bart or that Bart is smarter than Marta; he initially
believes each is equally likely, and over time he collects a series of
signals that help him to identify who is smarter. If, after receiving
one or more signals, the teacher believes that Marta is probably
smarter than Bart, confirmatory bias may lead him to erroneously
interpret his next signal as supporting this hypothesis. Therefore,
the teacher's updated belief that Marta is smarter than Bart may
be stronger than is warranted.

The notion that the teacher is likely to believe "too strongly"
that Marta is smarter corresponds to the commonly held intuition
that confirmatory bias leads to overconfidence. While qualifjdng
this intuition with several caveats, our model by and large
confirms it: given any probabilistic assessment by an agent that
one of the hypotheses is probably true, the appropriate beliefs
should on average deem it less likely to be true. Intuitively, a
person who believes strongly in a hypothesis is likely to have
misinterpreted some signals that conflict with what he believes,
and hence is likely to have received more evidence against his
believed hypothesis than he realizes.

Our analysis shows that a more surprising result arises when
confirmatory bias is severe: a Bayesian observer with no direct
information of her own, but who can observe the agent's belief in
favor of one hypothesis, may herself believe that the other
hypothesis is more likely. We show that such "wrongness" can
arise when the agent's evidence is sufficiently mixed. Intuitively, if
the agent has perceived almost as much evidence against his
hypothesis as supporting it, then, since some of the evidence he
perceives as supportive is actually not supportive, it is likely that
a majority of the real signals oppose his hypothesis. Because such
wrongness only arises when the agent has relatively weak evi-
dence supporting his favored hj^othesis, however, the agent on
average correctly judges which of the two hypotheses is more
likely, in the sense that his best guess is right most of the time.

While seemingly straightforward, the intuition for our over-
confidence and wrongness results conceals some subtle implica-
tions of the agent's confirmatory bias. For example, an agent who
currently believes in Hypothesis A (say) may once have believed in
Hypothesis B, at which time he had a propensity to misread as
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supporting Hypothesis B evidence actually in favor of H5rpothesis
A. But then the agent may underestimate how many signals
supporting Hypothesis A he has received, and thus he may be
wnderconfident in his belief in favor of H5rpothesis A. Indeed, we
show that an agent who has only recently come to believe in a
hypothesis is likely to be underconfident in that h5^othesis,
because until recently he has been biased against his current
h5rpothesis. If a teacher used to think Bart was smarter than
Marta and only recently concluded that Marta is smarter, then
probably he has been ignoring evidence all along that Marta is
smarter. The simple overconfidence and wrongness results hold
because an agent has probably believed in his currently held
hypothesis during most of the time he has been receiving informa-
tion and so, on average, has been biased toward this hypothesis.

In Section IV we investigate the implications of confirmatory
bias after the agent receives an infinite sequence of signals. In the
absence of confirmatory bias, an agent will always come to believe
with near certainty in the correct h5^othesis if he receives an
infinite sequence of signals. If the confirmatory bias is sufficiently
severe or the strength of individual signals is weak, however, then
with positive probability the agent may come to believe with near
certainty that the incorrect hypothesis is true. Intuitively, once
the agent comes to believe in an incorrect hypothesis, the confirma-
tory bias inhibits his ability to overturn his erroneous beliefs. If
the bias is strong enough, the expected drift once the agent comes
to believe in the false hypothesis is toward believing more strongly
in that h5^othesis, guaranteeing a positive probability that the
agent ends up forever believing very strongly in the false hy-
pothesis. The results of Section FV belie the common intuition that
learning will eventually correct cognitive biases. While this is true
for sufficiently mild confirmatory bias, when the bias is suffi-
ciently severe "learning" can exacerbate the bias.

The premise of this paper is that explicit formalizations of
departures from Bayesian information processing are crucial to
incorporating psychological biases into economic analysis. For the
most part, we do not in this paper take the important next step of
developing extended economic applications of the bias we model.
In Section V, however, we illustrate one implication of confirma-
tory bias by sketching a simple principal-agent model. We illus-
trate how a principal may wish to mute the incentives that she
ofiers an agent who suffers from confirmatory bias. Indeed, we
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show that even if it is very easy for an agent to gather information,
so that a principal can at negligible costs provide incentives for an
agent to search for profitable investment opportunities, the
principal may choose not to provide these incentives to a confirma-
tory agent. This arises when the expected costs in terms of an
overconfident agent investing too much in risky projects outweigh
the expected benefit of the agent being better informed. We
conclude in Section VI by discussing some other potential eco-
nomic implications of confirmatory bias, as well as highlighting
some likely obstacles to applying our model.

II. A REVIEW OF THE PSYCHOLOGY LITERATURE

Many different strands of psychological research yield evi-
dence on phenomena that we are modeling under the rubric of
confirmatory bias. Before reviewing this literature, we first wish
to distinguish a form of "quasi-Bayesian" information processing
from the bias we are examining. Although the two phenomena are
related—and not always distinguished clearly in the psychology
literature—they differ importantly in their implications for deci-
sion theory. Suppose that, once they form a strong hypothesis,
people simply stop being attentive to relevant new information
that contradicts or supports their hypotheses. Intuitively, when
you become convinced that one investment strategy is more
lucrative than another, you may simply stop pajdng attention to
even freely available additional information.^

Bruner and Potter [1964] elegantly demonstrate such anchor-
ing. About 90 subjects were shown blurred pictures that were
gradually brought into sharper focus. Different subjects began
viewing the pictures at different points in the focusing process,
but the pace of the focusing process and final degree of focus were
identical for all subjects. Strikingly, of those subjects who began
their viewing at a severe-blur stage, less than a quarter eventu-
ally identified the pictures correctly, whereas over half of those
who began viewing at a light-blur stage were able to correctly
identify the pictures. Bruner and Potter [p. 424] conclude that
"Interference may be accounted for partly by the difficulty of
rejecting incorrect hypotheses based on substandard cues." That

3. Such behavior corresponds to a natural economic "cognitive-search" model:
if we posit a cost to information processing, in many settings the natural stopping
rule would he to process information until heliefs are sufficiently strong in one
direction or another, and then stop.
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is, people who use weak evidence to form initial hypotheses have
difficulty correctly interpreting subsequent, better information
that contradicts those initial hypotheses.*

This form of anchoring does not necessarily imply that people
misinterpret additional evidence to either disconfirm or confirm
initial h3T)otheses, only that they ignore additional evidence. Such
a tendency to anchor on initial hypotheses can therefore be
reconciled with Bayesian information processing. While such
anchoring is potentially quite important, psychological evidence
reveals a stronger and more provocative phenomenon: people tend
to misread evidence as additional support for initial hypotheses. If
a teacher initially believes that one student is smarter than
another, she has the propensity to confirm that hypothesis when
interpreting later performance.^ Lord, Ross, and Lepper [1979, p.
2099] posited some of the underlying cognitive mechanisms
involved in such propensities:

. . . there is considerable evidence that people tend to interpret subse-
quent evidence so as to maintain their initial beliefs. The biased assimilation
processes underlying this effect may include a propensity to remember the
strengths of confirming evidence but the weaknesses of disconfirming
evidence, to judge confirming evidence as relevant and reliable but disconfirm-
ing evidence as irrelevant and unreliable, and to accept confirming evidence
at face value while scrutinizing disconfirming evidence hypercritically. With
confirming evidence, we suspect that both lay and professional scientists
rapidly reduce the complexity of the information and remember only a few
well-chosen supportive impressions. With disconfirming evidence, they con-
tinue to reflect upon any information that suggests less damaging "alterna-
tive interpretations." Indeed, they may even come to regard the ambiguities
and conceptual flaws in the data opposing their hypotheses as somehow
suggestive of the fundamental correctness of those hypotheses. Thus, com-

4. A similar experiment [Wyatt and Campbell 1951] was cited by Perkins
[1981] as one interpretation of the perspective that "fresh" thinkers may be better
at seeing solutions to problems than people who have meditated at length on the
problems, because the fresh thinkers are not overwhelmed by the "interference" of
old hypotheses.

5. A related arena where the confirmation bias has been studied widely is in
counselor judgments: counselors in clinical settings tend to confirm original
suppositions in their eventual judgments. If you are told ahead of time that an
interviewee is combative, then both your conduct and your interpretation of his
conduct during an interview may reinforce that supposition, even if he is in fact no
more combative than the average person. See, e.g., Haverkamp [1993]. There has
also heen extensive research on confirmatory bias in the interviewing process more
generally; see, e.g., Dougherty, Turban, and Callender [1994] and Macan and
Dipboye [1994]. Research applying variants of confirmatory bias to other domains
includes Arkes [1989] and Borum, Otto, and Golding [1993] to the law; Baumann,
Deber, and Thompson [1991] to medicine; and Souter [1993] discusses the
implications of overconfidence to business insurance.
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pletely inconsistent or even random data—when "processed" in a suitably
biased fashion—can maintain or even reinforce one's preconceptions.

The most striking evidence for the confirmatory hias is a
series of experiments demonstrating how providing the same
amhiguous information to people who differ in their initial heliefs
on some topic can move their heliefs farther apart. To illustrate
such polarization, Lord, Ross, and Lepper [1979] asked 151
undergraduates to complete a questionnaire that included three
questions on capital punishment. Later, 48 of these students were
recruited to participate in another experiment. Twenty-four of
them were selected because their answers to the earlier question-
naire indicated that they were " 'proponents' who favored capital
punishment, helieved it to have a deterrent effect, and thought
most of the relevant research supported their own heliefs. Twenty-
four were opponents who opposed capital punishment, douhted its
deterrent effect and thought that the relevant research supported
their views." These subjects were then asked to judge the merits of
randomly selected studies on the deterrent efficacy of the death
penalty, and to state whether a given study (along with criticisms
of that study) provided evidence for or against the deterrence
hypothesis. Subjects were then asked to rate, on 16 point scales
ranging from -8 to +8, how the studies they had read moved their
attitudes toward the death penalty, and how they had changed
their beliefs regarding its deterrent efficacy. Lord, Ross, and
Lepper [pp. 2102-2104] summarize the basic results (all of which
hold with confidencep < .01) as follows:

Tbe relevant data provide strong support for the polarization hypothe-
sis. Asked for their final attitudes relative to the experiment's start,
proponents reported tbat they were more in favor of capital punishment,
whereas opponents reported tbat tbey were less in favor of capital punisb-
ment. . . . Similar results cbaracterized subjects' beliefs about deterrent
efficacy. Proponents reported greater belief in tbe deterrent effect of capital
punisbment, wbereas opponents reported less belief in tbis deterrent effect.

Pious [1991] replicates the Lord-Ross-Lepper results in the
context of judgments about the safety of nuclear technology. Pro-
and antinuclear subjects were given identical information and
arguments regarding the Three Mile Island nuclear disaster and
a case of false military alert that could have led to the launching of
U. S. nuclear missiles. Pious [p. 1068] found that 54 percent of
pronuclear subjects became more pronuclear from the informa-
tion, while only 7 percent hecame less pronuclear. By contrast.
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only 7 percent of the antinuclear subjects became less antinuclear
from the information while 45 percent became more antinuclear.^

Darley and Gross [1983] demonstrate a related and similarly
striking form of polarization due to confirmatory hias. Seventy
undergraduates were asked to assess a nine-year-old girl's aca-
demic skills in several different academic areas. Before complet-
ing this task, the students received information about the girl and
her family and viewed a video tape of the girl playing in a
playground. One group of subjects was given a fact sheet that
described the girl's parents as college graduates who held white-
collar jobs; these students viewed a video of the girl playing in
what appeared to be a well-to-do, middle class neighborhood. The
other group of subjects was given a fact sheet that described the
girl's parents as high school graduates who held hlue-coUar jobs;
these students viewed a video of the same girl playing in what
appeared to be an impoverished inner-city neighborhood. Half of
each group of subjects were then asked to evaluate the girl's
reading level, measured in terms of equivalent grade level.̂  There
was a small difference in the two groups' estimates—those
subjects who had viewed the "inner-city" video rated the girl's skill
level at an average of 3.90 (i.e., ?4o through third grade) while
those who had viewed the "suburban video" rated the girl's skill
level at an average of 4.29. The remaining subjects in each group
were shown a second video of the girl answering (with mixed
success) a series of questions. Afterwards, they were asked to

6. These percentages were derived from Table 2 of Pious [1991, p. 1068],
aggregating across two studies; tbe remaining subjects in eacb case reported no
cbange in beliefs. For otber papers following on Lord, Ross, and Lepper [1979], see
Fleming and Arrowood [1979]; Jennings, Lepper, and Ross [1981]; Hubbard [1984];
Lepper, Ross, and Lau [1986]. See also Miller, McHoskey, Bane, and Dowd [1993]
for more mixed evidence regarding tbe Lord-Ross-Lepper experiment. In tbe
passage above. Lord, Ross, and Lepper posit tbat even professional scientists are
susceptible to sucb same-evidence polarization. Indeed, many econoniists and
otber academics bave probably observed bow differing schools of thought interpret
ambiguous evidence differently. An example was once told to one of us by a
colleague. He saw tbe same model—calibrating tbe elasticity of demand facing a
Cournot oligopolist as a function of the number of firms in an industry—described
at tbe University of Chicago and at the Massachusetts Institute of Technology. A
Chicago economist derived the formula and said, "Look at how few firms you need
to get close to infinite elasticities and perfect competition." An M.I.T. economist
derived the same formula and said, "Look at how large n [the number of firms] bas
to be before you get anjrwbere close to an infinite elasticity and perfect competi-
tion." Tbese different scbools each interpreted the same mathernatical formula as
evidence reinforcing their respective views. For related analysis in the scientific
domain, see also Maboney [1977].

7. Tbe subjects were also asked to evaluate tbe girl's matbematics and liberal
arts skill levels; we report tbe results that are least supportive of tbe existence of
confirmatory bias.
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evaluate the girl's reading level. The inner-city video group rated
the girl's skill level at an average of 3.71, significantly below the
3.90 estimate of the inner-city subjects who did not view the
question-answer video. Meanwhile, the suhurhan video group
rated the girl's skill level at an average of 4.67, significantly above
the 4.29 estimate of the suhurhan subjects who did not view the
second video. Even though the two groups viewed the identical
question-and-answer video, the additional information further
polarized their assessments of the girl's skill level. Darley and
Gross interpret this result as evidence of confirmatory hias—
subjects were infiuenced by the girl's background in their initial
judgments, but their heliefs were evidently influenced even more
strongly by the effect their initial h3rpotheses had on their
interpretation of further evidence.̂

Our reading of the psychology literature leads us to conclude
that any of three different information-processing prohlems con-
trihute to confirmatory hias. First, researchers widely recognize
that confirmatory bias and overconfidence arise when people must
interpret ambiguous evidence (see, e.g., Keren [1987] and Griffin
and Tversky [1992]). Lord, Ross, and Lepper's [1979] study,
discussed above, clearly illustrates the point. Keren [1988] notes
the lack of confirmatory bias in visual perceptions and concludes
that confirmatory tendency depends on some degree of abstraction
and "discrimination" (i.e., the need for interpretation) not present
in simple visual tasks. A primary mechanism of stereotype-
maintenance is our tendency to interpret amhiguous behavior
according to previous stereotype.^ Similarly, a teacher may inter-
pret an ambiguous answer by a student as either creative or just
plain stupid, according to his earlier impressions of the student.

8. It should be noted that polarization of the form identified by Darley and
Gross [1983] provides more direct evidence of confirmatory bias than does
polarization identified by Lord, Ross, and Lepper [1979] and related papers. As JefiF
Ely pointed out to us, Lord, Ross, and Lepper permit an alternative interpretation:
that some people are predisposed to interpret arnbiguous evidence one way and
some the other. Hence, observing further polarization by groups who already differ
may not reflect confirmatory bias per se, but underlyirig differences in interpreta-
tion of evidence that would appear irrespective of subjects' current beliefs. While
this interpretation also departs from common-priors Bayesian information process-
ing and will often yield similar implications as confirmatory bias, it is conceptually
distinct and would sometimes yield different predictions. By demonstrating
polarization based on differing beliefs induced in two ex ante identical groups of
subjects, Darley and Gross are not subject to this alternative interpretation.

9. A vast literature explores the mechanisms by which people retain ethnic,
gender, and other group stereotypes. See, e.g., Hamilton and Rose [1980];
Bodenhausen and Wyer [1985]; Bodenhausen and Lichtenstein [1987]; Stangor
[1988]; Stangor and Ruble [1989]; and Hamilton, Sherman, and Ruvolo [1990].
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but will be less likely to biasedly interpret more objective feedback
such as answers to multiple-choice questions.

Second, confirmatory hias can arise when people must inter-
pret statistical evidence to assess the correlation between phenom-
ena that are separated by time. Nishett and Ross [1980] argue
that the inability to accurately identify such correlation (e.g.,
between h5^eractivity and sugar intake, or hetween performance
on exams and the time of day the exams are held) is one of the
most robust shortcomings in human reasoning, i" People often
imagine a correlation between events when no such correlation
exists.1^ Jennings, Amadibile, and Ross [1982] argue that illusory
correlation can play an important role in the confirmation of false
hypotheses, finding that people underestimate correlation when
they have no theory of the correlation, hut exaggerate correlation
and see it where it is not when they have a preconceived theory of
it.i2

Third, confirm^atory hias occurs when people selectively col-
lect or scrutinize evidence. One form of "scrutiny-based" confirma-
tory hias is what we shall call hypothesis-based filtering. ̂ ^ While it
is sensible to interpret ambiguous data according to current
hypotheses, people tend to use the consequent "filtered" evidence

10. As Jennings, Amabile, and Ross [1982, p. 212] put it, "even the staunchest
defenders of the layperson's capacities as an intuitive scientist. . . have had little
that was flattering to say about the layperson's handling of bivariate observation."

11. Chapman and Chapman [1967, 1969, 1971] demonstrate that clinicians
and laypeople often perceive entirely illusory correlation among (for instance)
pictures and the personality traits of the people who drew the pictures. Stangor
[1988] and Hamilton and Rose [1980] also discuss the role of illusory correlation in
the context of confirmatory-like phenomena.

12. Similarly, Redelmeier and Tversky [1996] argue illusory correlation may
help explain the persistent belief that arthritis pain is related to the weather.

13. Another mechanism can be defined as "positive test strategy": People tend
to ask questions (of others, of themselves, or of data) that are likely to be true if
their hypothesis is true—without due regard to the fact that they are likely to be
true even if the hypothesis is false. See Einhorn and Hogarth [1978]; Klayman and
Ha [1987]; Beattie and Baron [1988]; Devine, Hirt, and Gehrke [1990]; Hodgins
and Zuckerman [1993]; Friedrich [1993]; and Zuckerman, Knee, Hodgins, and
Miyake [1995]. We are using this term a bit differently than we suspect
psychologists would use it. As far as we know, the term was coined by Klayman and
Ha to point out that much of what was put under the rubric of confirmatory bias
could indeed be a rational form of hypothesis testing. Fischhoff and Beyth-Marom
[1983, pp. 255—256] and Friedrich also point out that if people are fully aware that
asking "soft" questions teaches them little about the truth of hypotheses, then no
bias has occurred. While we feel research on the positive test strategy needs more
careful calibration versus Bayesian updating, we believe that the evidence
suggests that people do not fully appreciate how little they have learned about the
validity of their hypotheses when asking soft questions. (Mehle, Gettys, Manning,
Baca, and Fisher [1981], for instance, show that people with specified hypotheses
for observed data tend to overuse such hypotheses to explain the data because they
do not have "available" the many unspecified hypothesis that could also explain the
data.)
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inappropriately as further evidence for these hypotheses. If a
student gives an unclear answer to an exam question, it is
reasonable for a teacher to be influenced in his evaluation of the
answer hy his prior perceptions of that student's mastery of the
material. However, after assigning differential grades to students
according to differential interpretation of comparahle answers, it
is a mistake to then use differential grades on the exam as further
evidence of the differences in the students' ahilities.^'* This sort of
error is especially likely when the complexity and ambiguity of
evidence requires the use of prior theories when interpreting data
and deciding what data to examine.^^

Finally, one of the main results in our model is conflrmation of
the conjecture common in the psychological literature that confir-
matory bias leads to overconfidence. Avast body of psychological
research, separate from research on confirmatory bias, finds that
people are prone toward overconfidence in their judgments. ̂ ^

14. Lord, Ross, and Lepper [1979, pp. 2106-2107] note a similar distinction in
reflecting on the bias in their experiment discussed above. They note that it is
proper for people to differentially assess probative value of different studies
according to their current beliefs about the merits of the death penalty. The "sin" is
in using their hypothesis-based interpretations of the strength of different studies
as further support for their beliefs.

15. We suspect that hypothesis-based filtering is especially important in
understanding persistence and strengthening of beliefs in tenuous scientific"
theories. Indeed, Jon Elster drew our attention to an illustration by philosopher of
science Karl Popper [1963, pp. 34-35] of confirmatory bias in intellectual pursuits.
Popper observed that followers of Marx, Freud, and Adler found "confirmation"
everywhere, and described the process by which they strengthened their convic-
tion over time in terms remarkably similar to the process as we've described it
based on psychological research:

Once your eyes were thus opened you saw confirming instances every-
where: the world, was full of verifications of the theory. Whatever happened
always confirmed it . . . The most characteristic element in this situation
seemed to me the incessant stream of confirmations . . . As for Adler, I was
much impressed by a personal experience. Once, in 1919,1 reported to him a
case which to me did not seem particularly Adlerian, but which he found no
difficulty in analysing in terms of his theory of inferiority feelings, although
he had not even seen the child. Slightly shocked, I asked him how he could be
so sure. "Because of my thousandfom experience," he replied; whereupon I
could not help saying: "And with this new case, I suppose, your experience
has become thousand-and-one-fold."

What I had in mind was that his previous observations may not have
been much sounder than this new one; that each in its turn had been
interpreted in the light of "previous experience," and at the same time
counted as additional confirmation.

16. See, e.g., Oskamp [1982], Mahajan [1992], and Paese and Kinnaly [1993].
An early paper that makes this point is Fischhoff, Slovic, and Lichtenstein [1977],
who also tested the robustness of overconfidence with monetary stakes rather than
reported judgments. No decrease in overconfidence was found relative to the
no-money-stakes condition. (As Camerer [1995] notes, there exist uery few
conclusions reached by researchers on judgment that have been overturned when
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III. CONFIRMATORY BIAS AND BELIEF FORMATION

Consider two states of the world, x £ {A,B), where A and B are
two exhaustive and mutually exclusive hjrpotheses regarding
some issue. We consider an agent whose prior helief ahout x is
given by prob {x = A) = prob (x = B) = 0.5, so the agent initially
views the two alternative hypotheses as equally likely to he true.
In every period t E (1,2,3, . . .) the agent receives a signal, St E. {a,b],
that is correlated with the true state of the world. Signals received
at different times t are independently and identically distributed,
with proh (sj = a\A) = prob (ŝ  = b\B) = 6, for some 9 G (.5,1).
After receiving each signal, the agent updates his helief about the
relative likelihood of x = A and x = B.

To model confirmatory bias, we suppose that the agent may
misinterpret signals that conflict with his current helief about
which hypothesis is more likely. Suppose that, given the signals
the agent thinks he has observed in the first t - 1 periods, he
believes that state A is more likely than state B. Because of his
confirmatory hias, the agent may misread a conflicting signal S( =
b in the next period, believing instead that he ohserves S( = a.

Formally, in every period t G (1,2,3, . . .) the agent perceives a
signal (Tf G {a,p). When the agent perceives a signal <Tt = a, he
believes that he actually received a signal St = a, and if he
perceives â  = p, he helieves that he actually received a signal S( =
6. He updates his beliefs using Bayes' Rule given his (possibly
erroneous) perceptions of the signals he is receiving. We assume
that with probability q > 0 the agent misreads a signal ŝ  that
conflicts with his helief about which hypothesis is more likely, and
that the agent always correctly interprets signals that conflrm his
belief. If he currently believes that Hypothesis A is more likely,
then for sure he interprets a signal ŝ  = a as a< = a, hut with
probability q he misreads St = b as Uf = a.

This model of confirmatory bias incorporates several unrealis-
tic simplifying assumptions. For instance, we assume that the
severity of the hias summarized by q does not depend on the
strength of the agent's beliefs about which of the two states is
more likely. It would be reasonable to expect that q is greater if the

monetary stakes are added.) There have, however, been criticisms of the evidence
in support of overconfidence. See Bjorkman [1994]; Pfeifer [1994]; Tomassini,
Solomon, Romney, and Krogstad [1982]; Van Lenthe [1993]; and Winman and
Juslin [1993]. We feel, nevertheless, that the evidence makes a strong case for
overconfidence. Indeed, see Soil [1996] for evidence that overconfidence does
extend to ecologically valid domains.
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agent's beliefs are more extreme. We conjecture that our qualita-
tive results would continue to hold if we were to relax this
assumption. Also, we assume that the agent misreads conflicting
evidence as confirming evidence. While we feel that this is often
the case, a reasonahle alternative model would be to assume
instead that the agent merely has a tendency to overlook evidence
that conflicts with his heliefs. This model, too, would yield the
same qualitative results as our model; intuitively, ignoring the
counterhypothesis evidence in a cluster of mixed, but mostly
counterhypothesis evidence, is equivalent to misreading the whole
cluster as h3T)othesis-supportive.

The presence of confirmatory bias means that the agent's
perceived signals o-̂  are neither independently nor identically
distributed. Suppose that, afl«r receiving signals s'~^ = (s i , . . . , St-i)

the agent has perceived a sequence of signals o-'"̂  = (o-i,. . . , cj<_i)
and holds beliefs prob (x = A(o-'~i). Define

e* = proh (ut = a|prob (x = A|CT'-1) > 0.5, x = B)

= prob ((T( = Pi prob (x = S|o-'-^) > 0.5, x = A).

e** = prob (o-̂  = a I prob (x = A|a'-i) > 0.5, x = A)

= prob {cTt = Piproh (x = B\(T^-^) > 0.5, x= B).

e* and e** summarize the distrihution of the agent's per-
ceived signal CT( when the agent helieves that one hypothesis is
more likely than the other; i.e., when prob (x = A(o-'"i) ¥= 0.5. 9* is
the probability that the agent perceives a signal confirming his
belief that one hj^othesis is more likely when in fact the other
hypothesis is true. 9** is the probability that the agent perceives a
signal confirming his belief that a hypothesis is more likely when
in fact it is true. Because with probability q the agent misreads a
signal that confiicts with his beliefs, 9* = (1 - 9) + ^9 and 9** =
9 + g(l - 9). When proh (x = A|o-<-i) = 0.5, i.e., when the agent
helieves that the two possihle hj^otheses are equally likely, the
agent does not suffer from confirmatory hias. In this case, he
correctly perceives the signal that he receives, and he updates
accurately, so 9 = prob (CTJ = a|prob (x = A\a'~^) = 0.5,x = A) =
proh {(It = Piprob (x = B|a'-i) = 0.5,x = B).

If g = 0, then the agent is an unhiased Bayesian statistician;
while if g = 1, the agent's first piece of information completely
determines his final helief, since he always misreads signals that
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conflict with the first signal he receives. More generally, the
higher is q, the more extreme is the confirmatory hias.

Suppose that the agent has perceived «„ a signals and np p
signals, where n^ > n^. Because the agent believes he has received
n^ a signals and /ip b signals, his updated posterior beliefs are
given by

prob (x =

Define

proh ix =
na) . .

'̂  prob {x = B\n^,np)

represents the agent's beliefs in terms of a relative
likelihood ratio. Using Bayes' Rule, A(nc,np) = (9""'~"P)/(1 - 9)"° ""P. If
A(na,np) > 1, the agent believes that A is more likely than B to be
the true state; while if A(na,np) < 1, the agent believes that B is
more likely than A. If A(na,Aip) = 1, the agent believes that the two
states are equally likely. The agent's interpretation of an addi-
tional signal is biased whenever A{na,n^) + 1.

In order to identify the effects of confirmatory bias, it is
helpful to compare the agent's beliefs with the heliefs of a
hypothetical unhiased, Bayesian ohserver who learns how many a
and p signals the agent has perceived, and who knows that the
agent suffers from confirmatory bias. Like the agent, the Bayesian
observer initially believes that proh (x = A) = prob {x = B) = 0.5,
and she has no independent information about whether x = A or
X = B. This h3^othetical observer's beliefs, therefore, reflect the
true probability that x = A and x = B, given the signals that the
agent has perceived.

Define A*(na,n^) as the Bayesian ohserver's likelihood ratio of
A versus B when she knows that an agent who suffers from
confirmation bias has perceived «„ a signals and n^ p signals,
where n^ > n^. In general, when q > 0, the biased agent's
likelihood ratio Ain^,n^) and the unhiased observer's likelihood
ratio A*(na,np) are not equal. If A(7ia,?ip) when n^ > n^, the agent is
overconfident; his belief in favor of the hypothesis that x = A is
stronger than is justified hy the available evidence. Similarly, if
A(?ic,n.p) < A*(na,n^), the agent is underconfident in his helief that
x=A.
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In the formal results that we develop below, we assume that,
while the unbiased observer knows how many a and p signals the
agent has perceived, she does not know the order in which the
agent perceived his signals. But when q > 0, the order of the
agent's perceived signals, if known, would influence a Bayesian
observer's beliefs, since the agent's conflrmatory hias implies that
his perceived signals are not distrihuted independently. Suppose
that the agent has perceived three a signals and two p signals, in
which case his beliefs are A(n.a = 3,rap = 2) = 9/(1 - 9). If the
Bayesian observer knew the order of the agent's signals, her
posterior helief A*(7ia = 3,7ip = 2) could be less than, greater than,
or equal to 9/(1 — 9), depending on the order of the signals. Thus,
from the perspective of an outside observer, the agent could be
overconfident, underconfident, or perfectly calibrated in his heliefs.

Suppose, for example, that the Bayesian ohserver knew that
the agent's sequence of perceived signals was (a,a,a,p,P). In this
case the observer's posterior likelihood ratio is

9(9 + q{l - 9))2(1 - 9)2
A* = (1 - 9)(1 - 9 + qQfQ^

(9 + qil - 9))2(1 - 9)
< :; , Vg G (0,1].

(1 - 9 + qQ)^Q 1 - 9 '

Intuitively, the Bayesian ohserver recognizes the possihility
that the agent may have misread his second and third signals,
perceiving that they supported the hypothesis that x = A when in
fact one or hoth may have supported the hypothesis that x = S.
Therefore, the Bayesian observer is less convinced thatx = A than
the agent, who is overconfident in his belief. More generally, an
observer who knows that a hiased agent has always believed in his
current hypothesis should judge the agent to he overconfident in
his helief, since there is a positive probability that the agent has
misread signals that are counter to his favored hypothesis. An
observer who knows that a teacher has always helieved that Bart
is smarter than Marta should recognize that the teacher's confir-
matory bias may have led him to misread evidence that Marta is
in fact smarter.

Alternatively, suppose that the Bayesian observer knew that
the agent's sequence of perceived signals was (p,p,a,a,a). Now the
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ohserver's posterior likelihood ratio is

(1 - 9)(1 - 9
A* = 9(9 + qil - 9))(1- Qf

( 1 - 9 +

(9 + qil - mi - 9)2 ^ 1 - 9 ' ^^ ^ ^°'"-

In this case, the Bayesian ohserver believes that the agent
may have misread his second signal, perceiving that it supported
the hypothesis that x = B when in fact it may have supported the
hypothesis that x = A. Thus, the Bayesian ohserver helieves that
there is a greater likelihood that x = A than the agent, who is
undercon&dent in his belief. More generally, an observer who
knows that a hiased agent only recently came to believe in his
current hypothesis after long helieving in the opposite hypothesis
should judge the agent to be underconfident in his helief, since the
agent may have misread one or more signals that support his
current hypothesis when he believed the opposite. An observer
who knows that a teacher initially thought that Bart was smarter
than Marta, hut eventually started to believe that it was slightly
more likely that Marta was smarter than Bart, should conjecture
that the teacher is underconfident ahout his new hypothesis.
When the teacher believed that Bart was smarter than Marta, he
may have misinterpreted signals that Marta was smarter. The
fact that the teacher came to helieve that Marta was smarter
despite his initial bias toward helieving that Bart was smarter
indicates that the evidence is very strong that Marta is smarter. ̂ ^

The preceding examples illustrate how information about the
order of the agent's signals would significantly influence an

17. As a discussant for this paper, Roger Lagunoff made an interesting
suggestion that is especially relevant for the examples we are discussing here. In
our model, once the agent interprets a signal, he never goes back and reinterprets
it—even if he later changes his hypothesis about the world. Hence we are not
capturing a form of belief updating we sometimes observe: when somebody (finally)
comes around to change his world-view that he held for quite a while, he
sometimes experiences an epiphany whereby he goes back and reinterprets
previous evidence in light of his new hypothesis, realizing that "the signs were
there all along." This suggests a model in which an agent is biased in interpreting
not just the next signal, but all past signals, as supporting his current hypothesis
about the world. While we suspect there is some truth to this, we don't believe that
people fully retroactively rebias themselves in this way. (We have found no
psychological evidence about this one way or another.) While such an alternative
model would rule out the possibility of "underconfidence" for recent converts, it
would leave all the predictions regarding overconfidence discussed in the remain-
der of the paper qualitatively the same, and magnify the magnitude of our results
(and simplify the proofs).
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outside observer's judgment about whether, and in what direction,
the agent's heliefs were hiased. Nevertheless, for the remainder of
the paper we assume that an outside observer only knows the
number of a and p signals that the agent has received, and not the
order in which he received them. This assumption enahles us to
identify whether, on average, the agent is over- or underconfident.
This appears to he the question that the psychological literature
addresses; presumably, it is also of interest to economists.

Clearly, if q = 0, then A*(7ic,7ip) = Aina,n^). When g > 0,
however. Proposition 1 establishes that A*ina,np) < A(nc,rap). That
is, when the agent perceives that a majority of his signals support
(say) Hypothesis A, he helieves in A with higher prohability than
is warranted.i^

PROPOSITION 1. Suppose that na > n^ and n^ + n^ > 1. Then

Proposition 1 estahlishes that an agent who suffers from
confirmatory hias will he overconfident in his belief about which
state is most likely.

An ohserver who knows the agent's beliefs cannot usually
observe the exact sequence of the agent's perceived signals.
Therefore, the observer's judgment about whether the agent is
under- or overconfident depends on her helief regarding the
likelihood of the different possible sequences of signals. Proposi-
tion 1 establishes that overconfidence is the dominant force. The
intuition for this result is fairly straightforward: if you cannot
directly observe the agent's past heliefs, but you know that he now
believes in Hypothesis A, you should surmise that, on average, he
spent more time in the past believing Hypothesis A than Hy-
pothesis B. Consequently, you should surmise that, on average,
the agent misread more signals while believing in Hjrpothesis
A—contributing to overconfidence—than he misread while heliev-
ing in Hypothesis S—contrihuting to underconfidence. Proposi-
tion 1 hinges to some extent on our assumption that the agent
receives signals that are the same strength in every period. We
helieve that (far more complicated) versions of Proposition 1 hold
in more general models, but we show in Appendix 1 that undercon-
fidence is sometimes possible when the agent's signals are of
different strengths in different periods.

18. All proofs are in Appendix 2. Because our model is entirely symmetric, we
shall for convenience present all results and much of our discussion solely for the
case where A is perceived as more likely.
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Proposition 1 shows that when the agent believes that the
state is X = A with probability fj. > 0.5, the true probability that
the state is x = A is less than ji. Interestingly, the true probability
that A is the true state may be less than 0.5, meaning that B is
more likely than A. The possihility that the agent may suffer not
merely from overconfidence, hut also from "wrongness," arises
when the agent's confirmatory hias is severe and he has perceived
at least two signals in favor of each hypothesis.

To see the intuition for this result, suppose that the agent has
since his first signal Si = a helieved that Hypothesis A is more
likely than B, hut that he nevertheless has perceived two signals
(jt = a, = p at two times t, t' > 1. If the agent's confirmatory hias is
severe (i.e., q ~ 1), only his first perceived signal in favor of A
provides true evidence that x = A. Once the agent helieves that A
is true, his confirmatory bias predisposes him to perceive that
suhsequent signals support this belief, and, therefore, additional
signals in favor of A are not very informative. But, because the
agent's two perceived signals in favor of S conflict with what he
helieves—thatx = A is more likely—they reflect actual signals in
favor ofB. Thus, although the agent has always believed thatx =
A is more likely, he has effectively received only one signal in favor
of A and two signals in favor of B. In this case the agent's belief
that X = A represents extreme overconfidence; if he had correctly
interpreted evidence, he would helieve that x = B is more likely.

It is, of course, possihle that hjrpothesis A is more likely than
the agent realizes if he first perceives a signal Si = b, falsely reads
a's as b's for a while, and only later perceives enough a's to come to
helieve in A. And it is true that getting more true a's than true b's
implies that HjT)othesis A is more likely. Yet, it can he shown that
these possihilities may be far less likely than the cases leading to
extreme overconfidence, so that the net effect that is more likely
that B is true than that A is true if the agent helieves in A with
mixed evidence.

For example, suppose that the agent has perceived seven
signals, four a's and three p's. Given these signals, the agent's
posterior heliefs are Ain^ = 4,rap = 3) = 9/(1 - 9) > 1; the agent
helieves that the state x = A is more likely. Meanwhile, the true
likelihood ratio is A*(nc = 4,np = 3) =

(1 - 9)̂ [89^ + 89^9** + 7929**2 -I- 599**3]

+ (1 - 9)2[939**9* + 4949*] + 29^(1 - 9)9*2

- 9)4 + 8(1 - 9)̂ 9* + 7(1 - 9)̂ 9*^ + 5(1 - 9)9* ]̂

+ 92[(1 - 9)^9**9* + 4(1 - 9)̂ 9**] + 29(1 - 9)''9**2
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Suppose that 9 = .75. Then the agent's posterior likelihood ratio is
A(4,3) = 3. Suppose further that q = .95, and therefore the agent
suffers from severe confirmatory bias. Then, the true likelihood
ratio is A*(4,3) = .63, and therefore x = B is more likely to he the
true state, despite the agent having perceived more a signals than
P signals.

Indeed, it turns out to be the case that when confirmatory
bias is very severe and the signals are very informative, then
whenever you observe the agent believing in Hypothesis A and
having perceived two or more p signals, then you should assume
that it is more likely that B is true than A. We formalize this in
Proposition 2. Let A*ina,n^\q,Q) be the appropriate beliefs as a
function ofq and 9. Then

PROPOSITION 2. Forn^ >/Zp and Tip :< 1, lim^^o A*(na,np|l - e,
1 - e) > 1. For all «„ >n^>2, lim^_o A*in^,n^\l - e,l - e) < 1.

That is, for 9 and q hoth very close to 1, when the agent has
perceived one or fewer p signals and helieves in Hypothesis A, she
is probably correct (though overconfident) in her heliefs; when the
agent has perceived two or more p signals and helieves in
Hypothesis A, she is probably mcorrect in her heliefs—Hypothesis
B is more likely to he true.

We emphasize that the very premise of the proposition means
that the situations to which it applies are uncommon; when hoth q
and 9 are close to 1, the probability of perceiving anjd;hing hesides
a sequence of signals favoring the correct hypothesis is small.
Therefore, Proposition 2 tells us ahout a very low-probability
event. In our example with seven signals, q = .95, and 9 = .75, the
prohability that the signals are sufficiently mixed that the agent is
prohably wrong is a little more than one-half percent.

While we do not know more generally the highest prohability
with which the agent can be wrong, some calibrations illustrate
that it can be relatively likely that the agent ends up with beliefs
that a Bayesian observer would deem probably wrong. Tables
I-IV display, for various values of n, 9, and q, the probability that
A* < Ti and A > 1 or A* > l/j\ and A < 1, where r\ represents
different thresholds for how wrong the agent is. Table entries are
in percentage terms (rounded to the nearest percent), with rows
corresponding to different values of q and columns to different
values of 9. (Dashes indicate an entry exac% equal to zero.)^^

For instance, with 9 = .6 and q = .5, the probability that the

19. The entries in Tables I-IV reflect direct calculations (performed by
computer) of the probabilities in question.
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TABLE I
PROBABILITY OF "WRONGNESS," n = 50, r\ = 1

q

.1

.2

.3

.4

.5

.6

.7

.8

.9

0.6

12

21

29

27

33

27

33

21

0.7

2

9

15

18

22

21

24

17

e

0.7

0

1

5

10

12

15

15

12

0.9

—

0

1

3

5

7

8

9

TABLE II
PROBABILITY OF "WRONGNESS," re = 50, T) =

0.6 0.7 0.7 0.9

.1

.2

.3

.4

.5

.6

.7

.8

.9

—

10

15

19

16

18

11

4

—

5

13

18

18

21

16

8

—

1

5

9

12

13

15

12

TABLE III
PROBABILITY OF "WRONGNESS," re = 50, -n =

0.6 0.7 0.7 0.9

.2 -

.3 -

.4 -

.5 3

.6 3

.7 2

.8 1

.9 0

5

12

14

11

6

4

—

7

11

12

12

7

1

4

6

7

6
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TABLE IV
PROBABILITY OF "WRONGNESS," n = 7, T) = 1

9

.1

.2

.3

.4

.5

.6

.7

.8

.9

0.6

—
—

—
3

10
3

0.7

—
—

5
3
8
2

9

0.7

—
—
—
3
2
6
2

0.9

—
—
2
1
5
3
1

agent has beliefs after 50 signals that the observer would deem
probably wrong is about 27 percent. The probability in this same
case that his beliefs will lead the observer to believe in the other
hypothesis with at least probability % is 19 percent, and the
probability that the observer would believe in the hypothesis
opposite to the agent's with at least 9/10 probability is about 3

In the example above and in Proposition 2, the agent can be
wrong in her beliefs. Even more surprising, perhaps, the true
probability that A is the correct hypothesis need not be monotoni-
cally increasing in the proportion of a signals the agent perceives.
Continue to assume that the agent has received seven signals, but
now suppose that five supports: = A and two supports: = B. Then,
because 6 = .75, the agent's posterior likelihood ratio is A(5,2) =
27 > A(4,3). Meanwhile, the true likelihood ratio is

A*(n« = 5,np = 2)

9(1 - e)e*'* + 4(i - Q)^d*'^] + e(i - 6)39*29**'

20. Readers may note that these probahilities generally increase in q and
then decrease, with probability about 0 for g = 0 and q = 1. But they are not
single-peaked in q. This is because there are two factors at work in determining the
influence ofq on the probability. As q increases, the probability that the agent will
end up with close-to-even mixes of a and p signals decreases continuously. But
because an increase in q increases the likelihood that any given combination of a's
and p's involves the agent being probabilistically wrong, there will be at certain
points discrete jumps upward in the likelihood of'wrongness for some values ofq.
The result is an extremely poorly behaved function.
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Maintaining the assumption that q = .95, A*(5,2) = .62 <
A*(4,3) = .63. Therefore, the relative likelihood that the true state
is jc = A versus x = Bis smaller ifthe agent perceives that five out
of seven signals support x = A than if he perceives that only four
out of seven signals support x = A.

While seemingly counterintuitive, this result refiects the fact
that the agent is more likely to have perceived (truly informative)
signals o} = p that confiict with a belief that x = A when he has
perceived only two signals in favor of B than when he has
perceived three signals in favor of S. Intuitively, the agent is more
likely to have believed for many periods that x = A in the former
case than in the latter case. Put differently, the agent is less likely
to have perceived (truly informative) signals CTJ = a that confiict
with a belief that:): = B when he has perceived only two signals in
favor of B than when he has perceived three signals in favor of JB.

The preceding examples illustrate that an agent who suffers
from confirmatory bias may believe that one of the two possible
states is more likely than the other when in fact the reverse is
true. Nevertheless, Proposition 3 shows that a Bayesian observer
who knows only that a biased agent believes tbat ac = A is more
likely than x = B will herself believe that a: = A is more likely.
Therefore, an agent who suffers from confirmatory bias will "on
average" correctly judge which of the two possible states is more
likely, tbough, as Proposition 1 establishes, he will always be
overconfident in his belief

Define A*in) as the likelihood ratio of a Bayesian observer
who knows that a confirmatory agent has perceived a total of n
signals, and knows that n^ > n^, but does not know the exact
values of n^ and n^. That is, the observer knows only that the
agent believes A is more likely than B, but observes notbing about
the strength of his beliefs. Then

PROPOSITION 3. For all n, A*(n) > 1.

In light of the above examples where the agent may be wrong,
the simple generality of Proposition 3 may seem surprising. It is
reconciled with the examples by observing that the agent suffers
from "wrongness" only when his confirmatory bias is very severe,
meaning that q is close to 1, and yet he has perceived mixed
signals about which state is more likely. But the agent is unlikely
to receive mixed signals when his confirmatory bias is strong,
because eacb signal cr( will tend to mirror CTI.
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IV. BELIEFS AFTER AN INFINITE NUMBER OF SIGNALS

A fully Bayesian agent—for whom q = 0—will after an
infinite number of signals come to believe with near certainty in
the correct hypothesis. We now investigate the implications of
confirmatory bias in the limit as an agent receives an infinite
number of signals.

We begin with definitions and a lemma that will help to
analyze this question. Suppose that the agent has thus far
received m = n^ - nf^ > 0 more perceived signals in support of
Hypothesis A than in support of Hypothesis B. Suppose further
that, as long as «„ > n^, prob (CT, = a) = 7. Note that 7 = 8* if S is
true, and 7 = 6** if A is true. We wish to consider some
preliminary results that hold in either case. We define pim,y) as
the probability that there exists some time in the future when the
agent will have received an equal number of a and p signals. (At
that time the agent's posterior belief is the same as his prior belief,
prob (x = A) = 0.5.) We have the following lemma, which is a
restatement of a well-known result from Feller [1968, pp. 344-
347).

LEMMA 1. For all m > 0,7 > 0.5,p{m,y) = [(1 - 7)77]'". For 7 < 0.5,
pim,y) = 1.

We define Pw as the probability that the agent, beginning
with the prior belief prob (x = A) = 0.5, comes to believe with
certainty in the wrong hypothesis after receiving an infinite
number of signals.̂ ^ That is, Pw is the probability that, although
the true state is :« = A, the agent instead comes to believe
irreversibly, with near certainty, that x = B. Proposition 4
characterizes Pw as a function ofq and 0.

PROPOSITION 4. If g > 1 - 1/(29), then

(1 - 6) • (1 - (1 - e*)/e*)

^^ (1 - (1 - 6) • ((1 - e*)/e*) - e((i - e**)/e**)) ^ ^'

If g < 1 - 1/(29), thenPw. = 0.

When <7 > 1 - 1/(29), Q* = (1 - Q) + qQ > 0.5. When 9* > 0.5,
then once the agent comes to believe that the wrong hypothesis
about X is more likely, he is consequently more likely to receive a

21. Formally,Pw = prob(VA > 0 and Vc > 0, 3 n* such that prob (re» - na>k
for all n>n*)>l - e).
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TABLE V

PROBABILITY OF BELIEVING IN WRONG HYPOTHESIS AFTER OBSERVING AN INFINITE

NUMBER OF SIGNALS

q

.25

.333

.5

.75

9 = .6

18
26
34
38

9 = .667

12
24
31

9 = .75

13
22

9 = .9

2
8

signal (Jt that confirms this incorrect belief than he is to receive a
signal that conflicts with this incorrect belief. This guarantees
that there is a positive probability that the agent will never
overturn his incorrect hypothesis, and in fact come to believe more
and more strongly in that wrong hypothesis. Conversely, iiq < 1 —
1/(29), then 9* < .5, which guarantees that the agent will, every
time he comes to believe the wrong hypothesis is more likely,
eventually come to abandon that belief. This in turn implies that
the agent will repeatedly come to believe the correct hypothesis is
more likely; and since 9** = 9 + q-d - 9) > 9 > .5, he will
eventually come to believe in it with near certainty.

The proposition shows that, despite receiving an infinite
number of signals, the agent may become certain that the
incorrect hypothesis is in fact true.̂ ^ This occurs when the agent's
confirmatory bias is sufficiently severe. To illustrate the magni-
tude oiPw, Table V displays Pw for various values of 9 and q. Table
entries are in percentage terms (rounded to the nearest percent),
with rows corresponding to different values of q and columns to
different values of 6. (Dashes indicate an entry exactly equal to
zero.)

For example, suppose thatq = 0.5 and 9 = .75. ThenP(y = %2,
meaning that approximately 13 percent of the time the agent will
eventually come to believe with certainty in the wrong hypothesis.
As the quality of the agent's true signal worsens he is more likely
to believe with certainty in the wrong hj^jothesis. Indeed, a
corollary to Proposition 4 is that, fixing any g > 0, lime-1/2 Pw - V^-

We now investigate the related question of when the agent
will maintain an incorrect initial belief. To do so, we relax our

22. It is straightforward to show that the agent hecomes certain that the
correct hypothesis ahout the state of the world is true with complementary
prohahility. Therefore, after an infinite numher of signals the agent will believe
that one of the hypotheses is certainly true.
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assumption that the agent initially believes that each state x is
equally likely and suppose instead that the agent initially believes
that the wrong hypothesis is more likely to be true. For example, if
X = B is the true state of the world, then the agent initially
believes prob (x = A) = /j. > 0.5. Crucially, we assume that this
belief arose from signals that are independent of the new signals
that the agent receives, which are distributed as outlined above.

Given the assumption that the signals are independently
distributed and ignoring integer problems, these prior beliefs can
be interpreted as if the agent has already received D more signals
supporting the incorrect hypothesis, where

This formula implicitly defines a function Difi). The agent
must receive Difi) more confiicting signals CT( than confirming
signals in order to reach a posterior belief that the two possible
states of the world, A and B, are equally likely.

We define Pwiu) as the probability that the agent, beginning
with the prior belief yu > 0.5 that the wrong hypothesis about the
state of the world is true, comes to believe with certainty in the
wrong hypothesis after receiving an infinite number of signals.^s

PROPOSITION 5. Choose any e > 0 and any ji > 0.5. Then
(i) For all 9 G (0.5,1), there exists q>0 such that PWijj.) >

1 - e .
(ii) For all q>0, there exists 9 > 0.5 such that PWi/j.) > 1 - e.

Proposition 5 says that an agent who begins with an arbi-
trarily small bias in the direction of the incorrect hypothesis will
almost surely maintain his belief in this hypothesis when either of
two conditions is satisfied. First, and not very surprisingly, this
will occur when the agent is subject to severe confirmatory bias.
When q is very close to 1, then the agent almost never receives
signals that confiict with his initial belief, and therefore it is not
surprising that this belief is rarely overturned. Second, and
somewhat more surprisingly, the agent almost surely maintains
his incorrect belief provided that his true signals are very weak,
meaning that 9 is very close to 0.5. This result does not depend on
the level of confirmatory bias, so long as q- > 0. This result means
that if the agent receives only very weak feedback from his
environment and is subject to any confirmatory bias, he almost

23.
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never overcomes any initial beliefs that are significantly incorrect,
and in fact comes to believe that the incorrect hypothesis is
certainly true. While one should not overinterpret the second
result in Proposition 5—we can question whether agents really
pay attention to such weak feedback—the conclusion is neverthe-
less very striking. Propositions 4 and 5 show that an infinite
sequence of signals will not necessarily lead people to overcome
erroneous beliefs; rather, people may simply become more and
more confident in those erroneous beliefs.

Table VI displays Pwif^) for various values of 9, q, and ;w. If 9
and fi are chosen in such a way that D{fi) is an integer, and q> 1 —
1/29, it follows from Lemma 1 that

1

Jl

1 - 9*

9*
+ Pw(0.5)

1 - 9*

Table entries are in percentage terms (rounded to the nearest
percent), with rows corresponding to different values of q and
columns to different values of 9 and the prior belief ji. (Dashes
indicate an entry exactly equal to zero.)

For example, suppose that 9 = .551 and jj, = .6. In this case
Diji) = 2, meaning that the agent must receive two more signals
that confiict with rather than confirm his prior belief in order to
believe that the states A and B are equally likely. But if g = .333,
there is nearly an 80 percent chance that the agent will never
overturn his incorrect prior belief. Clearly, learning does not
necessarily lead the agent to correctly identify the true state.

V. CONFIRMATORY BIAS IN A PRINCIPAL-AGENT MODEL

Confirmatory bias is likely to infiuence economic behavior in
many different arenas. In this section we develop a simple

TABLE VI
PROBABILITY OF MAINTAINING AN INCORRECT PRIOR BELIEF AFTER RECEIVING AN

INFINITE NUMBER OF SIGNALS

9

.25

.33

.5

.75

Q = .6,11= .6,
Difi) = 1

32
51
72

89

9 = .551, ;i = .6,
D(fi) = 2

67
79
92

99

9 = .75,/i = .75,
D(fi) = 1

—

48
82

9 = .634, fi = .75,
D{fi) = 2

24
56
85

98
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illustrative model of a principal-agent relationship, a context
where we think confirmatory hias is likely to he important. The
premise of the model is that an agent may take inappropriate
actions not solely hecause of intentional misbehavior—moral
hazard—hut also hecause of unintentional errors arising from
confirmatory hias. Specifically, hecause an agent who suffers from
confirmatory hias will he overconfident in his judgment about how
likely various actions are to pay off, he may he prone to taking
actions that are riskier and more "extreme" than is optimal for the
principal. Such overconfidence seems to refiect the intuition
among some researchers: at a conference one of the authors
attended, a leading economist conjectured that had investment
decisions hy husinesses in Eastern Europe receiving hank loans
were more often the result of overconfidence hy horrowers than of
intentions to mislead hanks. Even more directly along the lines of
our model. Wood [1989] asserts that money managers hecome
more confident in their investment decisions as they gather more
information—even when the quality of their investment decisions
is not improved.

A principal who is aware of an agent's confirmatory hias will
wish to design incentives that hoth cause the agent to internalize
the negative consequences of had choices and prevent decisions
hased on good-faith overconfidence. In particular, incentives that
lead the agent to collect a lot of information may not he optimal if
the agent suffers from severe confirmatory hias and, hence,
hecomes more overconfident as he collects more information. The
principal may therefore wish to mute the agent's incentives
relative to what would he optimal in the ahsence of confirmatory
hias.

While an exhaustive analysis of the effect of confirmatory hias
on agency relationships is heyond the scope of this paper, we now
develop a simple illustrative model along these lines. Suppose
that a principal hires an agent to allocate initial wealth W = 1
hetween the different investments in the set / = [IAJBJC]- The
investment/c is risk-free; it always sdelds a gross return r{Ic) = 1.
Investments 7̂  and IB, on the other hand, are risky; their returns
depend on the state of natures G \A,B]. Conditional on the state x,
the gross returns from IA and IB are r(7 |̂A) = K/glB) = R E (1,2)
and ril^lB) = K/BI-A) = 0. Let u(-) he the principal's Von Neumann-
Morgenstern utility function for money. Because the principal
may he risk-averse, we assume that u' > 0 and u" < 0. Consistent
with the model that we developed in the previous sections, the
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principal and the agent cannot ohserve the state x, and they hold a
common prior helief that Tproh{x=A) = prob(a; = E) = 0.5.
Hence, if the agent learns nothing more ahout the true state, the
optimal investment is in the riskless investment Ic', if he learns
sufficiently more—generating heliefs sufficiently different from
.5—he will perceive it as optimal to invest some money in one of
the two risky investments.^*

Before choosing how to invest the principal's wealth, the
agent has the opportunity to ohserve informative signals ahout
the true state, although the agent's confirmatory hias may lead
him to misinterpret these signals. We assume that the signals
that the agent receives, and the way he perceives these signals,
accord with the model in the previous sections.

For hoth analytic ease and to highlight the role of confirma-
tory hias, we ahstract away from the usual moral-hazard con-
cerns: we assume that the agent costlessly ohserves signals ahout
the state x and expends no effort when making decisions on the
principal's hehalf. Under this assumption, an arbitrarily small
incentive to identify the true state would lead the agent to ohserve
an infinite numher of signals, after which he would believe that he
could identify the true state with near certainty. Furthermore, to
ahstract away from issues of optimal risk-sharing hetween the
agent and the principal, we assume that the agent is (nearly)
infinitely risk-averse. Therefore, the principal must offer the
agent a nearly constant wage.̂ ^ Under these assumptions, the

24. While the language and notation suggest that we are referring to
well-defined investment portfolios (e.g., three different honds), we mean for the
model to apply as well to internal organizational incentives to pursue ambiguously
defined projects. Indeed, this alternative interpretation may better fit the formal
model in some respects. Note that it is crucial to our analysis that the agent cannot
or does not merely rejport his beliefs to the principal, but rather implements a
strategy himself based on his beliefs. If the principal knew the agent's beliefs and
the extent of his confirmatory bias, she could form her own beliefs about the true
state of the world and then directly choose the action that would maximize her
expected payoff.

25. These assumptions raise a subtle point. If the agent anticipated gathering
an infinite number of signals, he would be willing to accept a contract that yielded
a payoff that depended on the outcome of a risky investment, even if he were
infinitely risk-averse. This is because the agent would anticipate being able to
identify the true state with virtual certainty. But, if the hj^jothesis of the first part
of Proposition 4 is satisfied, the agent will be overconfident in his judgment after
observing an infinite number of signals. Therefore, such a contract would impose
more risk on the agent—and yield a lower expected utility—than he anticipated.
We assume here that the principal cannot exploit the agent's confirmatory bias by
convincing him to sign a contract that yields an expected payoff that is less than
the agent's reservation payoff. This assumption means that the principal cannot
use the agent as a "money pump," and its empirical validity deserves investigation.
The issue of whether to focus analysis on "efficiency contracts" rather than
"money-pumping contracts" is a more general one that is likely to arise in
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incentives that the principal offers to the agent affect the princi-
pal's payoff only through their effect on the investment decision
that the agent makes. The principal does not need to compensate
the agent for gathering information, and she cannot transfer risk
to the agent.

These assumptions permit us to focus on two polar cases. In
the first case, the principal gives the agent no incentive to collect
information, and the agent allocates the principal's wealth with
no information beyond his prior helief. In the second case, the
principal gives the agent an arhitrarily small incentive to collect
information, and the agent allocates the principal's wealth after
ohserving an infinite numher of signals and coming to helieve with
virtual certainty that he has identified the true state.

Suppose first that the principal offers the agent no incentive
to gather information. Because R < 2 and the principal's prior
helief is proh (x = A) = 0.5, it is optimal for the principal to direct
the agent to invest all of the principal's wealth in the risk-free
asset Ic- Now suppose that the principal offers the agent a small
incentive to identify the true state. For instance, suppose that the
principal offers to pay the agent an arhitrarily small fraction of
the principal's gross return. Because it is free for the agent to
collect information, he would ohserve an infinite number of
signals and come to believe that he could identify the true state
with certainty. These extreme heliefs would lead the agent to
allocate all of the principal's wealth to one of the risky assets. If,
for example, the agent thought that A was surely the true state, he
would allocate all of the principal's wealth to asset/^.^^

If 9 < 1 - 1/(29) (i.e., if confirmatory hias is sufficiently weak).
Proposition 4 estahlishes that the agent will eventually identify
the true state with near certainty if he collects enough signals.
Hence, under our assumption that it is costless for the agent to
gather information and that in every state of the world one or the
other of the "risky" investments is optimal, it would then he
optimal for the principal to offer a contract that would lead the
agent to collect an infinite numher of signals, and the principal
would receive a payoff M(i?) > u(l).

If 9 > 1 - 1/(26), on the other hand. Proposition 4 estahlishes

developing formal models of incentives for boundedly rational agents. See, for
instance, O'Donoghue and Rabin [1997], who study incentive design for agents
who irrationally procrastinate, and who discuss various rationales for focusing on
efficiency contracts.

26. We assume that short-selling is impossible, so the agent could not allocate
more than $1 to asset a by, for instance, selling investment Ic short.
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that the agent's (completely confident) belief about the true state
is wrong with positive probability. It can be shown that he
correctly identifies the true state with probability

e[2(e + 9(1 - e)) - i](i - e + ^e)

^ ^^'^^ q[l - 2(1 - 9)6(1 - e)]

Since the agent is fully confident that he has identified the true
state, he invests all of the principal's wealth in the risky asset he
believes is most profitable, so the principal's payoflfis fj,*iB,q)u{R) +
(1 - fi*(d,q))u{0). Note that ji*{Q,q) is increasing in 6 and decreas-
ing in q, meaning that the agent identifies the true state with
higher probability when he receives more informative signals and
lower probability when his confirmatory bias is more severe.

The principal does not want the agent to become "informed"
when u(l) > fi*iQ,q)u{R) + (1 - ^*(Q,q))u{O). Define fi as satisfy-
ing u(l) = jiuiR) + (1 - f£)u{0); if the agent correctly identifies the
true state with probability /i after observing an infinite number of
signals, the principal is just willing for the agent to become
informed about the state x. Because fi*{Q,q) s 9, the principal
always offers the agent an incentive to become informed if 9 s ^.
That is, if the principal prefers all her money invested in a risky
investment based on just one signal to having all her money
invested in the risk-free investment, she will provide incentives to
the agent. When 9 < ^, on the other hand, we have Proposition 6.

PROPOSITION 6. Suppose that Q</£.

(i) There exists g* G (1 - 1/26,1] such that the principal
does not offer the agent an incentive to become informed
about the state x if and only if 9 > q*.

(ii) For any q e [0,1], there exists 6* e (0.5,^] such that the
principal does not offer the agent an incentive to become
informed about the state x if and only if 6 ̂  6*.

When Q < fJ; the principal does not want the agent to observe
signals about the state x either if confirmatory bias is very severe
or if the agent receives very weak signals. In either case, there is a
strong possibility that an "informed" agent would erroneously
identify the true state, although the agent himself would overcon-
fidently believe that he could identify the true state with near
certainty. If the agent's overconfidence is sufficiently severe, the
principal prefers not to offer the agent any incentive to become
informed, in which case the agent will invest the principal's
wealth in the riskless asset.
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The principal's degree of risk aversion also influences whether
or not he wants the agent to observe signals about the state x.
While Proposition 6 shows that there are conditions where even a
risk-neutral principal eschews incentives for the agent, the princi-
pal is more bothered by the overconfidence when she is more
risk-averse, in the usual sense defined by Pratt [1964]. Indeed,
whenever confirmatory bias is severe enough that the agent might
be wrong even afber gathering an infinite number of signals, a
principal who is sufficiently risk-averse will prefer not to offer her
agent any incentive to become informed. We formalize this idea in
Proposition 7.

PROPOSITION 7. Suppose that 9 G (0.5,1), q- e (1 - 1/29,1], and u(-)
is a Von Neumann-Morgenstem utility function u(-) satisfy-
ing M' >0, u"<0.

(i) Suppose that u(l) < ^*iQ,q)uiR) + (1 - ^*(
Then there exists a function (̂O such that^?' > 0,^' < 0,
and^(u(l)) > fj.*iQ,q)giuiR)) + (1 - fi*iQ,q))g{u{0)).

(ii) Suppose that u(l) > fi*(e,qMR) + (1 - jj,*iQ,q))u{0).
Then for any function g{-) such that g' > 0, g" < 0,
giuil)) > fi*(Q,q)g{u(R)) + (1 - ^*iQ,q))g{uiO)).

(iii) In both (i) and (ii), u(-) = g(ui-)) is a Von Neumann-
Morgenstem utility function that represents preferences
that are globally more risk-averse than those repre-
sented by u(-).

Suppose that Marta, whose preferences are represented by
u(), wishes to give her agent the incentive to become informed
about X. The proposition establishes that there exist preferences
that are globally more risk-averse than Marta's under which a
principal would prefer not to give her agent the incentive to
become informed. Furthermore, if Msirta does not wish to give her
agent an incentive to become informed about the state x, then any
principal who is globally more risk-averse than Marta would also
choose not to offer incentives to an identically biased agent facing
the same investment decision.

The preceding analysis reflects an assumption that a biased
agent who feels he is fully informed will invest all of the principal's
wealth in a single risky asset. The agent will pursue such a
strategy if, for example, the principal oflers the agent a fixed share
of the principal's gross investment return. Our analysis assumes,
of course, that the principal cannot directly contract on decisions.



68 QUARTERLY JOURNAL OF ECONOMICS

only on returns. But it also implicitly assumes that the principal
cannot punish the agent for having too high an expected return. If
she could, then she might wish for the agent to gather some
information—and then provide incentives such that the (overcon-
fident) agent will be afraid of making too much money for the
principal.^'' There might he a variety of reasons, of course, why
such contracts are infeasihle or undesirable. If, for example, the
principal is uncertain about either the true value of R or the
extent of the agent's confirmatory bias q, she may not have enough
information to propose a contract that always leads the agent to
invest optimally.

Nevertheless, even in the presence of uncertainty the princi-
pal would generally be better off if she could restrain the agent's
ability to take an extreme action. If feasible to restrain the agent,
the principal could propose a contract that stipulates that the
agent cannot invest more than a fraction of her wealth in any
single asset. Even more simply, the principal could simply give the
agent only a portion of her wealth to invest. All of these strategies
serve the same purpose, namely preventing an overconfident
agent from investing too much of the principal's money in a single
asset while still taking advantage of the information that the
agent actually does possess.

VI. DISCUSSION AND CONCLUSION

We believe that confirmatory bias is important in many social
and economic situations, and that variants of the formulation
developed in this paper can be usefully applied in formal economic
models. For instance, confirmatory bias is likely to matter when a

27. From the principal's point of view, the optimal proportional allocation to a
risky investment, a*, maximizes the objective function V(a) = )j.*{d,q)
u(l + {R - l)a) + (1 - ^*(6,q')) • (1 - a). The optimal allocation a* then satisfies
the following necessary and sufficient condition:

a 0, a* = 1

fi*{Q,q)u'a + (fl - l)a*)(i? - 1) - (1 - n*iO,q))u'a - a*) = 0, a* G [0,1]

SO, a* = 0.

The principal would like to propose a contract specifying that the agent
receives an arbitrarily small reward when the principal's gross return is 1 +
{R - l)a*, no payofif when the principal's gross return is 1 - a*, and a large penalty
for any other gross return. Such a contract would punish the agent if he chooses an
allocation that is more extreme than the principal desires.
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decision-maker must aggregate information from many sources.
In a setting where several individuals (nonstrategically) transmit
their beliefs to a principal, how should she combine these reports
to form her own beliefs? If the principal thought that the agents
were Bayesians, then she would be very sensitive to the strength
of the agents' beliefs. Suppose, for instance, that the principal
knows that all agents receive signals of strength 6 = .6. Then if
two agents report believing Hypothesis A with probability .6 and
one agent reports believing Hypothesis B with probability .77
(meaning he has gotten three more b signals than a signals), the
principal should believe in Hypothesis B with probability .6.

What if the principal were aware that agents were subject to
confirmatory bias? If confirmatory bias is so severe that only an
agent's first signal is very informative, then the principal may
wish to discount the strength of agents' beliefs and basically
aggregate according to a "majority rules" criterion. In the example
above, for instance, the principal should perhaps think Hypothe-
sis A is more likely, because two of three agents believe in it. We
think this intuition has merit, but it is complicated by the fact that
agents who believe relatively weakly in a hypothesis may be more
likely to be wrong than right. So, if the principal thought
confirmatory bias were severe and were very sure that all agents
had received lots of information, then in our example she should
believe that all three agents have provided evidence in favor of
Hypothesis B. Hence, she should believe more in Hypothesis B
than she would if the agents were Bayesian.

We suspect nonetheless that the "majority-rules intuition" is
more valid, especially when considering realistic uncertainty by
the principal about how many signals each agent has received. If
she were highly uncertain about how much information each
agent received, she would assume weak beliefs merely reflected
that an agent got few signals. Similarly, if the principal thinks
susceptibility to confirmatory bias is heterogeneous, she might
infer that an agent's weak beliefs indicate merely that he is not
susceptible to overconfidence, and count weak beliefs as much as
strong beliefs. Indeed, she may then count them more heavily,
since confirmation-free agents are not only less likely to be
overconfident, they are also less likely to be wrong.

This intuition that, when aggregating information from a
group, it may be wise to count the number of people with given
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beliefs rather than the strength of their convictions suggests a
related prescription for organizational design: relative to what
she would do with Bayesian agents, a principal may prefer to hire
more agents to collect a given amount of information. That is,
while the lower value of information processing by confirmatory
agents may mean that either more or fewer should be hired than if
they were Bayesian, fixing the total amount of information
processing a principal wants done, with confirmatory agents she
should prefer more people thinking than if they were fully
rational agents.

Imagine, for instance, that a principal allocated 1000 "sig-
nals" among different agents, whose reports she would aggregate
to form her own beliefs. There are various costs that might
influence how many agents to have, or (equivalently) how many
signals to allocate per agent, e.g., the fijced cost of hiring new
agents and decreasing returns from each individual due to fatigue
or the increasing opportunity cost of time. But the optimal
number of confirmatory agents is likely to be greater than the
optimal number of Bayesian agents. Intuitively, the value of
allocating a signal to a confirmatory agent is less than the value of
allocating it to a Bayesian agent, unless the confirmatory agent is
unbiased by previous signals. For example, if the principal hires
1000 confirmatory agents, each to report his observation of a
single signal, then she receives all of the information contained in
the signals. If the principal instead hires one confirmatory agent
to report his beliefs after interpreting 1000 signals, she may get
far less information. Both signal allocations would yield the same
amount of information if the agents were Bayesian.

We suspect that a similar issue plays out less abstractly in
different aspects of the legal system. While other explanations are
probably more important, confirmatory bias may help to explain
some features of the American jury system, such as the bias
toward more rather than fewer jurors and the use of a majority-
rules criterion with no mechanism (other than jury deliberations)
to extract the strength of all participants' convictions. Confirma-
tory bias may also help to justify the use of multiple judges to
reach a decision when using a single judge seems to be more
cost-effective. Appeals, for example, are usually heard by a panel
of judges that does not include the trial judge, and some legal
scholars (e.g., Resnik [1982]) argue that the judge who adjudicates
at trial should not also supervise settlement bargaining and
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pretrial discovery, which is the process by which litigants request
information from each other. These observers fear that the trial
judge might learn things during pretrial activities that would
"bias" her during the trial. The notion that the quality of the
judge's decisions during the trial suffers if she has more informa-
tion relevant to the case is somewhat puzzling; worries that she
can be "biased" by more information certainly flies in the face of
the Bayesian model. While there are various types of bias that one
could imagine (e.g., that the judge will use her rulings during the
trial to punish perceived misbehavior during the discovery pro-
cess), the evidence on confirmatory bias raises the possibility that
the judge will form preconceptions during the discovery phase of
litigation that will cause her to misread additional evidence
presented at trial.

Finally, the discovery process itself nicely illustrates how the
polarization associated with confirmatory bias may have impor-
tant implications. Discovery takes place when potential litigants
think that a trial is relatively likely, and hence wish to engage in
the costly effort of preparing for that trial. Nonetheless, litigants
often settle their case out of court during or after the discovery
process. Discovery encourages this settlement by promoting the
exchange of information between the litigants and, hence, helping
to align their perceptions of the likely outcome at trial. But while
the evidence garnered during the discovery process sometimes
does lead to settlement before trial, confirmatory bias suggests
that the discovery process may be less efficient at achieving such
settlement than would be hoped: if a piece of evidence is ambigu-
ous, it may move the parties' beliefs farther apart. Each litigant
will interpret the evidence through the prism of his or her own
beliefs, and each may conclude that the evidence supports his or
her case. More generally, efforts to reduce disagreements by
providing evidence to the parties involved in a conflict may not be
as easy to achieve as one would hope.

Much of our discussion above implicitly makes an assumption
about judgment whose psychological validity has not (to our
knowledge) been determined by research: that somebody design-
ing an institution is aware of the bias of others. We suspect that
usefully incorporating confirmatory bias into economic analysis
will depend upon the extent to which people believe that others
suffer from confirmatory bias. It could be that people are well
aware of biases in others'judgment, or that people are unaware of
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the general tendency toward confirmatory bias.^^ Investors who
hire a money manager might or might not believe that the money
manager suffers from a confirmatory bias (and is therefore prone
toward overconfidence). A principal hiring an employee to msike
decisions might or might not know that the employee will be prone
to making such errors. By the logic of economic models that
involve multiple agents, these distinctions are likely to matter:
Just as assuming that rationality is common knowledge is often
very different than merely assuming that people are rational,
assuming that agents are aware of others' irrationality may be
very different than merely assuming that people are irrational.

How might economic implications depend on people's aware-
ness of others' confirmatory bias? One possibility is that people
might exploit the bias of others. A principal may, for instance,
design an incentive contract for an agent that yields the agent
lower wages on average than the agent anticipates, because the
agent will be overconfident about her judgm^ents in ways that may
lead her to exaggerate her yield from a contract. Conversely,
others may wish to mitigate bias rather than exploit it. A principal
may be more concerned with overcoming costly bias of an agent
than with exploiting it, and design contracts that avoid errors.

APPENDIX 1: DIFFERENTIAL-STRENGTH SIGNALS AND

UNDERCONFIDENCE

If the agent receives signals of different strengths in different
periods, it is possible that the agent will be underconfident in his
belief about which of the two states is most likely. Suppose, for
example, that the agent receives three signals s< G {a,b\, t G ll,2,3).
Suppose that the first two signals are distributed according to
prob {St = a\A) = prob (s< = b\B) = % > 0.5, t G (l,2l, but that the
agent's third signal is distributed according to prob (S3 = a\A) =
prob (S3 = b\B) = 63/[63 + (1 - 6)^]. That is, the agent's third
signal is three times as strong as first- or second-period signals. As
before, with probability q > 0 the agent misreads signals that
conflict with his belief about which state is more likely. (This

28. Unfortunately, while this issue may turn out to be central to economic
applications of confirmatory bias (and to applications of other psychological
biases), we have not found psychological research that convincingly resolves this
issue. There is a small literature in "construal" that concerns third-party aware-
ness of biases. See, e.g., Ross [1987], and tangentially Paese and Kinnaly [1993].
We have not found investigation of this issue in the context of confirmatory bias or
overconfidence.



FIRST IMPRESSIONS MATTER 73

means that the probability of misreading is independent of the
strength of the signal.)

Suppose that the agent perceives that his first two signals
support Hypothesis B, while his third signal supports Hypothesis
A. Formally, the agent perceives (CTI = P,a2 = P,CT3 = a). Given
these perceived signals, the agent's posterior likelihood ratio is
A(si = b,S2 = b,S3 = a) = 6/(1 - 6) > 1. Now, suppose that a
Bayesian observer knows both that the agent's posterior likeli-
hood ratio is A = 6/(1 - 6) and that the agent suffers from
confirmatory bias. Given the distributions of the signals, the
observer is able to infer that the agent has perceived (aj = (3,
CT2 = 3,CT3 = a). Then, the observer's belief regarding the relative
likelihood that the state is x = A versus x = Bis given by

- 6

(0,1].

6(6 + 9(1 - 6))(1 - 9)(1 - 6)3

(1 - 6 + 96)6^ 6

(6 + 9(1 - 6))(1 - 6)2 1 - 6 '

Therefore, given what she infers about the agent's sequence of
perceived signals, a Bayesian observer believes that the biased
agent is underconfident in his belief that the true state is A.

This underconfidence result arises here because the observer
infers the exact sequence of the agent's perceived signals from his
likelihood ratio. In this light, the results here are the same as the
path-dependent underconfidence example in the text—if the
agent is known to have only recently come to believe in a
hypothesis, then he will be underconfident. In our main model, in
which the agent receives signals of equal strength, an observer
who knows the agent's beliefs cannot infer the exact sequence of
the agent's perceived signals.

While there may be some domains in which this differential-
signal model is applicable, constructing examples of underconfi-
dence seem to require clever contrivance. It is first of all clear that
the "overconfidence" result will be stronger than the underconfi-
dence result in one sense: in the model of this paper, the
overconfidence result holds for all final beliefs by the agent. Any
underconfidence example will clearly hold for only some final
beliefs—because it will always be the case that a confirmatory
agent is overconfident when all his perceived signals favor one
hypothesis.
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We suspect, moreover, that more complicated and weaker
versions of Proposition 1 will hold in more general models. The
underconfidence result seems to rely on the agent having received
a small number of signals, where certain final beliefs can only be
generated by a unique path of updating. Consequently, it is very
likely that a "limit overconfidence" result would hold—once an
agent is likely to have received large numbers of signals of all
strengths, we can assure that A* < A when A > 1.

APPENDIX 2: PROOFS

Proof of Proposition 1. We first notice that

prob (n^,np|A) = X Prob (i,i|A)c(n^ - np,n^ + "p - 2t)
i = 0

• e[e +

and

prob in^,np\B) = ^ prob ii,i
i = 0

• (1 - e)[(i - 0)

where dn^ — n^,na + rap - 2i) is the number of ways to choose
«„ - /ip more a signals than b signals in n^ + n^ - 2i draws
without ever having chosen an equal number of a and b signals,
and prob ii,i\x) is the probability of observing i perceived a and i
perceived b signals in 2i draws when the true state is JC G \A,B\.
Given the symmetric distribution of the signals, prob(i,j|A) =
proh a,i\B).^^ Therefore, prob (raa,rep|A) and prob (raa,np|5) differ

29. Formally,

i-J m!ui|i-7-t-l,0)|

2 2prob ii,i \A) = prob (t,i |B) = 2 2 2
j-O k=0 i=0

The coefficient djki is the number of ways to choose j signals in favor of the correct
hypothesis when the agent believes the two hypotheses are equally likely, k biased
signals favoring the correct hypothesis, i—j — k-l signals in favor of the incorrect
hypothesis when the agent believes the two hypotheses are equally likely, I biased
signals in favor of the incorrect hypothesis, j + k unbiased signals opposing a
belief in favor of the correct hypothesis, and i — j — k unbiased signals opposing a
belief in favor of the incorrect hypothesis.
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only by the effect of the signals that the agent perceives after the
last time that he believes the two hypotheses are equally likely.

Using Bayes' Rule,

.1)

- 9X1 -

l̂o prob (i,i

- 0)

[(1 - 6) + ge]"«-i-'[(l -

Because [6 + g(l - e)]/[(l - 6) + gO] < 6/(1 - 6), Vg E (0,1],
it follows that

(1.2) [e + < [(l - e)

with a strict inequality for i = 0 since the h3T)otheses imply that
n^ > 2. Factoring and multiplying (1.2) by (1 - e)(l - q')"p-' and
rearranging, we have

(1.3) e[9 + qil -

- e)

Vi, with a strict inequality for at least i = 0 since n^ > 2. Using
(1.1), (1.3), and prob ii,i\A) = prob ii,i\B),

flo prob (i,i|A)c(n« - rtp,n« + Wp -

• [(1 - 6) + 9e]"°-i-'(i

- 6)

- 6)

[(1 - 9) +

Proof of Proposition 2. Clearly lime-o A*(raa,O|l - e,l - e) =
ra« > 0 and lim^-o h*in,,,l\l - €,1 - e) = (n«

It can be shown that, if the agent's current beliefs are that

A and B are equally likely, and A is true,
then the probability that the next signal is a « 1 is p = e
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A and B are equally likely, and B is true,
then the probability that the next signal is a = e is (3 = 1

A is probably true, and A is true,
then the probability that the next signal is a = 1 is P = ê

A is probably true, and B is true,
then the probability that the next signal is a «= 1 is 3 = e

B is probably true, and A is true,
then the probability that the next signal is a = e is p = 1

B is probably true, and B is true,
then the probability that the next signal is a = ê  is p = 1.

From these numbers we can calculate that, if «.„ > np,

• Suppose that A is the true state. Consider all paths a* such
that (1) CT 1 = P and (2) there is always a strict majority of p
signals until 2np - 1 signals, after which all signals are a.
Then the probability of any particular path CT* is about €"P+I.

All other paths each occur with probability on the order of
6"i3+2 or greater when np > 2.

• Suppose that B is the true state. Consider all paths a** such
that (1) CT 1* = a and (2) there is always a strict majority of a
signals. The probability of any particular path CT** is about
e"P+i. All other paths each occur with probability on the
order of e"P+2 or greater when n^ s 2.

To show that A*(/ia,np| 1 - e,l - e) < 1 with rap s 2, therefore,
we need only to show that the number of paths of type CT** is
strictly greater than the number of paths of type CT*. This is easy to
verify. For every particular path of type CT*, there exists a path of
type CT** that is the mirror image of that path for the first 2rap - 1
signals (replacing each a with a p and each p with an a), and
whose last ra^ - rap + 1 signals consist of ra^ - rap - 1 a's followed by
2 p's. In addition, there will exist at least one more path of t3^e
CT**; for instance, ra^ a's followed by rap P's.

QED

Proof of Proposition 3. The proof is by induction. Define A(ra)
as the agent's relative likelihood ratio after observing ra signals.
Suppose that A(l) > 1. Then a Bayesian observer infers that the
agent observed a single true "a" signal, and A*(l) = 9/(1 — 9) > 1.
Now suppose that A(ra), A*(ra), and A(ra + 1) > 1. We must show
that A*(ra + 1) > 1. First, suppose that ra is an even number.
Because A(ra) > 1, after period ra the agent has perceived at least
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two more "a" signals than "b" signals. Therefore, knowing only
that A(ra) > 1, a Bayesian observer's relative likelihood ratio,
A*in) = prob ix = A)/prob ix = B), is given by

(3.1) A*(ra) =

in - 2j,n -

9[e + qil - e)]"-i--'-'(l - q)J

in - 2j,n - 2i)il - 9)

[(1 - 9) + q^T'^-J-Kl - qV''^-'

wherep(t,i|x) and c( ,) are defined as in the proof of Proposition 1.
Define p^in) as the probability of perceiving a (strict) majority of
"a" signals in ra draws given the state x G jA^l- Then A*(ra + 1) is
given by

//(ra) +p(ra/2,ra/2|A)9
(3.2) A*(ra + 1) = '

p«(ra)+p(ra/2,ra/2|B)(l - 9) '

Becausep(ra/2,ra/2|A) =p(ra/2, ra/2|B) and 9 > 0.5, A*(ra + 1) >
1 follows immediately from the hypothesis that A*(ra) > 1, which
implies thatp^(ra) > pHn).

Now suppose that ra is an odd number. Because by h5^othe-
sis A(ra) > 1, after period ra the agent has perceived more "a" than
"6" signals. Therefore, knowing only that A(7z) > 1, a Bayes-
ian observer's relative likelihood ratio, A*(ra) = prob ix = A)/prob •
ix = B), is given by

f (ra - 2j,n -

(3 3) A*(u) " ^̂ ^ ^ '̂ ^̂  ~ ^^^"'''"'^^ ~ ^̂
^ll'^^Ui

• [(1 - 9)

Meanwhile, A*(n + 1) is given by

//(ra) - Xj"ô *'̂ p

• 9[9 + qil - 9)]«"-"'2'-'[(l - q)

(3.4) A*(ra + 1) = —

(1 - 9)[(1 - 9) +

[(1 -
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Because A*(n) > 1 implies that p^{n) > p^{n), in order to
establish K*{n + 1) > 1 it is sufficient to show that

(3.5) 2 pii,i\A)c{l,n - 2i)e[e
(=0

(1 -

)/2

1 - 6)
i=0

Using the fact that p{i,i,\A) = p{i,i\B) and canceling like
terms, the inequality in (3.5) is satisfied if

[e + qii

< [1 - e -f qQfn-iV2)-lQ((n-lV2)-i V t G (O, . . . , ( « - l ) / 2 l .

But this inequality is always satisfied because (6 + ^(1 — 6))/
((1 - e) + qO) < e/(l - e)Vg e (0,l]. Therefore, A*(n -I- 1) > 1.

QED

Proof of Proposition 4. The first hypothesis implies that 9* >
0.5, and therefore, using Lemma 1, Pw satisfies

Pw = (1 - e) • [(1 - p(i,e*)) + p(i,e*) • p ^

+ 0

or

(1 - 6) • (1 - ((1 - e*)/e*))
Pw =

(1 - (1 - 9) • ((1 - 9*)/9*) - 9((1 - 9**)/9**)) •

Pw>0 because 9** > 0.5 for all q>0.
The second hjT)othesis implies that 6* s 0.5, and therefore,

using Lemma 1, Pw satisfies

Pw = (1 - 9) • Pw + 9 • [p(l,9**) • Pwl

Pw = O becausep(l,9**) < 1.

QED

Proof of Proposition 5. Ignoring integer problems, and since
q > 1 - 1/(29) for the cases we consider below, the definition of



FIRST IMPRESSIONS MATTER 79

Dijj.) and Lemma 1 imply that

\ [1 - 9*FW

) [ 1 PwiO.5) > 0.

(i) Note that lim^_i 9* = 1 for all ifj.,Q). Therefore, for q
sufficiently close to 1, PwijJ-) can be made arbitrarily close to 1.

(ii) Note that limo_o.5 9* > 0.5 and lime_o.5 DijJ-) = °° for all
if.i,q). Therefore, for 9 sufficiently close to 0.5, PwifJ') can be made
arbitrarily close to 1.

QED

Proof of Proposition 6. (i) Fix 9 G (0.5,^ ]. The result follows
directly from the fact that the principal's payoff from having the
agent observe signals, 11(9,9) = fi*iQ,q)uiWR) + (1 - ;z*(9,g))u(0),
is continuously monotone decreasing in q, with 11(9,1 - 1/29) >
uiW) and n(9,l) < uiW). (ii) Fix 9 G (0,1]. The result follows
directly from the fact that 11(9,9) is continuously monotone
increasing in 9, with 11(0.5,9) ^ uW) and Uiu,q) > uiW).

QED

Proof of Proposition 7. The proof is by construction. In order
to establish the result, it is sufficient to show that there exists a
function ^() such that

giuiWR) - giuiW)) ^ 1 - fi*iQ,q)

giuiW)) - giuiO)) ~ n*iQ,q) •

Define the function ^(0 as

x;!c < uiW)

uiW) + eix - uiW)),x > uiW).

Clearly,^'>0,^'<0, and

giuiWR) - giuiW)) _ eiuiWR) - uiW)) 1 - ^*iQ, q)

giuiW)) - giuiO)) uiW)-uiO) ~ fi*iQ,q)

for € sufficiently small. Parts (ii) and (iii) follow directly from
concavity of^() and Theorem 1 in Pratt [1964].

QED

UNIVERSITY OF CALIFORNIA, BERKELEY

EMORY UNIVERSITY
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