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FIRST LAYER FORMULAS FOR CHARACTERS OF SL(n, C) 

JOHN R. STEMBRIDGE 

ABSTRACT. Some problems concerning the decomposition of certain characters of 
SL( n, C) are studied from a combinatorial point of view. The specific characters 
considered include those of the exterior and symmetric algebras of the adjoint 
representation and the Euler characteristic of Hanlon's so-called "Macdonald com-
plex." A general recursion is given for computing the irreducible decomposition of 
these characters. The recursion is explicitly solved for the first layer representations, 
which are the irreducible representations corresponding to partitions of n. In the 
case of the exterior algebra, this settles a conjecture of Gupta and Hanlon. A further 
application of the recursion is used to give a family of formal Laurent series 
identities that generalize the (equal parameter) q-Dyson Theorem. 

1. Introduction. The goal of this paper is to explore some of the combinatorial 
structure which is present in the characters of some particular representations of 
SL(n, C) that have been the subject of much recent interest among both combina-
torists and algebraists [5,7, 12, 15]. This structure is found in the decomposition of 
representations of SL(n, C) which are built out of the exterior and symmetric 
algebras of the adjoint representation. For convenience, we modify the usual sense 
of the adjoint representation in that we actually study the action of SLn on the Lie 
algebra gin' rather than sin' 

For the exterior algebra, we consider the irreducible decomposition of the char-
acters of the exterior powers A,k(gln); for the symmetric algebra, we consider the 
irreducible decomposition of the characters of the symmetric powers Symk(gln)' We 
also consider the decomposition of the Euler characteristic of P. Hanlon's so-called 
"Macdonald complex." This is equivalent to decomposing the character of the kth 
tensor power Tk(l\(gln» when the sub modules 

A a, ( gIn) ® ... ® A ak ( gl n) 
have been given special weightings. Each of these problems can be regarded as 
special cases of the problem of computing the decomposition of the formal character 

n n 1 - qkXiX;l 
tPn ( Z , q) = k 1 1 

l~i,j~n k;;.1 1 - zq - XiXJ~ 
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320 J. R. STEMBRIDGE 

into irreducible characters, where Z and q are indeterminates. Macdonald's affine 
analogue of the Weyl denominator formula [11] for the root system A n - l may also 
be regarded as a special case (namely, Z = 0) of this decomposition problem. 

We give a recursion that can be used to compute the decomposition of cf>n(z, q) 
into irreducible characters. In the case z = 0, the recursion specializes to one which 
is essentially equivalent to one used by D. Stanton [17] to prove Macdonald's affine 
formula; we give an explicit solution in this case which is more combinatorial than 
those previously known. In the general case, we give an explicit solution of this 
recursion for the coefficients corresponding to "first layer representations." This 
explicit formula settles a conjecture of Gupta and Hanlon [6] about the decomposi-
tion of the exterior powers J\k(gln). 

It is known that the q-Dyson Theorem for equal parameters, which amounts to a 
formula for the constant term (with respect to Xl"'" xn) in the formal Laurent 
series 

can be used to give a formula for the coefficient of the trivial character in the 
expansion of cf>n(z, q). We show that the first layer formula for cf>n(z, q) can be used 
to express coefficients of monomials in this series of the form xl' ... x~n with all 
(Xi?> -1 in terms of symmetric functions that are related to the Hall-Littlewood 
symmetric functions. In the case in which all of the exponents with (Xi = -1 occur 
consecutively, we give an explicit evaluation of this expression, thus giving a 
generalization of the q-Dyson Theorem in the case of equal parameters. 

2. Definitions and background. Throughout this article, we will adhere to the 
conventions of [13, 14]; the reader may refer to them for any of the notation and 
terminology which we do not explicitly define. 

Let A denote the ring of symmetric functions over Z in the variables Xl' X2, ... , 
and let Ak denote the symmetric functions that are homogeneous of degree k. Let 
An denote the ring of symmetric polynomials over Z in the variables Xl"'" x n. 
Consider the quotient ~n defined by 

~n = An/{Xl ... Xn - 1). 
Recall that if V is a (complex, finite-dimensional) SLn-module, then the character 
char V may be regarded as a member of ~n; the indeterminates Xi are identified as 
the eigenvalues of the linear transformations in SLn • 

It is well known that the Schur functions s,\(xl , ... , x n), where A ranges over the 
partitions of length at most n, are the irreducible characters of the polynomial 
representations of GL(n, C). If A is restricted to partitions of length less than n, one 
obtains the irreducible characters of the continuous representations of SL(n, C) (see 
[14, 18]). To be precise, one should regard the image of s,\(xl , ... , xn) in ~n as a 
character of SLn, and not the polynomial itself. Hence, if V is an SLn-module (on 
which the action of SLn is continuous), there are unique nonnegative integers c,\ 
such that 

char V = L c,\s,\{xl,···,xn) modulo Xl ... Xn = 1, 
,\ 
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where A ranges over the partitions of length less than n. Throughout this paper, all 
formal Laurent series in Xl"'" xn should be viewed modulo Xl ... xn = 1, unless 
stated otherwise. The integer cA is the multiplicity of VA' the irreducible SLn-module 
corresponding to A, in the SLn-module V. 

One useful technique for computing the coefficients cA is equivalent to the 
extraction of coefficients from formal power series. If ex E zn, let a,,(x) = 

a,,(xI, ... , xn) denote the monomial alternating function; namely, 

a,,(x) = L Eww{xfl ... x~n), 
WESn 

where Ew denotes the sign of the permutation w. It is well known (see [13, I.3] or [18, 
§4]) that if f E Qn and A is a partition of length less than n, then the coefficient of 
the Schur function sA(xI"", xn) in the decomposition of f is given by 
[x A+ 8]a8(x)f(x), where 8 is the partition (n - 1, n - 2, ... ,1,0) and the notation 
[x"]F(x) refers to the coefficient of X" in the formal Laurent series F (which in this 
case is viewed modulo Xl ... Xn = 1). 

It is easy to see that if X E SLn has eigenvalues Xl' ... , Xn' then the adjoint action 
of X on the Lie algebra gin = gl (n, C) has eigenvalues XiX; I (1 ~ i, j ~ n). There-
fore, the character of the exterior power A\gln) is the coefficient of qk in the 
generating function 

(1) n (l+qXiX;I). 
1 :s;;,i,j:s;;,n 

If we define polynomials En[t\](q) for each partition A of length less than n via 

n (1 + qxixj- l ) = LEn[A](q)SA(XI,· .. ,xJ, 
1 :s;;,i,j:s;;,n A 

it follows that the coefficient of q k in En [A]( q) is the multiplicity of VA in A k( gl n)' 
Similarly, the character of the symmetric power Symk(gln) is the coefficient of qk 

in the generating function 

(2) n 1 
l:s;;,i,j:s;;,n 

and if we define formal power series sn[A](q) for each partition A of length less 
than n via 

it follows that the coefficient of qk in sn[A](q) is the multiplicity of VA in 
Symk(gln)· 

We will also consider a family of virtual characters of SLn which are the Euler 
characteristics of certain complexes of SLn-modules. In order to describe these 
complexes, we need to introduce a family of graded Lie algebras. An N-graded Lie 
algebra L is a Lie algebra with a vector space decomposition L = Lo EB LI EB L2 
EB ••• for which [LiL) ~ L i+j . If A ELi' then A is said to be homogeneous of 
degree i and we write deg(A) = i. 
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322 J. R. STEMBRIDGE 

Fix an integer k ~ 1. Consider the N-graded Lie algebra L = Lo E9 LI E9 L2 
E9 .•• , where 

if! ~ i ~ k, 
otherwise, 

and the bracket [ , ] is defined in such a way that if A E L;, BE Li' and i + j ~ k, 
then [A, B] = AB - BA E L;+j' the usual commutator on gIn. 

The grading of L induces a grading on A(L): if AI' ... ' Ar E L are homogeneous, 
then Al 1\ ... I\Ar is homogeneous of degree Ideg(AJ. Let N(LL denote the 
homogeneous submodule of I\r(L) of degree s. Using the obvious SLn-module 
isomorphism between A(L) and Tk(A(gln» it follows that 

(4) Ar(L). == U A a1(gln) ® ... ® A ak(gln) 

as SLn-modules. 
The Macdonald complex of gIn is the Koszul complex Mk(gln) defined by 

Ar+I( ) a,+l Ar( ) a, Ar - I ( ) ... ~ L~ L~ L~ 

where 

;<J 

We have used the notation A; to denote deletion of the term A;. Since a is 
degree-preserving, this is actually a graded complex. This complex is a structure 
devised by P. Hanlon [20], in the more general context of an arbitrary semisimple 
Lie algebra, to aid in the study of Macdonald's root system conjectures [12]. 

Let Xs(Mk(gln» denote the Euler characteristic of the degree s component of this 
complex of SLn-modules, where the character is used as an Euler-Poincare map (as 
in the language of [9, Chapter 4, §3]). We have 

Xs(Mk(gln)) = L(-l)'charA r(L).. 

Since the character of 

is given by 

[ya] fl (1 + YIX;X;I) ... (1 + YkX;Xj- I ) , 
l~i,j~n 

the decomposition (4) yields simple generating functions for the virtual characters 
Xs(Mk(gln»: 
(5) L qSXs{Mk(gln)) 

= L (_1)La'qL;a'[y a] fl (1 +Y1X;x;l) ... (l + YkX;X;l) 
a E Nk 1 ~ i, j :;;;;. n 

fl (1 - qx;X;l) ... (1 - qkx;X;l). 
l~i,j~n 
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As before, if we define formal power series M t[.\]( q) so that 

n (1- qx;X;l) ... (1- qkx;X;l) = LMk'['\](q)s>,(xl, ... ,xn), 
l~i,j~n A 

it follows that the coefficient of qS in Mt[.\](q) can be interpreted as the coefficient 
of s>,(xl, ... , xn) in X,(Mk(gln)) 

Notice that each of the generating functions (1), (2), and (5) is homogeneous of 
degree ° with respect to Xl"'" x n• Hence, the only Schur functions that actually 
occur in their decompositions correspond to partitions of integers divisible by n; if .\ 
is a partition of In with length less than n, we say that .\ belongs to the lth layer. If 
we use dominant weight vectors (rather than partitions) to index the irreducible 
characters that appear in their decompositions, the only such vectors which occur 
will be integral. 

R. K. Gupta [5] has studied the decomposition of (2) into Schur functions in the 
limit as n tends to infinity. A certain amount of delicacy is required to do this, since 
it is not clear how to pass to a limit in the first place. If a and f3 are partitions of the 
same weight, let [a, f3] n denote the dominant weight vector for SLn defined by 

[a, f3]n = (al ,···, anO, ... ,0, -f3s"'" -f3l)' 
Gupta has shown that the limit 

Safl(q) = lim sn[a,f3]n(q) 
n---> 00 

exists as a formal power series, and she conjectured that the Sap's satisfy a number 
of remarkable properties. 

In view of Gupta's results, Stanley [IS] was led to consider the more general 
problem of computing the formal power series c~(Y) = C~(Yl' Y2"") defined by 

(6) n n 1 -1 = L c~(Y )s>,{xl ,· .. , xJ 
l';;;;,j,;;;n r;;,l 1 - Yrx;Xj >, 

in the limit as n tends to infinity. It should be mentioned that Stanley also 
introduced an additional set of indeterminates Z = (Zl' Z2"") and showed that the 
decomposition of 

into Schur functions can be obtained from the decomposition of (6) without any 
extra work. As Gupta did for the symmetric algebra, Stanley showed that the limit 

cafl{y) = lim c[a,flln(Y) 
n---> 00 

exists as a formal power series and gave an explicit formula for the cap's in terms of 
the internal product of Schur functions. 

The work of Gupta and Stanley led P. Hanlon [7] to study the limiting-case 
decompositions of the Sk-isotypic components of the tensor algebra for all of the 
classical Lie algebras (types An' En' en, and Dn). His methods, which are completely 
different from those of Stanley, rely on a mixture of combinatorial ideas and tools 
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324 J. R. STEMBRIDGE 

from the representation theory of semisimple Lie algebras. Hanlon was able to show 
that for each classical type (A, B, C, D), one may pass to a limit in a carefully 
chosen way and obtain a stable decomposition analogous to Stanley's for the 
exterior and symmetric algebras and the Macdonald complex of these Lie algebras. 

For any nonnegative integer k and indeterminates Z and q, let 

(Z;q)k= TI (l- q iz ). 
O.;;i<k 

By convention, (z; q)o = 1 and 

In the following sections we will study the character decompositions of the exterior 
and symmetric algebras and the Euler characteristic of the Macdonald complex of 
gin' without passing to the limit as n ~ 00. Our point of attack will be through the 
decomposition of 

CPn ( z , q) = TI 
l~i,j~n 

into Schur functions. Thus, let us define formal power series Cn[A](Z, q) for each 
partition A of length less than n so that 

(7) CPn(Z, q) = L Cn[A](Z, q )SA(X1"", Xn) 
A 

is a formal power series identity in the ring Z[[z, q]] ® Qn-
Notice that as special cases, 
• The decompositions of the exterior powers (1) are obtained via the specialization 

Z ~ q 2, q ~ -q; we have 

• The decompositions of the symmetric powers (2) are obtained via the specializa-
tion q ~ 0; we have 

sn[A](Z) = cn[A](Z,O). 

• The decomposition of the Euler characteristic of the Macdonald complex (5) is 
obtained via the specialization Z ~ qk+l; we have 

At first glance, the problem of determining Cn[A] seems harder than determining 
Mk[A], but these problems should actually be considered equivalent. If one can find 
a formula for Mk[A](q) for all integers k :;:. 1, then a formula for Cn[A](Z, q) can be 
obtained by replacing every occurrence of qk in this formula by z/q. This observa-
tion can be made rigorous by the following: 

LEMMA 2.1. Let F(z, q) be a formal power series in the indeterminates z, q. If 
F(qk,q) = 0 for infinitely many nonnegative integers k, then F(z, q) = O. 
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PROOF. Assume toward a contradiction that F(z,q) =1= 0 but F(qk,q) = 0 for 
arbitrarily large k. Certainly F has an expansion 

(8) 
for suitable formal power series F,.( q). We may assume that Fo =1= 0 by rescaling the 
counterexample F by a suitable power of z. Suppose that qr is the smallest power of 
q for which [qr]Fo(q) =1= O. Choose k > r so that F(qk, q) = O. By (8), 

[qr]F(qk,q) = [qr]Fo(q) + [qr]qkFi(q) +[qr]q2kF2(q) + ... = [qr]Fo(q), 

which contradicts the choice of r. 0 

3. The q-Dyson Theorem. For any nonnegative integer m, let 

The q-Dyson Theorem is the following constant term identity, originally conjectured 
by Andrews [1]. 

THEOREM 3.1 (ZEILBERGER AND BRESSOUD [19]). Let a i , ... , an be nonnegative 
integers. We have 

It is well known that this identity proves Macdonald's root system conjecture [12] 
for the root system An-i' Using the techniques in [12], it is not hard to show that the 
q-Dyson Theorem can also be used to evaluate the series en [ 0]( z, q), where 0 
denotes the void partition (which corresponds to the dominant weight vector 0). It is 
also possible to evaluate the series C n [0](z, q) directly from an identity due to 
Bressoud and Goulden [2], which is similar in flavor to the original q-Dyson 
Theorem. 

THEOREM 3.2 (BRESSOUD AND GOULDEN [2, THEOREM 2.2]). Let a i , ... , an be 
nonnegative integers. We have 

[XO] fl (XjXii;qL(qXiXii;qL_i 
1 ~i<j~n J I 

= [a i + ... +an]!q. fl 1 - qa, 

[a]' ... [a]' 1· 1 - qan + ... +a, . 
1 "q n"q ~l~n 

The resulting formula for C n [ 0] is the following. 

COROLLARY 3.3. We have 

PROOF. Consider the special case z = qk. In this situation, definition (7) becomes 

[k - I]!;' TI (qxix/; q L-i = L cn[;\]( q\ q) . s>.(xi ,· .. , xn)' 
i#) >. 
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If the series C n [ 0] is expressed in terms of coefficient extraction, it follows that 

C n[0](qk,q) = [x 8]a8{x) ·[k - I]!;. n(qxix;l; q)k-l 
i*j 

If we apply Theorem 3.2 in the case a l = ... = an = k, we find 

[nk]' (1 _ qk)n 
en[0](q\q) = [k - I]!~' --Tn. , 

Therefore, the formal power series 

en [ 0 ]( z , q) and 

[k] . q [ n ] . qk 

{q;q)oo 1 
(qzn; q)oo . [n ]!z 

agree for infinitely many of the special cases z = qk. Apply Lemma 2.1. D 
We remark that the resulting identities obtained by specializing Corollary 3.3 to 

the exterior and symmetric algebras of gin are well known and classical. Further-
more, as we remarked earlier, the resulting identity for the Macdonald complex of 
gl n; namely, 

[n{k + I)]! 
Mk'[0](q) = , q, 

[n].qk+l 

is equivalent to Macdonald's root system conjecture for An-I' 
In §7 we will use the theory of symmetric functions to show that formulas for the 

polynomials C n [;\] can be used to extract coefficients of the form 

[x"] n (XjX;I;q)k(qx;x;l;q)k' 
l~i<j~n 

for certain monomials x", thus generalizing the equal parameter version of the 
q-Dyson Theorem. Although Theorem 3.2 is needed to evaluate these coefficients, it 
is used only indirectly through Corollary 3.3; the identities we give are not special 
cases of the identities in [2]. 

4. Macdonald's identity for An-I' Ordinary root systems are finite subsets of a 
finite-dimensional real Euclidean space satisfying certain axioms. Macdonald [11] 
generalized this notion to certain (infinite) collections of affine-linear functionals on 
a real Euclidean space, and called them affine root systems. In addition to classify-
ing these root systems, Macdonald proved a generalization of Weyl's denominator 
formula for affine root systems. 

For the root systems of type A, the Weyl donominator formula is equivalent to the 
Vandermonde determinant identity. Macdonald's identites for the affine root sys-
tems of type A are essentially equivalent to a decomposition of the symmetric formal 
Laurent series 
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into Schur functions S;l,(X 1, ••• , xn)' By our definition of the series Cn[A], we see that 
Macdonald's identities yield formulas for Cn[A](O, q). 

In the following, we will give not only a precise statement of these formulas for 
Cn[A](O, q), but also a proof. We emphasize, however, that the proof we give is 
modeled on the technique developed by D. Stanton in [17], where he gives short, 
elementary proofs of Macdonald's identities. Our purpose in giving the proof is 
twofold. The statement of the formulas we give is not readily identifiable as the form 
of the identities given by Macdonald [11, (8.1)] or Stanton [17, (5.2)]; some sort of 
justification is warranted. Secondly, the proof technique will motivate the methods 
used in subsequence sections in our study of the full series Cn[A](Z, q). Hanlon has 
shown that the form of the identities we give may also be derived from the theory in 
[3]. 

In order to state the formulas in a reasonable fashion, we introduce some 
notation. If a E zn, let lal = La i ; if a is a partition, let I(a) denote the length of a; 
i.e., the number of nonzero terms. Let A be a partition with IAI divisible by nand 
I(A) < n. As we remarked earlier, these are the only partitions for which it is 
possible for Cn[A] to be nonzero. Let v = (VI"'" vn) denote the increasing se-
quence of integers defined by 

We shall refer to V as the vertical sequence of A. This terminology is derived from 
the following geometric interpretation. View the diagram of A as a lattice path from 
southwest to northeast, and number the horizontal and vertical steps consecutively 
from ° to n + Al - 1. The vertical steps are labeled VI" •• , vn• An example in which 
n = 8 and A = 764322 is given in Figure 1. Notice that the terms of the vertical 
sequence are merely the terms of A + 8 taken in reverse order. Also notice that the 
initial term of the vertical sequence is always zero. 

THEOREM 4.1. Let A be a partition with I(A) < nand IAI divisible by n. 
(a) We have Cn[A](O, q) = ° unless the vertical sequence of A, taken modulo n, is a 

permutation of Zj(n). 
r-,-,-,-,-,-,-
f--+-+-+-+-+-
f--+-+-+-+=-:::.....J-.=-.J 
f--+-+-
f- - + -

5 
f- - +-

2 I 3 4 

1 

o 

14 

FIGUREl. v = (0,1,4,5,7,9,12,14). 
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(b) If the vertical sequence v does form a permutation of Z/(n), associate to v the 
sequence a E zn, where ai = l v/n j ifv) = i-I modn. 

We have 

where 

1j(a) = L I J, (ao 
- a.) 

l~i<j~n 2 

and IOu denotes the sign of vas a permutation of Z/(n). 

When v does form a permutation of Z/( n), we shall refer to the sequence a 
defined above as the associated sequence for X. 

EXAMPLE 4.2. (a) In Figure 1, we have n = 8 and X = 764322. Taken modulo 8, 
the vertical sequence is (0,1,4,5,7,1,4,6), which is evidently not a permutation of 
Z/(8). We conclude that 

C 8 [764322](0, q) = 0. 

(b) Consider n = 8 and let X denote the partition corresponding to the dominant 
weight [775, 8632ls. Taken modulo 8, the vertical sequence of X is (0, 3, 7, 1,4,2,5,6), 
which is a permutation of Z/(8). The associated sequence for X given by a = 
(0,1,2,0,1,2,2,0). We conclude that 

C 8 [775, 8632)g(0,q) = q27(q; q)oo-

PROOF OF THEOREM 4.1. Let X be a partition in the Ith layer with I(X) < n, and 
a E zn the dominant weight vector corresponding to X. Let the symmetric group Sn 
act on zn in the natural way: 

WO(Yl""'Yn ) = (Yw-l(1),···,Yw-1(n))· 

Also, let e1, ... , en be the standard basis of zn, and let In = Lei' 
Our proof will be preceded by three technical lemmas: 

LEMMA 4.3. If Cn[a](O,q) -=1= 0, then the terms in the sequence a + 8 - I" + nen 
are distinct. When these terms are distinct, then there is a unique permutation w E Sn 
and dominant weight f3 E Z 11 such that 

a + 8 - I" + ne n = W 0 (f3 + 8). 

Moreover, 

PROOF. Let 

Fn(x 1,···,xJ=a8 (x) n (qXiX;\qL,. 
l~i,j~n 

Recall that by the definition of Cn[X], we have 

n (qXiX;l;qL,= LCn[X](O,q)·S>.(X1,···,xn)· 
1 <;;i,J<;;n >. 
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It follows that 

(9) 
The key to this lemma is to find a functional equation satisfied by Fn; this is the 

idea that we have borrowed most explicitly from Stanton, Observe that 

Fn( Xl' ... , Xn- l , qXn) 
Fn-l(X I ,···, Xn- l ) 

TI (Xi - qXJ .(q2xnx ;1; q)OO '(XiX~\ q)OO 
l~i<n 

= (Xl'" Xn- l ) TI (1 - XiX~l) ·(qxnx;l; q)oo ·(qXiX~I; q)oo 
l~i<n 

Therefore, 

Fn(Xl"'" x n- l , qXn) = (-lr-\x I ... xJx~n . Fn(Xl"'" xJ. 
Extracting the coefficient of x,,+8 and comparing with (9), we find 

(10) q"nCn[a](O, q) = (_lr- l [x"H-ln+nen] Fn(Xl"'" xJ. 

Note that Fn(xl, ... , xn) is an alternating series. Therefore, any coefficient we 
care to extract, say xY, will vanish unless the terms in yare distinct. When the terms 
are distinct, then there is a unique permutation w E Sn and dominant weight 13 E zn 
so that y = w 0(13 + 8), and in that case, we have 

[xY]Fn = eJx 1H8 ]Fn = ewCn[f3](O,q). 
The lemma now follows by applying this observation to (10) and using the fact that 
the layer I of .\ is -an' 0 

LEMMA 4.4. The recursion given in Lemma 4.3 uniquely determines the coefficients 
Cn[.\](O, q) up to the initial condition C[ 0 ](0, q). Moreover, C[.\](O, q) is nonzero 
if and only if the vertical sequence of .\, taken modulo n, is a permutation of Z/ (n ). 

PROOF. Partially order dominant weights by insisting that a ~ 13 if and only if 
a l + ... + ai ~ 131 + ... + f3i for 1 ~ i ~ n. 

Thus, , > ' is the usual partial order on the root lattice of An -1: a > 13 iff a - 13 is a 
sum of positive roots. Notice that 0 is at the bottom of this partial order. 

Let a > 0 be a dominant weight, and assume that the terms of a + 8 - In + ne n 
are distinct. We must have 

a + 8 - 1 n + ne n = W 0 (13 + 8), 
where 13 is the dominant weight given by 
(11) 
w E Sn is the permutation for which 
(12) 
and k is the unique integer (1 ~ k < n) for which 
(13) a k + n - k - 1 > an + n - 1 > ak +l + n - k - 2. 
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Such an integer k exists since an + n - 1 > a l + n - 2 would imply a = 0. Notice 
that the sign of w is (_I)n-k-l. It is clear from (11) that a> {J. Therefore, the 
recursion in Lemma 4.3 expresses Cn[a](O,q) in terms of Cn[{J](O,q) for some 
{J < a. We may conclude that the recursion uniquely determines Cn[A](O, q) up to 
the initial condition C[ 0 ](0, q). 

To complete the proof of the lemma, it suffices to show that the vertical sequence 
of a is a permutation of Z/( n) if and only if the same is true for the vertical 
sequence of {J. This is clear, since: (1) the terms of the vertical sequence of a 
partition v are the same as the terms of v + li, and (2) each of the operations 

y >-+ y ± 1 n , y >-+ y ± ne n , Y >-+ W 0 Y 

preserve the property of being a permutation of Z/( n). 0 
Thus, we have proved part (a) of the theorem, and we may also conclude that if 

Cn[A](O, q) =F 0, then 
C[A](O,q) = (_I)a qbCn [0](0,q) 

for suitable integers a and b. Henceforth, let us assume that A is a partition whose 
vertical sequence v, taken modulo n, is a permutation of Z/(n). Let a be the 
dominant weight corresponding to A, and let a denote its associated sequence. 
Notice that a; is characterized by the fact that v) = na; + i-I, where v) is the 
unique term of v for which v) == i-I mod n. 

For example, if n = 7 and a = (0,1,1,0,2,0,1), this means that the terms of v 
whose residues mod 7 are 0,3,5 must be 0,3,5; the terms of v whose residues mod 7 
are 1, 2, 6 must be 8,9, 13; and the term of v whose residue mod 7 is 4 must be 18. 
Thus v = (0,3,5,8,9,13,18). 

Consider the effect of the recursion in Lemma 4.3 on a. Let {J be the dominant 
weight defined in (11), and w the permutation defined in (12). Notice that the 
integer k, defined in (13), is the number of terms of the form A; + n - i which 
exceed n, since 

is equivalent to 
a; + n - i-I;?; an + n - l. 

But the terms A; + n - i are those of v taken in reverse order, so we conclude 

k = I { i: 1 < i < n, a; > O} I. 
As we remarked earlier, the sign of w is (-ly-k-r, so we have lOw' (_I)n-1 = (_I)k. 
Furthermore, observe that 

( ~) + In = I A + li I = I v I = (~) + n L a;, 
I 

so we have I = lal = L;a;. 
Let u be the vertical sequence corresponding to the dominant weight {J, and let T 

be its associated sequence. Assume for the moment that k < n - 1. Since 
(14) {J + li = (a l + n - 2, ... , ak + n - k - 1, 
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it follows that u is obtained from (14) by subtracting an-I' 1 n and reversing the 
elements. Hence, the unsorted terms of u are {n - v2 , 0, V3 - v2 , ••• , vn - v2 }, since 
V2 = a n- l + 1 - an' 

Let Vj == i - 1 mod n, where 1 ~ i ~ n. Since Vj = nai + (i - 1), we have 

{ n ai + (i - 1 - v2 ) if i ~ V 2 + 1, 
Vj - v2 = n (ai - 1) + (n - v2 + i - 1) if i < V2 + 1. 

Therefore, we may conclude that 

where r = v2 + 1. Note that r is the least integer (> 1) such that ar = O. 
The analysis for the case k = n - 1 is even easier. Since 

{3 + 8 = (a l + n - 2, ... ,an - l ,an + n - 1), 
the vertical sequence of {3 must be u = (0, V 2 - n, . .. , Vn - n) and the associated 
sequence for {3 must be 'T = (aI' a2 - 1, ... , an - 1). 

We summarize the previous discussion by the following. 

LEMMA 4.5. We have 

cn[a](O,q) = (_l)k q l . C n [{3](O,q), 

where k is the number of positive terms in a, 1= iai, and the associated sequence for {3 
is given by 

where r is the least integer (> 1) for which ar = O. If no such integer exists, then 

'T = (a l ,a2 - 1, ... ,an - 1). D 

This lemma gives us an algorithm for computing Cn[a](O,q) in terms of the 
associated sequence a. If we iterate the algorithm, we will obtain a series a = 
a 0, al, a 2, . .. of associated sequences. The iterations cease as soon as am = 0 for 
some integer m. Let kp and Ip denote the k- and I-statistics corresponding to the 
pth iterate a P• Lemma 4.5 tells us that 

In view of Corollary 3.3, it suffices to show that 

(n - 1) I a I + inv( a ) == L k p mod 2 and '1/ ( a) = Lip, 
where inv( a) denotes the number of inversions in a; i.e., 

inv( a ) = 1 { ( i , j): 1 ~ i < j ~ n, ai > aj } I. 
To prove this, it is conceptually easier to think of the operation a ~ 'T as being 

performed on an n-tuple of variables (a l , ... , an)' We obtain a P from a P - 1 by 
cyclically shifting the initial variable in aP - 1 to the end of the n-tuple repeatedly, 
until the initial variable is O. All of the variables that were cyclically shifted to the 
end are decremented by 1, except for the previous initial O. 
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In this scheme, suppose that we have the initial values 0i = a and OJ = b, where 
i < j and a < b. We want to examine the contributions of 0, to the statistics k and 

J p 
I p when the initial variable of op is 0i' Of course, 0i will never occur as an initial 
variable until it has been decremented a times, and we have 0i = ° and OJ = b - a. 
Thus, the first time that 0i is an initial variable, OJ will contribute b - a to I p and 1 
to k p' As soon as OJ = 0, it will cease to contribute. Hence, OJ contributes a total of 
(b- 2+1) = (ai b) to LIp and a total of b - a to'Lkp. 

The analysis when a > b is nearly the same. This time, we want to examine the 
contributions of 0i to the statistics kp and Ip when OJ is the initial term of op. Since 
the larger term a precedes the smaller term b, 0i will be decremented before OJ' The 
only rounds with OJ = ° will have 0i = a - b - 1, ... ,2,1,0. Hence, 0i contributes a 
total of (ai b ) to LIp and a - b - 1 to'Lkp. 

In summary, we have shown 

and 
if 0· < 0· 
'f I J == inv( 0) + L (Oi + oJ mod 2 
1 0i > OJ i<j 

== inv(o) +(n - 1)101 mod 2, 

which completes the proof. D 

5. A recursion for computing Cn[A](Z, q). In the previous section we found a 
functional equation satisfied by the formal Laurent series 

Fn(x 1 ,···, xn) = ao(x) TI (qXiX;I; q La, 
l~i,j~n 

and used it to find a recursion for the series Cn[A](O, q). In this section, we will 
extend this technique to obtain a functional equation for the formal Laurent series 

(qXiX;I; q La 
Gn (x 1 ,···,xJ=ao(x) TI ( -1) 

l~i,j~n ZXiXj ; q 00 

(15) 

As before, the functional equation will yield a recursion for the series Cn[A](Z, q). 
Of course, this recursion will simultaneously yield recursions for decomposing the 
characters of the exterior and symmetric algebras of gIn' as well as the Euler 
characteristic of the Macdonald complex, by specialization. In the case of the 
symmetric algebra, this gives a recursion for computing the generalized exponents of 
SLn • 

Let us introduce additional notation and terminology. Let A' denote the conjugate 
of the partition A. Assume that A is a partition with I(A) < nand IAI divisible by n. 
The horizontal sequence h = (ho, hI' h 2 , ••• ) of A is the infinite sequence of integers 
defined by 

h. = ,. {o 
I n - Ai + I - 1 

if i = 0, 
if i > 0. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FIRST LAYER FORMULAS FOR CHARACTERS OF SL(n,q 333 

This terminology is derived from the same geometric considerations that motivated 
the introduction of the vertical sequence in §4. View the diagram of A as a lattice 
path from southwest to northeast, and number the vertical and horizontal steps 
consecutively from 0, starting with a vertical step in the nth row. The horizontal 
steps are labeled hI' h2' h3 , •••• In the example given in Figure 1, we have n = 8, 
A = 764322, and the corresponding horizontal sequence is h = (0, 2, 3, 6, 8, 
10,11,13,15,16, ... ). 

Recall that the rank of a partition A is the size of the largest r X r square 
contained in A. Let us define the rectangular rank of A to be the largest integer r for 
which the (r + I)-row, r-column rectangle is contained in A. For example, the 
rectangular rank of 764221 is 3. 

Fix an integer k > 0. For any partition P, let PL denote the partition whose 
diagram is the first k columns of P, and let P R denote the partition whose diagram is 
the remainder; i.e., 

Let Auk denote the partition obtained by increasing the number of times the 
integer k occurs in A by 1. Define 

B k ( A) = {/L: /L satisfies rules 1, 2, and 3 } 

1. l(/L) ~ n, I/LI = IAI· 
2. /L R ~ (A U k h and the skew diagram (A u k hi /L R is a vertical strip. 
3. (A u kh ~ /LL and the skew diagram /LU(A U kh is a vertical strip. 
The reader is referred to [13] for the definitions of skew diagram and vertical strip. 
Thus, rules 2 and 3 say that /L must be obtained from Auk by adding a vertical 

strip to the first k columns and deleting a vertical strip from the columns to the right 
of the first k. Notice that Bo( A) = {A} and B k( A) is nonempty if and only if ° ~ k ~ r, where r is the rectangular rank of A. For example, let n = 6, k = 2, and 
A = 5553. We have 

B2(5553) = {54432,55422,54421,444321}. 

The diagrams of these partitions are given in Figure 2. The cells of Auk have been 
marked with the symbol'· '. 

. I . I 

-
FIGURE 2. An illustration of the construction of Bk(A). 
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On occasion, we will violate our conventions and speak of the series Cn[lL] when IL 
is a partition of length n. In such circumstances, Cn[lL] should be considered 
synonymous with Cn[> .. ], where A = (ILl - IL n,··., ILn-l - ILn' 0) is the partition 
obtained by removing all of the columns of length n from IL. 

We are now ready to state a recursion for the computation of Cn[A](Z, q). 
Although it can be stated in many forms, the following will suffice for the pr~sent. 

THEOREM 5.1. (a) Let A be a partition of In with I(A) < n. Let h be the horizontal 
sequence and r the rectangular rank of A. We have 

(16) L (_I)k(zhk - qlzn-hk+ 1 )(1 - Zhk+l- hk) L Cn[IL](Z,q) = 0. 
O.;;k";,, /LEBkU,) 

(b) Moreover, the linear relations in (16) uniquely determine the series Cn[A] for all 
A up to the initial value C n [ 0]( z, q). 

EXAMPLE 5.2. (a) In the case A = 0, we have r = 1= ho = 0, hl = n, and 
Theorem 5.1 becomes vacuous. A more typical example occurs if we take n = 5 and 
let A be the second layer partition 4411. Its horizontal sequence is (0,1,4,5,6,9, ... ) 
and A has rectangular rank 2. One may verify that Bl(A) = {43111} and B2(A) = 

{33211}. By applying Theorem 5.1, we may deduce 

(z - q2z 4)(1 - z3) Z4 _ q2 
C 5[4411](z,q) = ( 2 4)( C5[32](z,q) - 24 C5 [221](z,q). 

l-qz l-z) l-qz 

(b) Consider the first layer partition A = In - 22. The rectangular rank of A is 1, 
and we have Bl(A) = {tn}. Theorem 5.1 implies that 

(1 - qz n - 1 )( 1 - z) C n [1 n - 22] ( z , q) = (z - q) (1 - z n - 1 ) C n [ 0 ]( z , q). 

Therefore, by Corollary 3.3, 

cn[ln-22](z ) _ (z - q)(1 - zn-l) (q; q)oo 
,q - (1 - qz n -1 ) (1 - z)[ n ] ! z ( qz n; q ) 00 • 

In §6 we will use Theorem 5.1 to find a formula for Cn[A](Z, q) for all first layer 
partitions. 

PROOF OF THEOREM 5.1. To deduce part (b) from part (a) is straightforward. All of 
the partitions in Bk(A) can be obtained by removing at least k cells from the 
diagram of A and inserting them into lower rows. Therefore, A ~ IL for any 
IL E Bk(A), with equality only when k = 0. Since the coefficient 

(Zhk - qlzn-hk+ 1 )(1 - Zhk+l -hk) 

of Cn[IL](Z, q) in (16) can vanish only when A = 0, it follows that when A "* 0, 
one can solve for Cn[A](Z, q) in terms of Cn[IL](Z, q) for some partitions IL < A. Part 
(b) thus follows by induction. 

Notice that this also implies that each of the series Cn[A](Z, q) is of the form 
f(z, q) . Cn[ 0](z, q) for some rational function f. 

To prove part (a), we proceed by a series of lemmas, the first of which concerns a 
functional equation for the formal Laurent series Gn which we defined in (15). 
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LEMMA 5.3. We have 

PROOF, By the definition of Gn , 

( -1.) qXixn ,q 00 

( -1.) zxixn ,q 00 

1 - ZXnX i-l 

1 - zq-1XiX~1 

Gn(Xu···, xn) 'n Z - XiX~l 

Gn-l(Xl"",Xn-l) l~i<n 1 - zq-1XiX~1' 

The lemma now follows immediately, 0 

335 

Let [n] denote the set {I, ... , n}, and for any subset S ~ [n] let K(S) E zn denote 
the characteristic vector of S; i.e., K(S) = (Kl, ... , Kn), where 

Let s denote the cardinality of S. 

if i E S, 
if i $ S. 

LEMMA 5.4. Let A be a partition of In with I(A) < n. We have 

L £w(S)( -z )'Cn [/L(S)](z, q) = qlzn-l L £W(S)( -z rSC n [/L(S)](z, q), 
S<;;;[n-l] S<;;;[n-l] 

where S ranges over those subsets of [n - 1] for which the terms of A + I) + sen -
K(S) are distinct. (Even though S ~ [n - 1], we still regard K(S) E zn.) For such S, 
w(S) denotes the unique permutation and /L(S) the unique partition such that 

A + I) + se n - K ( S) = w ( S) 0 (/L ( S) + I»). 

PROOF. By the definition of Cn[A], we know that 

(17) 

where a E zn is the dominant weight corresponding to A. By the functional 
equation in Lemma 5.3, we have 

(18) 

n-l " ( )-SXSG ( ) = z i... -z ~ n Xl'"'' Xn , 
S<;;;[n-l] Xn 
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where we have abbreviated 0iESXi by Xs . If we apply the fact that [xk]F(ax) = 
ak[xk]F(x) for any formal power series F, and extract the coefficient of x,,+8 in 
(18), we obtain 

(19) q"" L (-z)'[x"+8.:~]Gn(XI' ... 'Xn) 
S~[n-ll S 

n-l -s[ ,,+8 x~] =z L (-z) x .~ Gn(xl,···,xJ. 
S~[n-l1 S 

We have yet to exploit the fact, which is evident from (15), that Gn is an 
alternating series. This means that any coefficient we care to extract, say [xY]Gn, will 
vanish unless the terms of "yare distinct. If they are distinct, then there is a unique 
permutation wE Sn and dominant weight {3 E zn for which "y = W 0({3 + 8). 
Furthermore, by (17), 

[xY]Gn = ew[x.B+8]Gn = ewC n[{3](z, q). 

The lemma now follows from this observation and (19). 0 

LEMMA 5.5. Let h be the horizontal sequence of A. 
(a) If hk ,.;; S < hk+l' then Bk(A) = {}l(S): lSI = s}. 
(b) If }l(S) E Bk(A), then ewes) = (_ly-k. 

PROOF. Let S be an s-subset of [n - 1] such that the terms of A + 8 + sen - K(S) 
are distinct. 

First, we consider the possibility that s = h k for some k » o. Since s is one of the 
horizontal steps in the lattice path of A (or s = 0), then the terms of A + 8 + sen are 
distinct, and their relative order cannot be affected by K(S). The sorted elements of 
A + 8 + sen are 

(20) (AI + n - 1, ... , An- j - l + j + l,s,A n _ j + j, ... ,A n - 1 + 1), 

where j is the unique integer such that 

(21) An - j - l + j + 1 > S > An - j + j. 
If s = 0, define j = O. Notice that w(S) is therefore a (j + I)-cycle, and so 
ew ( S) = (-1 Y By the definition of the horizontal sequence, s = h k is the k th 
smallest positive integer not among the terms of A + 8. Therefore, h k = j + k and, 
in particular, ew(S) = (_ly-k in this case. 

Let Ej = {n - 1, ... , n - j}. Notice that 

A + 8 + sen - K (EJ = w ( S) 0 ( (A Uk) + 8). 

This is clear from (20) if one decrements the last j terms by 1 and subtracts 8. If we 
choose to include all of Ej in S, the remaining k members of S must be chosen from 
the first n - j - 1 integers. Clearly, in order to maintain distinct terms in (20), the 
rows of Auk which are chosen must be a collection of rows from which one can 
remove a vertical strip. Furthermore, the cells in such a vertical strip must occupy 
the columns k + 1, k + 2, .... 
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More generally, if we do not include all of Ej in S, we must add cells to the first k 
columns (or equivalently, the last j rows) of Auk in such a way that distinct terms 
are maintained; i.e., we must add a vertical strip. We conclude that Bk(A) = {ft(S): 
ISI= hd· 

The analysis for the case when lSI = s = hk + i, where hk < s < hk+l' introduces 
only slight complications. Notice that each of the integers hk + 1, ... , hk + i must 
appear among the terms of A + l); say, 
(22) A + l) = (Al + n - l,oo.,A n- j - i - l + j + i + 1, 

hk + i, ... , hk + 1, An_j + j, ... , An), 
where j is the integer defined in (21). In order to avoid having equal terms in 
A + l) + sen - K(S), we are forced to include all of 

T = {n - j - i, 00., n - j - I} 
in S. Notice that 
(23) 

A + l) + sen - K(T) = (Al + n - l,oo.,A n _ j _ i_l + j + i + 1, 

hk + i -1,oo.,h k,An_j + j, ... ,An- l + l,hk + i). 
Therefore, w(S) must be a (j + i + I)-cycle, and so 

Ew(S) = (_I)i+ j = (_I)hk+i-k = (_1)s-k, 

as desired. Furthermore, we see from (22) that if IS'I = hk and the terms of 
A + l) + h ke n - K( S') are distinct, then S' n T = 0. Since (23) implies that the 
terms of A + l) + sen - K(T) are those of A + l) + hken, we deduce that the 
partitions ft(S) obtained for the s-subsets S coincide with the partitions ft(S') for 
hk-subsets S'. This completes the proof of the lemma. 0 

We may now complete the proof of the theorem. Let S range over s-subsets of 
[n - 1] for which the terms of A + l) + sen - K(S) are distinct. Let r be the 
rectangular rank of A. Using the notation defined in Lemma 5.4 and applying 
Lemma 5.5 yields 
(24) (1 - z) L Ew(S)(-z)'Cn[ft(S)](z,q) 

S~[n-ll 

= (1 - z) L 

L L (_I)kzhk(1 - Zhk+1-hk)Cn[ft](z,q), 
O,,;,k";'r !LEBkU .. ) 

and 
(25) (1 - Z )qlzn-l L Ew(S)( -z rSC n [ft(S)](z, q) 

S~[n-ll 

= (1 - Z)ql L 

Compare (24) and (25) and apply Lemma 5.4. 0 
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6. The first layer formula for Cnp\](z, q). We will now apply the recursion 
developed in the previous section to find an explicit formula for Cnp\](z, q) for first 
layer partitions A. Recall that the hooklength h(i, j) = Ai + Aj - i - j + 1 associ-
ated with the cell (i, j) of a partition A is the number of cells directly below or to 
the right of (i, j), including (i, j). 

THEOREM 6.1. Let A be a partition of n. We have 

fl 
(i,j)EA 

zj-l _ qzi-l 

1 - Zh(i,j) . 

The reader can easily verify that we recover the formula (Corollary 3.3) for 
en [ 0 ]( z, q) in the special case A = In. If we specialize to the exterior algebra 
/\(gln), we obtain an identity that was conjectured by Gupta and Hanlon [6]. This 
identity can also be proved by an intricate application of the Littlewood-Richardson 
rule [18]. 

COROLLARY 6.2. Let A be a partition of n. We have 

If we specialize to the Macdonald complex, we find 

COROLLARY 6.3. Let A be a partition of n. We have 

[n(k + 1)]! 
Mk'[A](q) = k+l q. fl 

(q;q )n (i,j)EA 

q(k+l)(j-l) _ q(k+l)(i-l)+l 

1 _ q(k+l)h(i,j) 

If we specialize to the symmetric algebra, we obtain a formula that can be used to 
compute the first layer generalized exponents of SLn • Gupta has shown that this 
identity can also be derived from the work of Macdonald [13, III, Examples 6.2,4], 
Hesselink [8], and D. Peterson. 

COROLLARY 6.4. Let A be a partition of n. We have 
j-l 

sn[A](Z)= fl z he)' 
(i,j)EA 1 - z l,J 

The first step in proving the first layer formula is to examine more carefully the 
recursion in Theorem 5.1. Notice that the partitions p. E Bk(A) are obtained by 
adding and removing vertical strips from the partition Auk. This is formally 
similar to the process involved in certain instances of the Littlewood-Richardson 
rule. Specifically, we remark that a well-known consequence of the Littlewood-
Richardson rule [13, I, (5.1,17)] is the following: 

(26) 

SASlk = L sf': p./A is a vertical k-strip, 
f' 

SA/lk = L sf': Alp. is a vertical k-strip. 
f' 
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. I 

FIGURE 3. An illustration of the construction of \ * k. 

In order to exploit this situation, let !/;n: A -+ Z[[z, q]] be an arbitrary Z-linear 
transformation for which 

1. !/;n(s;.J vanishes unless 1(\) < n. 
2. !/;n(s;..) = !/;n(s,J if JL = A + c . In. 

The practical reader will complain that we have given an overly elaborate presenta-
tion of what should be considered a group homomorphism Qn -+ Z[[z, q]]. However, 
we will find it more convenient to allow an arbitrary symmetric function in the 
domain of !/; n' Our goal is to impose constraints on !/; n in such a way that to have 
!/;n(s;..) = Cn[A](Z, q) is the only way to meet those constraints. 

Let A vary over partitions with 1(\) < nand IAI divisible by n. For any 
nonnegative integer k, define a partition A * k via 

(27) if k ;;:. 0, 
if k = 0. 

For example, if n = 7, k = 3, and A = 76422, then \ * k = 7643331. See Figure 3, 
in which the diagram of A * k is given, and the cells of \ have been marked. Notice 
that the partition A * k can also be defined as the partition obtained by adding a cell 
to each row of \ U k which has fewer than k cells. Also note that A * k jA is a 
border strip of size h k; i.e., a connected skew diagram which contains no 2 X 2 
square as a subdiagram. 

The recursion in Theorem 5.1 can be reformulated as follows. 

THEOREM 6.5. Let !/;n: A -+ Z[[z, q]] be a Z-linear transformation as described 
above. Let A be a partition with I(A) < nand IAI divisible by n. Let I denote the layer, 
r the rectangular rank, and h the horizontal sequence of A. If 

(28) L (_l)k(zh k - qlzn-h'+l)(l - zh,+l-h k )1f;n(s;.. * k/lh.) = ° 
O~k~r 

for all such A, then !/;n(s;..) must be, apart from multiplicative factors, Cn[A](Z, q); 
i. e., there must exist a formal power series c( z, q), independent of A, such that 
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PROOF. For k ~ 0, define 

gk = L sl' and fk = SA*k/lhk . 
I'E Bk(A) 

Let k ~ 1 and assume that the lowest row of Auk of length k is the jth row. 
Recall that the partitions Jl E B k( A) are obtained by adding a vertical strip below 
the jth row, and deleting a vertical strip from the part of A occupying columns 
k + 1, k + 2, .... Since A * k is obtained by adding a cell to every row of Auk 
below the jth, we see that Jl E Bk(A) if and only if Jl can be obtained by deleting a 
vertical h cstrip from A * k, provided that this strip does not include the cell (j, k ). 
If one removes a vertical hk-strip from A * k which does include the cell (j, k), one 
obtains a partition in Bk_1(A), and conversely. By our previous remarks (see (26)), 
we conclude that fo = go and fk = gk + gk-l' 

Hence, 

L (_I)k(zhk - qlzn-h'+l)(1 - zh,+l-hk)'o/n(fk) 
O~k~J 

L (_I)k(zhk - qlzn-hk+1)(1 - zhk+l-hk)..pn(gk)· 
O~k::;;;J 

Therefore, we see that (28) is satisfied if and only if 'o/n(sA) satisfies the recursion in 
Theorem 5.1. The uniqueness of the solution is guaranteed by part (b) of Theorem 
5.1. 0 

REMARK 6.6. Notice that a similar result holds even if we restrict our attention to 
the first layer. If A is in the first layer, then only partitions of n appear in Bk(A). 
Therefore, if we have a Z-linear map 'o/n: N ~ Z[[z, qll (defined only for symmetric 
functions of degree n) which satisfies (28) for all partitions A of n, then the series 
'o/n(sA) satisfy (16) for all such A. We may conclude that 'o/n(sA) and Cn[A](Z, q) 
differ by at most a multiplicative factor. 

Recall that in the Frobenius notation for partitions, if A has rank r, we write 
A = (a 1/3), where a, f3 E Nr are the strictly decreasing r-tuples defined by 

(I:::::;i:::::;r). 

LEMMA 6.7. Let A be a first layer partition of rectangular rank r, and let h be the 
horizontal sequence of A. Define a E Nr, /3 E Nr+l via 

a i = Ai - i-I, 1 :::::; i:::::; r, 
f3i = n - hi = A~ - i + 1, 1:::::; i :::::; r + 1. 

If 1 :::::; k :::::; r + 1, then 

PROOF. We claim that the skew shape A * kjIhk is disconnected. Since the 
diagram of Ihk is a single column, this is equivalent to showing that hk ~ (A * kh 
By the definition of A * k, we see that we must show 

if k = 1, 
if k > 1. 
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However, these are immediate from the fact that hk = n - Ak + k - 1 and A is a 
partition of n. Therefore A * k/lhk is indeed disconnected. 

Since the first column of A * k/lhk has length n - hk = /3k' we have 

where IL is the partition obtained by deleting the first column of A * k. Notice that IL 
is of rank r. Inspection of (27) reveals that IL = (al/31, ... ,/3k-l,/3k+l, ... ,/3r+l) is 
the Frobenius notation for IL. 0 

The following beautiful identity expresses the Schur function SA as a determinant 
of Schur functions corresponding to hooks; i.e., Schur functions of the form s(alb) 

with a, bEN. An elementary proof is given by Macdonald [13, I, Example 3.9], 
who attributes the result to Giambelli [4]. 

PROPOSITION 6.8. Let (a 1/3) be the Frobenius notation for a partition A of rank r. 
We have 

LEMMA 6.9. Let A be a first layer partition with notation as in Lemma 6.7. Let MA 
denote the matrix of order r + 1 defined by 

MA = l (1 - ,"~" )(1 - q'" )"" 

(1 - zn- P,+I)(1 - qzp'+I)SlP'+1 S (allp,+\) 

The identity If; n (det M A) = 0 is equivalent to (28). 

The pedantic reader may wish to enhance the coefficient ring of A to include all of 
Z[[z, q]] before applying If;n to det(MA)' 

PROOF. The identity (28) is equivalent to 

(1 - qzn-h,+I)(1 - zh,+I)l/;n(SA) 

L (_I)k-\zh k - qzn-h,+I)(I- zh,+\-hk)lf;n(SA.k/lhk )' 
l~k~r 

By Lemma 6.7, this is equivalent to 

(29) 

(1 - qzP'+\)(1 - zn-p,+1 )l/;n(SA) 
r+ 1 

= L (_I)k-\zn- Pk - qzp,+I)(1 - zPk-P,+I)lf;n(SlPkS(aIPI, ",pk-l,pHI' .. ,P,+Jl)· 
k=l 

Let NA denote the matrix of order r + 1 whose kth row (1 ~ k ~ r + 1) is 

((z n- pk - qzpdl)(1 - Zpk-p'+I) S s) , (allpk),.", (a,lp.l . 

If we expand the determinant of NA by minors along the first column and apply 
Proposition 6.8, we see that (29) is equivalent to 

(30) 
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On the other hand, suppose for the moment that /3r+ 1 > 0; i.e., ,\ ~+ 1 > r. If so, 
then ,\ is of rank r + 1 and the Frobenius notation for ,\ must be 

(a1 + 1, ... ,ar + 1,01/31 -1, ... ,/3r+1 -1). 

By Proposition 6.8, it follows that SA is the determinant of the matrix of order r + 1 
whose k th row is 

(31) 

If it should happen that /3r+1 = 0, then ,\ is only of rank r, but we may still assert 
that SA is the determinant of the matrix defined by (31), provided that we define 
S (a 1_ 1) = 0 for a > 0, since the last row of the matrix would become (0, ... , 0, 1) in 
this case. 

Notice that by (26), we have 

S(a+1)' SIb = S(alb) + S(a+1Ib-1)' 

Therefore, by subtracting suitable multiples of the (r + l)th column of (31) from the 
other columns, we deduce that SA is the determinant of the matrix whose kth row is 

( -s(alltlk)' ... , -s(arltld' Sl llk ) 

or equivalently, 

(32) 

This remains valid even when /3r+ 1 = O. 
It is now clear that I/;n(detMA) = 0 is equivalent to (28); replace SA in (30) by the 

determinant of the matrix in (32) and use the linearity of the determinant in the first 
column. D 

If f is a symmetric function, let the notation f(Pr --+ a r ) be an abbreviation for 
the expression obtained by writing f as a polynomial in the power-sum symmetric 
functions Pr' and replacing each occurrence of Pr by a r' where the terms a rare 
chosen from some suitable commutative ring. 

We are now sufficiently prepared to give the 
PROOF OF THEOREM 6.1. We claim that if we define 

I/;n(S~) = S~( Pk --+ (_1)k-1 ~ = ::) 
for every partition f.L of n, then all of the identities I/;n(det MA) = 0 are satisfied for 
first layer partitions ,\. By an identity due to D. E. Littlewood [10, Chapter VII] (see 
also [13, I, Examples 2.5,3.3]), we can give an explicit formula for I/;n(s~); namely, 

(33) I/;n(S~) = n 
(i,j)E~ 

Notice that since the substitution 

zj-1 _ qzi-1 

1 - Zhu.J) . 
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defines a ring homomorphism A -+ Z[[ z, q]j, we may verify that ~ n (det M >J vanishes 
by showing that 

(34) 

By (33), we have 

( ( l)k-ll-qk) (q;z)b+lfa(z,q) 1 
s(alb) Pk -+ - 1 _ Zk = [a]!Jb]!z . 1 _ za+b+l' 

where 

fa ( z , q) = (z - q) ( Z 2 - q) .. . (Z a - q). 

Therefore, the kth row of the matrix in (34) is 

(q;z)Pk+ l (1 _ n-Pk ft,Jz,q) . 1 f",(z,q) . 1 ) 
[,8d!z z, [exl]!z 1 - z",+Pk+ l ,00', [exr]!z 1 _ z",+Pk+l ' 

where ex and ,8 are as defined in Lemma 6.7. By rescaling the rows and columns of 
this matrix, we deduce that the vanishing of ~n(det M).J is equivalent to the 
vanishing of the determinant of the matrix whose k th row is 

(35) 

Consider the determinant of the matrix whose k th row is 

(36) 

Subtracting the first column from the remaining r columns yields 

( z'" +Pk+ l z",+Pk+ l ) 
1, ,00', P' 1 - z'" +Pk+l 1 - z",+ k+ l 

Extracting common factors from the rows and columns of this matrix shows that the 
determinant of (36) is the same as the determinant of the matrix whose k th row is 

(37) 

Comparison of (36) and (37) shows that the matrix defined in (35) must indeed be 
singular, so our claim is verified. 

Now we are virtually finished. By Lemma 6.9, we deduce that the choices of 
~n(s,J for partitions ft of n which we made in (33) actually satisfy the linear 
relations in (28). By Theorem 6.5 (see Remark 6.6), it follows that there must be a 
formal power series c(z, q) such that 

. zj-l _ qzi-l 
C[X](z,q) = c(z,q)· n he) 

(i,j)EA 1 - z I,j 

for all partitions X of n. The series c(z, q) can be determined by taking X = In and 
applying Corollary 3.3. 0 
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7. An extension of the q-Dyson Theorem. The first layer formula (Theorem 6.1) 
has essentially provided us with an explicit formula for the coefficients of the 
monomials x a + 8 in the formal Laurent series 

Gn(XI,· .. ,Xn) = a8 (x) n 
l:!£;,i,j~n 

(qxixj-\ q) 00 

(zxixj-\ q ) 00 

for those dominant weights a E zn corresponding to first layer partItIOns; i.e., 
dominant weights with an = -1. If we take Z = qk (which suffers no genuine loss of 
generality) and delete those factors corresponding to terms with i = j, we may 
equivalently view the first layer formula as a formula for the coefficients of certain 
monomials in 

Specifically, we have 

[xa1n(XjXjl;qL(qxix;l;q)k_1 = [k -11!~n. C[a](qk,q). 
i<j 

Thus, the first layer formula gives a generalization of Bressoud and Goulden's result 
(Theorem 3.2) in the case of equal parameters (a l = ... = an = k). It should be 
pointed out, however, that we used their identity (via Corollary 3.3) to prove this 
generalization. 

In this section, we will show that the first layer formula can also be used to find 
some coefficients of monomials (not just constant terms) in the formal Laurent series 

n ( -1.) ( -1.) XjXi ,q 00 qxixj , q 00 

1 ~i<j~n 

and, in particular (z = qk), some coefficients of monomials in 

Thus, we will find a generalization of the equal-parameter version of the q-Dyson 
Theorem. In order to compute these new coefficients, we need to introduce some 
additional tools from the theory of symmetric functions. 

For each a E Nn, define a symmetric function R:(x l , ... , xn; q) E An[q] via 

(38) 

(39) 

Notice that R: is homogeneous of degree lal with respect to Xl"'" X n • It is clear 
from (39) that there must exist polynomials aa.,..(q) E Z[q] such that 

(40) R:(x p ... , xn; q) = L aa.,..(q ) s",,(x I , ... , xJ, 
IAI~k 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FIRST LAYER FORMULAS FOR CHARACTERS OF SL(n,q 345 

where lal = k. We mention that these functions R: are only slightly more general 
than the symmetric functions RA considered by Macdonald [13, III.I]. 

If lal ~ n, then the partitions A which appear in (40) all have length at most n, 
and so we conclude that there is a unique symmetric function in A[q], which we 
denote by Ra, whose image in An[q] is R:. In fact, from (40), we see that 
(41) R a(X1,X2 ,oo.;q) = L aaA(q)sA(X1,X2'OO.). 

JAJ=k 
These symmetric functions differ only slightly from the Hall-Littlewood symmet-

ric functions [13, III]. When A E Nn is a partition, RA(x; q) and the Hall-
Littlewood symmetric function PA(x; q) differ only by a polynomial in q. However, 
it should be emphasized that even though we regard as identical two representations 
of a partition which differ only in the number of trailing zeros, the symmetric 
function Ra(x; q) is defined only for finite sequences of nonnegative integers. In 
particular, RA(x; q) depends not only on the partition A but on the chosen integer 
n ~ leA) for which A E Nn. 

The coefficients we will extract from Hn(x1, ... , xn) are the coefficients of the 
monomials x a where a E zn and a i ~ -1. Of course, one could apply the transfor-
mation Xi -+ x~ll-i and thus obtain identical results about the coefficients of x a 

with a i ~ 1. The following result connects these coefficient extraction problems to 
the symmetric functions Rp. 

THEOREM 7.1. Let a E zn and assume lal = 0, ai ~ -1 (1 ~ i ~ n). We have 

[ a]H ( ) (z;q): R ( ( I)r- 1I- qr ) 
X n x1,···,xn = n-1 . p Pr-+ - ~;z , 

( q; q ) 00 ( qz n; q) 00 ( q; z) n Z 
wherefJ = a + P = (a1 + I, ... ,an + 1). 

In the special case z = q k, we find 

COROLLARY 7.2. Let a, fJ be as described above. We have 

[x a] n ( X jX; 1 ; q) k ( qx iX j-1; q) k 
i<j 

[kn]!q ( r-1 1 - qr k) 
[k-I],n( . k) . Rp Pr-+ (-1) 1- kr;q . 'q q, q n q 

PROOF OF THEOREM 7.1. By the definitions of Hn and Gn, we have 

(42) H ( ) -8(Z;q):G ( )n(I -1) n X1,oo"Xn = X n n X1,oo"Xn - ZXiXj . 
(q;q)oo i<j 

Let ([~J) = {(i, j): 1 ~ i < j ~ n}. For each subset S ~ ([~J) define a sequence 
y = yeS) E zn via 

Yi = I {j: 1 ~ j ~ n, (j , i) E S} I-I {j: 1 ~ j ~ n, (i, j) E S} I· 
Let a E zn and assume that lal = 0 and a i ~ -1. It follows from (42) that 

(43) [ a]H ( ) _ (z; q): " ( )ISI[ a+8+ y(S)]G ( ) 
X n X1,·OO'Xn - ( )n 1..,., -z X n X1 'OO"X n • 

q; q 00 S,;:([~l) 
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If S ~ ([21) has the property that the terms of a + 8 + yeS) are all distinct, let 
a(S) denote the unique dominant weight and w(S) E Sn the unique permutation 
such that 

a + 8 + yeS) = w(S)o(a(S) + 8). 

Since Gn is an alternating function, it follows from (43) and (17) that 

(44) [x"]Hn(Xl, ... ,Xn) = ~Z;q)~ L EW(S)(-z)ISlcn[a(S)](z,q), 
q;q)oo S<;;;([21) 

summed over those S ~ ([21) for which the terms of a + 8 + yeS) are distinct. 
Notice that the terms of 8 + yeS) are nonnegative; therefore, the terms of a + 8 + 
yeS) are all at least -1, and so the dominant weights a(S) which appear in (44) 
correspond to partitions in the Oth or first layers. Recall that when we proved the 
first layer formula, we showed that 

C"[A]() (q;q)oo ( (1)r-l1- qr ) z,q = ( n. ) ( . ) sA Pr ~ - -1 _ r qz , q 00 q, Z n Z 

for partitions A of n. Using this information in (44) yields 

where A(S) = a(S) + In. 
On the other hand, let us consider the symmetric function Rp(x; q), where 

f3 = a + In. It follows from (39) that 

ali(x)Rp(x1,···,xn;q)= L Ew·W(XP+1i n (1-qxj x i- 1)) 
WESn l~I<J~n 

= L (-q )ISlap+Ii+Y(S)(x1,···, xJ. 
S<;;;([21) 

(46) Rp(x; q) = L EW(S)(_q)ISlsA(S)(x). 
S<;;;C21) 

The theorem follows upon comparison of (45) and (46). 0 
We remark that (46) is essentially equivalent to an identity given by Macdonald 

[13, I, Example 2.3] for Hall-Littlewood symmetric functions. 
Theorem 7.1 compels us to study the effect of substitutions of the form 

a k - bk 

Pk ~ 1 k -q 
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on the symmetric functions Ra where a E Nn and lal = n. We know of no general 
result that gives explicit formulas for such substitutions. However, we will be able to 
give an explicit formula in the case where the O's of a occur consecutively. The 
resulting formula is the following: 

THEOREM 7.3. Let y E zn, Iyl = 0, and assume that there exist a E Nr, /3 E NS 

such that y is of the form 

Let t = n - r - s = the number of -l's in y. We have 

where 

m(a,/3) = st + L(i - l)ai - L i/3i' 

The special case z = q k yields 

COROLLARY 7.4. Let a, /3, y be as described above. We have 

[x'I] Il (XjX;l;q)k(qXiX;l;q)k 
l~i<j~n 

In particular, when y = 0, we recover the q-Dyson Theorem for equal parame-
ters. Also it is interesting to consider the limit q ~ 1 and thus obtain a generaliza-
tion of the original Dyson Theorem. In this case we need not worry about where the 
-1' s occur in y since the limiting series 

is a symmetric function of Xl" .. , X n • 

COROLLARY 7.5. Let y E zn, Iyl = 0, and suppose that Yi ~ -1 (1 ~ i ~ n). If 
there are t -l's among the terms of y, then 

( _l)k t(nk)! kt·t! 
[x'I] 12 1 - XiX j = (-1) (k! r . (1 + k (n - 1)) ... (1 + k (n - t)) . 

As a first step toward proving Theorem 7.3, we show that the computation of 
formulas for 

( ( ) r~ll - qr ) 
Rp Pr~ -1 1_z r ;z 

is no more difficult than the computation of formulas for 

Rp(l,q, ... ,qm~l;q). 
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PROPOSITION 7.6. Iff E Ak is a homogeneous symmetric function, and F( x, y) is a 
formal power series such that f(l,q, ... ,qm-l) = F(qm,q) for all sufficiently large 
integers m, then 

PROOF. Notice that 
m-l a r - (aqm)' 

pAa,aq, ... ,aq )= 1 r -q 
Therefore, since f is homogeneous, 

f( Pr ~ ar ;~a:~r) =f(a,aq, ... ,aqm-l) = akF(qm,q). 

Application of Lemma 2.1 yields 

f( Pr ~ ar1-~~)') = akF(b,q), 

and so the result follows. D 
The computation of R:(1, q, ... , qn-l; q) is comparatively easy: 

LEMMA 7.7. If a E Nn, then 

R n(l n-l. ) _ n(a) [n]!q a ,q, ... ,q ,q -q ( )n, 
1 - q 

where n(a) = I:(i - l)ai· 

PROOF. The argument we present here is the same as the one given by Macdonald 
[13, III, Example 2.1]. (He makes no use of the fact, but assumes that a is a 
partition. ) 

Let w E Sn and consider the product 
TI (qW(i)-l - qw(J»). 

1 ~i<j<:.n 

This will vanish if (say) i + 1 occurs before i among w(l), . .. , w( n). In other words, 
this product vanishes unless w is the identity. Thus, the only term in the definition 
(38) of R:(x1, .•. , xn; q) which survives under the substitution Xi ~ qi-l is the 
term corresponding to w = 1. The result is now immediate. D 

Unfortunately, Lemma 7.7 gives us no direct information about 
Ra(1, q, ... , qm-l; q) 

when a E N n and m > n. In order to compute formulas in such cases we need the 
following result, which relates the symmetric functions Ra with a E Nn to Rp with 
/3 E Nn+l. 

LEMMA 7.8. Let a E N n +1 and assume that lal :( n. Let Z be the set of zeros of a; 
i.e., Z = {i: 1 :( i :( n + 1, ai = O}. We have 

Ra(x; q) = L qn+l-iRa1i(x; q), 
iEZ 
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where 

PROOF. By definition (38) of R~+l, we see that 
x w(i) - qx w(j) 
X w(i) - X w(j) 

349 

In particular, observe that when we substitute Xn+l = 0, the only terms which 
survive correspond to permutations wE Sn+l with w(i) = n + 1 for some i E Z. 
The remainder of w, 

w(I),oo.,w(i -I),w(i + I),oo.,w(n + 1), 
constitutes a permutation of 1, ... , n. Since 

TI xW(j) - qXn+l. TI 
j<i xw(J) - xn+l i<j<;;n+l 

under the substitution xn+l = 0, we conclude that 

R~+I(Xl,·oo,Xn,O;q) = L qn+l-iR~li(Xl,·oo,xn;q)· 
iEZ 

The lemma now follows from definition (41) of the symmetric functions Ra and the 
fact that lal ::;;;; n. 0 

For any a E Nr, f3 ENs, and m > r + s, let 

(a,f3)m = (al, ... ,a,,0, ... ,0,f3s, ... ,f31) E Nm. 

Weare now sufficiently prepared to give the 
PROOF OF THEOREM 7.3. Let y E Nn, a E Nr, f3 E NS be as defined in the 

statement of the theorem, and let t = n - r - s. Define a+= a + I r and f3+= f3 + 
P. Notice that 

(a+,f3+)n = y + In. 

The zeros of (a+,f3+)m occur in the positions i for which r + 1 ::;;;; i::;;;; m - s. For 
any such i, (a+,f3+)mli = (a+,f3+)m-l' Hence, for any m > n, Lemma 7.8 implies 

R(a+ ,r)Jx; q) = (qS + ... +qm-r-l)R(a+ ,(J+)m~l(x; q). 

Successive applications of this recursion yield 
_ (1 - qm-r-s) ... (1 _ qt+l) 

R(a+,{J+)Jx;q)=qs(m n) (I_q)m-n R(a+.tnn(x;q). 

If we substitute Xi ~ qi-l (1 ::;;;; i ::;;;; m) and apply Lemma 7.7, we obtain 

R (1 m-l. ) = n«a+ ,r)m)-s(m-n) [m]!q(I - qrn 
(a+,r)n ,q, ... ,q ,q q (1 m-r-s) (1 t+l) - q ... - q 

[t ]! = qm(a,.B)+('i')qml.BI(I - qm) ... (1 - qrn-r-s+l) q n' 
(1 - q) 
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Hence, by Proposition 7.6 

R(a+ ,,8+).( Pk ~ ~k ~ :kk ; q) 

= qm(a,,8)+Ci')a n(ba- 1)1,81 [t]lq 
(1 - qr 

r+s-1 
TI (1 - ba-1q-i). 
i~O 

If we substitute q ~ z, a ~ -q, b ~ -1, we find 

R (~(_1)k-l1- qk.) (_1)1 lal m(a,,8)(q;z)n-l[t]lz 
(a+ ,.a+). Pk 1 _ zk ' Z q z (1 - z r . 

Apply Theorem 7.1. 0 
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