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ABSTRACT

The Qweak collaboration has made the first measurements of the elastic
parity-violating and beam-normal single-spin asymmetries from the Al27 nucleus.
Both are the result of ancillary measurements conducted during the Qweak experiment
at Jefferson Lab. The goal of the experimental was to determine the proton’s weak
charge, Qp

W , via a measurement of the elastic parity-violating electron-proton
scattering asymmetry. During the experiment, ancillary measurements were made
with different beam configurations on a separate aluminum alloy target, in an effort
to directly measure the aluminum background coming from the experiment’s liquid
hydrogen target cell.
This dissertation discusses three primary results: the parity-violating Al27 asymmetry
analysis used to correct for the aluminum target background in the final Qweak

analysis, its extended analysis leading to the extraction of the pure elastic
parity-violating Al27 asymmetry, and the determination of the elastic beam-normal
single-spin Al27 asymmetry. The parity-violating result was also used to make a semi
model-independent determination of Al27 neutron distribution radius, an important
test for models used to describe neutron-rich matter. The beam-normal single-spin
asymmetry stands to possibly shed light on an observed disagreement between theory
and a previous measurement performed on Pb208 , as Al27 is the next highest atomic
mass nucleus to have this observable measured.
The elastic parity-violating Al27 asymmetry was found to be 1.927± 0.173 ppm at
〈Q2〉 = 0.0236± 0.0001GeV2. This measured parity-violating asymmetry implies a
Al27 neutron distribution radius of 3.024± 0.104 fm. Calculating the difference

between this radius and the Al27 proton distribution radius yields the neutron skin,
which was found to be 0.092± 0.104 fm. This skin value is consistent with zero,
within its uncertainty, and it confirms the naive expectation for a light nucleus like
Al27 .

The beam-normal single-spin Al27 asymmetry was found to be −16.322± 2.679 ppm
at 〈Q〉 = 0.154GeV. This value agrees with the previous observed trend of
beam-normal single-spin asymmetries measured from light nuclei, which motivates
the need for future measurements of higher atomic mass nuclei.
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Chapter 1

Introduction

Humanity’s quest to determine the most fundamental components of the known physical

Universe has led to the study of fundamental physics. Particle and nuclear physics are

examples of sub-fields from the broader fundamental physics field. These sub-fields have

been explored since the start of the 20th century and primarily focus on the study of

subatomic structure of matter in the Universe. The most championed scientific theory from

this sub-field is the Standard Model. Developed initially in the 1960’s and 1970’s, it has

been continually tested. However, a handful of observations cannot be explained within the

construct of the Standard Model. As a result, we believe the theory is incomplete and thus

requires further development.

One method for testing the Standard Model is to precisely measure physical observables

that it predicts. The Qweak experiment, conducted at the Thomas Jefferson National

Accelerator Facility from 2010 to 2012, is an example of an experiment performing such a

measurement. Qweak, as the experiment is referred to, has made the first direct determination

of the proton’s weak charge via a precise measurement of the elastic parity-violating electron

proton scattering asymmetry. A precise determination of proton’s weak charge allows for a

correspondingly precise determination of the weak mixing angle, a fundamental parameter of

the Standard Model [1–3]. Any observed deviation from the Standard Model predicted value

would indicate the presence of new physics. Such a presence would require an extension to

the Standard Model.

Several ancillary physics measurements were made during the Qweak experiment. Two of
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these ancillary measurements are the focus of this dissertation: the first measurements of

the parity-violating and beam-normal single-spin asymmetries in elastic electron aluminum

scattering. These are measurements of asymmetries from a secondary target, that were used

to determine the largest background correction to the proton’s parity-violating asymmetry.

Both of these measurements have interesting physics implications. First, the parity-

violating aluminum asymmetry measurement can be used to determine the neutron distribu-

tion radius of the aluminum nucleus. A precise determination of the neutron radius in this

light nucleus would act as a test for models that describe neutron-rich matter, such as heavy

nuclei and neutron stars. Secondly, the aluminum beam-normal single-spin asymmetry could

provide insight into an observed disagreement between the measured and predicted lead

asymmetry, as aluminum is the next heaviest mass nucleus to have this observable measured.

If a disagreement is found between theory and experiment, then that might indicate the

need for an improved theoretical prediction of how the beam-normal single-spin asymmetry

evolves with atomic mass.

Chapter 2 provides an introduction to the fundamental theory supporting this experiment,

while Chapter 3 describes the techniques used to make the measurements. Chapter 4 provides

a description of the experimental apparatus. Chapter 5 gives a detailed description of the

physics analysis for the determination of the parity-violating aluminum asymmetry. This

chapter also discusses the analysis steps used to extract the aluminum neutron distribution

radius from the parity-violating asymmetry. Chapter 6 gives a similar description to that of

the previous chapter, but for the case of the aluminum beam-normal single-spin asymmetry

measurement. My analysis contributions to the proton’s parity-violating asymmetry analysis

are discussed in Chapter 7. Finally, Chapter 8 concludes this work by stating the impact

these results had on the Qweak experiment and will have on future experiments.

This dissertation includes several appendices that contain images, plots, and mathematical

derivations. Appendix A includes information and calculations regarding the aluminum

auxiliary target. Appendix B and C contain analysis components that do not directly fit

into the main body of the text.

In closing, the content put forth in this dissertation aims to be the definitive record

of the analyses associated with the aluminum target measurements and their applications
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within the Qweak experiment.
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Chapter 2

The Standard Model

We think that there are four fundamental forces in the Universe: gravity, strong, weak,

and electromagnetic. The Standard Model uses a mathematical structure to describe the

dynamics of the latter three forces. A description for gravity is absent from this theory.

Historically, gravity has been described by a separate theoretical framework called General

Relativity. Attempts have been made to combine gravity and the Standard Model, in what is

often referred to as a Quantum Gravity, however none of these theories have been confirmed

by experiment. In addition to the absence of gravity, the Standard Model fails to provide a

theoretical description for dark matter and dark energy, both of which have been indirectly

observed by way of astrophysical measurements.

This chapter will provide an introduction to the particle structure of the Standard Model,

their interactions as governed by the electromagnetic and weak forces in the theory, and

their physical properties. This introduction will also act as a foundation to support the work

discussed later in this dissertation.

2.1 Overview

At its heart, the Standard Model (SM) is a quantum field theory. It combines our

understanding of the strong, weak, and electromagnetic forces through the use of a

SU(3)c × SU(2)L × U(1)Y gauge group structure. The subscripts are labels that denote

what these groups represent. For example the strong force SU(3)c, labeled “c” for color,
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describes the color charge of the strong force which binds the fundamental particles known as

quarks together. The particular quantum field theory that is used to describe the dynamics

of strong force systems is known as Quantum Chromodynamics (QCD). The last two forces,

which govern the physics of interest in this dissertation, are unified under the SM into what

is known as the electroweak sector. The two labels “L” and “Y ” describe the preferred

left-handed, or chiral, nature of the weak force and the weak hypercharge quantum number,

respectively.

Particles, represented by fields in the SM can be divided into two fundamental classes.

The first class are known as bosons; these are the force carrying particles. They mediate, or

more colloquially, transmit the force between the second class of particles, which are called

fermions. The two classes can be differentiated based on a characteristic property known as

spin. Bosons are integer spin while fermions are half-integer, or fractional, spin. The former

are governed by Boson-Einstein statistics and the latter by Fermi-Dirac statistics.

Bosons are the physical representations of the gauge fields that are introduced to

preserve gauge invariance, an important property of the SM. In particular the SU(3)c part,

representing the strong force, is mediated by the gluons (g). The SU(2)L and U(1)Y parts

of the unified electroweak sector lead to the W and B bosons before the Higgs mechanism

causes this symmetry to break spontaneously. After this symmetry breaking, which is

discussed in detail in Section 2.3.1, the W and B bosons transform into the experimentally

observed W± and Z0 weak force bosons along with the photon (γ) of the electromagnetic

force.

Fermions can be divided up into further categories: types and generations. There are two

major types, which are quarks and leptons. Each type has three generations that depend on

a mass hierarchy. Out of the two major types, quarks can interact via all three forces in the

SM. Leptons interact via both the electromagnetic and weak forces. Figure 2.1 provides a

convenient way of displaying the fermions and bosons contained in the SM with their known

attributes.

A selection of these fundamental particles, in particular the quarks, are observed to not

exist on their own. This is due to the phenomena known as confinement. Usually they

are observed as constituents in more complex objects such as composite particle systems
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Figure 2.1: Diagram of the fundamental particles described by the SM. Reproduced from [4]
with original from [5].

like hadrons. Hadrons can be divided into two sub-categories depending on their quark

content: baryons or mesons. Baryons are tri-quark bound particles, the most famous of

which are the proton and neutron. The proton is constructed from a combination of the

up-up-down quarks and the neutron is constructed from a combination of the up-down-down

quarks. These two particular examples are usually found as nucleons in the nucleus in an

atom. Mesons are combinations of quark-antiquark pairs and are important for describing

the nucleon-nucleon force that binds the nucleons of the nucleus together. More exotic,

unstable, versions of these baryonic and mesonic systems exist when they contain the larger

mass/higher generations of quarks. Together, particle and nuclear physics looks to study

and understand the dynamics and characteristics of these fundamental and complex particle

systems as they exist in Nature.

2.2 Symmetries of Nature

When studying these fundamental or complex particle systems, it is often useful to understand

their symmetries. Symmetries are best described as an invariance of a given system under

a set of transformations. These transformations can be either continuous or discrete. For
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symmetries in general, Noether’s Theorem states that if the action of a physical system

is invariant under a continuous group of transformations then there exists a conserved

quantity associated with that invariance [6]. This important concept leads to the idea of a

conservation law. For example, invariance of Lagrangian densities or physical phenomena

under continuous linear translations in time and space lead to the conserved quantities of

energy and linear momentum.

2.2.1 Gauge Invariance

In quantum field theories, conserved quantities can be constructed to respect the symmetries

observed in nature. For example, we expect the physics of a particle in a quantum system to

be invariant under arbitrary global phase transformations. However, for the less restrictive

case of local phase transformations, such a transformation does not leave the Lagrangian

invariant. The invariance is preserved with the introduction of a new mathematical structure,

which is known as a gauge field.

Consider the Dirac Lagrangian density∗ for a spin-12 field ψ with mass m,

LDirac = ψ̄(iγµ∂µ −m)ψ. (2.1)

This Lagrangian is invariant under a global phase transformation acting on the field ψ given

by

ψ → ψ′ = e−iαψ, (2.2)

where, in the case of the U(1) group, α is an arbitrary constant that is independent of

position. Such a global phase transformation can be interpreted as having no observable

effect on the action of the system. When this global phase transformation is changed to a

local phase transformation, the phase factor α now depends on position in spacetime,

ψ → ψ′ = e−iα(t,~x)ψ. (2.3)

Under such a local phase transformation the Lagrangian is no longer invariant.

∗From this point forward, the use of Lagrangian is assumed to mean Lagrangian density.
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A new term called a gauge field is introduced to preserve the invariance of the Lagangrian.

This new gauge field, given the label Aµ(x) with coupling constant e, is used to modify the

ordinary covariant derivative Eq. (2.1) into a gauge covariant derivative,

∂µ → Dµ ≡ ∂µ − ieAµ. (2.4)

Aµ describes a new integer-spin particle field which behaves as a boson. The presence of

the coupling constant e in the last term of the covariant derivative allows cancellation when

including the interaction term in the full theory of Quantum Electrodynamics (QED). With

this covariant derivative, the local phase transformation leaves the Lagrangian invariant

when we simultaneously require the gauge field Aµ to transform as

Aµ → A′
µ = Aµ − 1

e
∂µα. (2.5)

This transformation is an enforcement of U(1) gauge invariance.

This is an example of the mechanism that gives rise to the gauge fields in the SM. Similar

gauge invariances can be imposed for higher-dimensional symmetry groups. An example of a

SU(2)× U(1) group will be discussed later in this chapter in the context of the electroweak

sector of the SM.

2.2.2 Parity

A parity (P) transformation is an inversion of spatial coordinates. Mathematically it can be

represented as a conversion from a right-handed to left-handed coordinate system. For a

generic four-vector Vµ, a parity transformation is given by

V µ P−→ Vµ = V (t, ~x)
P−→ V (t,−~x). (2.6)

Since we are interested in fermion scattering, it is more important to identify how fermion

field bilinears in the electroweak Lagrangian change under parity transformations. Various

types of the fermion field bilinears such as scalars, pseudo-scalars, vectors, and axial-vectors,

undergo parity transformations in different ways. Table 2.1 provides a summary of how
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parity inversion transforms these quantities.

Table 2.1: Examples of how the fermion field bilinears transform during parity inversion.

Type Action

Scalar ψ1ψ
P−→ ψ1ψ

Pseudo-scalar ψγ5ψ
P−→ −ψγ5ψ

Vector ψγµψ
P−→ ψγµψ

Axial-vector ψγµγ5ψ
P−→ −ψγµγ

5ψ

A physical quantity relevant to this dissertation is the pseudo-scalar helicity. Helicity is

the projection of the particle’s spin along its direction of momentum. For massless particles,

and for massive particles in the relativistic limit, the handedness of the particle is directly

related to its helicity. The relationship between the helicity and handedness of a particle is

given by the helicity operator,

h ≡ p̂ · S =
1

2
p̂i

σi 0

0 σi

 =


1
2 right-handed particle

−1
2 left-handed particle,

(2.7)

where σi are the Pauli spin matrices.

Until 1957, parity symmetry was believed to be conserved by all of the fundamental

interactions. An experiment conducted by C. S. Wu et al. [7] studied the spatial asymmetry

of β-decay emission from a polarized Co60 source. They found that the weak interaction

that governs β-decay violates parity symmetry, which confirmed an earlier hypothesis given

by T. D. Lee and C. N. Yang [8]. This was the first experimental evidence that the weak

interaction prefers a handedness. Subsequent experiments have confirmed this observation

using complementary experimental techniques.

2.2.3 Isospin

An important approximate symmetry found in composite particle systems is nuclear isospin.

Consider a nucleon in the nucleus of an atom as a particle with two potential states. The

nucleon could either be in a proton or a neutron state. A new quantum number can be

assigned to the nucleon depending on if it is in one of these states. This quantum number is
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referred to as isopin (T) as it has an identical mathematical structure as spin-12 particles,

which are governed by the properties of the SU(2) group. This symmetry exists because the

difference in the masses between the two particles is small and because the QCD interaction

is flavour-independent. The mass of the proton (mp) is 938.272 081 3± 0.000 005 8MeV and

the neutron (mn) is 939.565 413 3± 0.000 005 8MeV [9]. The underlying reason for this

difference comes from the small mass difference of the constituent up and down quarks,

electromagnetic effects, and the fact that they are weak isospin doublet partners.

A general state in isospace can be denoted using bra-ket notation |T, T3〉, where T3 is

the 3rd component of isospin. The states of the nucleon in isospace are defined as:

∣∣1
2 ,+

1
2

〉
≡ |p〉 (proton), (2.8)∣∣1

2 ,−
1
2

〉
≡ |n〉 (neutron). (2.9)

Using the general rules of the SU(2) group, the nucleon isospin states can be combined to

describe many-particle systems [10]. Consider a nuclear system with two nucleons, or an

atomic mass (A) of two. The isospin of the nucleons in this coupled system can be arranged

into an isotriplet or an isosinglet state. The isotriplet state takes the form

|1, 1〉 ≡ |pp〉 , (2.10)

|1, 0〉 ≡ 1√
2
(|pn〉+ |np〉), (2.11)

|1,−1〉 ≡ |nn〉 , (2.12)

and the isosinglet the form

|0, 0〉 ≡ 1√
2
(|pn〉 − |np〉). (2.13)

This type of coupling between isospin of nucleons and their associated states can be general-

ized to a nuclear system of arbitrary A.

Transformations in isospace are often classified by the difference between the initial and

final isospin (∆T ) states. These transformations are labeled as either isoscalar (∆T = 0) or

isovector (∆T = 1). Discrete nuclear transitions can cause these types of transformations
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and are examples of a type of nuclear process of interest to the research described in this

dissertation. Later sections will rely upon this terminology to describe the physics of these

discrete nuclear processes.

2.3 Electroweak Sector of the Standard Model

In the late 1960s and early 1970s, Sheldon L. Glashow [11, 12], Steven Weinberg [13],

and Abdus Salam [14, 15], introduced a SU(2)L × U(1)Y gauge theory that allowed the

unification of the electromagnetic and the weak forces observed in nature. For this work

they received the 1979 Nobel Prize in Physics [16]. Their theory employs the principle of

gauge invariance, previously discussed in Section 2.2.1, to generate four massless fields as

defined by the structure of the SU(2)L × U(1)Y group.

The weak force bosons are known to be massive. Thus a new mechanism called spon-

taneous symmetry breaking, also known as the Higgs mechanism, is required to break the

symmetry of the SU(2)L × U(1)Y group and give the observed fields mass [17, 18]. This

section will give an overview of how gauge invariance coupled with spontaneous symmetry

breaking yields the experimentally-observed massive W±, Z0 and massless γ bosons of the

SM. This overview follows a similar derivation outlined in a textbook by T. W. Donnelly et

al. [10], with additional details taken from the seminal SM text written by P. Langacker [19].

Consider the electroweak Lagrangian (LEW )

LEW = Lφ + Lgauge + Lf + LY uk, (2.14)

where the Lφ describes the dynamics of the Higgs sector of the theory. The Lgauge and Lf

describe the gauge field and kinetic fermion interactions, respectively. Finally, the LY uk piece

describes the Higgs interaction that gives the fermions mass after spontaneous symmetry

breaking.

In the single family version of this theory, a left-handed doublet representing the electron

and electron-neutrino fermion fields is introduced to describe the left-handed chiral preference

of the weak interaction in the SU(2)L part. A right-handed singlet is likewise introduced
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for the electron, which doesn’t include a right-handed neutrino as to match what is seen

in nature. These assignments are used because they have been confirmed by experimental

observation. As mentioned previously in Section 2.1, there are multiple flavours of fermions

in the SM and this theory can be generalized to account for the flavours not mentioned here.

ψL ≡

ψνe

ψe


L

and ψR ≡ ψeR (2.15)

As this theory depends on the handedness of the field, it is also convenient to define the

chiral projection operators

PL =
1

2
(1− γ5) and PR =

1

2
(1 + γ5), (2.16)

where γ5 is a Dirac gamma matrix and PL or PR applied to the general fermion field (ψ)

selects the left and right handed components of that field. For the case of the electron, this

relation is given by

ψeL = PLψe and ψeR = PRψe. (2.17)

To build the electroweak theory, the first step is to require local gauge invariance, as discussed

in Section 2.2.1. The derivative (∂µ) in the kinetic terms of Eq. (2.14) is thus replaced by

the covariant derivative and two new gauge fields as

Dµ = (∂µ + ig
2 ~τ · ~Wµ + ig

′

2 Y Bµ). (2.18)

The SU(2)L piece of the theory introduces a triplet of vector fields ( ~Wµ ) with a coupling

constant, g. The U(1) piece introduces a single vector field (Bµ) with coupling g′. ~τ

represents the Pauli matrices, which in this case are describing SU(2) weak isospin (I).

Note that it is important to not confuse weak isospin with the isospin of a nucleon as was

introduced in Section 2.2.3. Y is known as the weak hypercharge. Both ~τ and Y are known

as generators of the groups. The generators for this theory are related by the weak force
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version of the well known Gell-Mann–Nishijima formula,

QEM = I3 +
Y

2
, (2.19)

where I3 is the 3rd component of weak isospin.

At this point, the theory predicts that these new vector fields, ~Wµ and Bµ , are massless.

If a mass term is inserted into the Lagrangian by hand, which is a term quadratic in

terms of the gauge vector fields, it would break the SU(2) × U(1) gauge invariance. In

order to explain the massive gauge bosons represented by a combination of these fields,

the SU(2)L × U(1)Y symmetry needs to therefore be broken while preserving the gauge

invariance of the Lagrangian. This is accomplished by applying the Higgs mechanism, which

spontaneously breaks the symmetry via the introduction of a new complex scalar field.

2.3.1 Spontaneous Symmetry Breaking

The Higgs mechanism [17, 18] as related to the property of spontaneous symmetry breaking

in the electroweak model introduces a complex scalar weak isospin doublet field φ and its

Hermitian adjoint φ†, which have the form

φ =

φ+
φ0

 and φ† =

φ−

φ0†

 . (2.20)

The Higgs piece (Lφ) of Eq. (2.14) contains kinetic and potential energy terms that can be

written as

Lφ = (Dµφ)
†Dµφ− V (φ†φ). (2.21)

Dµ is the covariant derivative defined in Eq. (2.18), which now acts on the complex scalar

field φ. The potential term V (φ†φ) has quadratic and quartic terms as given by

V (φ†φ) = µ2φ†φ+ λ(φ†φ)2. (2.22)

The potential takes on either a stable or unstable form depending on the sign of the coefficient

µ2. For the case when µ2 > 0 the potential is stable with minima occurring at φ†φ = 0.
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When µ2 < 0, the potential becomes unstable at φ†φ = 0 and the minima instead occurs at

φ†φ = µ
2

λ . Figure 2.2 shows a simplified three dimensional representation of the potential for

the two cases of µ2. The actual potential depends on higher dimensional coordinate systems

which are difficult to represent in a two dimensional projection.

µ2 > 0 µ2 < 0

Figure 2.2: Diagram of a simplified three dimensional Higgs potential for stable (µ2 > 0)
and unstable (µ2 < 0) cases. The potential is colloquially referred to as the Mexican Hat
Potential as it resembles a sombrero. Reproduced from [20].

Spontaneous symmetry breaking occurs when the complex scalar (φ) develops a nonzero

vacuum expectation value (VEV) of ν,

〈φ〉 = 〈0|φ |0〉 = 1√
2

0

ν

 where ν =

√
µ2

λ
. (2.23)

Then the fields are quantized around the vacuum, meaning φ = 〈φ〉+ φ′, where φ′ are the

fields with zero VEV. This quantization step is usually done in the unitary gauge allowing

one to write the field φ as

φ→ φ′ =
1√
2

 0

ν +H

 , (2.24)

where H is a scalar field representing the Higgs boson [19].

Working in the unitary gauge, the gauge field piece of the covariant derivative in Eq. (2.18)
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acting on the nonzero vacuum state becomes

Dµφ =
i

2
√
2

 gW 3
µ + g′Bµ g(W 1

µ − iW 2
µ )

g(W 1
µ + iW 2

µ ) −gW 3
µ + g′Bµ


0

ν

 (2.25)

=
iν

2
√
2

g(W 1
µ − iW 2

µ )

−gW 3
µ + g′Bµ

 . (2.26)

Here terms proportional in H are neglected and Y = 12×2.

Now focusing on the gauge field piece of the kinetic energy term of Eq. (2.21), it has the

form

(Dµφ)
†Dµφ =

g2ν2

4
W +

µ Wµ− +
ν2

8
(−gW 3

µ + g′Bµ)(−gW
µ3 + g′Bµ) (2.27)

=
g2ν2

4
W +

µ Wµ− +
ν2

8
(g2 + g′2)ZµZ

µ + (0)AµA
µ, (2.28)

where the following definitions for the observed gauge fields have been introduced:

W ±
µ =

1√
2
(W 1

µ ∓ iW 2
µ ), Zµ =

gW 3
µ − g′Bµ√
g2 + g′2

, Aµ =
gW 3

µ + g′Bµ√
g2 + g′2

. (2.29)

The W ±
µ field represents the boson in the weak charge-current interaction. The Zµ

and Aµ fields represent the bosons in the weak neutral and electromagnetic interactions,

respectively. The coefficients of the terms quadratic in the fields yield the masses of these

gauge bosons. In terms of the couplings g and g′, the masses for the W±, Z0, and γ are:

mW =
νg

2
, mZ =

ν

2

√
g2 + g′2, and mγ = 0. (2.30)

The masses of these heavy bosons have been experimentally determined using high energy

accelerators. The mass of the W± (mW) is 80.385± 0.015GeV and the mass of the Z0 (mZ)

is 91.1876± 0.0021GeV [9]. The VEV is fixed to a value of approximately 246GeV by the

Fermi constant [9].

It can be seen in Eq. (2.29) that the observed Zµ and Aµ fields are constructed from a
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linear combination of the original W 3
µ and Bµ fields. This linear combination of fields can

be represented by a matrix transformation. A convenient angle parameterization can be

introduced to describe the amount of mixing that occurs in the electroweak theory using the

coupling constants of the original fields,

tan2 θW =
g′2

g2
or sin2 θW =

g′2

g2 + g′2
or cos2 θW =

g2

g2 + g′2
(2.31)

where θW is that mixing angle, which is also known as the Weinberg angle. Using these

newly defined quantities, the linear combinations in the original gauge fields can be written

as the following matrix transformation:

Zµ

Aµ

 =

cos θW − sin θW

sin θW cos θW


W 3

µ

Bµ

 . (2.32)

It is important to note that the weak mixing angle parameter is scale-dependent as it is

constructed from a combination of couplings which run with scale. Precision determinations

of this mixing angle parameter at different energies act as a test of the scale dependence as

predicted by the SM.

Up to this point, only the gauge bosons have been shown to have mass after spontaneous

symmetry breaking. The fermions are also originally massless and the direct insertion of

a mass term would also break the gauge invariance of the Lagrangian. The fermions thus

acquire mass from the Higgs mechanism through the Yukawa interaction. The Yukawa

interaction piece (LY uk) from Eq. (2.14) for the case of the electron can be written as

LY uk =
geν

2
√
2
(ψ̄eLφψeR + ψ̄eRφ

†ψeL), (2.33)

where the mass of the electron (me) becomes me =
geν√
2
. Similar interaction terms arise for

the rest of the fermions in the SM, which gives them mass. The exception to this are the

neutrinos which remain massless as they don’t have a right-handed state in this version of

the theory. There are other Higgs field interactions in the SM that give the neutrinos with

mass; these are discussed in Langacker’s text [19].
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2.3.2 Electroweak Neutral Current Interactions

In the electroweak theory, electrons can undergo a neutral current interaction via the

exchange of either a massless photon γ or the massive Z0 boson. The first is considered an

electromagnetic interaction while the later is referred to as the neutral weak interaction. For

the diagrammatic representation of these two boson interactions with fermions, see Fig. 2.3.

f

f
γ

(a) γ vertex

f

f
Z0

(b) Z0 vertex

Figure 2.3: Neutral electroweak vertex diagrams for the electromagnetic (a) and weak
neutral-current (b) interactions.

Each of these types of interactions can be written in terms of the fermion gauge interaction

and the fermion fields in the Lagrangian, expressed through vector fermion bilinears known

as currents. The two currents for these neutral interactions are:

Jγ
µ = QEM ψ̄γµψ, (2.34)

JZ
0

µ = J3
µ cos θW − JY

µ sin θW . (2.35)

JZ
0

µ takes an analogous form to the Zµ gauge field relation in Eq. (2.32). W 3
µ and Bµ in

that relationship are replaced with their current forms, J3
µ and JY

µ as labeled by their group

generators. These currents can be written in terms of the fermion fields.

JY
µ =

g′

2
Y ψ̄γµψ (2.36)

J3
µ = −g

2
ψ̄LγµψL (2.37)

Equation (2.35) can be expressed in expanded form in terms of the fermion fields and their

weak couplings,

JZ
0

µ =
gz
2

(
[2I3 − 2QEM sin2 θW ]ψ̄LγµψL + [−2QEM sin2 θW ]ψ̄RγµψR

)
, (2.38)
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where gZ = e
sin θW cos θW

is the Z0 coupling constant. This expression can be simplified by

defining two new quantities known as the weak vector (gV ) and axial-vector (gA) fermion

couplings,

gV ≡ I3 − 2QEM sin2 θW (2.39)

gA ≡ I3. (2.40)

Table 2.2: Electromagnetic charge (QEM ), 3rd component of weak isospin (I3) quantum
number along with the vector (gV ) and axial-vector (gA) couplings of the fermions in the
SM.

Type QEM I3 2gV 2gA

e−, µ−, τ− −1 −1
2 −1 + 4 sin2 θW −1

νe, νµ, ντ 0 1
2 1 1

u, c, t 2
3

1
2 1− 8

3 sin
2 θW 1

d, s, b −1
3 −1

2 −1 + 4
3 sin

2 θW −1

Table 2.2 contain values of weak vector and axial-vector couplings for the various families

of fermions in the SM. These new definitions can be used, in conjunction with the chiral

projection operators of Eq. (2.16), to rewrite Eq. (2.38) in the following compact form,

JZ
0

µ = ψ̄γµ(gV − gAγ
5)ψ. (2.41)

This form of the Z0 current allows the easy identification of the parity-violating nature of

the combined vector and axial-vector pieces of the neutral weak interaction.

Also, both Eqs. (2.34) and (2.41) allow the identification of the vertex factors for the γ

and Z0 exchange diagrams shown in Fig. 2.3.

γ : −ieQEMγµ and Z0 : −igZ
2
γµ(gV − gAγ

5) (2.42)

2.3.3 Nuclear Weak Charges

As this dissertation is interested in parity-violating (PV) electron-nucleus scattering at

energies much lower than mZ , it is useful to interpret the neutral weak interaction in terms

of a low-energy effective theory formalism. Consider the neutral weak interaction when the
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momentum transfer (q2) of the interaction is q2 << mZ , an effective four-fermion interaction

operator of the following form,

Leff = −GF√
2
JZ

0

µ Jµ

Z
0 (2.43)

can be introduced as shown by Langacker [19]. Eq. (2.43) introduces the Fermi constant

(GF ), which is related to the weak coupling g by the relation GF =
√
2( g

2

8m
2
W

).

This new neutral weak effective interaction can be expanded in terms of the current JZ
0

µ .

By considering only the PV electron-quark interaction pieces of the new effective Lagrangian

term, the following pieces survive

LZ
0

PV =
GF√
2

∑
q=u,d

(C1qψ̄eγµγ
5ψeψ̄qγ

µψq + C2qψ̄eγµψeψ̄qγ
µγ5ψq). (2.44)

This expression introduces two new couplings, the vector-axial coupling (C1q) and axial-

vector coupling (C2q). They are related to the weak vector and axial-vector charges by the

following relations: C1q ≡ 2geAg
q
V and C2q ≡ 2geV g

q
A. At lowest order in perturbation theory,

or tree-level, these coupling for electron-quark scattering are

C1u = −1
2 + 4

3 sin
2 θW , C2u = −1

2 + 2 sin2 θW ,

C1d = 1
2 − 2

3 sin
2 θW , C2d = 1

2 − 2 sin2 θW .
(2.45)

Knowledge of these electron-quark couplings allows one to define a quantity known as

the weak vector charge. The weak charge (QW ) gives the strength of the neutral current

quark-electron vector-axial interaction†. This concept of a weak charge is analogous to

the charge (Q) of the electromagnetic force. For a nuclear system containing a number of

protons Z and a number of neutrons N, the weak charge is defined as

QW ≡ −2[C1u(2Z +N) + C1d(Z + 2N)]. (2.46)

In the case of the proton and neutron, Eq. (2.46) reduces down to the sum of the quark-

†
The neutral current vector-axial interaction is taken to mean the quark’s vector coupling to Z

0
and the

electron’s axial-vector coupling to Z
0
.
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electron vector-axial couplings of the constituent quarks in the nuclear system. The proton’s

weak charge takes the form, based on its quark content, of

Qp
W ≡ −2(2C1u + C1d) (2.47)

and for the neutron

Qn
W ≡ −2(C1u + 2C1d). (2.48)

At tree-level and using a value of sin2 θW ≈ 0.23 [9], the weak charges of the proton and

neutron become Qp
W = 1 − 4 sin2 θW ≈ 0.07 and Qn

W = −1. Thus in PV electron-nucleus

scattering the electron favors scattering from the neutrons of the nuclear system, as it

has a larger weak charge. Conversely, the suppressed weak charge of the proton acts as

a convenient observable to perform a precision measurement in a SM test, since non-SM

effects are not a priori expected to be suppressed in a similar fashion.
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Chapter 3

Electron Scattering Techniques

The most important scientific tool in the nuclear or hadronic physicist’s toolbox is particle

scattering. Important structural information can be determined about the nucleus via the

scattering of a particle probe from a nuclear or hadronic target. One option for a particle

probe is the electron, the lightest electromagnetically charged lepton. Electrons are excellent

probes for scattering experiments as they have a number of beneficial qualities. First, the

electron is a fundamental particle; it has no known substructure. Electrons are easy to

produce in the form of a controllable beam, which can be accelerated to relativistic energies.

Depending on the energy of the beam, the electron can probe ever decreasing distance

scales within the nucleus as given by the de-Broglie momentum-wavelength relation. Lastly,

electron beams can be polarized, which allows for study of polarization-dependent structure

observables in the nucleus.

Structure information is extracted from scattering experiments by interpreting measured

cross sections. Cross sections are proportional to the probability for a given type of scattering

interaction to occur and are typically reported as either a differential or total quantity. For

a general introduction to the concept of a scattering cross section see the text by B. Povh et

al. [21]. Typically, differential cross sections are reported with respect to a kinematic variable.

For example, elastic scattering cross sections are often differentiated with solid angle (dΩ).

However, for inelastic scattering interactions, the cross section is often differentiated not

only with respect to solid angle but also energy. The total cross section (σ) is the integrated

form of the differential cross section over all angle and energy phase space. In the context of
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Figure 3.1: An engineered example of the electron scattering cross section spectrum from
the proton (top) and a generic nucleus (bottom) versus energy transfer (ν). Recreated from
textbook diagram [10], as an adaptation from the original version [22].

this dissertation, when a cross section is mentioned it refers to the differential form, which is

denoted by symbol dσ. In specific cases, the cross section for either the elastic or inelastic

form will be noted using the differential notation dσ
dΩ or d

2
σ

dΩdE respectively.

In electron-nucleus scattering, a number of different types of interactions can occur

depending on the kinematics of the incident electron. For a given nuclear target and an

electron beam at a fixed energy, a spectrum of scattered electrons is produced with a range

of energies from just a few MeV to that of the primary beam and scattering angles over

a full 4π. Measuring the cross section of these scattered electrons over this energy and

angle spectrum allows the experimental determination of the internal structure of the target

nucleus. An example of such a spectrum can be seen in Fig. 3.1 for the case of the proton

and a generic nucleus.

Electron scattering can give structure information about the nucleus in its ground state

via elastic scattering. As more energy is transferred to the nucleus, the interaction starts

to become more inelastic. That transferred energy can be used to stimulate the nucleus to

a higher excited state, which is often described in the context of the nuclear shell model
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e
−
(Ek,~k)

e
−
(E

k
′ ,~k

′
)

θLab

(ν, ~q)

A

(E
p
′ , ~p

′
)

Figure 3.2: Inclusive electron scattering from an arbitrary nucleus with mass mA, in the
lab reference frame. Adapted from original illustration taken from the dissertation of V. M.
Gray [24].

description of a discrete nucleon excitation. The energy could also be used to excite collective

motion of the individual nucleons in the nucleus. An example of such collective excitation

is the Giant Dipole Resonance. As the energy transfer approaches the nucleon’s binding

energy, approximately 8MeV, the nucleon can be ejected from the nucleus in what is known

as a quasielastic reaction [21, 23]. The transferred energy may be so large that the scattered

electron begins to probe the nucleon substructure of the nucleus, in what is known as deep

inelastic scattering (DIS).

To give the reader a better understanding of scattering methods used to extract the

physics described in this dissertation, this chapter will give a brief introduction to the

theoretical framework of the physical observables measured in this experiment. To start

off, this chapter introduces several kinematic quantities useful for describing the dynamics

of electron-nucleus scattering, along with how those quantities are used to interpret the

extended structure of the nucleus. It will also introduce the motivation for conducting

the Qweak experiment, along with giving a brief overview of previous parity-violating and

beam-normal single-spin asymmetry measurements.

3.1 Scattering Kinematics

When discussing electron scattering, it is useful to define a collection of physical quantities

that describe the kinematics of the interaction.

Consider the system where an incident electron with four-momentum kµ = (Ek,~k)
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scatters from a nucleus with four-momentum pµ = (Ep, ~p), where Ek (Ep) is the energy

and ~k (~p) is the three-momentum of the probe particle. After the interaction, the outgoing

electron carries a four-momentum k′µ = (Ek
′ ,~k′) and the recoiling nucleus p′µ = (Ep

′ , ~p ′). A

diagram of this scattering system can be seen in Fig. 3.2. During the interaction, the four-

momentum transferred between the electron and nucleus is given by qµ = (ν, ~q). Conservation

of four-momentum allows the momentum transfer to be related to the momentum of the

incoming and outgoing states by the following relation

qµ = kµ − k′µ = pµ − p′µ. (3.1)

Theoretically, it is convenient to describe the momentum transfer of the reaction with the

Lorentz invariant quantity −qµq
µ. Based on convention, this invariant quantity is defined as

a positive definite quantity,

Q2 ≡ −qµq
µ = ~q 2 − ν2 ≥ 0, (3.2)

where the energy transfer of the interaction is given by ν = Ek − Ek
′ . For inclusive

measurements where only the scattered electron is detected, the squared three-momentum

transfer can be written in terms of the electron’s momentum and lab scattering angle (θLab)

in the following way

~q 2 = ~k2 + ~k′2 − 2|~k||~k′| cos θLab. (3.3)

Using the energy-momentum relation (E2 = ~k2 +m2), Eq. (3.2) can be reduced to the more

convenient form of

Q2 = 4|~k||~k′| sin2 θLab
2 + 2(EkEk

′ − |~k||~k′| −m2
e). (3.4)

For experiments using high-energy relativistic electrons, when Ek � me and |~k′| � me, the

long wavelength limit can be applied to Eq. (3.4), where |~k| ' Ek and |~k′| ' Ek
′ . Thus

Eq. (3.4) reduces to

Q2 ' 4EkEk
′ sin2 θLab

2 . (3.5)

In the special case of elastic electron-nucleus scattering, the energy of the scattered
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electron Ek
′ can be related to the incident electron energy Ek by Ek

′ = Ekf
−1
rec, where the

recoil factor (frec) is

frec = 1 + 2Ek
mA

sin2 θLab
2 (3.6)

and mA is the mass of the target nucleus. Equation (3.5) can be simplified to a dependence

on just the two variables, Ek and θLab, using this recoil energy relation, which takes the

form of

Q2 ' 4E2
kf

−1
rec sin

2 θLab
2 =

4E2
k sin

2 θLab
2

1 + 2Ek
mA

sin2 θLab
2

. (3.7)

In later discussions about inelastic scattering processes, it is useful to introduce a

kinematic variable that describes the amount of energy an excited final state has. This

quantity is known as the invariant mass, given in units of energy, and is related to the

momentum transfer by

W 2 = m2
A + 2mAν −Q2, (3.8)

where mA is the mass of the target in the initial state, ν the energy transfer in the reaction,

and Q2 the previously introduced momentum transfer from Eq. (3.5). When discussing

quasi-elastic mA in the invariant mass relation becomes the nucleon mass (mN ).

3.2 Electromagnetic and Weak Form Factors

In elastic electron-nucleus scattering, the electron can interact with the nucleus via the

exchange of either a virtual photon or Z0 boson. Figure 3.3 shows the lowest order Feynman

diagrams that describe these possible electroweak interactions.

e−

e−

A

A
γ

(a) γ Exchange

e−

e−

A

A
Z0

(b) Z0 Exchange

Figure 3.3: Lowest order electroweak Feynman diagrams for electron-nucleus scattering,
where either a photon (γ) or Z0 is exchanged between the electron (e−) and nucleus (A).

In the Born approximation, also known as the single boson exchange formalism, the
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differential cross section for unpolarized electron-nucleus scattering can be written in terms

of the Mott cross section and a general Q2 dependent function known as a form factor [10,

21], given by

dσ

dΩ
=

(
dσ

dΩ

)
Mott

|F (q)|2. (3.9)

The Mott cross section describes the dynamics of an electron scattering from a point-like

target particle and has the following functional form in the lab frame

(
dσ

dΩ

)
Mott

=
Z2α2~2c2 cos2 θLab

2

4E2
k sin

4 θLab
2

, (3.10)

where Z is the atomic number of the nuclear target, α is the fine structure constant, c the

speed of light, and Ek along with θLab are the kinematic variables introduced in the previous

section. When the target nucleus is not point-like, which is usually the case, it is known

to have an extended structure. This extended structure is generally described by the form

factor function F (q) introduced in Eq. (3.9).

3.2.1 Electron-Nucleon Scattering

In the case of elastic electromagnetic electron-nucleon scattering, the form factor is broken

into longitudinal and transverse components that are characterized in the literature into

what is known as the electric and magnetic form factors, respectively. These form factors

carry the label of GN,γ
E (Q2) and GN,γ

M (Q2), and are referred to as the Sachs form factors.

Electromagnetic form factors are generally related to the QED current introduced in the

previous chapter, as given in Eq. (2.34). The formalism of this relation is described in detail

in Langacker’s text [19], but is written for a general nucleon state as

〈N | Jµ
γ |N〉 = ū

[
γµFN,γ

1 (Q2) +
iσµν

2mN
qνF

N,γ
2 (Q2)

]
u, (3.11)

where u are the fermion spinors, γµ are the gamma matrices, and σµν their commutation

relation given by σµν = i
2 [γ

µ, γν ]. Equation (3.11) uses the traditional Dirac (FN,γ
1 (Q2))

and Pauli (FN,γ
2 (Q2)) notation for the form factors. These are related to the Sachs form
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factors by [10, 25]

GN,γ
E (Q2) ≡ FN,γ

1 (Q2)− τFN,γ
2 (Q2) (3.12)

GN,γ
M (Q2) ≡ FN,γ

1 (Q2) + FN,γ
2 (Q2), (3.13)

where τ = Q
2

4m
2
N

is a kinematic factor. These form factors are often given as isospin

combinations, where the isoscalar (∆T = 0) and isovector (∆T = 1) combinations are

defined as

G∆T=0
E(M) (Q

2) =
1

2
[Gp

E(M)(Q
2) +Gn

E(M)(Q
2)],

G∆T=1
E(M) (Q

2) =
1

2
[Gp

E(M)(Q
2)−Gn

E(M)(Q
2)],

(3.14)

and similarly for F∆T=0
1(2) and F∆T=1

1(2) .

Using the Sachs form factors the elastic electron-nucleon cross section can be written as

dσ

dΩ
=

(
dσ

dΩ

)
Mott

Ek
′

Ek

[GN,γ
E (Q2)]2 + τ [GN,γ

M (Q2)]2

1 + τ
+ 2τ [GN,γ

M (Q2)]2 tan2 θLab
2 , (3.15)

This expression is known as the Rosenbluth formula [10, 26]. GN,γ
E and GN,γ

M contain the

structural information about the nucleon’s charge and magnetization distributions. As

these form factors are defined in momentum space, their Fourier transformation to the

zero energy transfer frame (ν = 0), the so called Breit frame, gives the spatial charge and

magnetization distributions of the nucleon [10]. In the limit Q2 → 0, the form factors yield

the electric charge and magnetic moment of the nucleon. For the example of the proton:

Gp,γ
E (0) = Qp

EM = 1 and Gp,γ
M (0) = µp = 2.79µN [9].

Theoretically, it is difficult to derive an expression for these form factors from first

principles. A long series of cross section measurements have therefore been performed at a

range of momentum transfers in an attempt to map the Q2 dependence of these form factors.

Experimentally, the form factors have been found to have a Q2 dependence that generally

follows the dipole function. This function, labeled GD, can be written as [10]

GD(Q
2) =

(
1 +

Q2

0.71GeV2

)−2

= (1 + 4.97τ)−2. (3.16)
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In the literature, the extracted form factors from nucleon cross section measurements are

usually plotted as a ratio of the form factor over the dipole form, which shows any deviation

from unity. The only exception to this dipole functional form is the neutron’s electric

form factor (Gn,γ
E ), which has a proportional Q2 dependence as the neutron does not have

an electric charge. It is important to note that the neutron’s form factors are typically

determined from cross section measurements performed on light nuclei, such as deuterium

or helium-3, as no pure neutron targets exists. The extraction of the neutron’s form factors

thus requires systematic corrections for the proton’s contribution in those measurements.

For a summary of the measurements performed to date, along with examples of the plots of

world data, see articles [27, 28].

There are two interesting discrepancies associated with the proton’s electric form factor

that should be briefly mentioned, as they are deep sub-fields of research themselves. The first

is known as the two-photon exchange (TPE) problem. Early cross section measurements at

Q2 greater than 1GeV2 used the traditional Rosenbluth separation method, which disagreed

with the more modern target polarization measurement techniques. This disagreement

is partial resolved with the realization that higher-order, or multiple photon exchange,

corrections were needed to fully understand the Q2 dependence of Gp,γ
E . For those interested

in this issue, more detail is given in the literature [27–29].

To use these extracted nucleon form factors, they are often parameterized with a

fit. Historically, parameterizations by Galster et al. [30] have been used, however newer

parameterizations are available, for example see the recent publication by Z. Ye et al. [31].

Parameterizing the low Q2 dependence of Gp,γ
E has led to the second discrepancy mentioned.

This is related to the proton’s charge radius problem. Since the Fourier transform of the

nucleon form factors yields spatial distribution information, it can be shown that in the

limit Q2 → 0 the radius of the charge distribution (〈r2N 〉
1
2 ) can be written as

〈r2N 〉 = −6
dGN

E (Q2)

dQ2

∣∣∣∣∣
Q

2
=0

. (3.17)

A derivation of Eq. (3.17) can be found in T. W. Donnelly’s text [10]. Originally, there

was disagreement between two methods for determining the proton’s charge radius. The
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first method uses electron-proton scattering data fits to Gp,γ
E and Eq. (3.17). The second

type of determination is made via atomic Lamb shift measurements performed on atomic

and muonic hydrogen. Early analyses indicated that the electron-proton scattering method

produced a charge radius that agreed with the atomic Lamb shift result, but disagreed with

the muonic hydrogen Lamb shift result. Later alternative analysis of the electron-proton

scattering results by D. W. Higinbotham et al. [32] have brought the charge radius into

agreement with the muonic hydrogen result. It is fair to say that this is an active field

of research, searching to find consensus on the correct value of the proton’s charge radius.

For present values of the charge radius and their corresponding references, see the PDG

listing [9].

In addition to the electromagnetic electron-nucleon scattering form factors, there are

also neutral-weak form factors. Just like their electromagnetic analogs, they describe the

extended structure of the nucleon probed in neutral-weak Z0 exchange. Following a similar

procedure to that used to derive the electromagnetic form factors, the neutral-weak current

can be related to the neutral-weak version of the Dirac (FN,Z
1 (Q2)) and Pauli (FN,Z

2 (Q2))

form factors by

〈N | Jµ
Z |N〉 = ū

[
γµFN,Z

1 (Q2) +
iσµν

2mN
qνF

N,Z
2 (Q2) + γµγ5GN,Z

A (Q2)

]
u. (3.18)

GN,Z
A , the weak axial-vector form factor, is introduced to describe the axial-vector structure

of the neutral-weak interaction. The neutral-weak version of the Dirac and Pauli form factors

can be related to their Sachs version using analogous relations to those given in Eqs. (3.12)

and (3.13).

Experimentally, the functional form of these form factors are not well known, mainly

due to the difficulties of separating out the neutral-weak response from the dominant

electromagnetic response in elastic electron-nucleon scattering. The reason for this will be

discussed in more detail in the next section. The neutral weak form factors can be expressed

solely in terms of the electromagnetic form factors by way of a decomposition involving the

nucleon’s constituent quark’s form factors. This procedure is only possible because of the

mixing between the electromagnetic and weak sectors of the SM. A detailed discussion of
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this procedure can be found in reference [10, 33], but a brief summary is given here.

The decomposition of the electromagnetic and neutral weak form factors can be written

as the following set of sums over quark flavour (f):

GN,γ
E(M) =

∑
f=u,d,s

Qf
EMG

f
E(M), (3.19)

GN,Z
E(M) =

∑
f=u,d,s

gfVG
f
E(M), (3.20)

GN,Z
A =

∑
f=u,d,s

gfAG
f
A. (3.21)

Qf , gfV , and g
f
A are the electroweak charges and couplings introduced in Section 2.3.2. Only

the three lightest quark flavours are considered in the decomposition, as the remaining

heavier flavours only contribute to the uncertainty on the order of 10−2 relative to leading

terms [33]. In expanded form, the form factors in the case of the proton (N = p) are written

as

Gp,γ
E(M) =

2
3G

u
E(M) − 1

3G
d
E(M) − 1

3G
s
E(M), (3.22)

Gp,Z
E(M) = (1− 8

3 sin
2 θW )Gu

E(M) + (−1 + 4
3 sin

2 θW )(Gd
E(M) +Gs

E(M)), (3.23)

Gp,Z
A = Gu

A −Gd
A −Gs

A. (3.24)

A neutral weak form factor is then derived by imposing isospin symmetry (labels p
 n and

u
 d) along with taking the proper linear combination of constituent quark electromagnetic

form factors to match those of the nucleons. This form factor expression can be written as

GN,Z
E(M) = (1− 4 sin2 θW )Gp,γ

E(M) −Gn,γ
E(M) −Gs,γ

E(M)

= Qp
WG

p,γ
E(M) +Qn

WG
n,γ
E(M) +Qs

WG
s,γ
E(M),

(3.25)

where it depends only on the electromagnetic form factors of the proton, neutron, and

strange quark sea, their corresponding weak charges, and the electroweak mixing parameter

sin2 θW .

The strange quark electromagnetic form factor is introduced in the decomposition to
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account for any non-zero strangeness that might contribute to the ground state of the

nucleons, namely any contribution that comes from the quark sea. In a similar fashion to

the electromagnetic form factors of the nucleon, the strange quark electromagnetic form

factors have certain behavior in the static limit, Q2 → 0. The electric strange form factor,

Gs
E(0) = 0, as the nucleon has no net strangeness. However, due to fluctuations in the

strange quark sea, the radius of the strange charge distribution (〈r2s〉) is possibly non-zero [10].

Using an analogous equation to Eq. (3.17) but applied to the strange quark electromagnetic

form factor, the strange radius (r2s) can be related to a parameter called ρs, which quantifies

the amount of strange quark sea contributions by the relation 〈r2s〉 = − 3ρs
2m

2
N

. The magnetic

strange form factor in the static limit becomes, Gs
M (0) = µs, where µs is the strange magnetic

moment. When the Q2 dependence of the strange form factors are needed, both ρs and µs

are used as coefficients on a dipole parameterization [33]. This parameterization is given by

Gs
E(Q

2) ≡ ρsτG
V
D(Q

2),

Gs
M (Q2) ≡ µsG

V
D(Q

2),

GV
D(Q

2) = (1 + 4.97τ)−2.

(3.26)

Again, τ = Q
2

4m
2
N

is a momentum-transfer dependent kinematic factor. A series of parity-

violating electron scattering experiments have been conducted over the last two decades with

the intent to determine the strange electromagnetic form factors over a range of momentum

transfers. An excellent review of the experimental results along with current determinations

of the strange quark electromagnetic form factors can be found in the literature [34]. In

addition to experimental determination, the strange form factors have also recently been

calculated to high precision using lattice QCD methods [35, 36].

The previously introduced axial form factor is also often parameterizated with a dipole

type Q2 dependence. In the low-Q2 region, Q2 ≤ 1GeV, the form factor is written as

GA(Q
2) = ĜAG

A
D(Q

2),

GA
D(Q

2) =

(
1 +

Q2

M2
A

)−2

.
(3.27)
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The axial mass is M2
A = 1.00± 0.04GeV2 and the coefficient ĜA = −1.2701± 0.0025 are

determined from a world fit of neutrino scattering data [37].

3.2.2 Electron-Nucleus Scattering

For the case of many-body nuclear systems, such as nuclei, the form factors are also

represented by longitudinal and transverse components. Each type of component is typically

represented by a multipole expansion based on the angular momentum (J) and parity (π)

quantum numbers of initial and final nuclear states. The form factor decomposed into

longitudinal and transverse components can be written as

F 2(q) = vLF
2
L(q) + vTF

2
T (q). (3.28)

This expression introduces two electron kinematic factors vL and vT , which correspond to

the longitudinal and transverse components. These kinematic factors are given by

vL =
Q2

~q 2
,

vT =
Q2

2~q 2
+ tan2 θ

2 ,

(3.29)

where ~q 2 is the three momentum transfer and θ is the polar electron scattering angle.

Generally, the longitudinal and transverse components are expressed by the following

electromagnetic multipole expansion,

F 2
L(q) =

∑
J≥0

F 2
CJ(q), (3.30)

F 2
T (q) =

∑
J≥1

[F 2
EJ(q) + F 2

MJ(q)], (3.31)

where the components are broken down into further sub-components that carry the labels

Coulomb (CJ), Electric (EJ), and Magnetic (MJ). Each sub-components is related to the

expectation value of the corresponding electromagnetic multipole operator acting on the

initial (final) angular momentum-parity state (
∣∣Jπ

i(f)

〉
) of the nuclear system. These are
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defined by the following set of relations

FCJ(q) ≡
√
4π√

2Ji + 1

〈
Jπ
f

∣∣ |M̂J(q)| |J
π
i 〉 ,

FEJ(q) ≡
√
4π√

2Ji + 1

〈
Jπ
f

∣∣ |T̂ el
J (q)| |Jπ

i 〉 ,

FMJ(q) ≡
√
4π√

2Ji + 1

〈
Jπ
f

∣∣ |T̂mag
J (q)| |Jπ

i 〉 .

(3.32)

Further information regarding the electromagnetic multipole operators M̂J(q), T̂
el
J (q), and

T̂mag
J (q) can be found in T. W. Donnelly’s text [10].

In the elastic electromagnetic scattering case, where the initial state of the nuclear system

is equal to the final state, parity symmetry restricts the type of multipole components that

are available in the expansion [10]. The longitudinal form factor under parity symmetry

continues to be an expansion of CJ multipoles of angular momentum, as it is in the general

case given in Eq. (3.30), but for J ≥ 0 (for even J). However, the transverse form factor

becomes restricted to only the transverse MJ multipole sub-components of J ≥ 1 (for odd

J), as the EJ components are prohibited. In addition to these parity symmetry restrictions,

the multipole expansion also becomes truncated by a conservation of angular momentum

restriction.

Consider the Al27 nucleus, as it is of interest to this dissertation. Aluminum has a

ground state angular momentum of Jπ
0 = 5

2

+
[38]. In electromagnetic electron-aluminum

scattering the maximum number of multipole terms allowed in the expansion is 2J0 − 1 for

the longitudinal form factor and 2J0 for the transverse form factor. In list form, the allowed

multipole terms for aluminum are: C0, C2, C4, M1, M3, and M5.

Historically, a harmonic oscillator form factor parameterization by T. Stovall et al. [39]

has been used to describe the multipole structure of the aluminum nucleus. More recently,

C. J. Horowitz [40] has performed a relativistic mean field (RMF) model calculation to

motivate the work which is discussed later in this dissertation. C. J. Horowitz’s calculation

assumes the extreme single-particle model, which is a proton hole in a filled 1d5/2 shell of a

RMF. As the Qweak experiment is interested in forward-angle scattering, C. J. Horowitz only

considered Coulomb multipole contributions to the calculated form factor and neglected
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transverse contributions. Transverse contributions are suppressed at forward angles by

the combination of the vT kinematic factor and the size of the transverse multipoles when

compared with the Coulomb multipoles. To confirm that this assumption is valid at Qweak

kinematics, C. J. Horowitz compared his calculation with cross section measurements that

were conducted in a kinematic range, in terms of Q2, that overlaps that of Qweak. Data used

for this comparison were taken from G. C. Li et al. [41]. There are also electromagnetic

back-angle (θ > 90°) scattering data which are more sensitive to transverse form factor

contributions. For those who are interested see [42, 43] for an extreme single-particle model

calculation of the M1, M3, and M5 transverse multipole form factors of aluminum.

For elastic electromagnetic scattering C. J. Horowitz calculates the longitudinal form

factor of aluminum to be a sum of the squares of the possible Coulomb multipoles scaled by

the proton’s electric form factor in an expression given by

F 2
L(q) = (Gp,γ

E (q))2
[
|FC0(q)|

2 + |FC2(q)|
2 + |FC4(q)|

2

]
. (3.33)

The squares of the C0, C2, C4 multipoles are plotted versus q in Fig. 3.4. It is clear by

that plot that the C0 multipole is the dominant contribution to the form factor followed by

the C2 contribution. Thus C. J. Horowitz further simplifies his form factor calculation by

dropping the C4 contribution, which is about the same order of magnitude as the transverse

magnetic multipole contributions at 10−4–10−5, see Fig. 3.4.

Additional corrections are also needed to account for Coulomb distortions effects, also

known as distorted wave (DW) effects. As the incoming electron scatters from the dense

positively-charged volume of the nucleus, the electron feels an acceleration or deceleration,

when it is either incoming or outgoing, from the Coulomb potential of the electromagnetic

force. These types of effects are traditionally taken into account by numerically solving the

Dirac equation using the plane-wave Born approximation (PWBA) and are included in C. J.

Horowitz’s calculation for the C0 multipole contribution [40].

C. J. Horowitz’s best estimate for the elastic electromagnetic electron-aluminum scattering
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Figure 3.4: Squared Coulomb form factors for aluminum over a momentum transfer (q)
range of interest for the Qweak experiment. Calculated using a RMF model. Recreated,
using data tables given by C. J. Horowitz [44], from his original calculation [40].

cross section at Qweak kinematics is

dσ

dΩ
≈ dσDW

dΩ
(C0) +

(
dσ

dΩ

)
Mott

ξ2|FC2(q)|
2, (3.34)

where dσDW (C0) is the Coulomb distortion corrected cross section containing only the C0

multipole contribution, while ξ is a parameter used to bound the nuclear structure and

Coulomb distortion effects on the C2 multipole contribution. The C2 contribution becomes

particularly important around the diffractive minimum of the C0 contribution, as seen in

Fig. 3.4. To bound the uncertainty in the calculation, C. J. Horowitz allows ξ to vary from

0.5–1.5 with the nominal value of ξ = 1.0. The differential cross section and uncertainty

band from C. J. Horowitz’s calculation can be seen in Fig. 3.5.

Just as with the electron-nucleon scattering case, electron-nucleus scattering also has

neutral-weak form factors, denoted by the symbol FW
CJ(q). C. J. Horowitz calculates these

terms by scaling the electromagnetic form factors with the respective weak charges of the

nucleons in the aluminum nucleus. For their explicit forms, see his publication [40]. These
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Figure 3.5: Forward-angle elastic electron-aluminum cross section calculated at E =
1.16GeV with a RMF model. Uncertainty given by ξ2 parameter. Recreated, using data
tables given by C. J. Horowitz [44], from his original calculation [40].

weak form factors will be used in the next section to calculate an electroweak observable

known as a parity-violating asymmetry.

3.3 Parity-Violating Asymmetry

As previously mentioned in Section 3.2, when electrons scatter from a nucleus they either

interact via the exchange of a photon or the neutral weak Z0 boson. The dominant process

is the electromagnetic photon exchange. The exchange of the neutral weak Z0 is suppressed

during this interaction due to its large mass. However the neutral weak interaction can

be accessed by defining a measurable observable that utilizes the fact that the weak force

violates parity symmetry.

A differential cross section is proportional to the square of the total amplitude from

the scattering matrix [19]. Accounting for both the electromagnetic and neutral weak

interactions in the single boson exchange formalism, the differential cross section can be
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related to the scattering amplitude (M) by

dσ± ∝ |Mγ +MZ |
2 = |Mγ |

2 ± 2Re(M∗
γMZ) + |MZ |

2. (3.35)

The neutral weak amplitude (MZ) in the interference term, 2Re(M∗
γMZ), undergoes a

sign change during a parity transformation [10]. Thus the differential cross section becomes

dependent on the parity state of the scattering system. The interference term can be isolated,

and thus measured, by defining a physical observable called a parity-violating asymmetry.

Experimentally, a parity transformation in the laboratory is difficult so a helicity trans-

formation, introduced in Section 2.2.2, of a polarized electron beam is used instead. This

parity-violating asymmetry is a difference of helicity-dependent differential cross sections

(dσ±) and has the form of

APV =
dσ+ − dσ−
dσ+ + dσ−

. (3.36)

By substituting in Eq. (3.35) into Eq. (3.36) and assuming |Mγ | � |MZ |, APV reduces to

APV ≈
Re(M∗

γMZ)

|Mγ |
2 . (3.37)

To gain an appreciation of how small this parity-violating asymmetry is, it is best to

define a nominal asymmetry, absent of structure effects, in terms of the couplings associated

with each scattering amplitude. The squared electromagnetic amplitude is proportional to

(4πα
Q

2 )
2. At low four-momentum transfers, as in this experiment, the interference term is

proportional to 4παGF√
2Q

2 . Thus ignoring factors of the SM couplings generally of O(1) the

ratio in Eq. (3.37) is proportional to A0, which is defined as

A0(Q
2) ≡ − GFQ

2

4πα
√
2
, (3.38)

where GF is the Fermi constant previously introduced and α is the fine-structure constant [37].

Evaluating A0 at Q2 = 0.025GeV2 yields values on the order of 10−6. For ease of later

notation these small asymmetry values are given in units that make use of the part-per

notation. Asymmetries from this point forward in text will be given in units of part-per-
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million (ppm ≡ 10−6) or part-per-billion (ppb ≡ 10−9).

3.3.1 On Nucleons

The parity-violating elastic electron-nucleon asymmetry can be written in the Born approxi-

mation, in the laboratory frame, using the previously defined Sachs form factors as given

by [37]

AeN
PV = A0

[
εGN,γ

E GN,Z
E + τGN,γ

M GN,Z
M − (1− 4 sin2 θW )ε′GN,γ

M GN,Z
A

ε(GN,γ
E )2 + τ(GN,γ

M )2

]
, (3.39)

where the kinematic factors, included the previously defined τ , are given by

τ =
Q2

4m2
N

,

ε =
1

1 + 2(1 + τ) tan2 θ
2

,

ε′ =

√
τ(1 + τ)(1− ε2).

(3.40)

In the case of the proton, these quantities have been included in a more general expression

as given by [33, 45, 46]

Aep
PV = A0

[
Ap

V +Ap
s +Ap

A

ε(Gp,γ
E )2 + τ(Gp,γ

M )2

]
,

Ap
V = Qp

W [ε(Gp,γ
E )2 + τ(Gp,γ

M )2]− [εGp,γ
E Gn,γ

E + τGp,γ
M Gn,γ

M ],

Ap
s = −εGp,γ

E Gs,γ
E − τGp,γ

M Gs,γ
M ,

Ap
A = −(1− 4 sin2 θW )ε′Gp,γ

M Gp,Z
A .

(3.41)

In the forward angle limit, when θ → 0 and Q2 → 0, the kinematic variables given

in Eq. (3.40) reduce to τ → 0, ε → 1, and ε′ → 0. In this limit the hadronic structure

previously described by the nucleon form factors can be described by a single term called

B(Q2, θ). Equation (3.41) in this forward angle limit becomes [46, 47]

Aep
PV

θ→0−−→ A0[Q
p
W +Q2B(Q2, θ)]. (3.42)
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Figure 3.6: Univariate projection from a multivariate reduced asymmetry fit to the world’s
parity-violating electron scattering data. The low Q2 diamond (red) is the reduced asym-
metry measured by Qweak during the commissioning period. The vertical axis intercept of
the best fit line (black), with 1σ uncertainty band (yellow), is the proton’s weak charge.
The arrow (black) is the SM value of the weak charge. Figure taken from early Qweak

publication [49].

At Qweak kinematics the hadronic structure term Q2B(Q2, θ) contributes about ∼ 30% to

the total asymmetry and its uncertainty is dominated by the uncertainties in the strange

radius and magnetic moment. For convenience, the A0 term is divided out allowing a new

quantity known as the reduced asymmetry to be defined. The reduced asymmetry takes the

form of

A
ep
PV ≡ Aep

PV

A0

= Qp
W +Q2B(Q2, θ). (3.43)

In the case of the Qweak experiment, the weak charge of the proton can be determined

using Eq. (3.43) in a multivariate global fitting procedure first descried by R. D. Young

et al. [48]. The multivariate fit is performed on the world’s data set of parity-violating

electron scattering asymmetries and is used to extrapolate to Q2 = 0, where the intercept is

the value of the weak charge of the proton. A univariate projection of this global fit can be

seen in Fig. 3.6, which is from an analysis of the Qweak commissioning data set [49]. Results

of an updated global fit that includes the final high precision results of the Qweak experiment

will be given in Chapter 8.
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3.3.2 On Nuclei

In the case of a nucleus, the parity-violating asymmetry in the Born approximation, assuming

proton and neutron distributions are symmetric and the same, can be written as

ABorn = AeA
PV = A0QW = A0[ZQ

p
W +NQn

W ], (3.44)

where Z (N) are the number of protons (neutrons) in the nucleus and Qp
W (Qn

W ) are the

weak charges of the respective nucleons [40].

When a nucleus has different proton and neutron distributions, the structure differences

can be included by taking the expression above and scaling it by the weighted sum of the

products of the contributing electroweak multipoles. For the case of aluminum, which is

slightly asymmetric (oblate spheroid, see reference [50]), the structure differences modify

the parity-violating asymmetry expression as follows

AeAl
PV = A0

FC0F
W
C0 + FC2F

W
C2 + FC4F

W
C4

|FC0|
2 + |FC2|

2 + |FC4|
2 . (3.45)

Just as with the cross section calculation previously discussed, C. J. Horowitz also makes

a few simplifications and modifications. He includes Coulomb distortions and neglects

contributions from the electroweak C4 multipole, opting to use only the C0, C2, C0weak, and

C2weak with the ξ2 parameter [40]. He calculates the asymmetry to be

AeAl
PV ≈ dσDW (C0)ADW (C0) + dσMottξ

2FC2F
W
C2A0

dσDW (C0) + dσMottξ
2|FC2|

2 , (3.46)

where dσDW (C0) is the C0 distorted-wave cross section introduced in Eq. (3.34), ADW (C0)

is the distorted-wave asymmetry derived from Eq. (3.45) by dropping multipole terms other

than C0, and dσMott is the Mott cross section from Eq. (3.10) along with other recently

defined terms. Note that even though this calculation includes Coulomb distortion effect to

first order it neglects effects from isospin mixing and the strange quark contributions. More

information about isospin mixing can be found in reference [51], while the formalism of

strange quark effects on parity-violating asymmetries is discussed in detail in reference [33].
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Figure 3.7: Forward-angle elastic parity-violating aluminum asymmetry calculated at E =
1.16GeV with a RMF model. The blue curve is the Born approximation asymmetry given in
Eq. (3.44). The green curve is the distorted-wave asymmetry considering only contributions
from the C0 multipole. The red curve is C. J. Horowitz’s best estimate for the asymmetry
as given in Eq. (3.46). The red uncertainty band is determined by the ξ2 parameter.
Recreated, using data tables given by C. J. Horowitz [44], from his original calculation [40].

A plot of C. J. Horowitz’s calculated aluminum asymmetry can be seen in Fig. 3.7.

3.3.3 Neutron Distribution Radius and Skin

A parity-violating asymmetry is an effective measurement of the total neutral-weak form

factor (FW ) as given by

APV ≈ A0

FW

FEM
, (3.47)

if the electromagnetic form factor (FEM ) is known, which is typically the case for many

nuclei. In a similar fashion to the formalism introduced in Section 3.2, the Fourier transform

of this weak form factor yields the weak density (ρW ) of the nucleus. This density can be

related to the individual nucleon densities (ρN ) by the relation [40]

ρW (~r) ≈ Qp
Wρp(~r) +Qn

Wρn(~r), (3.48)
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where QN
W are the respective nucleon weak charges. Since the weak charge of the neutron is

much larger than that of the proton, the weak density is predominantly a measure of the

neutron density, or distribution, in the nucleus.

C. J. Horowitz et al. [52], introduced the idea that a single forward-angle parity-violating

asymmetry measurement could use this effect to extract the radius of the neutron distribution

radius (Rn), assuming minor form-factor model-dependencies. They show the squares of

radii of these distribution are defined by the following set of relations

R2
W ≡ 1

QA
W

∫
d3~r r2ρW (~r),

R2
p ≡

∫
d3~r r2ρp(~r),

R2
n ≡

∫
d3~r r2ρn(~r).

(3.49)

RW and RN are the weak and nucleon distribution radii and QA
W is the weak charge of the

nucleus with mass A.

As electromagnetic scattering yields information about the charge radius (Rch) of the

nucleus and by extension its proton distribution radius (Rp), parity-violating electron

scattering yields information about both the neutron and proton distributions, as the

neutral-weak interactions couples to both. Thus the weak radius can be related to both

the proton and neutron distribution radii. However, corrections are needed for the point

proton and neutron rms radii, the strange radius, and the charge radius of the nucleus. C.

J. Horowitz et al. [53] have calculated this relationship for spin-zero nuclei and they find a

relation between Rn, RW , and Rch given by

R2
n =

QA
W

NQn
W

R2
W +

ZQp
W

NQn
W

R2
ch − 〈r2p〉 −

Z

N
〈r2n〉+

Z +N

NQn
W

〈r2s〉, (3.50)

where Rch is the charge radius of the nucleus taken from experiment (see Eq. (3.17)), 〈r2p〉

is the proton’s charge radius, 〈r2n〉 is the neutron’s charge radius, and 〈r2p〉 is the strange

radius. Additionally, the proton distribution radius (Rp) can be related to the experimentally

measured charge radius (Rch) with the inclusion of several corrections. A. Ong et al. [54]
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have calculated this relation for spherically symmetric nuclei, which is given by

R2
p = R2

ch − 〈r2p〉 −
N

Z
〈r2n〉 −

3

4m2
N

− 〈r2so〉, (3.51)

where 〈r2p〉 is the proton’s charge radius, 〈r2n〉 is the neutron’s charge radius, mN is the mass

of the nucleon, and 〈r2so〉 is the spin-orbit coupling term.

Traditionally, a phenomenological model such as the Woods-Saxon function is used to

describe the functional form of these densities. The Woods-Saxon function, also known as a

two-parameter Fermi function, has the form of

ρ(r) =
ρ0

1 + exp
(
r−R
a

) , (3.52)

where ρ0 is the normalization factor, R is the radius of the density function, and a, the

nuclear diffuseness, is related to the (10–90% height) skin thickness (t) by the relation

t = 4 ln(3)a [10]. The density normalization factor ρ0 is determined by the following

normalization relations:
∫
d3~r ρp(~r) = Z and

∫
d3~r ρn(~r) = N . The Woods-Saxon function

is not the only model that can be used, other more complicated functions, such as the Helm

model or RMF models, can also be used to describe these densities. An example of a more

involved analysis using the Helm and various RMF models has been applied to the PREX

Pb208 measurement [53].

An example of the Woods-Saxon function plotted for the nucleon densities in aluminum

is given in Fig. 3.8, where the nucleon radii are taken from C. J. Horowitz’s aluminum

calculation [40]. The functions are normalized using the previously mentioned normalization

conditions. They also both assume a typical nuclear diffuseness value of 0.54 fm [10, 52]. It is

easy to identify that the functions are slightly different, due to the normalization. Aluminum

is a slightly asymmetric nucleus with one additional neutron compared to the total number

of protons. However, it is easy to imagine the case when a nucleus is even more neutron

rich. For example, Pb208 would have an even larger difference. This difference is often called

the neutron skin value of the nucleus. The neutron skin is simply defined as the difference
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Figure 3.8: Woods-Saxon model of the nucleon densities in Al27 .

between the neutron and proton distribution radii, as given by

∆R ≡ Rn −Rp. (3.53)

For neutron-rich nuclei, like Pb208 , the radius of the neutron distribution determines

the density dependence of the symmetry energy and pressure in the equation of state of

neutron-rich matter [40, 52]. Knowledge of this density dependence is particularly important

for nuclear structure models used to study neutron-rich systems, such as neutron stars [55].

In the case of lighter nuclei, where N ≈ Z, neutron distribution radii are independent

of this density dependence in the symmetry energy [40]. However, measurements of the

neutron distribution radii from these light nuclei act as additional constrains on these nuclear

structure models [40].

3.3.4 Electroweak Radiative Corrections

The theoretical formalism thus far has only been described in the Born approximation, or

single boson exchange, which is a simplification of the natural world. The one exception
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Figure 3.9: Examples of higher-order electromagnetic multi-boson exchange diagrams.

to this assumption was the previously mentioned Coulomb corrections included in C. J.

Horowitz’s aluminum calculation. All interactions involve higher-order multiple boson

exchange diagrams, including electroweak interactions. When measured electroweak observ-

ables are compared with theoretical SM calculations, these higher order effects have to be

accounted for by applying, what are known as, radiative corrections.

There are two categories of radiative corrections: electromagnetic (EM) and electroweak

(EW). EM radiative corrections are modifications for effects arising from both real and

virtual photon exchange, either in or out of the field of the nucleus. These in or out of

field modifications are generally referred to as internal or external corrections. Internal

corrections come from higher-order diagrams involving momentum loops of virtual photons

and fermions. Examples of these diagrams, such as the self energy, vertex, and vacuum

polarization types, can be seen in Fig. 3.9. External corrections usually account for the

emission of real photons as a charged probe enters the field of the nucleus, in what is known

as bremsstrahlung, or braking radiation. Both of these types of corrections effect not only

the kinematics of the interaction, but also the cross section and asymmetry. EM internal

and external corrections for electron-nucleon scattering have been calculated before by L.

W. Mo and T. S. Tsai [56]. For the more general case of radiative corrections applied to

electron-nucleus scattering, see reference [57]. The other type, EW radiative corrections, are

similar to the EM except they consider diagrams that include exchanges of the weak W±

and Z0 bosons. Examples of these types of diagrams are given in Fig. 3.10. EW radiative

corrections are particularly important when extracting sin2 θW from a measured electroweak

observable, such as the proton’s weak charge.

Taking into account these higher-order diagrams actually causes the couplings associated
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Figure 3.10: Examples of higher-order electroweak multi-boson exchange diagrams.

with these interactions to become dependent on an energy-scale. For example, the EM

coupling α, which is the fine structure constant as Q2 → 0, becomes energy-scale depen-

dent from vacuum polarization diagram contributions. These diagrams lead to divergent

momentum integrals, which are corrected for with the use of renormalization techniques

from quantum field theory, see reference [19, 58]. The interpretation of this effect is that

virtual electron-positron pair loops hide, or screen, the true charge. At large distances only

the screened charge can be seen, but as the energy increases and the distance decreases

the interaction starts to see the true charge. This energy-scale dependence of α is known

generally as a running of a coupling. In the case of EW interactions, the weak coupling,

parameterized by sin2 θW , is also energy-scale dependent. Various calculations of this running

have been performed previously [59–61]. An example of the energy-scale dependence, given

in the modified minimal subtraction (MS) renormalization scheme, can be seen in Fig. 3.11.

Qweak’s determination of the proton’s weak charge is related to sin2 θW by a selection of

radiative corrections written in the form of [47]

4 sin2 θW (0) = 1−
Qp

W −�WW −�ZZ −�γZ(0)

ρ+∆e

+∆′
e (3.54)

where ρ is the renormalization term of the ratio of the low energy neutral-current and charge-

current interactions, ∆e is the electron vertex correction involving the Z0, ∆′
e is the electron

anapole moment contribution, �WW and �ZZ are the WW and ZZ box contributions, and

�γZ(0) is the γZ-box diagram. The pure weak box diagrams are easily calculated using

perturbation theory. However, the γZ-box diagram can be problematic to calculate, due

to the mass difference between the massless photon (γ) and the heavy Z0. This energy
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Figure 3.11: Running of the weak mixing angle with momentum transfer (Q). Figure taken
from reference [59].

dependent correction has been the subject of much interest. Qweak has made an ancillary

asymmetry measurement in a kinematics region important for this correction and is the

subject of the future dissertation by J. Dowd [62].

3.4 Motivation for the Qweak experiment

Prior to the Qweak experiment, the only parity-violating asymmetry data available for a

weak charge extraction was above Q2 = 0.1GeV2. Performing a world fit to this data, as

outlined in Section 3.3.1, would yield large uncertainties as the reduced asymmetry fit was

extrapolated to Q2 = 0.0. The Qweak experiment proposed to make a low Q2 measurement

of the elastic electron-proton asymmetry which would act as a fulcrum in an updated world

fit, providing a dramatically improved constraint on the extrapolation uncertainty. In this

low Q2 the asymmetry’s dependence on the hadronic contribution is small, thus the Qweak

measurement is said to be the first “direct” measurement of the proton’s weak charge.

In addition to providing a determination of the proton’s weak charge, and the corre-

sponding quark couplings, the Qweak measurement also provides a precision determination

of the weak mixing angle. Such a determination acts as a Standard Model test, which
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Figure 3.12: The isoscalar versus the isovector combinations of the quark couplings ex-
tracted from the Qweak Run 0 data and the cesium atomic parity-violating result. Figure
taken from early Qweak publication [49].

can be compared to other previous precision measurements that make weak mixing angle

determinations. These precision measurements also have the ability to set mass limits on

new particles outside of the SM. This section will discuss these previous results and several

candidate theories of physics beyond the SM that the Qweak result would impact.

3.4.1 Previous Results

As introduced in Section 2.3.3, a determination of the proton’s weak charge allows for the

extraction of the quark couplings, given precise data from a complementary experiment more

sensitive to the neutron. An example of such an experiment would be the low energy atomic

parity-violating measurement in cesium result [63, 64]. However, other experiments have

been able to put constraints on these couplings in the past [48]. Figure 3.12 is an example

of such a constraint plot that uses only the most precise determinations from the atomic

parity-violating result in cesium and the Run 0 data from the Qweak experiment.
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A slew of experiments with sensitivities to the weak mixing angle have also been

conducted before Qweak. At the lowest energy there are atomic parity-violation experiments

that measure the parity-violating effects that occur in the inner most electron orbitals of

certain heavy nuclei. These type of experiments have been conducted on thallium [65, 66],

lead [67], bismuth [68], and with the most precision, on cesium [63, 64, 69]. Towards the

medium energy range, numerous parity-violating electron scattering experiments have been

conducted over the years, all of with different goals. These objectives range from measuring

quark couplings to the nucleon’s strange quark content, along with testing for the signature

of new physics beyond the SM. An excellent review of medium energy parity-violating

electron scattering experiments, from past, present, and future, that have made or will make

weak mixing angle determinations can be found in reference [70]. At higher energy, around

the masses of the weak bosons, measurements have been made by collider experiments

at a variety of facilities. These results include measurements from the Tevatron, LEP,

SLC, and the LHC, see the electroweak model review in the PDG [9] for implications of

these measurements. Figure 3.13 shows the running of the weak mixing angle in the MS

renormalization scheme with a selection of the most precise determinations of sin2 θW as

extracted from these measurements [9].
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3.4.2 Physics Beyond the Standard Model

There are a number of candidate theories which describe physics beyond the SM (BSM).

The Qweak experiment has the ability to provide mass limits on particles predicted from a

particular class of these BSM theories. For example, the Qweak experiment has the ability to

provide limits to certain supersymmetric theories [71], theories with new Z′ bosons [72, 73],

and theories involving leptoquarks [74]. Discussion regarding the details of these examples

theories is considered outside the scope of this document.

Generally, new parity-violating lepton-quark physics can enter the SM Lagrangian with

the introduction of a new contact interaction given by [48]

LNP =
g2

4Λ2 ēγµγ5e
∑
q

hqV q̄γµq, (3.55)

where g is the coupling strength, Λ is the mass reach of the new physics, and hqV parameterizes

the isospin dependence with relations huV = cos θh (up quark) and hdV = sin θh (down quark).

Qweak’s sensitivity to this new contact interaction is given by the relation [46]

Λ±
g

= v

√
4
√
5

|Qp
W ± 1.96δQp

W −Qp
W (SM)|

, (3.56)

where v2 =
√
2/(2GF ), Q

p
W is the measured weak charge of the proton with uncertainty

δQp
W , and Qp

W (SM) is the SM predicted weak charge of the proton. Depending on the

candidate theory, a particular coupling g can be chosen, which allows the determination of

an upper mass limit. Any mass phase space below this limit is excluded. Typically these

mass limits enter the TeV range.

3.5 Beam-Normal Single-Spin Asymmetries

An alternative observable typically measured as a background by parity-violating electron

scattering experiments is a beam-normal single-spin asymmetry (BNSSA). These are parity-

conserving and time-reversal invariant quantities that arise when transversely polarized

electrons scatter from a nuclear target. They are caused by the interference between the
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one-photon and two-photon exchange amplitudes, when considering interactions beyond

the Born approximation. Written in terms of the differential cross sections and scattering

amplitudes, the BNSSA has the form of

Bn =
dσ↑ − dσ↓

dσ↑ + dσ↓ =
2 ImM∗

γγMγ

|Mγ |
2 , (3.57)

where dσ↑ (dσ↓) are the differential cross sections for electrons with spin parallel (anti-

parallel) to the normal vector n̂ = k×k
′

|k×k
′|
set by the scattering plane, and Mγ and Mγγ are

the one-photon and two-photon exchange amplitudes [75].

The imaginary part of the two-photon exchange amplitude is related to the leptonic

(Lµν) and hadronic (Wµν) tensors with [76]

ImMγγ =
e4

(2π)3

∫
d3~k1
2E1

LµνW
µν

Q2
1Q

2
2

, (3.58)

where Wµν is a function of the invariant mass of the intermediate nuclear state and the

incoming (outgoing) virtual photon momentum transfer Q2
1(2), see Fig. 3.14. The calculation

of this amplitude is usually performed by making various assumptions of the possible

intermediate states that can occur during the interaction. Previous calculations of this

observable has been performed for the proton [75, 77–81] and for a few spin-0 nuclei [76,

82]. No such calculation has yet been performed for Al27 . However, at forward-angles the

BNSSAs from nuclei were found, at first order, to scale with momentum transfer by [76]

Bn ≈ B̂n

A

Z

√
Q2, (3.59)

where A is the atomic mass of the nucleus, Z is its proton number, and B̂n is a proportionality

constant of approximately −30 ppmGeV−1 at Ebeam = 1GeV [76].

Experimentally, these asymmetries are measured as an azimuthally varying quantity. As

transversely polarized electrons scatter from an unpolarized target, a detector placed in the

scattering plane measures a BNSSA given by

Bn(φe) = Bn
~S · n̂ = Bn|~S| sin(φe − φs), (3.60)



CHAPTER 3. ELECTRON SCATTERING TECHNIQUES 52

e− (k′)

e− (k)

A(p′)

A(p)

k1

q1

q2
e− (k′)

e− (k)

A(p′)

A(p)

k1

q1

q2

Figure 3.14: Two-photon exchange diagrams that contribute to the BNSSA. Hashed blobs
connected by double line represent all of the possible intermediate states of the nucleus.
The intermediate electron carries momentum k1, where the four-momentum for the virtual
photons are q1 and q2, respectively.

z

y

x

ϕe

S

e(k)

e(k')

n

Scattering plane

ϕs

Figure 3.15: Diagram showing the scattering kinematics associated with azimuthal spin
dependence of beam-normal single-spin asymmetries. Figure taken from dissertation of B.
Waidyawansa [83].

where ~S is the spin of the electron in the transverse direction, n̂ is the unit vector perpen-

dicular to the scattering plane, φe is the azimuthal angle of the scatted electron, and φS is

the azimuthal angle of the spin direction. Fig. 3.15 shows the diagrammatic relationship

between these quantities. For example, an incoming electron with a transverse spin in the

vertical direction would yield a maximally non-zero asymmetry in detectors 180° out of

phase with the spin direction, which corresponds to detectors in the horizontal plane.

3.5.1 Previous Results

Previous parity-violating electron-scattering experiments have measured these BNSSA from

a small range of nuclei. The HAPPEX and PREX experiments made measurements of these

asymmetries on H1 , He4 , C12 , and Pb208 nuclei at forward angles [84]. The G0 experiment

performed additional measurements on H1 , except at higher momentum transfer [85].
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Figure 3.16: BNSSA measurements from the HAPPEX and PREX experiments compared
with theoretical calculation [76]. Figure taken from original publication [84]. The original
publication uses An to denote a BNSSA, which differs from the Bn notation used in this
document.

SAMPLE has also measured the H1 BNSSA, but at backward angles [86]. More recently,

the A4 collaboration measured backward-angle asymmetries for H1 and H2 nuclei [87].

The Qweak collaboration has made measurements of the BNSSA on H1 , C12 , and Al27 .

The lightest of these nuclei stand to confirm previous measurement performed at forward-

angles. The asymmetry from Al27 has never before been measured. Preliminary analyses of

the H1 and C12 asymmetries have been conducted by D. B. P. Waidyawansa [83] and M. J.

McHugh III [88], respectively. Chapter 6 discusses the analysis of the Al27 BNSSA.

One of the most interesting results from these previous measurements was the observed

disagreement PREX’s Pb208 measurement had with theory [84], see Fig. 3.16. This disagree-

ment is believed to be caused by the lack of Coulomb distortions in previous theoretical

calculations [76]. Since C12 is the next highest atomic mass nucleus to have this observable

measured, Qweak’s measurement of the Al27 BNSSA has the potential to support this expla-

nation for the disagreement. However, the upcoming CREX experiment [89] hopes to make

a measurement of this observable on Ca48 , which would have an even greater potential of

supporting the hypothesis that Coulomb distortion effects are required in these types of

calculations.
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Chapter 4

The Qweak Experimental

Apparatus

The custom-built Qweak experimental apparatus was constructed and installed in the experi-

mental Hall C at Thomas Jefferson National Accelerator Facility (Jefferson Lab), located in

Newport News, Virginia. It makes use of the Jefferson Lab accelerator to scatter polarized

electrons from fixed targets. A schematic drawing of the apparatus as assembled in Hall C

can be seen in Fig. 4.1. The apparatus was designed with three goals, as outlined in the

proposals for the experiment [1–3]. These were to achieve a high luminosity to minimize

the uncertainty from counting statistics, have a large solid-angle acceptance for elastic

scattering events, and use an apparatus designed with geometric symmetries that would

cancel helicity-correlated systematic backgrounds.

Installation of the apparatus started in late 2010 and ran into February 2011, which

marked the start of an early data commissioning period called Run 0. A photograph of the

apparatus during the installation phase can be seen in Fig. 4.2. This initial commissioning

period was used to test and evaluate the functionality of the apparatus and detector

subsystems. A small amount of initial physics data were recorded during that period.

The analysis of that commissioning period physics data has been published [49]. The

commissioning period was followed by two separate data taking periods referred to as Run

1 and Run 2. Run 1 started in late February 2011 and continued until May 2011. Run 2
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Figure 4.1: Isometric schematic drawing (CAD) of the Qweak experimental apparatus. The
incident electron beam enters from the left of the image. The major subsystems are the: a)
target (cyan), b) lead collimators (red), c) upstream luminosity monitors (white), d) hor-
izontal drift chambers (white), e) eight-fold symmetric toroidal magnetic spectrometer, f)
vertical drift chambers (pink), g) concrete shielding (yellow), h) main detectors (black/or-
ange), i) support structure (dark gray), j) iron shielding (green), k) lead beamline shielding
(red), and l) downstream luminosity monitors (not visible). Adapted from original figure
taken from the Qweak instrumentation publication [90].

started six months later, in November 2011 and continued until May 2012. The six month

accelerator shut-down period, separating the two runs, was used to improve elements of the

apparatus in an attempt to minimize the helicity-correlated systematic corrections. The hard

work put into these improvements during the down period allowed for increased efficiency in

the data taking during Run 2, which led to an improved statistical uncertainty compared

with Run 1.

The primary purpose of the apparatus was to perform a measurement of the parity-

violating elastic electron-proton asymmetry. To perform this measurement an aluminum cell
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Figure 4.2: Photograph of the Qweak apparatus during its installation into Hall C at Jef-
ferson Lab, prior to the installation of the shielding. Note the human figure located on top
of the yellow shielding blocks in font of QTOR as a reference to the size of the apparatus.

filled with liquid hydrogen was used as the primary target. Most of the beam time available

during Run 1 and Run 2 was dedicated to measuring the asymmetry from this target.

Table 4.1 gives a summary of typical apparatus parameters used to make this asymmetry

measurement.

Table 4.1: Typical experimental parameters for hydrogen target running.

Parameter Run 1 Run 2

EBeam [GeV] 1.16 1.16
PBeam [%] 89 89
Target Length [cm] 34.4 34.4
IBeam [µA] 160 180

Luminosity [cm−2 s−1] 1.5× 1039 1.7× 1039

Additionally, a selection of auxiliary targets were also used to measure background asym-

metries during dedicated periods of systematic study. A majority of this time was dedicated
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to measuring the aluminum background asymmetry for the weak charge measurement, using

a separate aluminum alloy target. The purpose of this measurement is discussed later in this

text. Table 4.2 gives typical apparatus parameters associated with measuring the asymmetry

on this separate target.

Table 4.2: Typical experimental parameters for aluminum target running.

Parameter Run 1 Run 2

EBeam[GeV] 1.16 1.16
PBeam [%] 89 89
Target Length [mm] 3.58 3.68
IBeam [µA] 25 60

Luminosity [cm−2 s−1] 3.2× 1036 7.8× 1036

The purpose of this chapter is to give an overview of the physical hardware required to

conduct the experiment. Occasionally, details are provided on elements of the apparatus

which are of direct interest to the analyses discussed in this dissertation. A more detailed

overview of all of the hardware and instrumentation can be found in the collaboration’s

instrumentation publication [90]. Further information about each hardware subsystem can be

found in a corresponding Ph.D dissertation authored by many of the early generation Qweak

students. For each of these subsystems, citations are given to these respective dissertations.

4.1 Apparatus Overview

The Qweak experiment started in the injector of Continuous Electron Beam Accelerator

Facility (CEBAF) at Jefferson Lab. There, an electron beam was generated and initially

accelerated with the desired current at maximum polarization. The resulting beam was

then further accelerated to approximately 1.16GeV with a single pass through the double

linear accelerator (linac) system of CEBAF. Once at that energy, the beam was directed to

the experimental hall. Upon reaching Hall C, the beam passed through two independent

polarimeters used to monitor the polarization of the beam during the experiment. Down-

stream of the polarimeters, beam diagnostic equipment recorded important beam current

and position information for later use in analysis. Finally, the electron beam entered the

target scattering chamber, where it was incident on a 34.4 cm long liquid hydrogen target
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cell or a thick solid target in an array of auxiliary targets. The thick target in combination

with the high current beam allowed the experiment to meet the first design goal of reaching

a high luminosity.

Electrons that scattered off the target then passed through the thin downstream vacuum

window of the target scattering chamber. A series of high-density collimators confined and

shaped the scattered electron profile before they entered the magnetic field of the toroidal

spectrometer (Qweak toroid, QTOR). The field of the toroid magnet momentum selected

elastically-scattered electrons and focused them onto the main detector array. Beam that

did not interact in the target passed through the apparatus to a shielded beam dump at the

opposite end of the experimental hall.

The main detector array consisted of eight synthetic quartz Cherenkov detectors posi-

tioned in an azimuthally-symmetric pattern about the beam axis. The symmetry of the

detector array was important as it suppressed the negative effects of any helicity-correlated

XY-plane beam motion and any residual transverse polarization in the electron beam. Both

needed to be minimized as they had the potential to lead to large systematic corrections in

analysis. The symmetry and large solid angle coverage of the detector array satisfied the

last two apparatus design goals of the experiment.

The experiment also employed a range of auxiliary detector systems. During low beam

current running, wire chambers were used to reconstruct paths of scattered electrons as they

passed through the apparatus on an event-by-event basis. The primary purpose of these

detectors was the precision determination of kinematic observables such as the momentum

transfer. Special radiation-hard detectors called luminosity monitors (lumis) were placed

close the beamline and used to monitor backgrounds. A spare detector just like the main

detectors was also used to monitor electron flux in the super-elastic region behind the main

detector array. Further details about these auxiliary detectors can be found in reference [90].

An overview of the components used in the experiment, on the level of the entire

accelerator and experimental hall, can be seen in Fig. 4.3.
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Figure 4.3: Overview of the apparatus elements needed to conduct the Qweak experiment.
See text for details on how the polarized electron beam was generated, delivered, monitored,
and used in the experiment.

4.2 Beam Generation and Acceleration

Generation of the polarized electron beam took place in the injector service building of

CEBAF. A high-power laser of a particular wavelength was used to excite electrons from a

semiconductor photocathode material using circularly polarized light. The wavelength of

laser light was specifically chosen to match that of the band gap energy associated with the

photocathode material. During this interaction the helicity state of the photon is transferred

to the freed electron, which allowed control of the produced electron’s polarization state.

The polarized electrons were then electromagnetically bunched together into packets and

accelerated, before they entered the linac portion of CEBAF.

To make use of the parity-violating effect of interest to this experiment, the helicity of the

electron beam was modulated between parallel and anti-parallel (right-handed or left-handed)
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states. This started with the generation of an electrical helicity signal. A custom made

VME board, located in an electrically isolated VME power crate in the injector, generated

an electronic signal at a frequency of 960.015Hz. Four helicity signals were combined to

create a helicity pattern called a quartet. The quartets took the form of either: (+−−+) or

(−++−). The helicity of the first period in the quartet was chosen using a pseudo-random

algorithm, which avoided helicity-correlated contamination of the signal recorded by the

experiment.

The circularly-polarized light used in the electron source originates from a laser emitting

linearly-polarized light, which was incident on a special birefringent optical element called a

Pockels cell. As the linearly-polarized light enters the Pockels cell, its birefrigent property

causes the light to take on a circular polarization with a given handedness, effectively acting

as a quarter-wave plate. The Pockels cell is useful as its birefrigence can be changed through

the use of an applied high-voltage electric field. Depending on the polarity of the applied

electric field, the handedness of the emitted circularly polarized light changes. The generated

helicity signal was used to modulate the polarity of the 2.5 kV electric field applied across

the cell through the use of a high-voltage switch. This 960.015Hz Pockels cell modulation

technique was the primary helicity reversal method used in the experiment. Figure 4.4

shows a simple diagram of the polarization state of the laser light as it passed through the

various optical elements in the injector, before it reached the photocathode. One of these

optical elements, known as an insertable half-wave plate (IHWP), was used in addition to

the Pockels cell to flip the direction of polarization of the passing laser light. The IHWP

acted as a secondary helicity reversal method, which was actuated on longer time scales

than that of the Pockels cell, typically every 4–8 h. An additional optical element called

a rotatable half-wave plate (RHWP) was placed just after the Pockels cell in an effort to

maximize the amount of circular polarization the laser light had, before it exited the Pockels

cell and interacted with the photocathode.

The semiconductor photocathode material used to produce the polarized electrons is

a strained-superlattice gallium arsenide (GaAs) wafer. This material, historically used in

the CEBAF injector, was selected based on its band gap energy and its ability to produce

polarized electrons with high average polarizations of about 90% [90]. Constant illumination
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Figure 4.4: A simple diagram showing the polarization state of the laser light used to pro-
duce polarized electrons from the photocathode material. The solid black arrows generally
indicate the polarization state of the light, either linear or circular.

of the photocathode material in a single location by the incident laser beam causes a

reduction in the material’s ability to produce polarized electrons. The observed reduction is

attributed to spatial electron deficiencies that occur over time. To counteract this effect, the

position of the incident laser beam on the surface of photocathode material was changed

approximately every 2–4 weeks, via a lens, in a process referred to as a spot change. Over

time, the ability of the photocathode material to provide polarized electrons degrades to

such a point that a reactivation of the material is required. This technique revitalizes the

electron content of material, making further polarized electron production possible with the

same photocathode sample. The reactivation technique was applied once in Run 1 and once

in Run 2.

Once polarized electrons were emitted from the surface of the wafer, an electric field

would initially accelerate them into in a series of mechanical and magnetic elements, which

shaped and bunched the electrons. This manipulation and acceleration allowed the electrons

to be synced and subsequently injected into the linacs of CEBAF. Before the beam entered

the linacs of CEBAF, it passed through a system of two magnetic Wien spin-flippers, one

vertical and one horizontal. These are systems of magnets that are used to precess the spin

of the passing electrons in a particular direction, which effectively changes the helicity of the

beam. These Wien filters were an additional reversal method used to modulate the helicity

of the beam. The settings of the Wien magnets were typically changed once a month.

After leaving the Wien magnets, the electrons entered the first linac of CEBAF where

they were accelerated again via a series of multiple superconducting cavities, which used

radio-frequency pulses to accelerate the electron bunches. The electron beam leaving the
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first linac passed through a recirculating arc of magnets before it entered the other linac

where it was again accelerated. The exiting beam, known as 1-pass beam, had approximately

1.16GeV of energy before it was delivered to Hall C. In general, depending on the beam

energy requirements of a given experiment, CEBAF has an additional recirculating arc after

the second linac that can be used to recirculate the beam again in a racetrack configuration.

The beam can be recirculated a total of five times before it has to be delivered to one of

the experimental halls. The experiment exclusively made use of 1-pass beam, except for

a short period when CEBAF delivered 2-pass beam at the 1.16GeV energy. During this

limited running of 2-pass beam, the spin of the electrons precessed by 180° (labeled by “g-2

flip”), which acted as yet another form of helicity reversal. This period of 2-pass operation

occurred in Run 2 during Wien periods 6–7. Table 4.3 provides a summary of the various

helicity reversal time intervals used to label data in the experiment.

Table 4.3: Summary of the various data collection time intervals and quantities associated
with slow helicity reversals.

Type Time Interval Helicity Control

Runlet 6–8min –
Run 1 h –
Slug 8 h IHWP
Wien 1mo Wien magnets

A source of systematic uncertainty originated from the injector optical elements, previ-

ously mentioned. Various beam properties such as position, angle, and energy can become

correlated with helicity reversals, into what are known as helicity-correlated background

asymmetries (HCBA). These quantities cause false asymmetries in the experiment, thus a

large amount of effort was invested into minimizing these effects in the injector [91, 92]. In

addition, a series of beam position and current monitors were placed along the beamline in

the injector and in Hall C, in an effort to measure the effects of these helicity-correlated

parameters. The next section discusses the functionality of these monitors.
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4.3 Beam Diagnostics

A series of beam diagnostic devices were used throughout the experiment to monitor electron

beam characteristics. In particular, the quantities monitored were beam position, angle,

current, and energy. Output from these devices was recorded in the experiment’s data

stream for later use in analysis. This section gives a brief overview of the diagnostic devices

used to monitor these observables during the experiment, along with a short introduction of

how they are used in analysis. A more detailed overview of each of these subsystems can be

found reference [90].

4.3.1 Position Monitors

Beam position monitors (BPMs) are noninvasive monitoring devices constructed from two

pairs of antennas that are positioned perpendicular to the beam, inside the beam pipe, at

various positions along the beamline. The antennae are tuned to pick up the radio-frequency

signal of the passing electron bunches coming from CEBAF. As the beam drifted along an

axis in the XY-plane, the signal strength recorded by the closest antenna correspondingly

increased while the other decreased, allowing a position determination. Both pairs working

together allowed the simultaneous determination of beam positions and angles along both

axes in the XY-plane.

A total of 23 BPMs were used in Hall C to monitor the position of the beam over the

course of the experiment. Some of these monitors were later used in analysis to correct for

HCBA associated with natural beam motion originating from the injector. Beam positions

and angles reported in later chapters of this dissertation come from least square fits to the

signals recorded by the last five BPMs located just upstream of the target. These quantities

are then used to remove any false asymmetries associated with natural beam motion by a

linear regression technique. This was the primary method for removing these effects in the

ancillary aluminum data sets.

The weak charge measurement analysis made use of an additional technique to remove

HCBA. A technique known as beam modulation, or dithering, was used periodically to

purposely induce motion in the position of the beam with a known signal, larger than that of
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natural motion. Intentional beam modulation allows the decoupling of measured asymmetries

sensitivities to certain beam positions and angles better than the linear regression method.

A beam modulation system was constructed using a series of magnet coils placed upstream

of the target along the beamline. Details associated with the beam modulation system

apparatus and the corresponding analysis used to determine beam motion corrections can

be found in the dissertation of D. Jones [91].

4.3.2 Current Monitors

Two types of devices were used to measure the beam current during the experiment. The

first, called a beam current monitor (BCM), was a noninvasive device that employed radio-

frequency resonant cavities to monitor the charge of the beam. Six BCMs were used during

the experiment, at varying positions along the beamline. These were labeled BCM: 1, 2, 5,

6, 7, and 8. These BCMs were absolutely calibrated between 1–180 µA using a second type

of current monitoring device, known as an Unser monitor. The Unser, a Bergoz Parametric

Current Transformer [93], has a stable linear gain that can be used to calibrate the BCMs

during periods when the beam current is simultaneously ramped and modulated between

on and off. Further details about the BCM calibrations can be found in K. E. Myers’

dissertation [94]. It is important to note that during analysis the measured asymmetry used

the current value recorded from a particular BCM monitor as a normalization factor.

4.3.3 Energy Measurements

Two types of beam energy measurements were conducted; each made use of the beamline

arc entering Hall C. Absolute measurements were performed with position sensitive multi-

wire scanners inserted into the beam, at different intervals along the arc. These scanners

performed an invasive measurement of the beam angle. Knowledge of the angle of the beam

coupled with the magnetic field strength of the magnets steering the beam through the arc

allowed a beam momentum determination, which in turn yields the energy of the beam. A

continuous relative measurement was made using a particular BPM (BPM3C12) to monitor

for any drifts in beam energy that were occurring during the experiment. With the same

functionality as a normal BPM, BPM3C12 was used in conjunction with the normal target
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BPMs to determine the momentum of the beam in a similar manner to that of the invasive

scanner technique.

4.4 Beam Polarimetry

The polarization of the beam was monitored by two polarimeters, located in the beamline

corridor entering Hall C. These polarimeters operate using two separate techniques. The

first polarimeter employed Compton scattering, in a noninvasive approach for determining

the polarization. The second polarimeter used Møller scattering to measure the polarization

in an invasive manner during dedicated measurement periods. A system of two polarimeters

was desired, as they were used in conjunction to reduce the final uncertainty on the beam

polarization correction during analysis.

The Compton polarimeter was comprised of four principal components: a beam chicane∗,

a high-power polarized laser acting as a photon source, a photon detector, and an electron

detector. As the electron beam entered Hall C, a series of magnets bent the beam away

from its normal path into a 11.1m long chicane. When electrons passed through the

chicane, the beam of the high-power laser would sporadically scatter polarized photons from

the passing electrons. This interaction is a pure QED scattering process to lowest-order

and is known as Compton scattering. Scattered electrons and photons are detected with

separate purpose-built detectors. The polarization of the beam was determined by making

helicity-dependent cross section asymmetry measurements with these detectors. These

measurements had the added benefit of being noninvasive, as the majority of unscattered

electrons continued down the beamline into Hall C for use in the experiment. Further details

about the Compton polarimeter apparatus can be found in reference [90]. Information about

the beam polarization analyses for the photon detector can be found in the dissertation of J.

C. Cornejo [95] and for the electron detector in reference [96]. Further information about

the electron detector can also be found in the dissertation of A. Narayan [97].

The Møller polarimeter, similarly to the Compoton polarimeter, determined the po-

larization of the beam by measuring the helicity-dependent cross section asymmetry of

∗
A term indicating a deviation to a path that later rejoins. An example would be a railway siding.
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polarized electron-electron scattering. This interaction is another well known QED process

called Møller scattering. A superconducting solenoid magnet was used to polarize a thin

pure iron foil target, which was then inserted into the path of the beam. Polarized beam

electrons would then Møller scatter from the polarized orbital electrons of the iron foil. The

scattering profile of the Møller electrons was then directed and shaped using a series of

quadrupole magnets and collimators. Møller electron pairs were then detected in coincidence

by a pair of symmetric electron detectors. Since the polarized foil breaks the path of the

beam, this measurement was invasive and it was performed periodically at an interval of

2–3 times per week in Run 1 and Run 2. During these measurements the electron beam

current was reduced to approximately 2 µA to prevent damage and reduce depolarization

effects from beam heating to the thin iron foil. The Møller polarimeter was located directly

downstream of the Compton polarimeter, which allowed cross-calibration between the two

polarimetry techniques. Further details about the Møller polarimeter apparatus can be

found in reference [90]. Details of the beam polarization analysis for the polarimeter can be

found in J. A. Magee’s dissertation [98].

The beam polarization uncertainty goal for the experiment was below 1% (relative) [1].

Both of the polarimeters individually met this goal for the final result [46]. In addition, a direct

comparison was conducted at low beam current to insure both polarimeters systematically

agreed, which they were shown to do within their respective uncertainties [99]. Polarization

values and their uncertainties are given in later sections for each of the physics analyses

discussed in this dissertation.

4.5 Targets

To keep with the design goal of achieving a high luminosity, the collaboration used a high-

powered liquid hydrogen (LH2) target for the weak charge measurement. The target was

designed to circulate approximately 58L of pressurized liquid hydrogen at 20K in a closed

loop through a conical aluminum target cell. The 34.4 cm long cell was capped on either end

by thin caps, also known as windows, which were constructed from a high-strength aluminum

alloy (Al 7075-T651). The upstream window was 22.2mm in diameter and 0.097mm thick.
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Downstream, the target cell was capped with a 0.64mm thick curved window. In the center

of that window, a spot was machined to a thickness of 0.125mm so non-interacting beam

could pass on to the dump with minimal interaction.

The incident beam would traverse the length of the target cell, passing through the up-

stream window, the LH2, and then the downstream target window, depositing approximately

2.1 kW of power from ionization and other radiative effects. A sophisticated cooling system

was used to continuously circulate the LH2 through the cell in an effort to keep the liquid at

a constant temperature and density. An overview of individual target components and their

performance is given in reference [90]. Target details discussed beyond the overview can be

found in A. Subedi’s dissertation [100].

4.5.1 Al27 Alloy Targets

Beam passing through the LH2 target would infrequently scatter from the thin aluminum

windows into the acceptance of the main detectors. In order to study the background

from these aluminum windows, an array of auxiliary targets was constructed from the same

material as the windows. These were used routinely throughout the experiment to investigate

this background during dedicated periods of systematic study.

These auxiliary targets were mounted into a frame suspended under the LH2 target cell.

The frame, or target ladder, had 24 locations for different types of targets.

Each target location in the ladder allowed for the mounting of a 2.5 cm square sample

of material of varying thicknesses. Six of the target mounting locations were placed in the

same plane (Z-position) as the downstream target window. Another 12 were placed in plane

with the upstream target window. The remaining positions were dedicated to optics targets

used at lower beam current to center the beam and aid in vertex reconstruction studies.

Figure 4.5 shows the relative locations and numbering scheme used to describe this array of

targets. Locations of the optics targets are not included in that diagram.

A range of targets was included in the ladder. Most were constructed from the Al 7075-

T651 material used for the windows, but with varying thickness. Their intended purpose

was to benchmark radiative corrections. Additional targets, such as pure aluminum, carbon,

and beryllium were included as well. However, most were never used to make asymmetry
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Figure 4.5: Diagram of target positions on the target ladder from the perspective of the
incident electron beam. The numbering scheme of the target positions are included. Po-
sitions 1–6 are located on the downstream face of the target ladder. The rest, positions
7–18, reside on the upstream face.

measurements. Important properties, dimensions, and location information for all of the

targets can found tabulated in Table 4.4 for the upstream locations and Table 4.5 for the

downstream locations. These properties were surveyed during a post experiment investigation

by members of the target subgroup. Further information describing the techniques used to

quantify these physical properties can be found in the ELOG [101].

It is important to note that the calculated radiation lengths tabulated in Tables 4.4

and 4.5 differ from the values documented in the ELOG [101]. That initial analysis made the

assumption that the radiation thickness for a given aluminum alloy target was that of pure

aluminum. These radiation lengths have been calculated using the proper aluminum-alloy

radiation length in Appendix A.1. This discrepancy is likely the cause of the disagreement
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seen between data and simulation in early aluminum target radiative correction studies [94,

102].

Discussions in this dissertation exclusively focus on measurements made with the 3.68mm

thick aluminum alloy target from Run 2, which is highlighted in Table 4.5. This particular

target was chosen as it had a radiation length similar to that of the filled LH2 target cell.

Alloy Composition

Since the material selected for the target windows was a high-strength alloy, any asymmetry

measurements conducted with targets made from this material suffer from alloy element

scattering backgrounds. Knowing the amount of alloying elements present in this material

allows the determination of these backgrounds in later asymmetry analyses.

The upstream windows and auxiliary targets were machined from the same lot of Al

7075-T651 material for both Run 1 and Run 2. Knowledge of the elemental composition

of these upstream targets comes from an assay issued by the manufacturer at the time of

purchase. The composition values from that assay are tabulated in Table 4.6. Uncertainties

on the values in that table were not included in the assay and are thus not given. Further

composition details about the upstream material, including the original assay, can be found

in the ELOG [103].

Downstream auxiliary targets and the target window were also machined from same

type of Al 7075-T651 material, except the material was from a separate manufactured lot

for both Run 1 and Run 2. Their compositions slightly differ from those of the upstream

targets. Table 4.7 contains assayed composition values for either lot used in Run 1 and

Run 2. The Run 1 compositions were taken from a material assay sheet issued at the time

of the material’s purchase. Again, uncertainties were not included in that assay and are

thus not given in the table. Further details regarding the Run 1 values can be found in

the ELOG [103]. Run 2 compositions were determined from external testing performed by

Applied Technical Services (ATS) in Georgia, using a sample of a spare solid target installed

in position 6 of the downstream target ladder during Run 2. The actual target used for the

aluminum asymmetry measurements could not be tested, as it was still activated at the time

when these tests were conducted by ATS. Uncertainties on the Run 2 values are given as
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the standard deviations reported by the assay from ATS. For further details on the Run 2

values, see reference [104].

Composition values from these alloy materials are taken into account during analysis

through the modification of material definitions in simulation and by scaling the luminosity

calculations used in the determination of rates and yields extracted from simulation.

Oxygen Contamination

Aluminum is naturally a reactive metal; exposed to ambient atmosphere it develops a layer

of surface oxidation [105]. A thick layer of oxidation could stand to be a possible source

of scattering background that would require additional corrections during analysis. The

manufacturing of these solid Al27 alloy targets regularly took place in a normal ambient

atmosphere, where natural layers of oxidation were assumed to have formed.

Reviewing the surface science literature, Al 7075-T651 is known to develop an oxidation

layer that ranges from 2–30 nm in normal atmosphere [105, 106]. Taking the extreme edge

of that range and multiplying it by a factor of two to account for both sides of the target, a

60 nm thick oxidation layer compared with the 3.68mm thickness of the Run 2 aluminum

target can be considered negligible. Background corrections for this oxidation layer are thus

not considered during analysis.

4.5.2 Target Material Improvements for Future Experiments

Future parity-violating experiments that require liquid cryogenic targets, such as MOLLER [107]

and P2 [108], might want to consider alternative aluminum alloy materials for the target

cell entry and exit windows. There are a selection of specialized aluminum-lithium alloys

that have been developed for the aerospace industry which could provide similar if not

improved material characteristics, while reducing the composition of the higher-Z elements

present in the alloy. By selecting an alternative aluminum material prior to execution of the

experiment, the analysis corrections required for the alloying elements could be minimized,

making ancillary aluminum asymmetry measurements more feasible for those experiments.

Table 4.8 provides a brief selection of commercially available aluminum-lithium alloys,

broken down by elemental composition and tensile strength values as compared with the
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Al 7075-T651 alloy used in Qweak. Tensile strength is not the only material property that

should be used for comparison. As these materials are used to cap a cryogenic pressure

vessel, further investigation of their performance at cryogenic temperatures would be needed

before a particular alternative candidate material could be chosen for future experiments.

Aluminum-lithium alloys appear at first glance to be attractive alternative target window

materials, as they have a dramatic reduction in the amount of Zinc, a dominant high-Z

alloying element present in Al 7075-T651. Their next largest contributing high-Z element is

copper, which is comparable to that of the 7075-T651 alloy at approximately the 2% level.

The trade-off comes at the expense of the introduction of Zirconium, another high-Z element

but only at the sub 1% level. A number of Zirconium isotopes have had their charge radii

measured with elastic electron scattering, at an approximate momentum transfer range of

0.4–2.80 fm−1 [111, 112]. Their cross section should be fairly easy to determine over the

kinematic range of interest for future experiments, with either theoretical calculation or a

Fourier-Bessel coefficient form factor expansion.

4.6 Experimental Acceptance

The profile of electrons scattered from the target was shaped and momentum selected by

a combination of collimators and the magnetic field from QTOR. This combination of

collimators and a magnetic spectrometer restricts the polar scattering angle, θ, of these

scattered electrons to be between 5.8° ≤ θ ≤ 11.6°, while suppressing backgrounds from other

non-elastic scattering processes. This magnetic selection technique was used in conjunction

with shielding to block direct line-of-sight neutral particles from making their way into

the main detector array. Figure 4.6 shows the scattered electron flux passing through the

elements of the apparatus. This section discusses each of these components and how they

define the profile of electrons seen by the main detector array.

4.6.1 Collimators

Three 11–15 cm thick collimators located downstream of the target, at intervals of 74 cm,

2.72m, and 3.82m, divided the scattered electron flux into eight sectors via azimuthally
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Figure 4.6: CAD drawing of the scattered electron flux profile (cyan) passing through the
acceptance defining elements of the apparatus. Figure taken from Qweak instrumentation
publication [90].

symmetric apertures. In order for the collimators to block and shape the flux, they were

constructed from a 95.5% lead to 4.5% antimony mixture, which allowed the stopping

of charged particles and neutral gamma rays outside of the apertures. The edges of the

apertures in the second collimator define the profile of the scattered electron flux seen by

QTOR. The first and third collimators primarily cleaned up backgrounds produced in the

target and other secondary sources.

4.6.2 Spectrometer

A toroidal magnetic field produced from a spectrometer momentum selected elastically

scattered electrons and focused them onto the plane of the main detector array. The field

was produced by eight symmetric resistive copper coils operating at 150V and a nominal

current range of 8900–9100A, in a racetrack configuration, supported in an aluminum

superstructure. The center of the spectrometer was located approximately 6.5m downstream

of the target. Extra care was taken to ensure the materials used to construct the spectrometer

were free of any ferromagnetic properties, which prevented scattering backgrounds from

magnetized materials. The profile of the elastically selected electrons was approximately
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2m×10 cm after leaving the field of the spectrometer.

Current scan studies were performed with QTOR for later use in benchmarking sim-

ulations. Additionally, reducing the current to 6700A allowed direct measurement of

the inelastic N → ∆ asymmetry, which was useful for determining inelastic background

corrections and other ancillary physics results.

4.6.3 Simulation

The experimental acceptance was studied using a custom Monte Carlo radiation tracking

simulation software package called QwGeant4, which was constructed with the Geant4 C++

libraries [113–115]. The simulation incorporated all of the major apparatus elements used in

the experiment, in their as-built locations. QwGeant4 is kept under SVN revision control on

the Qweak web server [116]. This geometry coupled with the radiation tracking capabilities

of the Geant4 libraries allowed the study of various systematic effects on the acceptance and

detector rates.

As the acceptance of the apparatus was designed and optimized to perform the weak

charge measurement, its performance for the aluminum ancillary measurements was not

studied until the experiment was completed. Results from that analysis showed a large energy

acceptance of approximately 150MeV [117]. Figure 4.7 shows the energy acceptance from this

study for the downstream aluminum target as determined in QwGeant4. This large energy

acceptance directly impacts the background analysis for those aluminum measurements.

4.7 Integrating Detectors

Eight Cherenkov detectors formed the main detector array used to measure asymmetries in

the experiment. Positioned approximately 344 cm radially from the beam axis and 575 cm

downstream from the center of QTOR, the main detectors were placed in an azimuthally

symmetric pattern about that axis with the help of a superstructure. The array covered

approximately 49% of a 2π rotation in the azimuthal angle φ. A given detector in the array

matches the position of a side of an octagon, thus the general sector surrounding any one

detector in the main array is referred to as an octant.
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Figure 4.7: Energy (ν) acceptance for the aluminum target as determined by QwGeant4.
Each point indicates the fraction fo accepted events in a given energy bin. The overall
energy acceptance (ε(ν)) is the normalization weighted average of the distribution. Figure
taken from the ELOG [117].

Each detector in the array was constructed from two pieces of Spectrosil 2000 synthetic

quartz radiators, glued on end to form a single bar with an active area of 200 cm×18 cm×1.25 cm.

On either end of the bar, additional pieces of 18 cm×18 cm×1.25 cm light-guide were glued,

forming a bar of 236 cm in total length. Attached to the surface of the downstream faces of

each light-guide were 130mm diameter photomultipler tubes (PMTs), used to read out the

Cherenkov light. Each detector was enclosed in a light-tight covering held in an aluminum

frame, which was then attached to the superstructure supporting the full array. Figure 4.8

gives the relative detector positions and PMT locations in the Qweak coordinate system.

Incoming electrons shower through the active area of the detector, generating cones of

Cherenkov light. This light in the UV spectrum, propagates along the length of the bar to the

PMTs via total internal reflection. Once there, the PMTs convert the Cherenkov light into an

electrical current that is then captured and recorded with the experiment’s data acquisition

system. The main detectors had the ability to operate in two modes: current (integrating)

mode and tracking (event) mode. Asymmetry measurements made use of current mode,

where the PMT signal was integrated over each helicity reversal window. Tracking mode,
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Figure 4.8: Main detector positions and labels in the Qweak coordinate system from the
downstream beam perspective. The Qweak global coordinate system is referenced in the
center, while local main detector coordinate systems are given for MD1 and MD3 as ex-
amples. PMT locations for an individual MD are given by the labels “+” and “-”. The
interior shaded gray rectangles, and corresponding number labels, represent the approxi-
mate locations of the coils in QTOR.

which is discussed in the next section, allowed the PMTs to measure individual pulses

event-by-event during periods of systematic study.

During the hardware commissioning period, the main detectors were found to be sensitive

to high levels of soft gamma-ray backgrounds present in the environment of Hall C. To

reduce these backgrounds, 2 cm thick lead tiles, known are preradiators, were installed in the

front of each main detector. Unknowingly at the time, the introduction of these preradiators

caused a new type of false asymmetry in the experiment. This issue was only identified late

in the analysis of the weak charge measurement. Later analysis chapters discuss how this

new background is generated along with the methods used to determine a correction.

Further details regarding the construction, operation, and performance of the main

detectors can be found in reference [90]. Additional information about the early development

and construction of these detectors can be found in the dissertation of P. Wang [118].
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4.8 Kinematics Determination

In both running periods, small segments of time were dedicated to operating the experiment

in an alternative mode, referred to as event mode. During event mode the beam current

was reduced by approximately six orders of magnitude, to 50–100 pA, which reduced the

rate of detected scattered electrons in the main detectors. A set of auxiliary detectors called

tracking chambers were inserted into the scattered electron profile. These tracking chambers

allow the reconstruction of the geometric path the scattered electrons took through the

apparatus. Information extracted from this reconstruction process is used to determine

important kinematic parameters of the scattered electrons. Additionally, the reduced beam

current running of event mode allowed the study of various systematic backgrounds.

The tracking system employed two sets of gas-filled wire chambers. One set, called the

horizontal drift chambers (HDCs), were located between collimators two and three, upstream

of QTOR. The second set, called the vertical drift chambers (VDCs), were placed just

upstream of the main detector array. During event mode, positioning systems allowed the

sets of wire chambers to be inserted into the scattered electron profile. Scattered electrons

passing through both set of chambers could have their path reconstructed with custom

offline analysis software. Knowledge of this path allowed the determination of the electron’s

lab scattering angle θ, and by extension its momentum transfer Q2, see Section 3.1.

A more in-depth overview is given in Qweak instrumentation publication [90]. Further

details regarding tracking software, analysis, and associated systematic studies on momentum

transfer can found in the dissertations of S. Yang [119], J. Pan [120], and V. M. Gray [24].

4.9 Data Acquisition and Asymmetry Analysis

Data acquisition (DAQ) started at the output of the detector PMTs and beam monitors.

Custom made front-end electronics integrated, digitized, and read out these signals for a

given helicity-reversal window in each quartet. These collected signals were used to form

asymmetries in the recorded data stream. Raw data, collected at a rate of about 4.5MB s−1,

was handled by the in-house JLab DAQ system known as CEBAF Online Data Acquisition

(CODA). These data were saved for later offline analysis, in addition to being backed-up
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to a data silo for preservation. Approximately 150TB of raw data was recorded over the

course of the experiment.

Custom offline analysis software was written to handle and reduce this data into manage-

able chunks, through the use of asymmetry time-averaging. Runlet-averaged asymmetries

were stored in an SQL database for ease of later analysis. This database included values for

detector signal yields, asymmetries, asymmetry differences, helicity state information, data

quality tags, and target information. Detailed information about the DAQ subsystems and

asymmetry formation procedures can be found in R. S. Beminiwattha’s dissertation [121].
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Table 4.6: Elemental composition, in units of % by weight [wt%], of the Al 7075-T651
material used for the hydrogen target cell entrance window and upstream targets.

Element Run 1 & 2 [wt%]

Al 89.72
Zn 5.70
Mg 2.50
Cu 1.70
Cr 0.19
Fe 0.12
Si 0.06
Mn 0.01
Ti 0.04

Others(each, ≤) 0.05
Others(total, ≤) 0.15

Total 100.04

Table 4.7: Elemental composition, in units of % by weight [wt%], of the Al 7075-T651
material used for the hydrogen target cell exit window and downstream targets.

Element Run 1 [wt%] Run 2 [wt%]

Al 89.53 89.189± 0.047
Zn 5.90 5.868± 0.020
Mg 2.60 2.628± 0.075
Cu 1.50 1.813± 0.016
Cr 0.19 0.185± 0.003
Fe 0.14 0.114± 0.002
Si 0.08 0.094± 0.001
Mn 0.04 0.045± 0.001
Ti 0.02 0.030± 0.002

Others(each, ≤) 0.05 0.05
Others(total, ≤) 0.15 0.15

Total 100.00 99.966± 0.092
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Table 4.8: Brief selection of possible alternative aluminum alloy target materials. Chemical
composition specifications, given in units of % by weight [wt%], taken from an Aluminum
Association technical report [109]. Typical tensile strengths taken from the material prop-
erties tabulated on the MatWeb database [110].

Alloy 7075-T651 2090 2091 8090

Chemical Composition [wt%]

Li – 1.9–2.6 1.7–2.3 2.2–2.7
Mg 2.1–2.9 0.25 1.1–1.9 0.6–1.3
Si 0.4 0.1 0.2 0.2
Ti 0.2 0.15 0.1 0.1
Cr 0.18–0.28 0.05 0.1 0.1
Mn 0.3 0.05 0.1 0.1
Fe 0.5 0.12 0.3 0.3
Cu 1.2–2.0 2.4–3.0 1.8–2.5 1.0–1.6
Zn 5.1–6.1 0.1 0.25 0.25
Zr – 0.08–0.15 0.04–0.16 0.04–0.16
Other (≤) 0.05 0.05 0.05 0.05
Al Rem. Rem. Rem. Rem.

Tensile Strength (Typical) [MPa]

Ultimate 572 550 430 510
Yield 503 520 330 450
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Chapter 5

Elastic Parity-Violating Al
27

Asymmetry Analysis

The Qweak collaboration has made the first measurement of the elastic parity-violating Al27

asymmetry. Originally required as a background correction measurement for the main weak

charge analysis, this measurement can directly determine the neutron distribution radius of

the Al27 nucleus. Such a determination acts as a test of theoretical models used to describe

neutron-rich matter, from heavy nuclei to neutron stars [40]. The measured asymmetry

includes effects from large inelastic scattering backgrounds, because the apparatus used

to conduct the measurement was not optimized for this purpose. A determination of the

neutron distribution radius from this measurement relies upon the ability to apply corrections

for these backgrounds with sufficient precision.

The analysis discussed in this chapter details the extraction of the pure elastic parity-

violating electron- Al27 asymmetry from the measured asymmetry. Corrections for known

systematic measurement-based effects and inelastic scattering backgrounds are discussed.

Once the corrections are applied, the extracted parity-violating asymmetry with its uncer-

tainties is compared to theoretical predictions. This resulting asymmetry is then used to

determine the neutron distribution radius with a many-models correlation method, first

introduced by the Lead Radius Experiment (PREX) [122].
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5.1 Data Selection and Quality Checks

Throughout the Qweak experiment, several periods of lower beam current operation were

dedicated to asymmetry measurements on auxiliary aluminum alloy targets. Most of this

time was spent measuring the parity-violating asymmetry from a solid ≈4%X0 Al27 alloy

target∗ located in the downstream position. This target and the others available during the

experiment were discussed in Section 4.5.

Asymmetry data on the Al27 target was taken in Run 0, Run 1, and Run 2. The

bulk of this data was recorded during Run 2. Presented here is an analysis of the parity-

violating elastic electron- Al27 asymmetry using the data from Run 2 in Wien periods 6–9,

see Section 4.2. No aluminum data was taken during Wien 7.

A small amount of additional data was recorded using this target during Wien 10.

However the decision by the aluminum background subgroup, working on the aluminum

correction for the weak charge measurement, was to drop this data set for reasons discussed

below. Including this additional Wien 10 data would only yield a minor improvement to the

overall statistical uncertainty associated with the measurement, when compared with the

total systematic uncertainty.

The short segments of aluminum data that were collected during Run 0 and Run 1 had

similar statistical uncertainties to that of Wien 10 in Run 2. Thus it was determined that

their inclusion into the final data set was not worth the overall effort that would be needed

to determine the separate systematic uncertainties associated with operating the experiment

during these earlier runs compared with Run 2. Any future investigation of this analysis

outside of this dissertation might consider including these additional data, if improvements

can be made to the systematic uncertainties.

The decision to drop Wien 10 was made based on strange behavior found in the fit

probabilities for individual main detector physics and null asymmetries. No improvement

was found after applying many of the measurement-related systematic corrections, thus

the decision to drop the Wien 10 data was made by the aluminum background subgroup.

It is considered bad practice to discard data simply based on poor fit probabilities, but

∗
From this point forward, any reference to data taken with the Al

27
target is referencing this target,

unless otherwise specified.
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lack of definitive reasons as to why they occurred forced the decision to drop the data. An

independent analysis of the entire Run 2 data set including this problematic Wien 10 has

been completed and is discussed at length in the dissertation by J. A. Magee [98]. For

those who are interested, that reference gives a more detailed explanation of the strange

behavior associated with Wien 10. The raw asymmetry extracted from his analysis and

the one detailed in this document only differ by 17 ppb, which is well within the statistical

uncertainty associated with either value.

Two independent data quality checks were performed on the Run 2 data set by other

members of the aluminum background subgroup. These checks used a two-tiered system of

software and direct analysis cuts to label corrupted data for later exclusion. The software

cuts were directly built into the Qweak analyzer software package used to construct asymmetry

observables during the offline data analysis. These software cuts primarily removed periods

of unstable beam from beam current trips. Details regarding the implementation of these

software data quality cuts can be found in the dissertation by R. S. Beminiwattha [121].

Additional cuts were placed on periods of hardware failure associated with the QTOR

power supply and the charge feedback system, which is responsible for minimizing the

measured charge asymmetry during the experiment. In particular, failures of the charge

feedback system would typically result in measured charge asymmetries on the scale of a

1000 ppm. Any aluminum data taken during these hardware failure periods was excluded

from the final data set.

A minimum quartet requirement was enforced for each of the runlets in the final data

set. For the analyzer to properly perform regression corrections for the helicity-correlated

beam motion, a minimum of 5000 quartets (≈ 21 s) were required for each runlet. Runlets

with fewer quartets are excluded from the final data set.

The last tier of data quality checks used direct analysis methods applied to measured

asymmetries to identify periods of corrupted data for exclusion. These checks employed

a labeling systems of “good,” “suspect,” and “bad” tags that were applied to runlet-level

aluminum data. The primary observable used to assign these data quality tags was the

measured beam charge asymmetry. In particular, two properties associated with the measured

beam charge asymmetry were monitored and used to assign these tags.
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The first were periods of discontinuities in the charge asymmetry that would occur

during state changes of the insertable half-wave plate (IHWP), located in the injector.

Occasionally, the quartet-level measured charge asymmetry would jump during this state

change, thus runlets measured during these jumps would be given the label of “bad” and

subsequently removed from the final data set. Examples of acceptable, borderline, and

bad IHWP transition runlets can be see in the dissertation by J. A. Magee [98] and Qweak

electronic log book (ELOG) entry [123].

The second property used to classify data was the width of the measured quartet-level

charge asymmetry distribution. During Run 2, the measured quartet level charge asymmetry

was approximately Gaussian distributed, with a width (σ) of 1.14 ppm [123]. Runlets with

charge asymmetry less that 5σ would be marked as “good”, 5 − 10σ as “suspect”, and

greater than or equal to 10σ as “bad.” The details of which corresponding runlets were

marked as either “suspect” or “bad” are documented in the following ELOG entries [123,

124].

In Wien 8, there were two periods of odd behavior, as seen in the distribution widths

associated with the beam-energy difference and BCMDD 78 (see Section 5.3.1 for a description

of this observable) observables. Upon further investigation it is believed that these artifacts

come from tests of the new C100 SRF cavities and poor beam transmission through CEBAF.

As widths of both of these observables were not unreasonably large, the runs from these

periods were marked as “suspect.” Further details about this observed behavior is documented

in the ELOG [123].

The final Run 2 aluminum data set considered in this analysis comes from analysis pass

5b, using only runs with the “good” data quality label and cuts discussed above. A total

of 1494 runlets, 131 runs, or 29 slugs pass these data quality cuts. The runs, and their

associated properties, included in this final data set are tabulated in Table B.1.

5.2 Raw Asymmetry and Statistical Uncertainty

A raw asymmetry (Araw) and statistical uncertainty are extracted from the Qweak analysis

database using the data quality cuts discussed above. Details on how these raw asymmetries
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are formed in the Qweak analyzer software have already been discussed in Section 4.9. The raw

asymmetries populating the database are runlet-based averages of quartet-level asymmetries.

This analysis opted to use error-weighted slug-averaged asymmetries, which allowed the

study of systematic effects over the long slug-level time scales. The particular observable

reported in this analysis are the “mdallpmtavg” asymmetries, which are the weighted average

of all eight main detectors, 16 PMTs.

Systematic effects were investigated by splitting the data into positive and negative

helicity states, depending on the state on the IHWP and the Wien filter. These positive and

negative states are subsequently averaged over the entire data set. A NULL hypothesis test

was conducted by forming an unweighted average of these positive and negative averaged

asymmetries, as defined by

ANULL =
APOS +ANEG

2
. (5.1)

A non-zero result would be an indication that there was an improper cancellation of false

asymmetries in the data. The actual physics asymmetry was constructed from taking the

error-weighted average of the positive and negative asymmetries, once a sign-correction is

made for the various helicity state controls. These averages can be investigated over different

time intervals, such as the run, slug, or wien level. The aluminum data set had consistent

averages regardless of the choice of time interval [98, 125].

The slug-averaged raw asymmetries for the aluminum data set are plotted by the various

types of averages in Fig. 5.1. The data is color coded, based on the state of the IHWP and

Wien filter setting of either left (L) or right (R). The averages for the positive, negative,

NULL, and physics asymmetries, indicated by the gray lines, are tabulated in Table 5.1.

Table 5.1: Unregressed aluminum asymmetry slug-based time averaging statistics. The la-
bels NEG and POS refer to the slug average of the negative and positive state asymmetries.
The NULL and PHYS labels refer to the respective unweighted-average and sign-corrected
weighted-average of the NEG and POS asymmetries.

Quantity Asymmetry [ppm] χ2/DOF χ2 Probability

NEG −1.407± 0.093 1.26 0.225
POS 1.480± 0.099 1.62 0.073
NULL 0.036± 0.068 – –
PHYS 1.441± 0.068 1.39 0.082
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(b) Sign-corrected plot

Figure 5.1: Unregressed “raw” asymmetry slug plots for the Run 2 aluminum data set.

The validity of the positive, negative and physics averages are determined using a χ2 per

degree of freedom (DOF) and χ2 probability metric. The NULL hypothesis is checked by
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looking at its deviation from zero. For this data set, the χ2 and probabilities were reasonable

for the amount of spread seen in the slug averages. The NULL is consistent with zero within

the statistical uncertainty. The raw asymmetry and statistical uncertainty for the aluminum

data are taken as the PHYS entry in Table 5.1. This is a 4.7% precision measurement of

the raw aluminum asymmetry.

5.3 Measured Asymmetry Determination

With the final aluminum data set selected and a corresponding raw asymmetry Araw

determined, extraction of the physics asymmetry begins by correcting for several measurement

based systematics, primarily corrections for false asymmetries introduced into the raw

asymmetry by imperfections associated with both the polarized electron beam and the Qweak

apparatus. Each of these corrections has a corresponding uncertainty that contributes to

the total uncertainty associated with the final extracted asymmetry.

Known corrections are applied for the following quantities: the uncertainty associated

with the BCM normalization (ABCM ), false asymmetries arising from helicity-correlated

beam motion (Areg), an isotropic false asymmetry from the beam halo interacting with

beamline components (ABB), any detector non-linearities (AL), transverse asymmetries

(AT ), and a polarization-dependent rescattering bias originating from the lead preradiators

on the main detectors (Abias). These corrections are applied to the raw asymmetry (Araw)

to get the measured asymmetry (Amsr) using

Amsr = Araw +ABCM +Areg +ABB +AL +AT +Abias. (5.2)

In this section, each of these corrections and their corresponding uncertainties are

discussed in the context of the aluminum analysis.

5.3.1 BCM Uncertainty

During Run 2, BCMs 1, 2, 5, 6, 7, 8 were available for beam current monitoring during the

aluminum data taking. BCM 8 was chosen to be the reference charge monitor, which was
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used in the experiment to normalize the recorded main detector signals (yields). As other

BCM monitors were available, the question of whether BCM 8, a different monitor, or a

combination of monitors should be used to normalize the measured main detector signal

can be answered by looking at the BCM double difference observables associated with the

various combination of BCMs. The BCM double difference between two monitors is given by

DDij =
Q+

i −Q−
i

Q+
i +Q−

i

−
Q+

j −Q−
j

Q+
j +Q−

j

= AQ,i −AQ,j , (5.3)

where Q
+(−)
i(j) denotes the charge measured by BCM i or j for positive (+) or negative (−)

beam helicity and AQ is the charge asymmetry. Monitors in perfect agreement would yield

a double difference of zero. Any disagreement found between these current monitors needs

to be accounted for in terms of an additional uncertainty to Amsr. A guide of how this

uncertainty was determined for the weak charge measurement is discussed in a technical

report [126].

In the aluminum data quality checks, the BCM double difference for monitors 7 and

8 was investigated over Wiens 6, 8, and 9. The average of this BCM double difference

asymmetry over the three Wiens is consistent with zero at the 12σ level [123]. A preliminary

investigation was completed, by looking into the agreement of the other BCM monitors

available in Run 2 for the aluminum data set, but no quantitative conclusions were drawn at

that time. Further investigation is required to see if those double differences are consistent

with zero over the aluminum data set.

At this time, the Run 2 BCM uncertainty from the weak charge asymmetry analysis is

adopted, as a conservative effort to include this additional systematic uncertainty [46]. This

uncertainty was determined to be

ABCM = 0.0± 2.1 ppb. (5.4)

This correction is believed to be conservative because the aluminum data set was intertwined

with the weak charge measurement throughout Run 2. Any future effort outside of this

analysis should be dedicated to investigating this uncertainty specifically for the aluminum
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analysis. Critics should note that the aluminum data taking was performed at a lower beam

current. The behavior of the BCMs could be different compared with behavior used to

determine this uncertainty. I anticipate that any future investigation will show that a full

BCM renormalization is not warranted for the aluminum data set and that the additional

uncertainty is smaller that the 2.1 ppb assumed here.

5.3.2 Helicity-Correlated Beam Corrections

Helicity-correlated beam motion, as introduced in Section 4.2, has the potential to lead to

large false asymmetries measured by the main detectors in the aluminum data set; thus a

correction is needed for this systematic effect.

A correction can be made to the raw asymmetry by measuring the helicity-correlated

difference in beam parameters, such as position and angle, and the correlation between the

raw main detector asymmetries and those beam parameters. These include: positions X

and Y , angles X ′ and Y ′, and energy E. Mathematically, this correction is expressed as

Areg = −
∑
i

∂Araw

∂χi

∆χi, (5.5)

where ∂A
∂χ is the detector correlation for a given beam parameter χi and ∆χ is the helicity-

correlated difference in beam parameter χi. The correlation, also know as a sensitivity, can

be determined with two linear regression methods: natural motion and beam modulation.

The first method uses the beam related monitoring devices to determine correlations

between the measured main detector asymmetries and beam positions and angles that

arise from natural beam motion. The second method uses magnetic coils to modulate the

position and angle of the beam with a known signal, allowing a precise determination of

the correlation between the measured asymmetry and the beam parameters. Since the size

of the raw asymmetry in the aluminum data is an order of magnitude larger than that of

the weak charge measurement and the correction is expected to be of the same size as the

weak charge analysis, the linear regression method was chosen to determine this systematic

correction, which is the easier of the two methods in terms of analysis effort.

The linear regression correction is performed in the Qweak analyzer using a particular set
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of beam monitor variables. This analysis opts for the “on” regression set, as the monitors it

uses are closest to the target and are fairly well behaved over the length of the aluminum data

set. The behavior of these helicity-correlated differences and sensitivities has been previously

investigated [127]. Plots of these quantities from this study are included in Appendix B.2.

The particular set of target beam monitors used to determine the detector sensitivities and

helicity-correlated differences in this analysis is tabulated in Table 5.2. Monitor definitions

for the rest of the available regression sets can be found in the ELOG [128].

Table 5.2: Analysis variable definitions for the various beam parameters used in the “on”
regression set.

Beam Parameter Monitor Variable

X diff qwk targetX
Y diff qwk targetY
X’ (slope) diff qwk targetXSlope
Y’ (slope) diff qwk targetYSlope
E diff qwk energy

The regression correction is applied to the quartet asymmetries, then averaged and saved

to the database at the runlet-level. Asymmetries take from the database are subsequently

averaged at the slug time scale in this analysis. The effects of these corrections on the

slug-averaged asymmetries can be seen in Fig. B.1. Following the same analysis steps

as applied to the extraction of the raw asymmetry, the positive, negative, NULL, and

physics asymmetries are determined for these regression corrected asymmetries. The χ2 and

probabilities for these regression corrected quantities are comparable to those determined in

the raw asymmetry extraction. Additional details about this correction for the aluminum

data set are documented in an ELOG on the subject [125]. The net correction Areg is

determined by taking the difference of the physics asymmetries listed in Table 5.3 and

Table 5.1, which is 0.4 ppb.

Two uncertainties are believed to contribute to the overall uncertainty on Areg. The first

comes from the choice of regression set compared with the other available options. Using

the steps described above, the regressed asymmetry was extracted for each of the available

regression sets. A comparison was made between the size of the correction from a given

set and the “on” set. These differences were typically on the order of less than 1 ppb and
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Table 5.3: Regressed aluminum asymmetry slug-based time averaging statistics, using re-
gression set “on”. The labels NEG and POS refer to the slug average of the negative and
positive state asymmetries. The NULL and PHYS labels refer to the respective unweighted-
average and sign-corrected weighted-average of the NEG and POS asymmetries.

Quantity Asymmetry [ppm] χ2/DOF χ2 Probability

NEG −1.417± 0.093 1.27 0.218
POS 1.469± 0.099 1.63 0.070
NULL 0.026± 0.068 – –
PHYS 1.441± 0.068 1.40 0.079

are tabulated in Table 5.4. The largest difference was seen between set 8 and set “on” at

−0.987 ppb. Rounding to the nearest part-per billion, the uncertainty due to the regression

set selection is 1.0 ppb.

The second uncertainty comes from the choice of time interval for which the regression

correction is applied to the data. By default, the correction is applied to the runlet

asymmetries. However, using the slug averaged differences and sensitivities, the regression

correction can be applied at the slug time scale. Comparing the extracted physics asymmetry

from either choice of time interval only yields an asymmetry difference of 1.0 ppb. A total

uncertainty on Areg was calculated by taking the quadrature sum of both of these 1.0 ppb

uncertainties, yielding a value of 1.4 ppb. Further information regarding the determination

of these uncertainties can be found in the ELOG [127].

Table 5.4: Regression scheme dependence on regression monitor set with respect to “on”
set.

Regression Set Correction [ppb] Difference w/ “on” [ppb]

on 0.410 –
on 5+1 0.106 −0.304
set 3 0.106 −0.304
set 4 0.454 0.044
set 7 −0.266 −0.676
set 8 −0.577 −0.987
set 10 0.474 0.064
set 11 0.410 0.000
set 13 0.508 0.098

In summary the regression correction for the entire Run 2 aluminum data set was
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determined to be

Areg = 0.4± 1.4 ppb. (5.6)

5.3.3 Beamline Background

A false asymmetry arises from the secondary scattering of electrons from beamline compo-

nents, such as the tungsten beam collimator. This background is believed to be constituted

by isotropically distributed low-energy neutral particles carrying large asymmetries. The

source of these secondary electrons is thought to come from the diffuse extended transverse

distribution of the beam (so called “halo”), as it passes through the various beamline

components downstream of the target, on its way to the dump.

Much of the work performed on investigating this background for the weak charge mea-

surement was the subject of the dissertation by E. Kargiantoulakis [92]. I briefly summarize

that work. The beamline background was found to only weakly contaminate the measured

main detector asymmetries. However, other detectors, such as the upstream luminosity

monitors (US lumis), were found to predominantly measure this beamline background

asymmetry. Thus a formalism was developed to determine a correction for this background

asymmetry by using the correlation between the measured main detector asymmetry and

the US lumi asymmetry, already referenced above. In this section I discuss the application

of this beamline background formalism for the Run 2 aluminum data set.

Slug-averaged regressed US lumi asymmetries were extracted from the entire Run 2

data set and were typically an order of magnitude larger than the measured main detector

asymmetries. A correlation slope was extracted by comparing these US lumi asymmetries

with the slug-averaged regresssed main detector asymmetries discussed in Section 5.3.2.

Figure 5.2 shows the correlation plot of these asymmetries. A linear fit was applied to these

data, using a non-linear least squares method. The correlation (CUSLumi
MD ) or the slope of

this best fit line was determined to be [129]

CUSLumi
MD =

AMD

AUSLumi

= 6.6± 5.9 ppb/ppm. (5.7)

A beamline background correction was applied to the slug-averaged regressed main
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Figure 5.2: Sign-corrected slug averaged main detector asymmetry to upstream lumi asym-
metry correlation for the Run 2 aluminum data set.

detector asymmetries on a slug-by-slug basis, using

ABB = −CUSLumi
MD AUSLumi, (5.8)

where CUSLumi
MD is the correlation slope extracted over the entire Run 2 aluminum data set

and AUSLumi is the slug-averaged regressed US lumi asymmetry. These corrections were

typically on the order of 50 ppb, however the corrections for Wien 8 were closer to 100 ppb.

Figure 5.3 shows each of the corrections for the entire Run 2 data set.

After applying the beamline background correction, the positive, negative, NULL and

physics asymmetries were extracted, see Table 5.5 for a tabulation of these values and

Fig. B.12 for plots. The NULL asymmetry improved by an order of magnitude after

including this correction and the physics asymmetry only shifts by −4.7 ppb, much less than

the statistical uncertainty. This demonstrates that the formalism used to determine this

correction is valid for the aluminum data set.

The final overall beamline background correction is just the shift in the physics asymme-

tries between the regressed and beamline background plus regressed data. The uncertainty

is taken to be that of the central value of the extracted correlation slope, which is slightly
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Figure 5.3: Beamline background corrections to slug-averaged regressed main detector
asymmetries. Figure recreated from data tabulated in the ELOG [125].

inflated to account for any systematic uncertainty beyond the statistical uncertainty already

present in the correlation slope. The final beamline background correction for the Run 2

aluminum data set was

ABB = −4.7± 6.6 ppb. (5.9)

Originally, the beamline background was treated as a physics background correction

to the measured asymmetry using the formalism discussed in Section 5.4. However, when

Table 5.5: Combined beamline background and regressed aluminum asymmetry slug-based
time averaging statistics, using regression set “on”. The labels NEG and POS refer to the
slug average of the negative and positive state asymmetries. The NULL and PHYS labels
refer to the respective unweighted-average and sign-corrected weighted-average of the NEG
and POS asymmetries.

Quantity Asymmetry [ppm] χ2/DOF χ2 Probability

NEG −1.435± 0.093 1.11 0.339
POS 1.439± 0.099 1.71 0.051
NULL 0.002± 0.068 – –
PHYS 1.437± 0.068 1.35 0.101
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the main detector US lumi correlation technique was developed, the collaboration decided

that it would be applied as a false asymmetry correction before the background physics

corrections [92]. However, the amount of signal fraction from this beamline background

asymmetry still needed to be included in this analysis. A value for this beamline background

fraction was determined for the aluminum data set from blocked-octant running, as discussed

below.

During the experiment, time was dedicated to a type of systematic study called blocked-

octant running. Tungsten shutters with the same profile of the acceptance defining apertures

in collimator 2, were placed in front (upstream face) of the openings of octant 1 and 5 in

collimator 2. The shutters would block the scattered electron profile seen by main detectors

1 and 5, which allowed the measurement of detector rates and yields originating from this

beamline background. These measured yields were used to determine a background fraction

for this process, as detailed in an ELOG [130]. The background fraction from the aluminum

data was determined to be

fBB = 0.69± 0.06 %. (5.10)

5.3.4 Non-linearity

A correction was needed to account for the non-linear signal response contaminating the

main detector recorded raw asymmetry. The source of this non-linearity comes from two

sources: the main detector photomultipier tubes and the BCMs that monitor the charge

asymmetry used to normalize the raw asymmetry.

This correction was determined after the experiment was completed, by using a combi-

nation of equipment bench tests and data analysis. Details of this work can be found in the

dissertation by W. Duvall [131]. The non-linearity factor (fL) for the Run 2 aluminum data

set is given as 0.1± 0.5%. This factor is then used to scale Araw to give the non-linearity

correction AL and its uncertainty as

AL ≡ −fLAraw,

δAL ≡ δfL|Araw|.
(5.11)
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The AL correction for the entire Run 2 aluminum data set calculated using this fL value,

and the “PHYS” value from Table 5.1 as Araw, was

AL = −0.001± 0.007 ppm. (5.12)

5.3.5 Transverse Leakage

As discussed in Chapter 4, one of the design goals of the Qweak apparatus was to minimize

systematic effects that would arise from geometric asymmetries. Leakage of beam-normal

single-spin asymmetries, also known as transverse asymmetries, are an example of such a

geometric systematic effect that has to be accounted for in this analysis. The transverse

asymmetries affecting Araw originate from residual transverse beam polarization combined

with imperfections in the azimuthal symmetry of the main detector array. A transverse

polarization causes an azimuthal variation in the main detector asymmetries. A correction

(AT ) for this effect is constructed with the knowledge of two quantities: the amount of residual

transverse beam polarization (PT ) and the symmetry breaking factor of the apparatus (fS).

This factor quantifies how asymmetric the azimuthal symmetry is in the Qweak apparatus [83].

It can be determined with two separate methods. One option, which was not explored

in this analysis but is mentioned here for completeness, would be to study the azimuthal

variation of the asymmetry as determined in a well benchmarked Monte Carlo simulation,

using the as-built geometry. The other is to study the variation using measured asymmetries

from periods of dedicated transverse polarized beam. The latter method was used for this

analysis, due to the precedent set by the weak charge analysis.

Chapter 6 covers the physics analysis associated with these periods of transverse running

in greater detail. However, the amplitude of this variation and the constant offset from the

transverse data have to be known here as they are used to determine this leakage correction.

To summarize the techniques used in that future chapter, the azimuthal variation and

constant offset are extracted from fits to transverse data taken with transversely polarized

beam during Run 2 for two separate polarization directions: vertical or horizontal. The

asymmetry measured in the main detectors are fitted with a generalized sinusoidal function

that has three free parameters: the amplitude, the phase, and a constant offset. Values for
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the amplitude are used to help determine the residual transverse beam polarization and the

constant offset is taken to be a measure of the symmetry breaking factor of the apparatus.

Table 5.6 contains values for these amplitudes and constant offsets determined from the fits

in Chapter 6.

Table 5.6: Amplitudes and constant offsets extracted from sinusoidal fits to transverse
asymmetries versus main detector from the pure transverse aluminum data set. Uncertain-
ties provided are statistical only.

Polarization Direction Amplitude [ppm] Constant [ppm]

Vertical −8.619± 0.727 0.203± 0.514
Horizontal −8.486± 0.499 −0.106± 0.353

The amount of residual transverse beam polarization is determined by looking at the

azimuthal variation of regressed main detector asymmetries for the entire Run 2 aluminum

data set. To avoid any confusion, it is important to note that there are data measured with

longitudinally polarized beam. The expectation is that the measured asymmetry (from the

purely longitudinal beam) versus azimuthal position (main detector location) is constant.

Fitting the parity-violating measured asymmetry versus main detector places limits on the

amount of residual transverse polarization that might have contaminated the beam during

aluminum data taking.

To extract the residual polarization values, a generalized function constructed from both

sine and cosine components is fitted to the Run 2 parity-violating aluminum data set. The

generalized function has the form of

A = BT

[
P V
T cosφ+ PH

T sinφ
]
+ C, (5.13)

where BT is the size of the aluminum beam-normal single-spin asymmetry, φ is the azimuthal

angle in the Qweak global coordinate system, C is a constant offset representing the parity-

violating asymmetry, and P V
T (PH

T ) is the vertical (horizontal) component of the residual

transverse polarization.

A non-linear least squares fit was performed on the Wien-averaged main detector

asymmetries for Wiens 6, 8, and 9 using Eq. (5.13). P V
T , PH

T , and C were treated as
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Figure 5.4: Residual transverse polarization extraction using a sinusoidal fit to main de-
tector regressed asymmetries in Wien 8. Uncertainties on blue data points are statistical
only. A 1σ uncertainty associated with the fit is given by the red band.

free parameters with the fit being optimized using a χ2 minimization routine. A value of

BT = −8.5± 0.4 ppm was used in the fit to set the size of the beam-normal single-spin

asymmetry, which is the error-weighted average of the vertical and horizontal amplitudes

from the fits performed on the fully transverse data sets given in Table 5.6. Figure 5.4

gives an example of one of these fits for Wien 8, the plots for Wiens 6 and 9 can be seen in

Appendix B.4.

Extracted values for P V
T and PH

T from the fits over all three Wiens are then averaged

to obtain final values which are used to calculate the transverse leakage correction. These

extracted values were determined to be P V
T = −0.48± 0.95% and PH

T = 2.32± 0.85%.

As the analysis breaks the residual transverse polarization and symmetry factors into

vertical and horizontal components, they can be combined to form the final transverse

leakage correction using

AT = fVS P
V
T + fHS P

H
T . (5.14)

Using this expression a transverse leakage correction for the entire Run 2 aluminum data set
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is determined to be

AT = −3.4± 8.8 ppb. (5.15)

Further details about this analysis can be found in the ELOG [132].

5.3.6 Rescattering Bias

Late in the weak charge measurement analysis, an additional false asymmetry was discovered

when investigating the asymmetries seen by the individual photomultipler tubes (PMTs)

attached to the main detectors. Based on the symmetry of these detectors, it was expected

that the difference of these PMT asymmetries would be zero. This asymmetry difference,

called the PMT double difference (ADD), is defined as

ADD ≡ A+ −A−, (5.16)

where A+ and A− are the measured asymmetries from the positive and negative PMTs at

each end of a given main detector, see Fig. 4.8. For the weak charge measurement these

differences were typically measured to be 300 ppb for the eight main detectors [46], indicating

the presence of a false asymmetry that required a correction. This correction is known as

the rescattering bias (Abias).

The source of this systematic effect was determined to be transverse asymmetries acquired

by the scattered electrons as they passed through the lead preradiators attached to the front

of each main detector, thus the name of rescattering bias. As scattered electrons leave the

target and pass through the magnetic field of the spectrometer, they acquire some amount

of transverse polarization from spin precession. Once these scattered electrons shower

through the lead preradiators, prior to detection in the quartz of the main detectors, their

transverse polarization causes them to develop a non-zero analyzing power from low-energy

Mott scattering, which causes a difference in the asymmetries measured by either PMT. A

correction for this effect in terms of the previously defined quantities is given as

Abias ≡
A+ −A−

2
. (5.17)
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Significant effort went into trying to understand this effect by two independent collabora-

tion subgroups. Much of their work on this topic is discussed in detail in a technical report

on the subject [133] and in an ELOG [134]. One subgroup was able to determine an Abias

correction by modeling the transport of these transversely polarized electrons through the

preradiators with a detailed Geant4 simulation [113–115]. This simulation study investigated

the effects from the parameterizations of the Cherenkov-light yield in the quartz, the flux

distribution of electrons passing through the main detector, and optical effects associated

with the light collection by the PMTs.

Using the machinery developed for determining a correction for the weak charge mea-

surement, a similar analysis was performed to determine a rescattering bias correction for

the Run 2 aluminum data set. To gain an appreciation for the size of this effect in the

aluminum data set, it is important to first look at the PMT double difference. A preliminary

determination of the Run 2 aluminum PMT double difference was performed and documented

in an ELOG [135]. However, that analysis opted for an alternative definition of PMT double

difference than that given in Eq. (5.16). A more recent calculation has been completed

using the slug-averaged asymmetry from the pass5b database and the definition given in

Eq. (5.16). Fig. 5.5 shows these calculated PMT double differences versus main detector

number, as extracted from this updated analysis. Note that the uncertainties on the points

in that figure are incorrect, as the true uncertainty on the PMT double difference has to be

calculated at the quartet level, thus any main-detector averaged PMT double difference is

only valid to 10%. The author leaves the proper calculation of these uncertainties as a future

task that should be revisited. With that caveat in mind, the main detector averaged PMT

double difference is determined to be 374± 106 ppb. This double difference is consistent

within its quoted uncertainty with the one determined from the weak charge data set.

Based on the suggestion of the subgroup working on this simulation-based analysis, an

effective model was used to calculate the rescattering bias correction for the aluminum data

set. Specifically, effective model “6” was chosen to determine the correction [136]. Details

about this particular model choice are discussed in the technical report [133]. However, a

few important points regarding the determined correction are mentioned here as they impact

the interpretation for the aluminum analysis. First, the correction determined from this
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Figure 5.5: Measured PMT double difference asymmetry calculated with the slug-averaged
PMT asymmetries for the aluminum data set. The error-weighted average is given by the
red line.

model does not account for any analyzing power dependencies across the face of the quartz

bar (in the local x direction), it only considers these along the bar (in the local y direction).

These local x variations are believed to have a small effect on the correction. Symmetrized

aluminum electron flux distributions determined from tracking analysis were used as the

model’s flux input for each of the main detectors and well as the best optical models for a

given detector.

An Abias correction of 4.2± 0.6 ppb is determined from this effective model by taking

the error-weighted average of the individual Abias values determined for each main detector.

These values are plotted in Fig. 5.6. The uncertainty on that value is from simulation

statistics only and is not a true total uncertainty associated with this correction.

The effective model can also be used to calculate a PMT double difference, which can

then be compared to the measured value in an effort to check its validity. The model gives a

PMT double difference value of 290.5± 1.2 ppb, which is extracted from an error-weighted

average of the double differences calculated for the eight main detectors. See Fig. 5.7 for a

plot containing these values. Comparing to the measured value, the effective model double

difference disagrees by 83.9 ppb, but is still within the uncertainty of the measured double
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Figure 5.6: Main detector rescattering bias corrections for the aluminum data set, as pre-
dicted by effective model “6” with conditions mentioned in text. The average correction is
given by red line. Figure recreated with data taken from the ELOG [136].

difference 374.4± 106.4 ppb. The effect of this discrepancy can be included in the predicted

Abias correction by scaling that value by the ratio of the measured to effective model double

differences. Performing this scaling changes the central value of Abias to 5.4 ppb, which

agrees well with an earlier prediction from the other subgroup working on this correction.

They chose to use a simple phenomenological approach that did not employ the sophisticated

simulation work. Results from that earlier study are documented in the ELOG [134].

Uncertainty in Abias comes from many of the inputs used in the effective model. However,

it was determined that the largest of these uncertainties comes from the optical modeling

of the as-built main detectors. Further details about the uncertainties that go into the

simulation-based analysis are discussed in reference [133]. Based on recommendations by

the subgroup, focused on this analysis, the final uncertainty on the Abias correction for the

weak charge measurement is adopted here for the aluminum correction. Thus for the entire

Run 2 aluminum data set a rescattering bias correction is determined to be

Abias = 5.4± 3.0 ppb. (5.18)
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Figure 5.7: Main detector PMT double differences determined from effective model “6”
for the aluminum analysis. Average double difference given by red line. Figured recreated
with data taken from the ELOG [136].

5.3.7 Beam Polarization

The polarization of the beam needs to be taken into account as a correction to Amsr. This

is applied as a scaling factor to Amsr before including corrections for background physics

processes.

Beam polarization was monitored by the combination of both the Møller and Compton

polarimeters during the Run 2 aluminum data set. An overview of their function has already

been discussed in Section 4.4. Beam polarization values determined during Run 2 were

extracted by the polarimetry subgroup. Based on their suggestions, polarization corrections

were applied on the slug time scale using values from their analysis [137]. The polarization

corrections of interest for the slugs in the Run 2 aluminum data set are tabulated in Table 5.7.

These values are applied to the slug-averaged beamline background plus regression-

corrected main-detector asymmetries for the given slug ranges. Average positive, negative,

NULL, and physics asymmetries were extracted with this correction included. Values of

these averages are tabulated in Table 5.8 and plots are given in Fig. B.15.
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Table 5.7: Beam polarization values for a given slug range.

Slug Range Polarization [%]

1028–1032 88.602
1033–1043 88.688
1044–1047 89.520
1048–1052 89.741
1053–1058 87.714

Table 5.8: Combined polarization, beamline background, and regressed aluminum asym-
metry slug based time averaging statistics, using regression set “on”. The labels NEG and
POS refer to the slug average of the negative and positive state asymmetries. The NULL
and PHYS labels refer to the respective unweighted-average and sign-corrected weighted-
average of the NEG and POS asymmetries.

Quantity Asymmetry [ppm] χ2/DOF χ2 Probability

NEG −1.616± 0.105 1.13 0.321
POS 1.620± 0.112 1.74 0.046
NULL 0.002± 0.076 – –
PHYS 1.618± 0.076 1.38 0.089

An effective polarization correction is determined by taking the ratio of the beamline

background corrected physics asymmetry in Table 5.5 with the polarization-corrected physics

asymmetry in Table 5.8, which yields a value of 0.8880. The uncertainty on this effective

polarization is determined by using the relative uncertainty recommended by the polarimetry

subgroup. They give a relative value of 0.62% for the Run 2 polarization; details of their

analysis used to determine this value can be found in the ELOG [137].

Using the effective polarization and the recommended relative uncertainty, a final

polarization correction for the Run 2 aluminum data set is

P = 88.80± 0.55 %. (5.19)

5.4 Background Corrections

The large energy bite of the Qweak apparatus allows the acceptance of a non-negligible

amount of scattered electrons that originate from non-elastic physics processes in the target.

The asymmetries carried by these electrons have the potential to be on the order of or even
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larger than that of the elastic parity-violating Al27 asymmetry. Thus a successful extraction

of the elastic parity-violating Al27 asymmetry requires precision corrections for all known

physics backgrounds that dilute the measured asymmetry. The difficulty of this analysis lies

in the ability to determine these corrections.

Each background correction requires two components: the detector yield fraction (fi) and

the background asymmetry (Ai). The detector yield fraction, also referred to as a background

fraction, is calculated from the product of the rate and the photoelectric response of the

Qweak detector system, weighted with the cross section carried by the detected scattered

electrons. This yield (Yi) as it is known, is determined in QwGeant4, Qweak’s Geant4 Monte

Carlo simulation [116], using either theoretical or empirical fits to data for each known

scattering process. Separate simulations are used to determine the main-detector averaged

yields per physics scattering process, where yields are extracted from the simulation using

the methods discussed in a technical report [138]. The background fraction for a given

process is defined as

fi =
Yi∑
i Yi

, (5.20)

where i denotes a particular scattering process and the
∑

i Yi is the total yield of all

processes included in the simulation. The asymmetries carried by the detected electrons

are also calculated using theoretical models or are taken as extrapolations from previous

measurements. The sum of the products of these two pieces, over all background processes,

gives the total asymmetry correction to the polarization-corrected measured asymmetry.

To understand the challenges of this analysis one has to realize the number of possible

scattering processes the incident electron beam can undergo during an interaction with

the Al27 nucleus. This understanding is best developed by quantifying the problem in

terms of energy. The average nucleus requires approximately 8MeV, the binding energy per

nucleon, to have a nucleon removed from the nuclear potential [23]. Any incident electron

that deposits that amount of energy or greater, by definition, inelastically scatters and can

alter the asymmetry measured in the detector. A non-negligible fraction of these incident

electrons deposit 8MeV or more of energy in the target, given the incoming electron beam

carries an energy of approximately 1.16GeV, coupled with the 150MeV energy acceptance
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of the apparatus.

These inelastic scattering processes can be split into two general categories. The first are

processes that excite the Al27 nucleus without destructive deformation, while the second are

processes that destructively deform the Al27 nucleus via the removal of a nucleon. The first

group can be further broken down into two sub-categories: discrete and collective excitations.

Both of these typically occur in the 0–20MeV energy range.

For the case of discrete excitations, it is best to view the nucleus within the context of

the nuclear shell model. The shell model describes the nucleus as a collection of energy levels,

where the individual nucleons occupy these levels according to their quantum numbers. This

is analogous to the atomic shell model where electrons orbiting the nucleus occupy varying

energy levels. Energy introduced from an external source can cause a nucleon (or, in the case

of the atomic model, an electron) to jump to a higher level in a discrete step. After some

fixed lifetime, the nucleon de-excites back to the ground state of the nucleus by releasing

radiation, typically via the emission of a gamma-ray.

Collective excitations describe the motion of multiple nucleons inside of the bound nucleus.

The most important of these excitations is the Giant Dipole resonance (GDR), which is

best described as the neutron distribution moving out of phase with the proton distribution.

Other, higher-mode giant collective excitations are also possible, though the probability

of their excitation is less than that of the GDR. Additionally, rotational and vibrational

degrees of freedom can be involved in these collective excitations, see reference [139].

Examples of destructive excitations include quasi-elastic and inelastic scattering. Quasi-

elastic scattering is described by the electron interacting with the nucleus with enough

energy so that a nucleon is ejected in the final state. Inelastic scattering in this context

is similar, however the liberated nucleon is also excited, with the most probable nucleon

excitation being the ∆(1232). Additionally, the term inelastic scattering can also be used to

describe the deep inelastic piece of the scattering energy spectrum, where the electron has

enough energy to probe the structure of the individual nucleons. Deep inelastic effects are

not considered in this analysis, as the kinematics of this experiment make these reactions

unlikely.

Apart from known background physics processes associated with the Al27 , additional
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corrections are needed for the following: elastic scattering from non- Al27 elements in the

target alloy material, neutral particles transported through the apparatus, and charged

pions. Only elastic scattering contributions are considered for the alloy elements in this

analysis, as those are the dominant yield fractions at these forward-angle kinematics. Both

the neutral particle and charged pion contributions were determined in simulation for this

analysis.

To summarize, this section discusses the known corrections for background physics

processes needed to extract the pure elastic parity-violating electron- Al27 asymmetry. These

include corrections for the discrete excited states of the Al27 nucleus, collective motion from

the GDR, quasi-elastic scattering, inelastic scattering involving an excitation of the ∆ (often

labeled N → ∆), neutral particle backgrounds, charged pions, and elastic scattering from

non- Al27 elements in the target alloy material.

5.4.1 Quasi-elastic Scattering

The background fraction determination for the quasi-elastic scattering process was performed

in QwGeant4 using a cross section generator built from an empirical fit to world data. The

cross section for inelastic electron-nucleon scattering in the one photon approximation is

given by

dσ

dΩdE′ =
α2 cos2 θ

2

4E2 sin4 θ
2

[W2(W
2, Q2) + 2W1(W

2, Q2) tan2 θ
2 ], (5.21)

where α is the fine structure constant, θ is the lab polar scattering angle, and the structure

of the interaction is described by the functions W1(W
2, Q2) and W2(W

2, Q2) [10]. These

structure functions are dependent on the invariant mass W 2 and the momentum transfer

Q2 of the reaction.

Functional forms for these structure functions are determined by empirical fits to world

data from inclusive electron-nucleus scattering experiments [140], which is known as the

Bosted-Mamyan generator. In particular, these fits return separate values for the quasi-

elastic and inelastic N → ∆ regions of the inelastic scattering spectrum, which correspond

to different invariant mass and momentum transfer regions for a given scattering angle θ.

Performing calculations with only the quasi-elastic piece of this fit allowed the determination
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of acceptance averaged yields in simulation and correspondingly allowed the determination

of the quasi-elastic background fraction. The original structure function fitting code can be

found at the P. Bosted’s website [141].

At the time when this empirical fit was performed, limited inelastic inclusive electron- Al27

data were available in the same kinematic region as Qweak. The authors of the empirical fit

specifically expressed caution about its validity at lower Q2 [140]. However, more recently

comparison were performed between this fit and newly released low Q2 inelastic electron- Al27

scattering data that was made available in a conference proceedings [142]. The results from

this study are documented in the ELOG [143]. That comparison confirmed the conclusions

drawn by the authors of the fit; the fit performs well in the N → ∆ section of the inelastic

spectrum but generally disagrees in the quasi-elastic region at the 5–10% level. Using the

results from that comparison, a 10% (relative) uncertainty was applied to yields extracted

from the simulations using the quasi-elastic piece of this empirical fit.

No previous parity-violating quasi-elastic asymmetry measurements have been conducted

with an aluminum target at forward-angle kinematics. Alternative methods for determining

this background asymmetry were required. Working in collaboration with C. J. Horowitz

and Z. Lin at Indiana University, a model-derived estimate of the quasi-elastic background

asymmetry (Aquasi) was determined at Qweak kinematics.

They employed a relativistic Fermi gas (RFG) model from a previous calculation that

was performed on C12 at backward angles [144]. According to C. J. Horowitz, the model

does a decent job at predicting the quasi-elastic asymmetry, but a poor job at predicting

the cross section [145]. With that limitation in mind, an acceptance averaged quasi-elastic

asymmetry from that model was calculated to be Aquasi = −0.338 ppm [145, 146].

The estimate from the RFG model agrees well with the free nucleon quasi-elastic

asymmetry estimate, which is calculated as the cross section weighted average of the

respective elastic parity-violating asymmetries from the number of nucleons in the Al27

nucleus [146]. However, both the RFG model and free nucleon asymmetry calculations

fail to completely account for nuclear medium effects, such as final state interactions (FSI)

and meson-exchange currents (MEC). The authors of a similar and separate calculation

performed on a series of spin-0 nuclei, claim FSI effects only contribute at 1% level to the
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parity-violating quasi-elastic asymmetry at forward scattering angles [147]. C. J. Horowitz

believes FSI effects on the cross section predicted by the RFG model could be on the order

of 15–20% [145]. Based on his insight, a conservative 50% (relative) uncertainty was placed

on the RFG model asymmetry estimate in an effort to account for these nuclear medium

effects, which gives δAquasi = 0.169 ppm.

In summary, an empirical fit to world cross section data is used in QwGeant4 to determine

detector yields that are then used to calculate a quasi-elastic background fraction and the

acceptance-averaged quasi-elastic background asymmetry was then determined from a RFG

model. These contributions for the aluminum analysis are determined to be

fquasi = 12.77± 1.22 %, (5.22)

Aquasi = −0.338± 0.169 ppm. (5.23)

5.4.2 Inelastic Scattering

The background fraction piece of the inelastic N → ∆ process was calculated using the same

method as discussed in Section 5.4.1 for the quasi-elastic background. Instead of the using

the quasi-elastic piece of the empirical fit to world data, the inelastic N → ∆ piece was used

to calculate acceptance-averaged yields and the N → ∆ background fraction.

The uncertainty on these yields was determined during the same low Q2 fit-to-data

comparison discussed for the quasi-elastic background section. At the invariant mass (W )

of the ∆(1232), the comparison showed agreement at the 5% level [143]. However, in the

higher invariant mass region, the disagreement increased to about 10%. A conservative

uncertainty of 10% was placed on simulation extracted N → ∆ yields in order to match

this disagreement seen in the inelastic region and the uncertainty placed on the quasi-elastic

background.

During Wien 7 of Run 2, a period of data taking was dedicated to measuring the

asymmetry at the N → ∆ peak, which is accessed by reducing the current of QTOR from

8900A to 6700A. At this lower current, the spectrum of inelastic scattered electrons was

focused on the main detector array, allowing a measurement of this N → ∆ asymmetry.
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Four runs taken during that time used the Al27 target in an effort to measure this

inelastic asymmetry from the Al27 nucleus. These were runs 14 337, 14 338, 14 364, and

14 365. Since only this limited amount of data is available, any extracted asymmetry is

statistically limited. However, these data can be used to determine the inelastic background

asymmetry diluting the elastic Al27 measurement, with a few assumptions.
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Figure 5.8: Regressed asymmetry plots for the Al27 N → ∆ data set.
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A run-averaged asymmetry was extracted from these four runs, using the same analysis

technique as that used on elastic aluminum data set [148]. Results from that analysis are

shown in Fig. 5.8. The averaged regressed asymmetries for the various combinations of

IHWP are given in Table 5.9.

Table 5.9: N → ∆ regressed aluminum asymmetry run-based time averaging statistics,
using regression set “on”. The labels IN and OUT refer to the IHWP state asymmetries.
The NULL and PHYS labels refer to the respective unweighted-average and sign-corrected
weighted-average of the IN and OUT asymmetries.

Quantity Asymmetry [ppm] χ2/DOF χ2 Probability

IN −0.843± 1.195 0.78 0.378
OUT 1.600± 1.244 1.55 0.213
NULL 0.379± 0.862 – –
PHYS 1.206± 0.862 0.84 0.472

A final N → ∆ asymmetry at 6700A would require additional efforts to determine

its various systematic uncertainties. However, this result can be used to determine an

inelastic background correction asymmetry (Ainel) with a few minor corrections. First is a

beam-polarization correction, which was determined to be P = 88.60± 0.55% during that

period of inelastic running [137]. Applying this correction shifts the averaged regressed

asymmetry to 1.362± 0.973 ppm.

Assuming the N → ∆ asymmetry evolves with Q2 to first order, Ainel can be determined

by applying a Q2 scaling factor in the following way

Ainel =
Q2

8900

Q2
6700

A6700
inel , (5.24)

where Q2
8900 and Q2

6700 are the momentum transfers at 8900A and 6700A, and A6700
inel is the

polarization corrected N → ∆ asymmetry extracted from data at 6700A.

Momentum transfers used to calculate this scaling factor were determined in QwGeant4

with the Bosted-Mamyan inelastic generator for both of the QTOR current settings. The

main detector averaged Q2 from these simulations was determined to be 0.0238GeV2 for

6700A and 0.0281GeV2 for 8900A. Simulation uncertainties associated with these values

are below 0.2% (relative). Taking the ratio of these momentum transfers yields a scaling
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factor of 1.1815. Applying this scaling factor to the measured asymmetry yields an inelastic

background asymmetry of Ainel = 1.609± 1.149 ppm, where the uncertainty is dominated

by the statistics of the measured asymmetry [148]. This is a 71% precision determination of

the inelastic background asymmetry.

Future effort should be dedicated to reducing the uncertainty associated with this

background asymmetry, as it is the largest in the aluminum analysis. Since a majority of the

other background corrections employ theoretically-derived values, a theoretical calculation

of this asymmetry could be used in a future analysis. Reviewing the literature, a previous

calculation of the N → ∆ asymmetry was performed for the C12 nucleus, at kinematic

regions outside of the Qweak experiment, with a relativistic Fermi gas model [149]. In a

similar fashion to the model used to determine the quasi-elastic background asymmetry,

this Fermi gas model does not include nuclear medium effects, such as FSI and MEC. Any

future calculation performed with such a model could be compared with the measured and

scaled asymmetries in an effort to confirm the scaling assumptions used in this analysis.

Additional, this comparison might allow a dramatic reduction in the size of the uncertainty

on the background asymmetry.

To summarize, the same empirical fit used to determine the quasi-elastic background

fraction has been applied here for the inelastic background and a kinematically scaled

measurement of the N → ∆ Al27 asymmetry has been used to calculate a background

asymmetry. A correction for the inelastic N → ∆ background† has been made with

finel = 7.39± 0.74 %, (5.25)

Ainel = 1.609± 1.149 ppm. (5.26)

†
Late in the analysis of this background contribution, the realization was made that additional corrections

are needed for the radiative elastic tail and quasi-elastic contributions before the inelastic asymmetry can be
Q scaled to the elastic peak. To perform this extra analysis step, background fractions from those pieces
have to be determined in simulation. Once the corrections are included, the central value and uncertainty of
this inelastic background correction will change, directly effecting the final result of this analysis. This task
is left as a future improvement.
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5.4.3 Discrete Nuclear Excited States

Focusing first on the determination of the background signal fraction, a model is needed

for the cross sections from the spectrum of possible Al27 discrete excitations. These cross

sections are used in the formation of a event generator in QwGeant4. Aluminum is a

fairly ubiquitous material that has been studied many times before in electron scattering

experiments. In particular two previous experiments have looked at the electroexcitation of

these discrete states in the Al27 nucleus in a comparable kinematic region as that of the

Qweak experiment. The first of these experiments was conducted at the Kelvin Laboratory,

Glasgow, UK in the mid 1970s [150]. The second, more recent, experiment was conducted at

MIT Bates Laboratory, Middleton, MA in the late 1980s [151, 152]. Both experiments used

an electron beam in a fixed target setting to excite the nucleons of the Al27 nucleus to these

higher energy states. The main result of both these endeavours are determinations of the

electromagnetic form factors from cross section measurements of these discrete excited state

scattering. These extracted form factors happen to be in a momentum transfer range that

matches well with Qweak’s kinematic acceptance. Thus a simple Gaussian function fitted to

these data was used to model the momentum transfer evolution of these form factors in a

first Born approximation calculation of their cross sections.

Referenced in the later MIT Bates publication [152] is a supplemental document con-

taining a tabulation of all the measured cross sections and their corresponding extracted

form factors from each of the discrete excited states measured by the MIT Bates experiment.

These tabulated data can be found in the American Institute of Physics, Physics Auxiliary

Publication Service archives [153]. The data from the Glasgow experiment is tabulated in

Table 2 of that publication [150].

Combing the extracted form factors from both sources, there are data on 37 of the most

strongly populated discrete excited states, ranging in energy from 0.844MeV to 8.820MeV.

Subsequent measurements using other nuclear diagnostic methods have shown Al27 to have

many more excited states [38]. However, as background corrections are only needed for

scattering from the most probable states, only data from the MIT Bates and Glasgow

electroexcitation experiments are considered in the determination of cross sections for this
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Figure 5.9: Extracted form factors for the 11 most probable discrete excited states from
the MIT Bates experiment [153]. Qweak’s momentum transfer acceptance is given in the
grey shaded region. The dashed line is the 10−4 cutoff imposed on the data set.

analysis.

Making 37 individual background corrections for all measured discrete excited states

is not necessary. Depending on the size of the form factor, the inclusion of additional

states starts to yield diminishing returns in terms of the size of their background correction

contribution. Thus to simplify the analysis, a cut-off of 10−4 was placed on the magnitude of

the measured form factor data, which matches the assumption made in the elastic scattering

cross section calculation by Horowitz in Section 3.2.2. Any excited states with extracted form

factors larger than 10−4 within the Qweak momentum transfer acceptance were considered,

while the rest were excluded. This cut reduced the number of discrete states from 37 to

11. The energy levels of these remaining states are: 0.844MeV, 1.014MeV, 2.211MeV,

2.735MeV, 2.990MeV‡, 4.580MeV, 4.812MeV, 5.430MeV, 5.668MeV, 7.228MeV, and

7.477MeV. Figure 5.9 shows a comparison of these 11 considered states with the Qweak

momentum transfer acceptance.

‡
This state is an unresolved doublet of the 2.981MeV and 3.004MeV excited states. The energy resolution

of the MIT Bates experiment prevented their separation and are thus treated as a single state [152].
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The form factors were modeled with a simple Gaussian function written as

F (Q, c, µ, σ) = ce
−
(Q−µ)

2

2σ
2 , (5.27)

where c is a multiplicative constant, µ the mean of the Gaussian distribution, and σ is

the standard deviation (width) of that distribution. A non-linear least squares method,

called scipy.optimize.curve fit from the Python SciPy [154] package, was used to perform

the fitting for each of the selected excited states. The best fit values were determined with a

χ2 minimization routine included in that Python package. Only data between 0.3 fm−1 and

1.8 fm−1 for each of the excited states are considered in a given fit. This reduced fit range

allowed for better modeling of the form factor over the momentum transfer range of interest

to this analysis. It also avoided the requirement for more sophisticated modeling that would

be needed to account for the diffractive minimum present in most of the selected excited

states at higher momentum transfer.

An example of this modeled data, for the largest contributing excited state, can be seen

in Fig. 5.10. In that figure, the 2.211MeV state data from both the MIT Bates and Glasgow

experiments are plotted along with the Gaussian fit function over the range previously

mentioned. The Qweak momentum transfer range of interest is indicated by the grey shaded

region. Visual comparisons of data to fits for the other 10 considered excited states can be

seen in Appendix B.6. Parameters extracted from the 11 fits are tabulated in Table 5.10.

The fitting routine also returns a covariance matrix that can be used to calculate the

uncertainty in the fit using the general propagation of uncertainty formula [155]. This

calculation yields a function that can be used to determine the uncertainty for a given value

of momentum transfer. Figure 5.11 provides an example of this uncertainty function for the

2.211MeV state. The data used in those fits only included statistical uncertainties and thus

many of the fits had poor χ2 values and probabilities. In a conservative effort to account for

these poor fit metrics, a scaling factor of (χ2/DOF )
1
2 was applied to the fit uncertainties [9].

The last column in Table 5.10 gives the scaled uncertainties at the average momentum

transfer (Q = 0.778 fm−1) for each of the considered excited states. Further details about

these fits and their uncertainties can be found in the ELOG [156].
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Figure 5.10: Gaussian function fitted to Al27 ’s 2.211MeV excited state form factor data.

Parity-violating asymmetries associated with these excited states are unknown, so

estimates are used in this analysis. Following the advise of C. J. Horowitz, from his

publication motivating this analysis [40], asymmetries for the discrete excited states are

expected to be on the order of the elastic Al27 asymmetry. However, C. J. Horowitz

specifically mentions two important points regarding the asymmetry for these states. The

first is that at forward angles, he expects these asymmetries to be dominated by Coulomb

multipole terms. Secondly, the sign of the asymmetry depends on whether the excited state

transition is isoscalar (+APV ) or isovector (−APV ).

In this analysis, the magnitudes of the excited state asymmetries are calculated in

QwGeant4 with Eq. (3.44), which sets the scale of the asymmetry at approximately that

of the calculated elastic asymmetry from Horowitz’s model, or approximately 2 ppm. The

variations between these asymmetries are due to the differences in the excited states’

acceptance-averaged momentum transfers used in these calculations. The isospin of these

excited states are also not well known, as indicated by the Table of Isotopes [38]. Traditionally,

the isospins of these transitions are identified by performing a comparison between the

energies and spin-parity states of the discrete excitation spectra of fellow nuclear isobars [139].

Examples for a comparison to Al27 would be either Mg27 or Si27 nuclei; such a comparison has

already been performed with these nuclei. Isospins for the states in Al27 were assigned based
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Table 5.10: Extracted Gaussian fit parameters for the 11 considered excited states. Uncer-
tainties given in the last column are relative and include the scaling factor.

Energy Uncertainty

Level [MeV] c µ [fm−1] σ [fm−1] (scaled) [%]

0.844 0.000 478 0.9600 0.3072 15.89
1.014 0.000 719 0.9049 0.2815 24.60
2.211 0.002 351 0.8895 0.2647 11.49
2.735 0.000 318 0.9615 0.4139 8.15
2.990 0.001 665 0.9577 0.2999 6.31
4.580 0.000 159 1.3896 0.4825 12.15
4.812 0.000 230 0.2536 0.5944 26.85
5.430 0.000 269 0.7793 0.4466 18.42
5.668 0.000 137 0.8912 0.3636 18.31
7.228 0.000 356 1.0592 0.3218 35.92
7.477 0.000 210 1.0785 0.2994 75.08

on the recommended upper limits of gamma-ray emission studied with nuclear spectroscopy

techniques [157, 158]. All excited states considered in this analysis are believed to be

predominately isoscalar transitions (∆T = 0) from the Al27 ground state and are thus

assigned a positive asymmetry [159].

Uncertainty in the sign of that asymmetry primarily comes from isospin mixing effects

that occur during these excitations. Horowitz warns that transitions of mixed isospin

would have an asymmetry somewhere in-between the positive and negative bounds set by

Eq. (3.44). This warning was also echoed by the author who performed the original isobar

comparison [157, 158]. Effects of isospin mixing on asymmetries measured in C12 have been

explored previously [51]. The formalism developed in that publication to determine the

size of these effects has not been applied in this analysis, but could be investigated in the

future for completeness. Combining the results from the nuclear isobar comparison with

the belief that the excited states are dominated by Coulomb multipoles at these kinematics,

conservative uncertainties of 50% (relative) are applied to simulation-extracted excited state

asymmetries.

Calculated background fractions and acceptance-averaged asymmetries for each of the

11 states considered are tabulated in Table 5.11 with their uncertainties.
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Figure 5.11: Calculated fit uncertainty (relative) for 2.211MeV excited state. Uncertainty
assigned to simulation extracted yields taken from average Q value of the scaled uncertainty
curve.

5.4.4 Giant Dipole Resonance

The background fraction piece of the correction for the Giant Dipole Resonance (GDR) was

taken from a Goldhaber-Teller model calculation of the cross section [160], where the proton

distribution is assumed to oscillate out of phase with the neutron distribution. In addition,

the model also assumes the nucleons are spherically distributed inside of the nucleus, which

is not the case for the Al27 nucleus. That calculation gives the GDR cross section as a

multiplicative factor on the elastic cross section, written as

( dσ
dΩ

)L+T

GDR

/( dσ
dΩ

)
el

=
(N2~2∆2

2µA2~ω

)
+

( N2~ω
2µA2c2

(1 + sin2 θ
2)

cos2 θ
2

)
, (5.28)

where the first term in the sum is the longitudinal polarization component and the second

is the transverse polarization component of the mediating photon, N is the number of

neutrons, A is the atomic mass, µ = (NZ/A)M is the reduced mass of the system, ∆ is the

3-momentum of the mediating photon, and ~ω is the energy of the GDR excitation. From

that expression it is easy to see that the longitudinal term dominates at forward angles.
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Table 5.11: Simulation extracted background fractions and asymmetries for the discrete
excited states in the aluminum target material.

Energy Level [MeV] Background Fraction (fi) [%] Asymmetry (Ai) [ppm]

0.844 0.27± 0.04 2.619± 1.310
1.014 0.41± 0.10 2.563± 1.282
2.211 1.35± 0.16 2.543± 1.271
2.735 0.19± 0.02 2.590± 1.295
2.990 0.93± 0.07 2.617± 1.308
4.580 0.06± 0.01 2.783± 1.392
4.812 0.09± 0.02 2.379± 1.189
5.430 0.17± 0.03 2.490± 1.249
5.668 0.08± 0.02 2.542± 1.271
7.228 0.18± 0.06 2.706± 1.353
7.477 0.10± 0.07 2.753± 1.377

The implementation of this cross section into QwGeant4 relies upon a value for the GDR

excitation energy, which was taken to be 20.8MeV as measured from a total photoabsorption

experiment performed on Al27 [161, 162]. It is important to note that Eq. (5.28) is not

integrated over the entire GDR energy spectrum. The finite energy width of the GDR

excitation is not taken into account in that expression. To account for this effect, a factor

of 9MeV representing the width [161] of the GDR excitation energy spectrum was used to

scale the calculated cross section in QwGeant4 [163].

The parity-violating asymmetry for the GDR is not known at all. Again, following the

advice noted in C. J. Horowitz’s aluminum publication [40], the magnitude of the GDR

asymmetry is calculated with Eq. (3.44). However, this excitation is known to be an isovector

transition (∆T = 1), thus the calculated asymmetry is assumed to be negative [40].

Information about cross section uncertainties come directly from the Goldhaber-Teller

model publication [160], where the authors discussed an observed disagreement between the

model and their data at the 50% level. Even though the model was compared with data

taken at backward angles, the magnitude of their disagreement was adopted as a conservative

uncertainty on the yields extracted from simulation for this correction. Uncertainty on

the asymmetry was applied in a similar approach. Knowing that the GDR is primarily an

isovector transition, uncertainty from isospin mixing is probably minimal here, but could be

checked with more sophisticated models in the future. Also the GDR is a non-destructive
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collective excitation, the spherically symmetric asymmetry assumption probably is not that

far off from reality. However, a conservative uncertainty of 50% (relative) is also applied to

the asymmetry.

Extracted from simulation, the background fraction and asymmetry for this GDR process

are determined to be

fGDR = 0.578± 0.29 %, (5.29)

AGDR = −2.217± 1.108 ppm. (5.30)

5.4.5 Al27 Alloy Elements

As discussed in Section 4.5.1 the material used for the aluminum target was an alloy

containing high-Z elements in concentrations as high as almost 6.0wt% (% by weight). The

presence of these alloy elements leads to backgrounds that require correction before the pure

elastic aluminum asymmetry can be extracted.

Working again in collaboration with C. J. Horowitz and Z. Lin, elastic cross sections and

parity-violating asymmetries were calculated for six of the most common naturally occurring

isotopes of the elements found in the aluminum target material [164, 165]. These calculations

were performed at forward-angles for a beam energy of E = 1.16GeV with a relativistic

mean field model, similar to the one used by C. J. Horowitz for his calculation of Al27 [40].

In particular, these calculations included Coulomb distortions (distorted-wave) but assumed

spherically symmetric proton and neutron densities, thus only the C0 multipole terms were

included [164]. High-order multipole terms were not considered in these calculations. Cross

section and asymmetry curves from these calculations are plotted in Fig. 5.12 and Fig. 5.13,

respectively.

Tabulated output from these calculations was used to construct custom cross section

and asymmetry generators in QwGeant4 (labeled generators 2750–2755). An interpolation

routine was used to select cross section and asymmetry values within the bounds of the

tabulated data tables based on a randomly selected scattering angle θ for each thrown Monte

Carlo event, which are then propagated through the Qweak apparatus with the radiation

transport routines built into Geant4.
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Figure 5.12: Forward-angle distorted-wave elastic electron cross sections calculated for
the six largest composition by weight alloy elements in the aluminum target. Calculation
performed at E = 1.16GeV with RMF model. Curves generated from data tables given by
C. J. Horowitz [164, 165].

Calculations of cross sections and asymmetries for the smallest contributions of manganese

and titanium in the alloy were not considered by Horowitz. Separate methods were used to

determine cross sections and asymmetries for these contributions. Using legacy code, cross

sections for the manganese and titanium contribution were calculated with different form

factor parameterizations [166]. Fourier-Bessel coefficients from earlier electron scattering

cross section measurement made on titanium, tabulated in the Atomic Data and Nuclear

Data tables [111], were used in an inverse Fourier transform parameterization of its form

factor. Scaling the form factor by the Mott cross section, given in Eq. (3.10), gave an

estimate of titanium’s cross section over the Qweak acceptance in QwGeant4 simulations.

Similarly, a cross section estimate for manganese was calculated with a simple Uniform

Gaussian form factor model [111]. Estimates of their asymmetries are given by the symmetric

Born asymmetry in Eq. (3.44).

In QwGeant4, concentrations of the alloy elements are taken into account in two places.

The first is in the material definition of the aluminum target and the second is in the

calculation of the luminosity. The most important of these two is the latter, as the luminosity
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Figure 5.13: Forward-angle distorted-wave elastic electron parity-violating asymmetries for
the six largest composition by weight alloy elements in the aluminum target. Calculation
performed at E = 1.16GeV with RMF model. Curves generated from data tables given by
C. J. Horowitz [164, 165].

(L) is used in the calculation of the rates and yields extracted from the simulation [138].

Concentrations (Ci) for a given alloy element, from Table 4.7, are used to scale L in the

following way

Li = Ci

ρANANB

MA

= CiLAl-alloy, (5.31)

where ρA is the areal density of the aluminum alloy target, NA is Avogadro’s number, NB is

the flux of particles in the beam, and MA is the average mass of the target nucleus.

Combining the cross section and asymmetry generators with the implemented concentra-

tion information, QwGeant4 simulations allowed determination of the acceptance averaged

detector yields and asymmetries measured from each of these elements in the aluminum

target. Knowledge of these yields, in combination with the rest of the scattering backgrounds,

allowed the determination of their background fractions.

Uncertainties in the acceptance-averaged yields and asymmetries extracted from sim-

ulation are believed to be dominated by model uncertainties. Simulation-extracted yields

from C. J. Horowitz’s zinc, magnesium, copper, chromium, iron, and silicon calculations

were given a conservative 10% (relative) uncertainty. Asymmetries from those calculations
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were given 50% (relative) uncertainty, because they assumed spherically symmetric nucleon

densities for nuclei that are known to have a more complex structure. In addition, most

of the high-Z alloy elements have a diffractive minimum occurring in the middle of the

Qweak acceptance, where high-order multipole contributions are important to get the correct

value of the asymmetry. For manganese and titanium cross section and asymmetry models,

conservative relative uncertainties of 50% were applied to both yields and asymmetries.

Uncertainty contributions from simulation statistics and assayed alloy compositions are

considered negligible compared to the applied model uncertainties, thus they are not in-

cluded in the quoted uncertainties. To further reduce the uncertainty on these alloy element

contributions, additional effort would have to be put into an investigation to see how well C.

J. Horowitz’s models agree with historical cross section measurements.

Calculated background fractions and acceptance averaged asymmetries, extracted from

simulation, are tabulated in Table 5.12 with their model uncertainties.

Table 5.12: Simulation extracted background fractions and asymmetries for the alloy ele-
ments present in the aluminum target material.

Element Background Fraction (fi) [%] Asymmetry (Ai) [ppm]

Zn 2.375± 0.249 1.815± 0.908
Mg 2.088± 0.219 2.013± 1.006
Cu 0.683± 0.073 1.857± 0.929
Cr 0.100± 0.011 1.920± 0.960
Si 0.080± 0.009 1.984± 0.992
Fe 0.054± 0.006 1.883± 0.941
Mn 0.018± 0.009 2.343± 1.172
Ti 0.014± 0.007 2.148± 1.074

5.4.6 Neutral Particles

Neutral particles, such as gamma-rays, neutrons, and neutral pions produced in secondary

reactions in the apparatus occasionally enter the acceptance of the experiment. They are

believed to originate from beamline elements and edges of the collimators. Data recorded

during event-mode running allowed the determination of a background fraction from these

neutral events. In addition, simulations with QwGeant4 allowed for an estimate of the size

of asymmetry these neutral particles carried. Details about this analysis are discussed at
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length in a technical report [167].

During that investigation, a background correction and asymmetry estimate was deter-

mined specifically for the aluminum data set. Taking the values from that analysis, the

corrections for the neutral background in the aluminum data set are

fneutral = 0.00± 0.45 %, (5.32)

Aneutral = 1.7± 0.2 ppm. (5.33)

It is important to note that the neutrals analysis attempts to avoid double counting the

beamline background asymmetry correction already applied in this analysis by imposing a

sum rule between the fraction of total neutral events, the fraction from beamline background,

and the fraction noted here. During the neutrals investigation, this assumed sum rule was

shown not to hold for the aluminum data. Details about this sum rule violation are discussed

in the neutrals background technical report [167]. However, to ensure the numbers extracted

from this analysis were not inconsistent with similar analyses conducted for other data sets,

conservative uncertainties were applied to the neutrals background fraction for the aluminum

data set.

5.4.7 Pions

With a beam energy of 1.16GeV and an energy acceptance of approximately 150MeV, the

possibility of a substantial pion background is highly unlikely due to the pion threshold.

However, to ensure this background was not an issue for the aluminum data set, yield

simulations were performed with a pion generator in QwGeant4. That generator was based

on the Wiser pion cross section fitting code [116, 168, 169], written to produce cross sections

from pion production data taken on light nuclear targets at the Stanford Linear Accelerator,

at much higher beam energies. That code allowed cross section calculations from both

the nucleons in the nucleus, thus an estimate for Al27 was made using a nucleon scaling

argument, which neglected nuclear medium effects. The background fraction from this rough

estimate was determined to be fpion = 0.06%, which is negligible compared to the rest of
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the backgrounds, even with a large conservative uncertainty. Based on this estimate, a pion

correction was not included in this analysis.

5.5 Multiplicative Radiative and Acceptance Corrections

After correcting the measured asymmetry for background physics processes, the extraction

of the final asymmetry required a multiplicative correction called Rtot. Rtot is constructed

from the product of four separate corrections written in the form

Rtot = RaccRdetRrcRQ
2 , (5.34)

where Racc is a finite asymmetry acceptance correction, Rdet is a correction for position

dependence in detector light collection, Rrc is a correction for electromagnetic radiative

effects, and R
Q

2 is a momentum transfer uncertainty correction. This section discusses how

each of these terms was determined for the aluminum data set.

5.5.1 Acceptance Correction

The background-corrected measured asymmetry represents an asymmetry average taken

over a range of momentum transfers in the acceptance of the apparatus. Simulation was

used to correct this averaged asymmetry to an asymmetry quoted at an averaged momentum

transfer, using

Racc ≡
A(〈Q2〉)
〈A(Q2)〉

, (5.35)

where A(〈Q2〉) is the theoretical asymmetry reported at the average momentum transfer of

the experiment and 〈A(Q2)〉 is the simulation determined acceptance-averaged asymmetry

over the range of momentum transfers in the acceptance.

In QwGeant4, a custom cross section and asymmetry generator (generator 2700) based

on C. J. Horowitz’s theoretical calculation of elastic aluminum scattering introduced in

Sections 3.2.2 and 3.3.2, was used to calculate 〈A(Q2)〉. A main detector averaged value

of 〈A(Q2)〉 was determined to be 2.0812± 0.0006 ppm, where the quoted uncertainty was

from simulation statistics only.
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A(〈Q2〉) was calculated from a Q2 interpolation of the theoretical elastic aluminum

asymmetry, introduced in Eq. (3.46), from data tables given by C. J. Horowitz [44, 165].

Using a simulation acceptance and detector averaged 〈Q2〉 of 0.2357± 0.0010GeV2 [170] as

input into the interpolation, A(〈Q2〉) was determined to be 2.0728 ppm. The uncertainty on

〈Q2〉 was not propagated to A(〈Q2〉) in an attempt to avoid double counting momentum

transfer uncertainties accounted for in other corrections.

Taking the ratio of A(〈Q2〉) to 〈A(Q2)〉 yields Racc, which was calculated to be 0.9960.

Uncertainty in that value comes primarily from the model uncertainty in C. J. Horowitz’s

theoretical asymmetry calculation, but also from simulation statistics. Model uncertainty

in C. J. Horowitz’s calculation is explored with the ξ parameter discussed in Section 3.3.2.

The model uncertainty for this analysis was determined by taking the percent difference

of theoretical asymmetries calculated with the nominal ξ = 1.0 and the extreme bound of

ξ = 1.5, at the average Q2. This calculation yielded a relative model uncertainty of 0.38%.

Applying and propagating these model uncertainties in the calculation of Racc, yields a final

uncertainty on Racc of 0.0054. In summary, Racc for the aluminum data set was determined

to be

Racc = 0.9960± 0.0054. (5.36)

5.5.2 Light-Weighting Correction

The magnitude of light output seen by either PMT on each of the Cherenkov detectors was

found to be dependent on the position of the radiating electrons passing through the quartz.

This position effect was additionally compounded by the presence of QTOR’s magnetic field,

which caused a correlation between the momentum transfer of the detected electrons and

their detection location. During event mode, this correlation was investigated with the wire

chambers and main detectors. A correction to the asymmetry, which depends on Q2, was

determined from these studies.

For the aluminum data set this correction, known as the light-weighting correction, was

determined from an analysis performed on tracking data recorded from the aluminum target.

Corrections for each main detector were calculated by taking the ratio of the average Q2

values extracted from tracking-reconstructed momentum transfer distributions to the average
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Figure 5.14: Unscaled light-weighting corrections for each of the main detectors. The
red line gives the error-weighted average using the uncertainties on the points. The red
uncertainty band gives total systematic uncertainty applied to the average.

Q2 values weighted with the position-dependent PMT light responses (light-weighting).

Since these are ratios of Q2 values and the correction is for an asymmetry, the ratio was

scaled by the slope of the asymmetry with respect to Q2. The slope was determined to be

0.9706, see Section 5.5.4 for details about how this slope was calculated. Corrections for

each of the main detectors without the slope scaling factor are plotted in Fig. 5.14.

The main detector average correction including the scaling factor was determined to

be 0.9913, see reference [171, 172]. A relative uncertainty on this value of 0.17% was

adopted from the similar analysis performed for the weak charge measurement. It includes

contributions from PMT gain-matching, event selection cuts, tracking reconstruction bias due

to wire chamber inefficiencies, and run-to-run noise variations [173]. Rdet for the aluminum

data set was thus determined to be

Rdet = 0.9913± 0.0017. (5.37)
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5.5.3 Radiative Correction

Electromagnetic radiative corrections are applied to the asymmetry as a multiplicative

factor called Rrc. This correction accounts for depolarization effects of internal and external

bremsstrahlung, and ionization that occurs in the target, as the electrons interact. Effects

of radiative corrections on electromagnetic cross sections are well known and a formalism to

correct for these effects have been developed by L. W. Mo and Y. S. Tsai [56, 57]. However,

their effects on parity-violating asymmetry measurements are not as well known. Previous

work on the subject has been done for large acceptance experiments such as the SAMPLE

experiment [174] and the G0 experiment [175].

This analysis presently only includes a partial implementation of these types of corrections.

In particular, the elastic cross section generator, including the alloy elements, and the discrete

excited state generator included corrections for internal radiative effects using the formalism

by L. W. Mo and Y. S. Tsai [56, 57, 176]. The rest of the generators are missing these

internal corrections and should be included in future work. External radiative effects are

assumed to be accounted for by radiation transport routines included in Geant4. Studies

into these external effects in simulation seem to indicate that they are small [177].

As presently implemented, radiative effects only shift the momentum-transfer and

asymmetry since they are weighted by cross section during their extraction from the

simulation. The ratio of the weighted asymmetries with and without these radiative effect

allows for the determination of Rrc. A series of simulations with the elastic generator were

used to determine this preliminary correction, by turning on and off these effects. Details

of this analysis are documented in the ELOG [177]. A preliminary Rrc correction was

determined to be [177]

Rrc = 0.998± 0.005, (5.38)

where the uncertainty on that value was taken from the weak charge analysis [46].

This correction is considered only partially complete because of how well our simulation

is believed to match measurement. Section 5.6 discusses this disagreement further. To briefly

summarize, a tuning parameter called ∆E used in the L. W. Mo and Y. S. Tsai formalism

needs to be properly determined for the experiment’s acceptance. L. W. Mo and Y. S.
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Tsai provide guidelines on how this tuning parameter should be chosen for traditional cross

section measurements in their publication [56]. However, any effect from this disagreement

has already been folded into this analysis by way of an inflated uncertainty, which is applied

to the elastic yields used to calculate the background fractions, see Section 5.6.

5.5.4 Q2 Uncertainty Correction

Traditionally, parity-violating asymmetry measurements have reported their momentum

transfer uncertainty as an additional uncertainty on the asymmetry. This analysis elects

to follow the same convention with the application of the R
Q

2 correction for the aluminum

data set.

Studies into the momentum transfer Q2 and its uncertainty for the aluminum data

set were conducted both with tracking data and Monte Carlo simulation. Following the

precedent set by the weak charge measurement, the central Q2 value for the aluminum data

set was extracted from high-statistics QwGeant4 simulations. From those simulations, the

main detector and acceptance averaged Q2 was determined to be 〈Q2〉 = 0.023 57GeV2 [170].

Uncertainty on that central value comes from a range of systematic effects which

include: simulation statistics, beam properties, target properties, collimator geometry,

QTOR properties, and main detector locations. Table 5.13 gives a list of these major sources

of uncertainty, their relative effect on the central value, and additional references where

more information about a given contribution can be found. The total combined uncertainty

on Q2 was determined to be 0.44% (relative) [178]. Applying this relative uncertainty to

〈Q2〉, yields

〈Q2〉 = 0.02357± 0.00010 GeV2. (5.39)

To fold this relative uncertainty on Q2 into an uncertainty on the aluminum asymmetry,

the slope of the Q2 dependence on the asymmetry was needed. C. J. Horowitz’s theoretical

aluminum asymmetry calculation, given in Eq. (3.46), was used to calculate the partial

derivative of the aluminum asymmetry with respect to Q2 [189]. Performing this calculation



CHAPTER 5. ELASTIC PARITY-VIOLATING AL27 ASYMMETRY ANALYSIS 131

Table 5.13: Major sources of relative uncertainty on momentum transfer Q2 for the alu-
minum data set. An overview of the uncertainty analysis is given in the text. For further
details about individual uncertainties see the ELOG [178] or the references given in the last
column.

Source Uncertainty [%] Running Total [%] Reference

Simulation Statistics 0.06 0.06 [179]
Raster Size 0.05 0.08 [180]
Beam Position 0.14 0.16 [178]
Target Thickness 0.00 0.16 [181]
Magnetic Field Strength 0.083 0.18 [182, 183]
Beam Energy 0.19 0.26 [178]
Target Z-Location 0.14 0.30 [184]
Magnetic Field Map 0.20 0.36 [185]
Main Detector Locations 0.072 0.37 [186]
Collimator Locations 0.24 0.44 [187, 188]
Collimator Imperfections 0.068 0.44 [188]

Total (quadrature sum) – 0.44 [178]

yielded a slope term in the form of

Slope =
∂A

∂Q2

Q2

A
=
∂A

A

/
∂Q2

Q2 , (5.40)

where Q
2

A is a normalization factor used to allow the slope term to scale relative uncertainties.

Figure 5.15 shows the result of this calculation. This normalized slope term was calculated

to be 0.9706 at the average Q2 for the aluminum data set.

The uncertainty on Q2 is thus applied to the asymmetry by the correction R
Q

2 , which

has a central value of 1 by definition. Scaling the relative Q2 uncertainty by the normalized

slope yields the uncertainty on the R
Q

2 correction of

R
Q

2 = 1.0000± 0.0043. (5.41)

5.6 Simulation Benchmarking

Much of this analysis relies upon QwGeant4 simulations to determine the relative contribu-

tions of background scattering processes entering the acceptance. The results from these

simulations are only valid if they agree with data. One method used to benchmark the
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Figure 5.15: Normalized slope of C. J. Horowitz’s theoretical aluminum asymmetry cal-
culation and its dependence on momentum transfer Q2. The solid blue curve gives the
aluminum asymmetry quantified by the left vertical axis and the dashed red curve is the
normalized calculated slope quantified by the right vertical axis.

simulation was a comparison between simulation-predicted rates and event-mode recorded

rates from the Al27 target.

During Run 1, a series of main detector rate measurements were performed at a range

of QTOR current settings, in what is known as a QTOR scan. These rates were directly

compared to total rates extracted from simulation for all of the known scattering processes

that occur in Al27 [190]. That analysis showed that the total rate from simulation disagreed

with data by 4.87% at the elastic peak current of 8921A. The agreement worsened as the

current decreased. Figure 5.16 shows an absolute comparison between simulation and data

rates. It also shows the normalized residuals for each point in the rate scan. Simulation

values used in that analysis were from the most recent versions of the event generators.

Previous comparisons saw agreement at the 21% level [94] and then the 10% [98] once

additional processes were included.

The cause of this disagreement is believed to be a result of not fully implementing

radiative corrections. The first indication came from looking at the disagreement at lower

QTOR currents. As the current decreases the profile of elastically scattered electrons moves
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Figure 5.16: Comparison between total rates determined from simulation and Run 1 data
recorded from the Al27 target.

off of the focal plane of the detector array, allowing only events from the elastic radiative

tail to enter into the acceptance. This assumption was eventually confirmed by a second

investigation performed with the simulation, where the radiative correction parameter ∆E

from the L. W. Mo and Y. S. Tsai formalism was varied over a range of values [191]. Initially,
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a guess of 20MeV was chosen for ∆E based on the minimal guidance given in L. W. Mo and

Y. S. Tsai publications [56, 57]. However, that investigation proved that the discrepancy

could all be explained by simply increasing the ∆E parameter to approximately 50MeV.

Correcting this disagreement would require updated simulation values that make use

of a different ∆E. However, for this analysis this disagreement was taken into account by

folding the 4.8% difference into the uncertainty placed on the elastic yield extracted from

simulation. This quantity was used to calculate all of the background fractions for the

non-elastic scattering processes with Eq. (5.20).

5.7 Al27 Asymmetry Extraction

Starting with Araw, a pure elastic parity-violating asymmetry was determined by applying

the previously discussed corrections in the following manner. First measurement-based

systematic corrections, discussed in Section 5.3, were applied to Araw with Eq. (5.2). The

resulting corrected asymmetry, Amsr was then corrected for the amount of beam polarization,

background asymmetries, and the multiplicative factor Rtot with

APV = Rtot

Amsr
P −

∑N
i fiAi

1−
∑M

i fi
. (5.42)

The sum over i to N for the background corrections (fiAi) include terms for all of the

background processes discussed in Section 5.4. These specifically include terms for quasi-

elastic scattering, inelastic (N → ∆) scattering, scattering from the 11 selected discrete

excited states, 8 elastic alloy-element scattering contributions, and neutral particles entering

the acceptance. The background fraction sum over i to M in the denominator include terms

for all of the aforementioned background processes, but differs slightly from the background

correction sum by including the beamline background fraction as discussed in Section 5.3.3.

Table 5.14 provides a tabulated summary of these corrections for ease of reference.

The pure elastic parity-violating asymmetry APV was extracted from Araw using

Eq. (5.42) via a Monte Carlo method. Each correction input used in the calculation

was sampled from a normal (Gaussian) distribution with a mean and width given by the
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value and uncertainty for that correction. APV was calculated 106 times, with each calculated

value stored into a histogram. At the end of sampling, the final APV value is taken as the

mean of the distribution stored in that histogram, where the combined uncertainty is taken

as the width of that distribution. The benefit of this method is that the uncertainties on

the inputs are correctly propagated to the total calculated width.

During this calculation the inputs from systematic effects are assumed to be uncorrelated.

Additionally, the statistical uncertainty is not included as an uncertainty on Araw in Eq. (5.2)

and by extension Eq. (5.42), as the measured statistical uncertainty is considered separate

from the systematic uncertainties associated with each of the considered inputs. The final

statistical uncertainty on APV was calculated using the relative statistical uncertainty from

Araw, with

δAPV (statistical) =
δAraw

Araw

APV . (5.43)

Individual contributions to the final systematic uncertainty from each correction were

determined by turning off all of the widths of the normally distributed inputs except for

the correction of interest, allowing the calculation of APV with an uncertainty from just

a single correction. The uncertainty contributions extracted with this method neglect the

effects from intrinsic correlations that are included in the full randomized calculation of

Eq. (5.42). To include these correlations, the opposite approach would have to be taken,

where all the inputs except for the correction of interest would have to be randomized within

their uncertainties. The uncertainty contribution would then be extracted by taking the

quadrature difference between the resulting APV and the full calculation with randomized

inputs. The difference between including or not including these correlations is small and

thus the simpler method has been employed here.

5.7.1 Final Elastic Parity-Violating Al27 Asymmetry

The pure elastic parity-violating electron- Al27 scattering asymmetry was determined to be

APV = 1.927± 0.091 (statistical)± 0.148 (systematic) ppm (5.44)

= 1.927± 0.173 (total) ppm (5.45)
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Figure 5.17: Comparison between the measured pure parity-violating elastic electron- Al27

asymmetry and a RMF asymmetry calculation by C. J. Horowitz [40]. The inset box pro-
vides a zoomed view of the measured point’s agreement with theory. The inner uncertainty
bar on the point represents the statistical uncertainty and the outer represent the total
uncertainty. Curves reproduced from data tables given by C. J. Horowitz [40, 44].

at Q2 = 0.023 57± 0.000 10GeV2. This is a 9% precision determination of the asymmetry.

The result is dominated by the systematic uncertainty for the reasons that are discussed

in the next section. A comparison between the extracted asymmetry and C. J. Horowitz’s

calculated elastic RMF asymmetry calculation, Eq. (3.46), can be see in Fig. 5.17. The point

is placed at the acceptance average scattering angle 〈θ〉 = 7.5558± 0.0023° as determined

from simulation [170].

The measured asymmetry agrees within its total uncertainty with the theory calculation.

The theory calculation predicts an asymmetry value of 2.055 ppm at the acceptance-averaged

scattering angle. To quantify the agreement between the central value and theory, the

measured asymmetry only differs at the 0.74σ level.

5.7.2 Uncertainty Contribution Summary

As indicated in Eq. (5.44), the result is dominated by the systematic uncertainty. The

primary systematic contribution causing this is the uncertainty on the inelastic background
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asymmetry. Uncertainty contributions for the rest of the systematic corrections are below

the final statistical uncertainty, as seen in Fig. 5.18.

Any future efforts should be invested primarily in reducing the uncertainty in the inelastic

background asymmetry. Section 5.4.2 briefly discussed a possible avenue for a reduction

in that correction’s uncertainty, however it would require additional theoretical help. If

this uncertainty could be reduced below that of the statistical, then the decision of not

including additional data from Wien 10 or Run 1 could be reevaluated. Any improvements

gained in either of these two uncertainties would ultimately result in a reduction in the total

uncertainty, which would improve the neutron distribution radius determination.

5.8 Extraction of the Al27 Neutron Distribution Radius

The neutron distribution radius (Rn) for Al27 was determined using a many-model correlation

technique first employed for the PREX analysis [122]. However, other approaches for

extracting this radius can also be taken, see Section 3.3.3 and reference [53].

Working with C. J. Horowitz, F. Fattoyev, and Z. Lin at Indiana University, a selec-

tion of 11 RMF models were used to calculate theoretical parity-violating asymmetries

from their assumed neutron distribution radii. The models selected were: FSUGold [192],

FSUGarnet [193], FSUGold2 [194], IUFSU [195], NL3 [196, 197], RMF(022, 028, 032) [193]

and TAMUC-FSU(a, b, c) [198]. This particular collection of models was selected because

they were tuned to reproduce several nuclear structure observables, such as nucleon binding

energies, measured charge radii, and strengths of the isoscalar and isovector giant resonances

in selected nuclei [199]. Additionally, these models also predict masses for neutron stars that

agree with astrophysical observations of pulsars [55].

A non-linear least squares method from the Python Scipy package [154] was used to

fit the model’s predicted asymmetries versus their Rn values, at the average momentum

transfer of the data set. This fit resulted in a correlation between Rn and APV in the form of

Rn = (−0.6007± 0.0002 fmppm−1)APV + (4.1817± 0.0011 fm). (5.46)
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Using the central value of the final asymmetry given in Eq. (5.44), this model correlation

implies Rn = 3.024 fm. The uncertainty on that value is determined by taking slope of

the fit to translate the uncertainty on APV . Performing this calculation and including the

small uncertainty originating for the fitting routine, a final neutron distribution radius was

determined to be

Rn = 3.024± 0.104 (experimental)± 0.003 (fit) fm (5.47)

= 3.024± 0.104 (total) fm. (5.48)

A comparison of this implied Rn and the collection of RMF models is plotted in Fig. 5.19.

From Fig. 5.19 it is evident that the measured parity-violating asymmetry lies outside of

the range of asymmetry values predicted by the collection of RMF models. Instead of being

an interpolation method as seen in the PREX analysis [122] example, the application of this

technique for this analysis is more of an extrapolation, which leads to questions of about its

validity for this case.

There are a handful of possible explanations that could resolve the disagreement between

the measured asymmetry and those predicted by the collection of RMF models. For example

the asymmetries extracted from these RMF models are sensitive to the choice of kinematic

parameters and charge radii, which are used as inputs in their calculation [199]. A known

systematic effect associated with the technique comes from the choice of Al27 charge radius

used in these calculations. The RMF models assumed a value of Rch = 3.035± 0.002 fm,

taken from an unpublished Fourier-Bessel charge radius extraction, tabulated in the Atomic

Data and Nuclear Data Tables [111]. Interestingly, this values differs from the Rch = 3.013 fm

used initially by C. J. Horowitz for calculating the parity-violating asymmetry [40]. The early

agreement seen between the measured asymmetry and C. J. Horowitz’s theory calculation

seem to indicate a preference for the smaller Al27 charge radius.

The charge radius of Al27 has been previously measured four times, using two separate

experimental techniques. Three of these measured results used electromagnetic electron

scattering techniques [111, 200, 201], as discussed in Section 3.2. The most recent deter-

mination was made by G. Fricke et al. [202] using muonic atom 2p→ 1s transition energy
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measurements. The most precise measurements, which are the latest electron scattering

and muonic Al27 results, disagree outside of their respective uncertainties by about 9σ, see

Fig. 5.20. However, they do agree with the older electron scattering results that have much

larger uncertainties. Based on this disagreement it is difficult to say which charge radius

value is correct. These measurements can be averaged and assigned an inflated uncertainty

to account for this disagreement. Following the procedures laid out in the PDG [9], an

average charge radius value was found to be Rch = 3.043± 0.007 fm. This is larger than the

value used by C. J. Horowitz in his calculation for Rn.

Taking the analysis one step further, the neutron skin of Al27 can be calculated using

the formalism introduced in Section 3.3.3. A proton distribution radius for Al27 was

calculated using a similar expression to that of Eq. (3.51), which was found to be Rp =

2.932± 0.007 fm [199]. The uncertainty on that value is taken as the inflated uncertainty

from the averaged charge radius result previously mentioned. The difference between the

neutron and proton distribution radii yields the neutron skin thickness, which is calculated

to be

∆R = Rn −Rp = 0.092± 0.104 (total) fm. (5.49)

This result is consistent with zero as one would naively expect for Al27 , where N ≈ Z.
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Figure 5.19: Determination of the Al27 neutron distribution radius Rn from the measured
APV as given by the red line via the many-model correlation technique. Correlation between
Rn and APV given by black fit line. Outer red shaded region gives the total uncertainty
on Rn from APV , where the inner region is just from the statistical uncertainty on the
measured APV .
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Figure 5.20: Historical comparison between the experimental determinations of the Al27

charge radius. The gray line gives the error-weighted average of all of the experimental
results. The gray error band on the average line represents the scaled uncertainty calculated
used the techniques discussed in the PDG for averaging contentious results [9].
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Table 5.14: Parity-Violating Al27 asymmetry analysis correction summary.

Quantity Asymmetry [ppm] Section

Araw 1.441± 0.068 5.2

ABCM 0.0000± 0.0021 5.3.1
Areg 0.0004± 0.0014 5.3.2
ABB −0.0047± 0.0066 5.3.3
AL −0.001± 0.007 5.3.4
AT −0.0034± 0.0088 5.3.5
Abias 0.0054± 0.0030 5.3.6

Quantity Background Fraction (fi) [%] Asymmetry (Ai) [ppm] Section

0.844MeV 0.27± 0.04 2.619± 1.310

5.4.3

1.014MeV 0.41± 0.10 2.563± 1.282
2.211MeV 1.35± 0.16 2.543± 1.271
2.735MeV 0.19± 0.02 2.590± 1.295
2.990MeV 0.93± 0.07 2.617± 1.308
4.580MeV 0.06± 0.01 2.783± 1.392
4.812MeV 0.09± 0.02 2.379± 1.189
5.430MeV 0.17± 0.03 2.490± 1.249
5.668MeV 0.08± 0.02 2.542± 1.271
7.228MeV 0.18± 0.06 2.706± 1.353
7.477MeV 0.10± 0.07 2.753± 1.377

Zn 2.375± 0.249 1.815± 0.908

5.4.5

Mg 2.088± 0.219 2.013± 1.006
Cu 0.683± 0.073 1.857± 0.929
Cr 0.100± 0.011 1.920± 0.960
Si 0.080± 0.009 1.984± 0.992
Fe 0.054± 0.006 1.883± 0.941
Mn 0.018± 0.009 2.343± 1.172
Ti 0.014± 0.007 2.148± 1.074

Quasi-elastic 12.77± 1.22 −0.338± 0.169 5.4.1
Inelastic 7.39± 0.74 1.609± 1.149 5.4.2
GDR 0.58± 0.29 −2.217± 1.108 5.4.4
Pions 0.06± 0.06 0.000± 0.000 5.4.7
Neutrals 0.00± 0.45 1.7± 0.2 5.4.6
Beamline 0.69± 0.06 – 5.3.3

Quantity Value Section

P 0.8880± 0.0055 5.3.7
Rdet 0.9913± 0.0017 5.5.2
Racc 0.9960± 0.0054 5.5.1
Rrc 0.9981± 0.0050 5.5.3
R

Q
2 1.0000± 0.0043 5.5.4
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Chapter 6

Elastic Beam-normal Single-spin

Al
27

Asymmetry Analysis

During the ancillary physics studies performed by the collaborations, a series of measurements

were made with transversely polarized beam on the Al27 alloy target. These are the

first measurements of the beam-normal single-spin asymmetry (BNSSA), also known as a

transverse asymmetry, on the Al27 nucleus. Previous experiments, such as HAPPEX and

PREX [84] have already measured this observable for lighter nuclei and for Pb208 , but they

found that the Pb208 measurement disagreed with its theoretically predicted value. As

Al27 is the highest atomic mass element to have its BNSSA measured, the analysis of this

transverse aluminum data set stands to shine light on this disagreement.

This chapter discusses the analysis used to determine the transverse asymmetry from

this aluminum data set. Many of the background scattering processes that contaminate this

measured asymmetry have asymmetries that are not known. The final extracted BNSSA

is reported as an “effective” asymmetry that includes effects from discrete excitations and

collective motion excitations, such as the Giant Dipole Resonance. Corrections for other

inelastic scattering backgrounds have been made and are discussed. Additional corrections

for the other elements in the Al27 alloy target have also been made using a simple scaling

law. The resulting effective asymmetry is compared to theory along with the rest of the

world data set of BNSSAs.
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6.1 Data Selection and Quality Checks

Aluminum transverse asymmetries were measured both in Run 1 and Run 2. A selection of

these were performed at the QTOR currents of 8900A, 7300A, and 6700A. Two separate

transverse polarization directions were used: vertical and horizontal.

During Run 1 a total of 13 runs, all in the vertical transverse polarization direction, were

recorded on February 9, 2011 with the Al27 target. Almost a year later during Run 2, from

February 16–20, 2012, an additional 23 runs were recorded with the Al27 target with both

polarization directions and at multiple QTOR currents. A completed list of runs included in

this transverse aluminum data and their experiment settings are tabulated in Table C.1.

The elastic Al27 data set used in this analysis was extracted from both the Run 1 and

Run 2 data at the QTOR current of 8900A. Only a small number of elastic runs exist over

this entire data set, thus quality cuts were only kept to the internal Qweak analyzer cuts that

were applied when populating the analysis database.

6.2 Raw Asymmetry and Statistical Uncertainty

The BNSSA measured by the Qweak apparatus is seen as an azimuthally varying asymmetry.

Extraction of this observable is done by fitting a generalized sinusoidal function to the

asymmetries measured by each detector in the main detector array. This function has the

form of

BT (φ) = BH sin
(π
4
φH − π

4
+ ϕH

)
+BV cos

(π
4
φV − π

4
+ ϕV

)
+ C, (6.1)

where BH (BV ) is the magnitude of the transverse asymmetry from the horizontal (vertical)

component, φH (φV ) is the component of the azimuthal angle, ϕH (ϕV ) is the component

of the phase offset, and C is a constant offset. The factors of π
4 are included in the phase

terms allow the fitting to be performed over the octant number for a given main detector,

with φ = 0 set to beam left which corresponds to main detector 1. Corrections for shifts in

the azimuthal position from the nominal for each main detector are included later.

PMT-averaged asymmetries from each main detector, averaged over the entire period, for

a given polarization direction are fitted with the corresponding vertical or horizontal pieces
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of that function. These fits are performed with a non-linear least squares routine from the

Python Scipy [154] package, where the best fit line was determined with a χ2 minimization.

Fits are made on main detector asymmetries depending on the state of the IHWP, which

allows the extraction of the positive and negative amplitudes that depend on the helicity

state. A NULL hypothesis test was conducted by performing an unweighted average of the

IN and OUT state asymmetries for each main detector, which is written as

Bi
NULL =

Bi
IN +Bi

OUT

2
, (6.2)

where the index i corresponds to detector number. An overall NULL was taken as the

error-weighted average over the eight main detectors. The raw physics asymmetry was

extracted as the amplitude of the sinusoidal fit performed on the sign-corrected PMT-averaged

asymmetries for a given polarization direction.

The results of these fits performed on unregressed, or raw, asymmetries for the Run 1

vertical, Run 2 horizontal, and Run 2 vertical data sets are tabulated in Table C.2, which is

located in the appendix. The extracted fit parameters from this analysis agree well with

ones determined from an earlier preliminary analysis [83].

The NULL asymmetries were all consistent with zero within their statistical uncertainties,

with the exception of the Run 2 vertical data subset. The mostly likely cause of this

inconsistent NULL value is the asymmetries associated with main detector 6, which are low

for both IHWP state. Plots of these positive, negative, NULL, and physics fits can be seen

for the Run 2 horizontal data subset in Fig. 6.1. Similar plots for the other two data subsets

are in Appendix C.

Physics asymmetries from those fits are summarized in Table 6.1. Their relative statistical

uncertainties are given in the last column. Combining all three aluminum data subsets yields

a 4.0% statistical precision determination of the Al27 BNSSA.



CHAPTER 6. ELASTIC BEAM-NORMAL SINGLE-SPIN AL27 ASYMMETRY
ANALYSIS 146

1 2 3 4 5 6 7 8

Main Detector

−10

−5

0

5

10
A
sy
m
m
et
ry

[p
p
m
]

In Fit

Out Fit

Null Avg

In

Out

Null

(a) IHWP plot

1 2 3 4 5 6 7 8

Main Detector

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

A
sy
m
m
et
ry

[p
p
m
]

(b) Sign-corrected plot

Figure 6.1: Run 2 horizontal unregressed (raw) asymmetries. The physics asymmetry was
extracted as the amplitude of the sinusoidal variation in the lower plot. Labels “In” and
“Out” refer to the asymmetries that depend on the state of the IHWP. The “NULL” label
gives the non sign-corrected average of the “In” and “Out” asymmetries of the eight main
detectors.
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Table 6.1: Unregressed physics asymmetries extracted from sinusoidal fits to transverse
aluminum data.

Data Subset Asymmetry (Braw) [ppm] Relative Uncertainty [%]

Run 1 - Vertical −9.214± 0.605 6.57
Run 2 - Horizontal −8.440± 0.502 5.94
Run 2 - Vertical −7.924± 0.736 9.29

Weighted Average −8.576± 0.342 3.99

6.3 Measured Asymmetry Determination

Various systematic measurement-based corrections are applied to Braw when determining

the measured asymmetry Bmsr. These are corrections for azimuthal acceptance variations

(βacc), helicity-correlated beam asymmetries (HCBA) (Breg), choices of asymmetry fitting

function (Bfit), detector non-linearities (BL), and a rescattering bias originating from the

lead preradiators on the main detectors (Bbias). Bmsr is determined by applying these as

corrections with

Bmsr =
Braw

βacc
+Breg +Bfit +BL +Bbias. (6.3)

This section discusses each of these corrections. For corrections that have yet to be

determined, an outline of the steps needed to calculation them are provided.

6.3.1 Acceptance Correction

The Qweak detector array only covers 49% of the azimuthal angle, which causes an individual

detector to only see a 22° sector of the azimuthal angle. Average asymmetries measured by

a given detector need to be corrected to ones that represent a BNSSA measured over the

full azimuthal angle. This correction called βacc is applied directly to Braw and is given by

βi =
〈sinφ〉i
sinφi

, (6.4)

where 〈sinφ〉i is the average phi acceptance for detector i, and sinφi is the calculated sector

of the azimuthal angle for a given detector i.

The correction for each detector can be easily determined by looking at the φ distributions
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of accepted events in simulation. Presently these values have not been determined specifically

for this analysis, thus the value determined from the C12 BNSSA analysis was adopted

here. That correction was taken as the weighted average of the eight individual corrections

calculated for all of the detectors. Its uncertainty was taken as the standard deviation of

those values. The correction adopted for this analysis was [88]

βacc = 0.9862± 0.0036. (6.5)

6.3.2 Helicity-correlated Beam Corrections

False asymmetries originating from helicity-correlated beam motion were investigated using

the linear regression system built into the Qweak analyzing software. Correlations between

the main detector and beam monitor asymmetries are used to remove these false asymmetries

as they can modify the asymmetries measured by a given detector, which effects the overall

amplitude of the azimuthal variation of the BNSSA.

Similar fits to those performed during the raw asymmetry extraction were also applied to

the regressed asymmetries. Regression set “on” was chosen for this analysis, in an effort to

stay consistent with the choice made for the parity-violating aluminum asymmetry analysis.

However, regressed asymmetries are available for regression sets: “on 5+1”, “10”, “11”,

“12”, and “13”. Plots of these fitted regressed asymmetries, along with a tabulation of the

extracted fit parameters, are given in Appendix C.

The size of the correction was determined by taking the difference between the regressed

and the unregressed (“on” - “off”) main detector asymmetries. The corrections for each main

detector in the three data subsets are plotted in Fig. 6.2. These corrections were as high as

700 ppb in main detectors 1 and 5 for the vertical polarization direction, which is about a

factor of two times larger that the regression corrections used in the H2 BNSSA analysis [83].

Regression corrections for the horizontal polarization direction agree well with those found

in the H2 BNSSA analysis [83] and the C12 BNSSA analysis [88]. An investigation into the

sensitivities and beam monitor asymmetries used to make these corrections has not yet been

performed, but could help explain the large correction value associated with the vertical

polarization data subset.
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Figure 6.2: Regression corrections for each main detector over the three aluminum data
subsets. The correction was determined as the difference between the “on” and “off”
regression sets.

The systematic uncertainty on this correction primarily comes from the choice of regres-

sion set. Different sets, use different combination of beam monitors [128] and thus they

have their own measured asymmetry characteristics. A systematic uncertainty can be easily

determined by comparing the physics asymmetry amplitude extracted from each of the

available regression sets. Table 6.2 shows the difference in the physics asymmetry amplitudes

between the “on” set and the rest available for the aluminum data. In the Run 1 vertical

data subset, sets 12 and 13 failed, the reason for this should be investigated in future efforts.

The largest difference with respect to the “on” set was taken as the systematic uncertainties

for each of the data subsets and these are tabulated in Table 6.3.

The final regression correction for each of the data subsets is taken as the difference

between the “on” and “off” physics asymmetries given in Table C.3 and Table 6.1, respectively.

These corrections are tabulated in Table 6.3. For the subsets that had vertical polarization

direction, the corrections were on the order of the statistical uncertainty.
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Table 6.2: Difference between regression set “on” and other available for the aluminum
data subsets. Regression monitor sets 12 and 13 failed for the Run 1 vertical data subset,
their entries in the table are left blank.

Difference (w/ “on”) [ppm]

Scheme Run 1 - V Run 2 - H Run 2 - V

on 0.0 0.0 0.0
on 5+1 −0.002 −0.003 −0.004
set10 −0.003 −0.003 −0.002
set11 0.0 0.0 0.0
set12 – −0.020 0.0
set13 – 0.004 0.014

Table 6.3: Physics asymmetry regression correction for each of the aluminum data subsets.
Determined as the difference between sets “on” and “off”.

Data Subset Correction (Breg:“on” - “off”) [ppm]

Run 1 - Vertical −0.576± 0.003
Run 2 - Horizontal −0.046± 0.020
Run 2 - Vertical −0.695± 0.014

6.3.3 Fitting Scheme

An additional systematic effect comes from the choice of function used to extracted the

azimuthally varying asymmetry. The generalized function used for fitting in this analysis,

given in Eq. (6.1), could be replaced with several alternatives, as long as they include the

amplitude and sinusoidal function pieces. Focusing only on the horizontal polarization

direction, which uses the sine function component, alternative fit functions include:

BT (φ) = B sin(φ− ϕ), (6.6)

BT (φ) = B sin(φ) + C, (6.7)

BT (φ) = B sin(φ). (6.8)

A similar set of functions are available for the vertical polarization direction with a change

of sine to cosine. The uncertainty from this function choice is determined by taking the

largest difference in amplitude extracted with each of those options.

This additional systematic effect has not been calculated for this aluminum analysis, but
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a slightly inflated value of

Bfit = 0.000± 0.050 ppm (6.9)

was included based on the uncertainty determined in the C12 BNSSA analysis [88].

6.3.4 Non-linearity

Non-linearity effects in the detectors and beam monitors are included in this analysis using

a similar method to the one applied for the parity-violating aluminum analysis, discussed in

Section 5.3.4. The non-linearity factor (fL) was determined in a series of bench tests [131].

That value is used to determine the non-linearity correction and uncertainty in Bmsr with

BL ≡ −fLBraw, δBL ≡ δfL|Braw|. (6.10)

Applying this technique to the Braw values in Table 6.1, yields non-linearity corrections

and uncertainties for each of the data subsets. These corrections are tabulated in Table 6.4.

Table 6.4: Non-linearity corrections and uncertainties for the aluminum data subsets.

Data Subset Correction (BL) [ppm]

Run 1 - Vertical 0.009± 0.046
Run 2 - Horizontal 0.008± 0.042
Run 2 - Vertical 0.008± 0.040

Weighted Average 0.008± 0.024

6.3.5 Rescattering Bias

An additional systematic effect arises from secondary scattering that occurs in the preradia-

tors in front of the main detectors during the transverse running. During the parity-violating

measurement, the presence of the preradiators introduced a false asymmetry that was

diagnosed by looking at the difference in the asymmetry measured by the two PMTs for a

given detector bar.

A similar investigation has been performed to identify any possible effects for the

transverse data sets, when the incoming beam polarization is maximally in the transverse

direction. Preliminary studies show that indeed the preradiators also introduce a false
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asymmetry for the transverse data sets [203, 204]. However, the systematic effect cannot be

self diagnosed with same method as was used for the parity-violating measurements, see the

ELOG [203].

A correction for this effect comes straight from the simulation work performed by

the PMTDD subgroup, focused on this background contribution. Based on their initial

investigation with a selection of effective models, a correction of ±85± 15 ppb is required for

transverse data sets [203]. However, the proper sign of the correction was unknown at the

time of making the correction. In a conservative effort, this analysis adopts a correction of

Bbias = 0.0± 0.1 ppm, (6.11)

where the uncertainty is the sum of the recommended correction value and its uncertainty,

rounded up. This additional conservative correction is a factor of 5–7 times smaller than

the statistical uncertainty on any of the aluminum data subset asymmetries.

6.3.6 Beam Polarization

The magnitude of the transverse beam polarization was determined using the Møller po-

larimeter from periods of measured longitudinal polarization that straddle the series of

transverse asymmetry measurements. Since the polarimeter was designed to only mea-

sure longitudinally polarized beam, systematic studies were performed to ensure that the

polarizations before and after the transverse periods agreed. Polarization measurements

were conducted for both the Run 1 and Run 2 transverse polarization periods; these values

are tabulated in Table 6.5. Their error-weighted average is taken as the central value of

the polarization correction for this analysis and the largest uncertainty is adopted as the

uncertainty on that value.

6.4 Background Corrections

As mentioned in the introduction, many of the BNSSAs associated with non-elastic electron- Al27

scattering are unknown theoretically, nor have they been measured before. A combination of
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Table 6.5: Polarization values for the Run 1 and Run 2 transverse asymmetry measure-
ments. References for each value are given in the last column. The final polarization is
given as the error-weighted average of both runs.

Run Beam Polarization [%] Reference

1 88.95± 1.30 [83]
2 88.52± 0.68 [137]

Weighted Average 88.61 –

theoretical estimates and scaled measurements have been applied for the known backgrounds

in this analysis when possible.

In particular, asymmetries for non-destructive excitations such as the discrete single

particle excitations or the Giant Dipole Resonance are not known theoretically or experi-

mentally, due to the lack of previous measurement. Given this lack of data, we chose not to

include corrections for these backgrounds. Instead, the final asymmetry is reported as an

“effective” measurement, which includes these contributions and a corresponding inflated

uncertainty. In the future, if either theoretical models or measurements of these BNSSAs

become available then the information in this document could be used to update this analysis

with corrections for these effects.

Destructive excitations such as quasi-elastic and inelastic scattering, involving an N → ∆

excitation, are also theoretically not well understood. Corrections for these backgrounds

are formed from other ancillary BNSSA measurements Qweak performed with the liquid

hydrogen target at different QTOR settings.

Corrections for the elements in the Al27 alloy target are made with an order of magnitude

estimate of the BNSSA taken from observations of previous measurements performed at

similar beam energies to that of Qweak.

The next sections discuss the corrections that have been made in this analysis and

introduces approaches that can be applied in the future to determine corrections that have

not been included.
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6.4.1 Quasi-elastic Scattering

The background fraction piece is taken directly from earlier analysis work on the parity-

violating Al27 asymmetry using the Bosted-Mamyan quasi-elastic generator, see Section 5.4.1.

That value also carries the same uncertainty as was previously assigned (Eq. (5.22)), it is

fquasi = 12.77± 1.22 %. (6.12)

No quasi-elastic BNSSA asymmetry has been specifically measured from the aluminum

nucleus. Since electromagnetic quasi-elastic interactions typically prefer scattering from the

proton, the BNSSA measured by Qweak on the proton Bp
n = −5.350± 0.153 ppm is adopted

as the central value for this background asymmetry [83]. However, nuclear medium effects

may be important for this correction, thus the uncertainty on the measured asymmetry is

increased to match the correction used in the C12 analysis [88]. The background asymmetry

used in this analysis was

Bquasi = −5.4± 1.0 ppm. (6.13)

6.4.2 Inelastic Scattering

Again, the background fraction piece for inelastic scattering was taken from the work done

on the parity-violating Al27 analysis (Section 5.4.2), which also included the same previously

assigned uncertainty. The value adopted in that analysis was (Eq. (5.25))

finel = 7.39± 0.74 ppm. (6.14)

The inelastic asymmetry correction for this analysis was taken from the N → ∆ measure-

ment performed on the liquid hydrogen target at a QTOR current of 6700A. The value and

uncertainty adopted here was determined in the dissertation analysis by Nuruzzaman [205]

and it is

Binel = 43.0± 16.0 ppm. (6.15)

The large uncertainty here primarily comes from model uncertainties associated with making

a correction for the elastic radiative tail in the N → ∆ region. An additional uncertainty



CHAPTER 6. ELASTIC BEAM-NORMAL SINGLE-SPIN AL27 ASYMMETRY
ANALYSIS 155

for nuclear medium effects was not included since the uncertainty is already quite large.

In the future this inelastic correction could be revised by performing an analysis on a

series of runs taken with the Al27 target at a QTOR current of 6700A. These runs and their

experimental conditions are included in the run list tabulated in Appendix C. Additional

simulation work could yield information about the size of corrections that would be needed

for the radiative elastic tail and quasi-elastic contributions in the analysis of these data.

Such an analysis could also determine an upper bound on the size of nuclear medium effects

when compared to the N → ∆ measurement made on the liquid hydrogen target. This type

of bound could then be used to confirm or possibly constrain the uncertainty applied to the

quasi-elastic background asymmetry.

6.4.3 Non-Destructive Excitations

Effects from non-destructive exictations, like the discrete excited states and the Giant Dipole

Resonance (GDR), can be bounded by comparing the results of the Qweak [88] and PREX [84]

C12 BNSSA measurements. The Qweak C12 BNSSA measurements suffers from the same

lack of theoretical understanding of these excitations, thus the final asymmetry is quoted an

effective value. However the two results were shown to agree within uncertainties of Qweak

measurement, see Section 6.2 of the dissertation by M. J. McHugh III [88].

Based on this agreement, the Al27 BNSSA analysis adopts the systematic uncertainty

from the Qweak C12 BNSSA result as an additional uncertainty contribution, which is added

in quadrature with the other uncertainties on Bn. The systematic uncertainty on the C12

result was found to be δB = 1.905 ppm [88].

6.4.4 Al27 Alloy Elements

An estimate of the BNSSAs from the alloy elements in the Al27 target was made using the

simple first-order asymmetry approximation (Eq. (3.59)) introduced in Section 3.5 [206].

A momentum transfer value of Q = 0.154GeV and the same proportionality constant was

used for all nuclei in that calculation. Uncertainties for each of the asymmetries were

determined by taking the relative difference between predicted asymmetry values and an

upper bound set by a line drawn between the central values of the PREX C12 and Pb208
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BNSSAs measurements [84, 206]. This approach is believed to be conservative, because

the model calculation that predicts this first order A
Z relationship is known to be missing

corrections for Coulomb distortions [76, 84], which may be important for the higher-Z

elements in the alloy such as zinc, and copper.

The background fractions for these alloy element contributions, taken from the parity-

violating analysis, and their asymmetry estimates are tabulated in Table 6.6.

Table 6.6: Background fractions and asymmetry estimates for the alloy elements present
in the aluminum target material.

Element Background Fraction (fi) [%] Asymmetry (Bi) [ppm]

Zn 2.375± 0.249 −11.72± 4.34
Mg 2.088± 0.219 −10.89± 1.24
Cu 0.683± 0.073 −11.79± 4.30
Cr 0.100± 0.011 −11.65± 3.53
Si 0.080± 0.009 −10.79± 1.34
Fe 0.054± 0.006 −11.55± 3.64
Mn 0.018± 0.009 −11.82± 3.86
Ti 0.014± 0.007 −11.70± 3.35

6.4.5 Beamline Background and Neutral Particles

Asymmetries that arise from the beamline background or neutrals particles are unknown for

this data set and should be investigated in the future. The C12 analysis also had trouble

providing a definitive estimate of the asymmetries associated these backgrounds, but instead

provided large bounds [88].

However, since the background fractions determined from these processes are below 1%

conservative estimates of their asymmetries could easily be adopted without penalty. Thus,

zero valued corrections are adopted with large uncertainties of δB = ±10 ppm.

6.5 Multiplicative Radiative and Acceptance Corrections

Three multiplicative factors were used to correct the background-corrected asymmetry

for effects from radiative corrections, light-weighting effect across the detectors, and the
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uncertainty in the momentum transfer determination. The overall correction Rtot is given by

Rtot = RrcRdetRQ
2 . (6.16)

Radiative corrections have not been specifically investigated for this analysis. This

remains an open task that should be addressed in the future when the radiative correction

issue found during the parity-violating analysis has been resolved. However, a correction

value of

Rrc = 1.00± 0.01 (6.17)

has been adopted in this analysis, where the uncertainty is taken as twice the uncertainty

assigned to the same correction used in the weak charge analysis [46].

Both Rdet and R
Q

2 require knowledge of the Q dependence of the BNSSA. As no

theoretical calculations have been performed for the case of Al27 that might indicate this

dependence, Eq. (3.59) was used to calculate the slope factor needed to two determine these

corrections. The slope was determined to be

Slope =
∂Bn

∂Q2

Q2

Bn

⇒ ∂Bn

Bn

=
∂Q2

2Q2 . (6.18)

R
Q

2 is calculated with a central value of 1 by definition and that slope factor is used to

fold in the relative uncertainty on Q2. Its 0.44% relative uncertainty [170] translates to a

Bn correction of

R
Q

2 = 1.0000± 0.0022. (6.19)

The light-weighting correction Rdet also uses this slope factor in its determination.

Using the same procedure as the one described for the parity-violating Al27 asymmetry

analysis, the light-weighting correction was determined from tracking analysis extracted

values [171, 172]. The major difference was the slope factor needed to convert the effect seen

on the Q2 measurements to one for the asymmetry Bn. Applying this slope correction, the

light-weighting correction was determined to be

Rdet = 0.9955± 0.0017. (6.20)
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The uncertainty on this correction was not scaled by the slope as it was in other analyses.

Instead, it was kept in an effort to be conservative. Later theoretical input on the Q2

dependence of this asymmetry could allow for a refinement of this value.

Combined, all three factors yield an Rtot value of

Rtot = 0.9955± 0.0104. (6.21)

6.6 Al27 Asymmetry Extraction

Many of the corrections in this analysis were the same for the three data subsets. Thus, the

three Braw values for each of the subsets were folded into a single value, by first applying

HCBA corrections (Breg) individually, and were then combined by taking their error-weighted

average. For the subset-dependent measurement-based systematic corrections, such as Breg

and BL, the largest of their uncertainties was adopted as the uncertainty for that particular

correction in this combined analysis. This regression-corrected value was used as the input

into a Monte Carlo calculation method used to extract the final asymmetry.

The final BNSSA was determined using

Bn = Rtot

Bmsr
P −

∑N
i fiBi

1−
∑N

i fi
, (6.22)

where Bmsr is the quantity discussed in Section 6.3, Rtot is the multiplicative factor discussed

in Section 6.5, and the fiBi terms represent the background asymmetry corrections discussed

in Section 6.4.

The same Monte Carlo uncertainty propagation technique discussed in Section 5.7 was

adapted for this analysis, allowing the determination of a total systematic uncertainty. It

only included the corrections discussed in this chapter, but could be easily modified to

include updated corrections. Again, following the same analysis technique applied the the

parity-violating asymmetry, the combined statistical uncertainty was applied to the final

asymmetry as a relative value. Table 6.7 provides a summary of the values used in this

analysis.
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Table 6.7: Al27 BNSSA correction summary.

Quantity Asymmetry [ppm] Section

Braw −8.929± 0.340 6.2

βacc 0.9862± 0.0036 6.3.1
Breg 0.0000± 0.0197 6.3.2
Bfit 0.00± 0.05 6.3.3
BL 0.0084± 0.0461 6.3.4
Bbias 0.0± 0.1 6.3.5

Quantity Background Fraction (fi) [%] Asymmetry (Ai) [ppm] Section

Zn 2.375± 0.249 −11.72± 4.34

6.4.4

Mg 2.088± 0.219 −10.89± 1.24
Cu 0.683± 0.073 −11.79± 4.30
Cr 0.100± 0.011 −11.65± 3.53
Si 0.080± 0.009 −10.79± 1.34
Fe 0.054± 0.006 −11.55± 3.64
Mn 0.018± 0.009 −11.82± 3.86
Ti 0.014± 0.007 −11.70± 3.35

Quasi-elastic 12.77± 1.22 −5.4± 1.0 6.4.1
Inelastic 7.39± 0.74 43.0± 16.0 6.4.2
Neutrals 0.0000± 0.0045 0.0± 10.0 6.4.5
Beamline 0.0069± 0.0006 0.0± 10.0 6.4.5

Quantity Value Section

P 0.886± 0.013 6.3.6

Rdet 0.9955± 0.0017
6.5Rrc 1.00± 0.01

R
Q

2 1.000± 0.022

6.6.1 Elastic Al27 Beam-normal Single-spin Asymmetry

The final effective elastic Al27 beam-normal single-spin was determined to be

Bn = −16.322± 0.620 (statistical)± 1.779 (systematic)± 1.905 (excitations) ppm

Bn = −16.322± 2.679(total) ppm.

(6.23)

measured at Q = 0.154GeV. This is an 16% precision determination of the asymmetry.

Corrections for non-destructive excitations, such as the GDR and discrete excited states,

have not been included in this analysis, but are bounded by the inclusion of an additional
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systematic uncertainty introduced in Section 6.4.3. Aside from the large excitations uncer-

tainty, the result is dominated by the systematic uncertainty coming from the large inelastic

background correction of finelBinel = 3.2 ppm. Figure 6.3 provides a comparison between

the other uncertainty contributions.

Figure 6.4 compares this result to the previous HAPPEX and PREX BNSSA measure-

ments [84]. From that comparison it is easy to see that this measurement agrees with the

tend seen by the other lower atomic mass nuclei. The fact that this result agrees with the

trend only further supports the need for future BNSSA measurements of higher mass nuclei.
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Figure 6.4: BNSSA measurements from the HAPPEX and PREX experiments compared
with theoretical calculation [76] and the Qweak Al27 BNSSA (given by the green star).
Figure taken from original publication [84]. The original publication uses An to denote a
BNSSA, which differs from the Bn notation used in this document.
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Chapter 7

Qweak Aluminum Target

Background Analysis

During the initial planning stages of the weak charge experiment, it was known that one of the

largest backgrounds requiring correction was the asymmetry contribution from the aluminum

target windows [2]. Aluminum was predicted to have a parity-violating asymmetry an order

of magnitude larger than that of the proton because of the higher number of neutrons that

are preferred in neutral-current weak interactions. Despite efforts to reduce the background

as much as possible, it still had to be explicitly measured in order to accurately account for

it.

With this knowledge, the collaboration decided to commit beam time to performing an

ancillary measurement of the aluminum parity-violating asymmetry from a thick auxiliary

target constructed from the same material as the target windows. This chapter discusses the

analysis efforts put into determining the background contributions from the target windows

for the final Qweak asymmetry analysis. It also discusses the effect this contribution had on

the final asymmetry analysis in terms of uncertainty. In addition, the final results of the

weak charge measurement are summarized.
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7.1 Aluminum Target Windows

The aluminum target window correction for the weak charge measurement was treated as a

known background asymmetry, given the label “1”. During the analysis, background asym-

metry contributions were subtracted from the polarization-corrected measured asymmetry

(Amsr) with

Aep = Rtot

Amsr
P −

∑
i=1,3,4 fiAi

1−
∑4

i=1 fi
, (7.1)

where Aep is the final parity-violating elastic proton asymmetry, and the product of f1A1 in

the sum is the aluminum window correction. Two pieces form the aluminum target window

correction: the background fraction (f1) and the background asymmetry (A1).

The background fraction piece was specifically determined for both Run 1 and Run 2

during low beam current data-taking; yield measurements were made with an evacuated liquid

hydrogen target cell. QwGeant4 simulations were used to determine radiative corrections

needed to account for the presence of the liquid hydrogen during normal operation. Details

on this analysis are discussed at length in the dissertation of J. A. Magee [98]. The aluminum

background fractions determined for both runs were [46]

f1 = 2.471± 0.056 % (Run 1),

f1 = 2.516± 0.059 % (Run 2).

(7.2)

The background asymmetry A1 was determined using a combination of measured asym-

metry data and simulation. Beam current restrictions prevented measurement of the

parity-violating asymmetry directly from the target windows during evacuated running.

Reducing the beam current to a safe level to avoid damaging the target window would

have made a statistically relevant measurement of the asymmetry unfeasible in the time

available. Instead, a separate thicker target, constructed from the same material as the

target cell windows, was used to measure the background asymmetry at moderate beam

currents. During post experiment analysis, simulation was used to convert this measured

asymmetry to an effective target-window asymmetry after small kinematic and radiative

corrections.
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The target window asymmetry is assumed to be a combination of the individual upstream

and downstream window asymmetries, with the total being expressed as the weighted average

of the two contributions. This weighted average is written as

A1 =
YUSAUS + YDSADS

YUS + YDS

, (7.3)

where YUS (YDS) is the averaged main detector signal yield and AUS (ADS) is the averaged

asymmetry measured from the upstream (downstream) target window, respectively. As

individual measurements of either of these quantities were not possible, simulation was

used to determine each of these components. In the case of the main detector signal yields,

simulation was used to completely determine that contribution. However, upstream and

downstream window asymmetries contributions were scaled from the measured aluminum

asymmetry of the thicker target, using corrections from simulation.

In simulation a series of scattering generators were used to determine the rates∗ and

asymmetries for each of the known processes that occur in electron- Al27 scattering. These

considered processes include: elastic, quasi-elastic, inelastic (N → ∆), discrete single

particle excited states, and collective excitations such as the Giant Dipole Resonance. With

the exception of the elastic- Al27 scattering, many of these backgrounds have unknown

asymmetries, thus effective models or educated guesses were used to approximate these

asymmetries. Simulation of these processes were performed on three types of targets. These

were isolated targets representing the upstream and downstream target windows and the

thicker downstream auxiliary target (DS-4%X0).

Each series of simulations allowed the determination of the total scattering rate and

asymmetry for a given target. The total rate extracted from simulation for a particular

target (T ) is written as

RT,tot =
∑
p

RT,p, (7.4)

where the sum is over all the possible scattering processes (p) listed previously and RT,p

is individual scattering process for a given target type, extracted from simulation using

∗
This early analysis made use of rates to calculate the signal contribution from each of the target windows.

Corrections that turn these rates into detector yields are discussed later in this section.
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the methods discussed in a technical report on the subject [138]. Relative asymmetry

contributions from each of the scattering processes are determined with background fractions

calculated using these rates. These background fractions are determined with

fT,p =
RT,p

RT,tot

, (7.5)

for each process and then used to weight the sum of the asymmetries extracted from

simulation. A total asymmetry for each target is then determined, using these background

fraction weighting factors, with

AT,tot =
∑
p

fT,pAT,p, (7.6)

where the sum again is over all possible scattering processes and AT,p is the simulation

extracted asymmetry for a given process from target type T .

Rates from the simulation were found to agree at the 5–10% range with measured data,

see Section 5.6 for more information. However, asymmetries extracted from simulation for

these processes were not as well known. Instead of relying upon untrustworthy asymmetry

models, the measured target asymmetry was compared and scaled with the simulation

determined total asymmetries. Target window asymmetries were determined with

AUS = Amsr
DS4%

Asim
US

Asim
DS4%

,

ADS = Amsr
DS4%

Asim
DS

Asim
DS4%

,

(7.7)

where index T has been replaced with labels corresponding to the upstream (US), downstream

(DS), and thicker aluminum target (DS4%). The measured asymmetry from the thicker

target was determined to be Amsr
DS4% = 1.6235± 0.0795 ppm [207]. The analysis of that

measured asymmetry only included measurement-based systematic corrections, inelastic

scattering backgrounds are left in as the true asymmetries from the target window include

the effects from these other scattering processes. The individual corrections are summarized

on the Qweak wiki [208], but the reasons for making them are covered in more detail in
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Chapter 5.

Applying this scaling shifted the measured asymmetry down by approximately 1.0% for

the downstream calculated window asymmetry and approximately 14% for the upstream.

The large shift in the upstream calculation is primarily due to the difference in Z-position of

the upstream target versus the downstream position where the asymmetry measurement was

conducted, which changes the momentum transfer Q2 and thus the asymmetry. Additionally,

only about half of the scattered electron profile from the upstream window sits on the face

of the main detector array, which changes the relative ratio of processes that are determined

in simulation.

Additional corrections were required to convert the simulation-determined rates into

main detector yields, which are the actual observable measured by the main detector during

the asymmetry measurement. A light-weighting correction factor was included to perform

this conversion; its calculation is documented in the ELOG [209]. This correction was

multiplicatively applied to the calculated total simulation rates before they were used to

determine the effective window asymmetry.

The full calculation of the final effective window asymmetry, given by Eq. (7.3), was

performed with a Monte Carlo uncertainty propagation technique [210]. The technique is a

repetitive calculation of the effective window asymmetry. Each input is randomized with a

pseudo random number generator based on a seed value. These randomized inputs were

selected from a normal (Gaussian) distribution with a mean and width corresponding to the

central value and uncertainty for a given input. The results from a given calculation were

placed in a histogram and then repeated for a fixed number of trials.

This method allowed a complete calculation with all of the simulation-calculated rates

and asymmetries for each of the processes, including correlations. Conservative uncertainties

were applied to each rate and yield input into the calculation. The scattering-background

corrections from common processes between target types are assumed to be correlated.

The correlations imposed between these similar processes caused the overall uncertainty

associated with this scaling technique to be on the order of the measurement-based systematic

uncertainty on the measured asymmetry input [210].

Two separate calculations were performed, one for each running period. Both calculations
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differed slightly, based on the simulation parameters used to determine Run 1 and Run 2

rates and asymmetries. For example, the beam energy and QTOR current in simulation

differed between the two runs. The same Run 2 measured asymmetry was used as an input

in both calculations. Additional aluminum asymmetry measurements were made during Run

1, but that data set was not analyzed at the time of this analysis. Any systematic effects

from differences between the two running periods were accounted for during a separate series

of simulations.

The resulting distributions from these two Monte Carlo calculations were slightly asym-

metric, which was believed to be caused by the sum rule imposed on the background fraction

calculation piece [210]. This rule made sure all randomized rate contributions totaled to

100%. Figure 7.1 gives the resulting distribution of effective window asymmetries for both

Run 1 and Run 2. As the final distributions were asymmetric, simply quoting the mean and

width would not truly represent the central value and uncertainty of the calculated effective

asymmetry. Instead, the median of the distribution was chosen to be the quoted value of

the effective window asymmetry. The difference between the mean and median were below

1%. Uncertainties were calculated by integrating a 1σ confidence interval about the median,

following the general guidelines discussed in the statistical review of the PDG [9]. In the end,

the collaboration made the decision to quote the largest bound of the confidence level as a

1σ symmetric uncertainty for use in the calculation of the parity-violating electron-proton

asymmetry.

The final effective window asymmetries used in the final calculation of the elastic

parity-violating electron-proton asymmetry were [46, 208, 210]

A1 = 1.514± 0.071 (stat.)± 0.021 (sys.)± 0.020 (MC) ppm (Run 1)

= 1.514± 0.077(total) ppm,

A1 = 1.515± 0.071 (stat.)± 0.021 (sys.)± 0.019 (MC) ppm (Run 2)

= 1.515± 0.077(total) ppm.

(7.8)

These values were found to agree with ones determined from a separate implementation

of the same calculation introduced in this section [210]. The major difference between
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(a) Run 1

(b) Run 2

Figure 7.1: Distributions of calculated effective window asymmetries, for Run 1 and Run 2,
from Monte Carlo calculation technique. Effective window asymmetry taken as the median
of distribution (given by the red line). Upper and lower uncertainties are calculated by
integrating a 1σ confidence level about the median (given by the purple and green lines).
Figures taken from the ELOG [210].

the two calculations was the method used to propagate the uncertainties, the alternative

calculation employed a more traditional method. Combining the background fractions
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discussed earlier in this section with these effective window asymmetries, the final aluminum

window corrections to the Qweak asymmetry analysis were f1A1 = 37± 2 ppb for Run 1 and

f1A1 = 38± 2 ppb for Run 2.
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Chapter 8

Results and Conclusions

The previous three chapters have discussed the analyses of the elastic parity-violating Al27

asymmetry, the elastic beam-normal single-spin Al27 asymmetry, and aluminum target

window corrections for the main weak-charge analysis. This chapter provides a review of

the results determined from each of the respective analyses, the impact these results have

on the Qweak experiment and future experiments, and advice on how future improvements

could be made to each of the results.

8.1 Elastic Parity-Violating Al27 Asymmetry

Chapter 5 discussed the rigorous analysis techniques used to determine the pure elastic

parity-violating Al27 asymmetry from the collaboration’s ancillary measurement. This was

the first time this asymmetry has been measured, and its value was used to determine the

neutron distribution radius of Al27 .

The raw asymmetry from this ancillary measurement, taken from the Run 2 aluminum

data set, was found to be Araw = 1.441± 0.068 ppm, a 4.7% statistical precision measure-

ment. Corrections for various measurement-based systematic effects were applied to this

raw asymmetry, see Section 5.3. The majority of these corrections were found to have minor

impact on the final systematic uncertainty. In addition, corrections for non-elastic scattering

backgrounds from Al27 and elastic scattering contributions from alloy elements were also

applied. Each of these contributions are discussed in detail in the respective subsections
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dedicated to them in Section 5.4.

Accounting for all of these effects, a final pure-elastic parity-violating Al27 asymmetry was

determined to be APV = 1.927± 0.173 ppm (total), measured at Q2 = 0.0236± 0.0001GeV2.

This result was dominated by the inelastic (N → ∆) background determined from statistics-

limited ancillary measurements. Figure 5.17 shows a comparison between this measured

value and a theoretical calculation of the asymmetry.

As discussed in Section 5.4.2, any future effort dedicated to revisiting this analysis should

focus on reducing the uncertainty due to this background contribution. One suggested

method would be to seek theoretical help in performing a calculation of this inelastic

asymmetry at Qweak kinematics. Using a calculated result for this particular contribution

would match with the methodology applied to the other background corrections considered

in this analysis.

The analysis also has a few other areas that could benefit from improvement, namely, a

full implementation of radiative corrections for most of the cross section generators used in

simulation. Once implemented, a new series of simulations could be conducted in an effort

to better benchmark the simulation with QTOR scan results, see Section 5.6. I considered

this task to be an important next step, as the credibility of this analysis relies upon the

accuracy of the simulation when determining the size of the background contribution diluting

the measured asymmetry. However, it is important to mention that this analysis already

includes an inflated uncertainty that covers the disagreement between data and simulation.

Working with theory results from C. J. Horowitz and collaborators at Indiana University,

this first measurement of the asymmetry has been used to extract the neutron distribution

of the Al27 nucleus. The radius was determined to be Rn = 3.024± 0.104 fm, which is a

3.4% precision determination. Again the dominant uncertainty comes from the inelastic

scattering background contribution on the asymmetry input. Aside from possible future

improvements to the asymmetry’s uncertainty, the theory calculations used to form the

correlation between APV and Rn should be updated to account for the measurement’s final

momentum transfer value, which I believe would only yield a minor change. I believe the

disagreement that was seen between the range of models and the Qweak measurement placed

on the correlation line is due to the choice of Al27 charge radius used in those calculations.
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Using an average charge radius with an inflated uncertainty from previous measurements

might be a better option if the calculation is revisited.

As C. J. Horowitz states in his motivating publication [40], this determination is a useful

check of the neutron distribution radius extraction procedure, which has been used before

by the PREX collaboration on their measurement of Pb208 [53, 122]. The same procedure

will be used again in the future, when the PREX collaboration repeats their measurement in

an effort to improve their uncertainty. Additionally, a new measurement will be conducted

on Ca48 directly after the repeated PREX measurement [89]. This new measurement will

also make use of the neutron distribution radius extraction procedure.

Aside from comparing the extracted neutron distribution radius to those predicted by

theory, additional confidence in the result is instilled by the agreement seen in the neutron

skin thickness. The Al27 skin thickness was determined to be ∆Rn = 0.092± 0.104 fm,

which is consistent with zero within its uncertainty. This confirms the naive expectation one

would assume for Al27 , as it has approximately an equal number of protons and neutrons.

The fact that the result agrees with the naive expectation acts as an additional confirmation

that this experimental procedure is valid.

8.2 Elastic Beam-Normal Single-Spin Al27 Asymmetry

Chapter 6 covered the analysis of the elastic Al27 beam-normal single-spin asymmetry. This

difficult analysis yielded an effective value of the asymmetry. Due to the lack of theoretical

understanding and previous measurements, many of the non-elastic scattering backgrounds

were not well understood. This forced the adoption of many rough estimates for these

backgrounds.

Corrections for the quasi-elastic and inelastic backgrounds were mainly based on previous

Qweak dissertation analyses. In particular, the inelastic background, which is the dominant

uncertainty contribution on the final result, comes from a separate N → ∆ measurement

performed with the liquid hydrogen target at lower QTOR current. Any future improvement

to the uncertainty contributions on that analysis will directly improve the results of this

analysis. Data from the Al27 target at lower QTOR current are also available, which could
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possibly help refine the uncertainty from this contribution.

Including all of the corrections discussed in Chapter 6, a final effective Al27 beam-normal

single-spin asymmetry was determined to be Bn = −16.322± 2.679 ppm (total), measured

at Q = 0.154GeV. This is a 16% precision determination of the asymmetry. Even though

the asymmetry is reported as an effective quantity, its uncertainty has been conservatively

inflated to account for any possible effects from missing excitation corrections.

The original motivation for performing this ancillary measurement was to help understand

the observed disagreement between theory and the Pb208 result from the HAPPEX and

PREX measurements [84]. When compared to these previous measurements, this new result

confirms the asymmetry trend seen by the lighter mass nuclei and thus only adds further

motivation for future BNSSA measurements from nuclei with masses between Al27 and

Pb208 .

Additionally, I hope this result will motivate a future theoretical prediction of the Al27

BNSSA at these kinematics. Without an explicit theoretical calculation, an alternative

method for comparing these measurements is to look at the atomic mass dependence of the

BNSSAs at a common momentum transfer. Figure 8.1 shows all of the elastic beam-normal

single-spin asymmetries from the HAPPEX, PREX, and Qweak experiments, scaled to at

momentum transfer of Q = 0.154GeV. That figure also includes a calculation of Eq. (3.59),

over a range of stable isotopes up to Pb208 , as a comparison to the measured BNSSAs. The

calculation only includes the lowest order mass dependence of BNSSAs, as it was gleaned

from the original asymmetry calculations performed for the HAPPEX and PREX results [76,

84]. A true comparison should be made with a more rigorous calculation once available.

8.3 Al27 Target Background and Impact on Qweak

Finally, an overview of the effective aluminum window asymmetry was given in Chapter 7.

It was one of the largest background corrections to the Qweak parity-violating asymmetry

analysis. A combination of measured background fractions and asymmetries were used to

form this correction. Most of this analysis relied upon simulation to determine radiative

corrections and scaling factors for both of these quantities.
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Figure 8.1: Comparison of all forward-angle BNSSA measurements with Eq. (3.59) cal-
culated for stable isotopes at Q = 0.154GeV. HAPPEX and PREX results [84] are Q
scaled to match the kinematics of Qweak’s measurements. Qweak dissertation analysis re-
sults are used to quote the hydrogen [83] and carbon [88] points. Analysis of the aluminum
measurement is discussed in Chapter 6.

In particular, the asymmetry extracted from the ancillary Al27 target measurement during

Run 2 was scaled to an effective asymmetry for each of the target windows. A final asymmetry

from both the windows was taken as a rate weighted-average of their respective asymmetries.

This final effective window asymmetry was calculated to be A1 = 1.514± 0.077 ppm (total)

for Run 1 and A1 = 1.515± 0.077 ppm (total) for Run 2. Combined with the background

fractions determined from evacuated target measurements [98], a total correction of f1A1 =

37± 2 ppb (Run 1) and f1A1 = 38± 2 ppb (Run 2) were used in the Qweak asymmetry

analysis.

The result of the final Qweak analysis, which included this correction, determined the

elastic parity-violating electron-proton asymmetry to be [46]

Aep = −223.5± 15.0 (statistical)± 10.1 (systematic) ppb (Run 1)

Aep = −227.2± 8.3 (statistical)± 5.6 (systematic) ppb (Run 2)

Aep = −226.5± 7.3 (statistical)± 5.8 (systematic) ppb (Combined),

(8.1)
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where the combined result accounts for correlations between the running periods. This was

4% precision measurement and the final result agreed with the previously published Run

0 measurement performed at the beginning of the experiment [49]. From this asymmetry

measurement the weak charge of the proton was determined to be Qp
W = 0.0719± 0.0045 [46],

using the formalism discussed in Section 3.3.1. This weak charge value implies a general

mass reach of Λ+/g = 7.4TeV and Λ−/g = 8.4TeV at the 95% confidence level (see

Section 3.4.2) [46]. Additional information about the impact of this asymmetry measurement,

its weak charge determination, and its interpretation can be found in the publication of the

final result [46].

8.4 Outlook

Future parity-violation experiments, such as MOLLER [107] at Jefferson Lab and P2 [108]

at Mainz plan to measure asymmetries with even greater precision. Both plan to use liquid

hydrogen targets and will require similar background corrections for their target windows.

A number of lessons learned during this analysis could be applied to their future efforts.

First, target window material selection is extremely important, as different alloys have

the possibility to contain numerous high-Z elements at varying concentrations. Section 4.5.2

introduced the idea of high-strength aluminum alloys containing lithium as a possible

replacement for the Al 7075-T651 material used in Qweak. In addition to material selection,

all target components should have a precision assay of their elemental composition. This

information provided to be extremely helpful in these studies.

Second, a full suite of ancillary measurements on a target made with the same material

as the window is mandatory. For example, these would have to include systematic studies of

changing spectrometer current and measurements on multiple targets of varying thickness.

Again, all of this information was helpful in the simulation benchmarking process.

Lastly, at different kinematics than that of extreme forward angles, higher-order multipole

terms become important in the theoretical models of these parity-violating asymmetries.

Take Horowitz’s Al27 calculation [40]; he specifically states that one has to be careful of using

his model outside of the assumption of forward angles. In particular, the model uncertainty
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starts to increase dramatically in the diffractive minimum region of the asymmetry.

Interestingly, if both MOLLER and P2 measure asymmetries from an Al27 auxiliary

target, they would be determining the weak form factor of Al27 at their specific kinematics.

Combined with this Qweak measurement, these measurements would effectively start to

map the Q2 dependence of Al27 ’s weak form factor, only at the cost of analysis time and

graduate student power. This type of study has been proposed before by C. J. Horowitz

and Z. Lin, for heavier nuclei such as Ca48 [211]. Multiple precision measurements on this

light asymmetric nuclei could benefit theory in the future.

Other future experiments, such as PREXII and CREX, will make measurements of the

parity-violating asymmetry from Pb208 and Ca48 , respectively. The PREXII motivation is

ultimately to improve upon their previous measurement with a reduced statistical uncertainty.

CREX is a completely new measurement that will directly follow PREXII. Both mostly

likely will make ancillary measurements of the beam-normal single-spin asymmetry from

these respective nuclei. A new Pb208 measurement could either confirm or contradict their

previous result. CREX will also make this measurement, which will be the first time this

asymmetry will have been measured for Ca48 . Unlike the Al27 asymmetry, the CREX result

will be at a much higher atomic mass. This enables a better experimental test of present

theoretical models, which are known to be lacking Coulomb distortion effects.

Each of these future experiments should ultimately benefit from the analyses discussed

in this dissertation. Of course as parity-violating experiments continue to improve their

statistical power, the methods documented here will have to be improved upon, if they are

going to meet their precision goals.
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Appendix A

Aluminum Target Information

Supplement

A.1 Alloy Radiation Length Calculation

This section documents the calculation of the radiation length for the aluminum alloy

material used in this experiment. A radiation length of a material quantifies the amount

of energy loss that highly-energetic electrons and photons deposit as they pass through a

quantity of that material. In the case of electrons the radiation length quantifies the average

distance the electron travels over which its energy is reduced by 1/e via the process of

bremsstrahlung, known as braking radiation. The aluminum alloy target material includes a

non-negligible fraction of heavier elements that modify the radiation length compared to

that of a target made with pure aluminum, thus motivating this calculation.

The radiation length (X0) of an element can be calculated using the following expression,

taken from reference [9, 212],

1

X0

= 4αr2e
NA

A

(
Z2[Lrad(Z)− f(Z)] + ZL′

rad(Z)
)

(A.1)

where α is the fine-structure constant, r2e is the classical electron radius, NA is Avogadro’s

constant, A is the atomic mass of the element in units of [gmol−1], and Z is the atomic
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number. Lrad and L′
rad are functions of Z with the following forms:

Lrad(Z) = ln
(
184.15Z−1/3

)
(A.2)

and

L′
rad(Z) = ln

(
1194Z−2/3

)
. (A.3)

These expressions are only valid for elements greater than Z = 4 (Beryllium). Values for

those lighter elements are tabulated in [9].

The function f(Z), a Coulomb correction term, is an infinite sum but can be accurately

represented up to Z = 92 (Uranium) using this truncated expansion:

f(Z) = α2Z2
∞∑
n=1

1

n(n2 + α2Z2)

≈ α2Z2

(
1

1 + α2Z2 + 0.202 06− 0.0369α2Z2 + 0.0083α4Z4 − 0.002α6Z6

)
.

(A.4)

Using Eq. (A.1) in combination with Eqs. (A.2) to (A.4) the radiation length for the

individual constituent elements of the aluminum alloy can be calculated. The resulting

values are tabulated in Table A.1.

Table A.1: Atomic masses and calculated radiation lengths of the constituent elements
that make up the aluminum alloy target material. Atomic masses are taken from IUPAC
database [213] and the PDG [214].

Element Atomic Mass [gmol−1] Radiation Length [g cm−2]

Al 26.981 538 5± 0.000 000 7 24.0109± 0.0005
Zn 65.38± 0.02 12.4287± 0.0005
Mg 24.305± 0.006 25.0312± 0.0005
Cu 63.546± 0.003 12.8627± 0.0005
Cr 51.9961± 0.0006 14.9443± 0.0005
Fe 55.845± 0.002 13.8383± 0.0005
Si 28.0855± 0.0003 21.8228± 0.0005
Mn 54.938 044± 0.000 003 14.6397± 0.0005
Ti 47.867± 0.001 16.1632± 0.0005

Bragg’s rule can be used to approximate the radiation length of a compound material

using the radiation length of the compound’s constituent elements [9, 215]. Applied to this
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problem, Bragg’s rule takes the form as noted in the following expression,

1

X0

=
N∑
i

wi

X0i

(A.5)

where X0 is the radiation length of the compound, X0i is the radiation length of a given

element in the compound, and wi is the fraction, by weight, of a given element in the

compound.

The values from Table A.1, in conjunction with fractional weights from Tables 4.6 and 4.7,

are used as inputs to Eq. (A.5). As three separate aluminum alloy materials were used

depending on the target ladder location and run period (see Section 4.5.1 for further details),

different radiation lengths can be calculated for each one. These calculated alloy radiation

length values are tabulated in Table A.2. Comparing these calculated radiation lengths of

the aluminum alloy with that of pure elemental aluminum, there is approximately a 7%

difference between the two. The presence of high Z transition metal elements such as Zinc,

Copper, and Chromium have a sufficiently large fractional weight, which when combined

with their low radiation lengths, reduce the overall radiation length of the aluminum alloy

material.

Table A.2: Calculated radiation lengths for the aluminum alloy materials used in the
upstream (US) and downstream (DS) targets during Run 1 and Run 2.

Run Location Radiation Length [g cm−2]

1+2 US 22.4488

1 DS 22.4498
2 DS 22.4092
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Appendix B

Parity-Violating Al
27

Asymmetry

Analysis Supplement

B.1 Parity-violating Asymmetry Run List

Table B.1: List of runs and experimental parameters for the parity-violating aluminum
data set taken during Run 2. The beam and QTOR currents are the maximum typical
values for a given run; the beam current values are determined using BCM 6. The last
three columns note the states of the slow-helicity reversal experimental controls.

Beam QTOR Precession Wien
Run Slug Wien Current [µA] Current [A] State State IHWP

14153 1028 6 56.0 8900.0 Reverse Normal OUT
14154 1028 6 56.0 8900.0 Reverse Normal OUT
14155 1028 6 57.0 8900.0 Reverse Normal OUT
14156 1028 6 58.0 8900.0 Reverse Normal OUT
14157 1028 6 57.0 8900.0 Reverse Normal OUT
14158 1028 6 56.0 8900.0 Reverse Normal OUT
14159 1029 6 56.0 8900.0 Reverse Normal IN
14160 1029 6 58.0 8900.0 Reverse Normal IN
14161 1029 6 57.0 8900.0 Reverse Normal IN
14162 1029 6 57.0 8900.0 Reverse Normal IN
14164 1029 6 58.0 8900.0 Reverse Normal IN
14165 1029 6 57.0 8900.0 Reverse Normal IN
14166 1030 6 57.0 8900.0 Reverse Normal OUT
14167 1030 6 57.0 8900.0 Reverse Normal OUT
14168 1030 6 57.0 8900.0 Reverse Normal OUT
14170 1030 6 57.0 8900.0 Reverse Normal OUT
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Table B.1: List of runs and experimental parameters for the parity-violating aluminum
data set taken during Run 2. The beam and QTOR currents are the maximum typical
values for a given run; the beam current values are determined using BCM 6. The last
three columns note the states of the slow-helicity reversal experimental controls.

Beam QTOR Precession Wien
Run Slug Wien Current [µA] Current [A] State State IHWP

14171 1030 6 57.0 8900.0 Reverse Normal OUT
14172 1030 6 58.0 8900.0 Reverse Normal OUT
14173 1031 6 57.0 8900.0 Reverse Normal IN
14174 1031 6 58.0 8900.0 Reverse Normal IN
14175 1031 6 58.0 8900.0 Reverse Normal IN
14176 1031 6 58.0 8900.0 Reverse Normal IN
14177 1031 6 58.0 8900.0 Reverse Normal IN
14178 1032 6 58.0 8900.0 Reverse Normal OUT
14179 1032 6 57.0 8900.0 Reverse Normal OUT

14337 501 001 7 58.0 6698.0 Reverse Reverse IN
14338 501 002 7 58.0 6698.0 Reverse Reverse OUT
14364 501 001 7 58.0 6698.0 Reverse Reverse IN
14365 501 002 7 58.0 6698.0 Reverse Reverse OUT

15170 1033 8 58.0 8899.0 Normal Reverse IN
15171 1033 8 58.0 8899.0 Normal Reverse IN
15172 1033 8 59.0 8899.0 Normal Reverse IN
15173 1033 8 59.0 8899.0 Normal Reverse IN
15174 1033 8 59.0 8899.0 Normal Reverse IN
15175 1033 8 59.0 8899.0 Normal Reverse IN
15178 1033 8 58.0 8899.0 Normal Reverse IN
15179 1033 8 59.0 8899.0 Normal Reverse IN
15180 1034 8 58.0 8899.0 Normal Reverse OUT
15181 1034 8 58.0 8899.0 Normal Reverse OUT
15182 1034 8 58.0 8899.0 Normal Reverse OUT
15183 1034 8 58.0 8899.0 Normal Reverse OUT
15184 1034 8 58.0 8899.0 Normal Reverse OUT
15185 1034 8 58.0 8899.0 Normal Reverse OUT
15452 1035 8 49.0 8899.0 Normal Reverse OUT
15453 1035 8 50.0 8899.0 Normal Reverse OUT
15454 1035 8 49.0 8899.0 Normal Reverse OUT
15455 1035 8 49.0 8899.0 Normal Reverse OUT
15456 1035 8 50.0 8899.0 Normal Reverse OUT
15457 1035 8 50.0 8899.0 Normal Reverse OUT
15458 1035 8 49.0 8899.0 Normal Reverse OUT
15459 1035 8 50.0 8899.0 Normal Reverse OUT
15460 1035 8 50.0 8899.0 Normal Reverse OUT
15461 1035 8 50.0 8899.0 Normal Reverse OUT
15462 1035 8 50.0 8899.0 Normal Reverse OUT
15463 1035 8 51.0 8899.0 Normal Reverse OUT
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Table B.1: List of runs and experimental parameters for the parity-violating aluminum
data set taken during Run 2. The beam and QTOR currents are the maximum typical
values for a given run; the beam current values are determined using BCM 6. The last
three columns note the states of the slow-helicity reversal experimental controls.

Beam QTOR Precession Wien
Run Slug Wien Current [µA] Current [A] State State IHWP

15464 1035 8 50.0 8899.0 Normal Reverse OUT
15465 1035 8 50.0 8899.0 Normal Reverse OUT
15466 1035 8 50.0 8899.0 Normal Reverse OUT
15467 1036 8 51.0 8899.0 Normal Reverse IN
15735 1036 8 61.0 8899.0 Normal Reverse IN
15736 1036 8 61.0 8899.0 Normal Reverse IN
15737 1036 8 61.0 8899.0 Normal Reverse IN
15738 1036 8 61.0 8899.0 Normal Reverse IN
15739 1036 8 61.0 8899.0 Normal Reverse IN
15740 1036 8 61.0 8899.0 Normal Reverse IN
15741 1037 8 61.0 8899.0 Normal Reverse OUT
15742 1037 8 61.0 8899.0 Normal Reverse OUT
15743 1037 8 61.0 8899.0 Normal Reverse OUT
15744 1037 8 61.0 8899.0 Normal Reverse OUT
15745 1037 8 61.0 8899.0 Normal Reverse OUT
15847 1038 8 61.0 8899.0 Normal Reverse IN
15848 1038 8 61.0 8899.0 Normal Reverse IN
15849 1038 8 62.0 8899.0 Normal Reverse IN
15850 1038 8 62.0 8899.0 Normal Reverse IN
15851 1038 8 61.0 8899.0 Normal Reverse IN
15852 1039 8 61.0 8899.0 Normal Reverse OUT
15853 1039 8 61.0 8899.0 Normal Reverse OUT
15854 1039 8 61.0 8899.0 Normal Reverse OUT
15855 1039 8 61.0 8899.0 Normal Reverse OUT
15856 1039 8 61.0 8899.0 Normal Reverse OUT
15857 1039 8 61.0 8899.0 Normal Reverse OUT
15858 1040 8 61.0 8899.0 Normal Reverse IN
15859 1040 8 61.0 8899.0 Normal Reverse IN
15860 1040 8 61.0 8899.0 Normal Reverse IN
15861 1040 8 61.0 8899.0 Normal Reverse IN
15862 1040 8 60.0 8899.0 Normal Reverse IN
15863 1041 8 60.0 8899.0 Normal Reverse OUT
15864 1041 8 61.0 8899.0 Normal Reverse OUT
15865 1041 8 61.0 8899.0 Normal Reverse OUT
15866 1041 8 61.0 8899.0 Normal Reverse OUT
15867 1041 8 60.0 8899.0 Normal Reverse OUT
15868 1042 8 60.0 8899.0 Normal Reverse IN
15869 1042 8 60.0 8899.0 Normal Reverse IN
15870 1042 8 60.0 8899.0 Normal Reverse IN
15871 1042 8 61.0 8899.0 Normal Reverse IN
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Table B.1: List of runs and experimental parameters for the parity-violating aluminum
data set taken during Run 2. The beam and QTOR currents are the maximum typical
values for a given run; the beam current values are determined using BCM 6. The last
three columns note the states of the slow-helicity reversal experimental controls.

Beam QTOR Precession Wien
Run Slug Wien Current [µA] Current [A] State State IHWP

15872 1042 8 60.0 8899.0 Normal Reverse IN
15873 1043 8 60.0 8899.0 Normal Reverse OUT
15874 1043 8 61.0 8899.0 Normal Reverse OUT
15875 1043 8 61.0 8899.0 Normal Reverse OUT
16483 1044 9 59.0 8898.0 Normal Normal IN
16484 1044 9 59.0 8898.0 Normal Normal IN
16485 1044 9 59.0 8898.0 Normal Normal IN
16486 1044 9 59.0 8898.0 Normal Normal IN
16487 1044 9 59.0 8898.0 Normal Normal IN
16488 1044 9 60.0 8898.0 Normal Normal IN
16489 1044 9 60.0 8898.0 Normal Normal IN
16490 1044 9 60.0 8898.0 Normal Normal IN
16491 1044 9 60.0 8898.0 Normal Normal IN
16492 1044 9 60.0 8898.0 Normal Normal IN
16493 1045 9 59.0 8898.0 Normal Normal OUT
16494 1045 9 59.0 8898.0 Normal Normal OUT
16495 1045 9 60.0 8898.0 Normal Normal OUT
16496 1045 9 59.0 8898.0 Normal Normal OUT
16497 1046 9 60.0 8898.0 Normal Normal IN
16500 1046 9 60.0 8898.0 Normal Normal IN
16501 1046 9 60.0 8898.0 Normal Normal IN
16502 1046 9 60.0 8898.0 Normal Normal IN
16503 1047 9 59.0 8898.0 Normal Normal OUT
16504 1047 9 60.0 8898.0 Normal Normal OUT
16506 1047 9 60.0 8898.0 Normal Normal OUT
16507 1047 9 60.0 8898.0 Normal Normal OUT
16508 1047 9 60.0 8898.0 Normal Normal OUT
16773 1048 9 60.0 8898.0 Normal Normal IN
16774 1048 9 60.0 8898.0 Normal Normal IN
16775 1048 9 60.0 8898.0 Normal Normal IN
16776 1048 9 60.0 8898.0 Normal Normal IN
16777 1049 9 60.0 8898.0 Normal Normal OUT
16778 1049 9 60.0 8898.0 Normal Normal OUT
16779 1049 9 60.0 8898.0 Normal Normal OUT
16780 1049 9 60.0 8898.0 Normal Normal OUT
16922 1050 9 60.0 8898.0 Normal Normal OUT
16923 1050 9 60.0 8898.0 Normal Normal OUT
16924 1050 9 60.0 8898.0 Normal Normal OUT
16925 1050 9 60.0 8898.0 Normal Normal OUT
16949 1051 9 60.0 8898.0 Normal Normal IN
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Table B.1: List of runs and experimental parameters for the parity-violating aluminum
data set taken during Run 2. The beam and QTOR currents are the maximum typical
values for a given run; the beam current values are determined using BCM 6. The last
three columns note the states of the slow-helicity reversal experimental controls.

Beam QTOR Precession Wien
Run Slug Wien Current [µA] Current [A] State State IHWP

16951 1051 9 60.0 8898.0 Normal Normal IN
16952 1051 9 60.0 8898.0 Normal Normal IN
16953 1051 9 60.0 8898.0 Normal Normal IN
16954 1052 9 60.0 8898.0 Normal Normal OUT
16962 1052 9 60.0 8898.0 Normal Normal OUT
16963 1052 9 60.0 8898.0 Normal Normal OUT
16964 1052 9 60.0 8898.0 Normal Normal OUT
16965 1052 9 60.0 8898.0 Normal Normal OUT
17370 1053 9 59.0 8898.0 Normal Normal OUT
17371 1053 9 59.0 8898.0 Normal Normal OUT
17372 1053 9 59.0 8898.0 Normal Normal OUT
17373 1053 9 59.0 8898.0 Normal Normal OUT
17376 1053 9 59.0 8898.0 Normal Normal OUT
17377 1053 9 59.0 8898.0 Normal Normal OUT
17378 1053 9 58.0 8898.0 Normal Normal OUT
17379 1054 9 59.0 8898.0 Normal Normal IN
17380 1054 9 59.0 8898.0 Normal Normal IN
17381 1054 9 59.0 8898.0 Normal Normal IN
17382 1054 9 59.0 8898.0 Normal Normal IN
17383 1055 9 59.0 8898.0 Normal Normal OUT
17384 1055 9 59.0 8898.0 Normal Normal OUT
17385 1055 9 58.0 8898.0 Normal Normal OUT
17386 1055 9 58.0 8898.0 Normal Normal OUT
17387 1056 9 58.0 8898.0 Normal Normal IN
17388 1056 9 59.0 8898.0 Normal Normal IN
17389 1056 9 58.0 8898.0 Normal Normal IN
17390 1056 9 59.0 8898.0 Normal Normal IN
17391 1057 9 57.0 8898.0 Normal Normal OUT
17392 1057 9 56.0 8898.0 Normal Normal OUT
17393 1057 9 57.0 8898.0 Normal Normal OUT
17394 1057 9 58.0 8898.0 Normal Normal OUT
17395 1058 9 58.0 8898.0 Normal Normal IN
17396 1058 9 58.0 8898.0 Normal Normal IN
17397 1058 9 58.0 8898.0 Normal Normal IN
17398 1058 9 58.0 8898.0 Normal Normal IN
17400 1058 9 58.0 8898.0 Normal Normal IN
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B.2 Helicity-correlated Beam Corrections

• Regressed asymmetry plots: Fig. B.1

• Helicity-correlated beam parameters plots:

– Target X differences: Fig. B.2

– Target X’ differences: Fig. B.3

– Target Y differences: Fig. B.4

– Target Y’ differences: Fig. B.5

– Target E differences: Fig. B.6

– Target X sensitivities: Fig. B.7

– Target X’ sensitivities: Fig. B.8

– Target Y sensitivities: Fig. B.9

– Target Y’ sensitivities: Fig. B.10

– Target E sensitivities: Fig. B.11

B.3 Beamline Background

• Beamline background asymmetry plots: Fig. B.12

B.4 Transverse Leakage

• Transverse leakage plots:

– Wien 6: Fig. B.13

– Wien 9: Fig. B.14

B.5 Polarization

• Polarization-corrected asymmetry plots: Fig. B.15
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B.6 Discrete Excited State Fits

• Discrete excited state fit plots:

– 0.844MeV fit: Fig. B.16

– 0.844MeV uncertainty: Fig. B.17

– 1.014MeV fit: Fig. B.18

– 1.014MeV uncertainty: Fig. B.19

– 2.735MeV fit: Fig. B.20

– 2.735MeV uncertainty: Fig. B.21

– 2.990MeV fit: Fig. B.22

– 2.990MeV uncertainty: Fig. B.23

– 4.580MeV fit: Fig. B.24

– 4.580MeV uncertainty: Fig. B.25

– 4.812MeV fit: Fig. B.26

– 4.812MeV uncertainty: Fig. B.27

– 5.430MeV fit: Fig. B.28

– 5.430MeV uncertainty: Fig. B.29

– 5.668MeV fits: Fig. B.30

– 5.668MeV uncertainty: Fig. B.31

– 7.228MeV fits: Fig. B.32

– 7.228MeV uncertainty: Fig. B.33

– 7.477MeV fits: Fig. B.34

– 7.477MeV uncertainty: Fig. B.35
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(a) Regressed asymmetry slug plot
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(b) Regressed sign-corrected asymmetry slug plot

Figure B.1: Regressed asymmetries from the Run 2 aluminum data set.
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Figure B.2: Helicity-correlated differences in Target X for the Run 2 aluminum data set.
Figure taken from the ELOG [127].

Figure B.3: Helicity-correlated differences in Target X slope for the Run 2 aluminum data
set. Figure taken from the ELOG [127].
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Figure B.4: Helicity-correlated differences in Target Y for the Run 2 aluminum data set.
Figure taken from the ELOG [127].

Figure B.5: Helicity-correlated differences in Target Y slope for the Run 2 aluminum data
set. Figure taken from the ELOG [127].
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Figure B.6: Helicity-correlated differences in Energy for the Run 2 aluminum data set.
Figure taken from the ELOG [127].

Figure B.7: Helicity-correlated sensitivities in Target X for the Run 2 aluminum data set.
Figure taken from the ELOG [127].
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Figure B.8: Helicity-correlated sensitivities in Target X slope for the Run 2 aluminum data
set. Figure taken from [127].

Figure B.9: Helicity-correlated sensitivities in Target Y for the Run 2 aluminum data set.
Figure taken from ELOG [127].
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Figure B.10: Helicity-correlated sensitivities in Target Y slope for the Run 2 aluminum
data set. Figure taken from ELOG [127].

Figure B.11: Helicity-correlated sensitivities in Energy for the Run 2 aluminum data set.
Figure taken from ELOG [127].
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(a) Beamline background asymmetry slug plot
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(b) Beamline background sign-corrected asymmetry slug plot

Figure B.12: Beamline background asymmetries from the Run 2 aluminum data set.
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Figure B.13: Residual transverse polarization extraction using a sinusoidal fit to main
detector regressed asymmetries in Wien 6. Uncertainties on blue data points are statistical
only. The red band is a 1σ uncertainty associated with the fit.
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Figure B.14: Residual transverse polarization extraction using a sinusoidal fit to main
detector regressed asymmetries in Wien 9. Uncertainties on blue data points are statistical
only. The red band is a 1σ uncertainty associated with the fit.
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(a) Polarization-corrected asymmetry slug plot
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(b) Polarization sign-corrected asymmetry slug plot

Figure B.15: Polarization-corrected asymmetries from the Run 2 aluminum data set.



APPENDIX B. PARITY-VIOLATING AL27 ASYMMETRY ANALYSIS
SUPPLEMENT 197

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Qeff [fm−1]

10−6

10−5

10−4

10−3

10−2
|FF
|2

0.844 MeV Nuclear Excited State

Gaussian Fit

Uncertainty
Band

Scaled
Uncertainty
Band

Qweak
Acceptance

MIT Bates

Figure B.16: Gaussian function fitted to Al27 ’s 0.844MeV excited state form factor data.
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Figure B.17: Calculated fit uncertainty (relative) for 0.844MeV excited state. Uncertainty
assigned to simulation extracted yields taken from average Q value of the scaled uncertainty
curve.
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Figure B.18: Gaussian function fitted to Al27 ’s 1.014MeV excited state form factor data.
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Figure B.19: Calculated fit uncertainty (relative) for 1.014MeV excited state. Uncertainty
assigned to simulation extracted yields taken from average Q value of the scaled uncertainty
curve.
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Figure B.20: Gaussian function fitted to Al27 ’s 2.735MeV excited state form factor data.
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Figure B.21: Calculated fit uncertainty (relative) for 2.735MeV excited state. Uncertainty
assigned to simulation extracted yields taken from average Q value of the scaled uncertainty
curve.
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Figure B.22: Gaussian function fitted to Al27 ’s 2.990MeV excited state form factor data.

0.7 0.8 0.9 1.0 1.1

Qeff [fm−1]

0

1

2

3

4

5

6

7

8

9

σ
|F
F
|2

/|F
F
|2

[%
]

2.990 MeV Nuclear Excited State

Gaussian Fit
Uncertainty

Scaled Fit
Uncertainty

Figure B.23: Calculated fit uncertainty (relative) for 2.990MeV excited state. Uncertainty
assigned to simulation extracted yields taken from average Q value of the scaled uncertainty
curve.
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Figure B.24: Gaussian function fitted to Al27 ’s 4.580MeV excited state form factor data.
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Figure B.25: Calculated fit uncertainty (relative) for 4.580MeV excited state. Uncertainty
assigned to simulation extracted yields taken from average Q value of the scaled uncertainty
curve.
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Figure B.26: Gaussian function fitted to Al27 ’s 4.812MeV excited state form factor data.

0.7 0.8 0.9 1.0 1.1

Qeff [fm−1]

0

10

20

30

40

σ
|F
F
|2

/|F
F
|2

[%
]

4.812 MeV Nuclear Excited State

Gaussian Fit
Uncertainty

Scaled Fit
Uncertainty

Figure B.27: Calculated fit uncertainty (relative) for 4.812MeV excited state. Uncertainty
assigned to simulation extracted yields taken from average Q value of the scaled uncertainty
curve.
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Figure B.28: Gaussian function fitted to Al27 ’s 5.430MeV excited state form factor data.
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Figure B.29: Calculated fit uncertainty (relative) for 5.430MeV excited state. Uncertainty
assigned to simulation extracted yields taken from average Q value of the scaled uncertainty
curve.
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Figure B.30: Gaussian function fitted to Al27 ’s 5.668MeV excited state form factor data.
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Figure B.31: Calculated fit uncertainty (relative) for 5.668MeV excited state. Uncertainty
assigned to simulation extracted yields taken from average Q value of the scaled uncertainty
curve.
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Figure B.32: Gaussian function fitted to Al27 ’s 7.228MeV excited state form factor data.
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Figure B.33: Calculated fit uncertainty (relative) for 7.228MeV excited state. Uncertainty
assigned to simulation extracted yields taken from average Q value of the scaled uncertainty
curve.
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Figure B.34: Gaussian function fitted to Al27 ’s 7.477MeV excited state form factor data.
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Figure B.35: Calculated fit uncertainty (relative) for 7.477MeV excited state. Uncertainty
assigned to simulation extracted yields taken from average Q value of the scaled uncertainty
curve.
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Appendix C

Beam-normal Single-spin Al
27

Asymmetry Analysis Supplement

C.1 Beam-normal Single-spin Asymmetry Run List

Table C.1: List of runs and experimental parameters for the beam-normal single-spin alu-
minum data set taken during Run 1 and Run 2. The beam and QTOR currents are the
maximum typical values for a given run; the beam current values are determined using
BCM 6. The last three columns note the states of the slow-helicity reversal experimental
controls. In particular, the ”Wien State” column indicates the direction of the transverse
polarized beam.

Beam QTOR Precession Wien
Run Slug Current [µA] Current [A] State State IHWP

Run 1 February 9, 2011

9846 101 001 23.0 8920.0 Normal Vertical IN
9847 101 001 24.0 8920.0 Normal Vertical IN
9848 101 001 23.0 8920.0 Normal Vertical IN
9849 101 001 23.0 8920.0 Normal Vertical IN
9850 101 001 24.0 8920.0 Normal Vertical IN
9851 101 001 24.0 8920.0 Normal Vertical IN
9852 101 001 23.0 8920.0 Normal Vertical IN
9853 101 002 23.0 8920.0 Normal Vertical OUT
9854 101 002 23.0 8920.0 Normal Vertical OUT
9855 101 002 23.0 8920.0 Normal Vertical OUT
9856 101 002 23.0 8920.0 Normal Vertical OUT
9857 101 002 23.0 8920.0 Normal Vertical OUT
9858 101 002 23.0 8920.0 Normal Vertical OUT
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Table C.1: List of runs and experimental parameters for the beam-normal single-spin alu-
minum data set taken during Run 1 and Run 2. The beam and QTOR currents are the
maximum typical values for a given run; the beam current values are determined using
BCM 6. The last three columns note the states of the slow-helicity reversal experimental
controls. In particular, the ”Wien State” column indicates the direction of the transverse
polarized beam.

Beam QTOR Precession Wien
Run Slug Current [µA] Current [A] State State IHWP

Run 2 February 16-20, 2012

16067 601 001 61.0 6697.0 Normal Vertical IN
16068 601 002 62.0 6697.0 Normal Vertical OUT
16069 601 002 60.0 6697.0 Normal Vertical OUT
16070 101 003 60.0 8899.0 Normal Vertical OUT
16072 101 004 61.0 8899.0 Normal Vertical IN
16106 201 001 61.0 8899.0 Normal Horizontal OUT
16107 201 001 62.0 8899.0 Normal Horizontal OUT
16108 201 001 60.0 8899.0 Normal Horizontal OUT
16109 201 001 62.0 8899.0 Normal Horizontal OUT
16112 201 002 60.0 8899.0 Normal Horizontal IN
16113 201 002 61.0 8899.0 Normal Horizontal IN
16114 201 002 62.0 8899.0 Normal Horizontal IN
16115 701 001 61.0 6697.0 Normal Horizontal IN
16116 701 001 61.0 6697.0 Normal Horizontal IN
16118 701 002 61.0 6697.0 Normal Horizontal OUT
16119 701 002 61.0 6697.0 Normal Horizontal OUT
16120 701 003 61.0 7298.0 Normal Horizontal OUT
16121 701 003 61.0 7298.0 Normal Horizontal OUT
16122 701 004 61.0 7298.0 Normal Horizontal IN
16123 701 004 61.0 7298.0 Normal Horizontal IN
16124 701 004 61.0 7298.0 Normal Horizontal IN
16160 701 004 60.0 7298.0 Normal Horizontal IN
16161 701 005 61.0 7298.0 Normal Horizontal OUT

C.2 Raw Asymmetries

• Raw asymmetry plots:

– Run 1 Vertical: Fig. C.1

– Run 2 Vertical: Fig. C.2

• Raw asymmetry fit parameters: Table C.2
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C.3 Helicity-correlated Beam Corrections

• Regressed asymmetry plots:

– Run 1 Vertical: Fig. C.3

– Run 2 Horizontal: Fig. C.4

– Run 2 Vertical: Fig. C.5

• Regressed asymmetry fit parameters: Table C.3
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(b) Sign-corrected plot

Figure C.1: Run 1 vertical unregressed (raw) asymmetries. The physics asymmetry is
extracted as the amplitude of the sinusoidal variation in the lower plot.
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Figure C.2: Run 2 vertical unregressed (raw) asymmetries. The physics asymmetry is
extracted as the amplitude of the sinusoidal variation in the lower plot.
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(b) Sign-corrected plot

Figure C.3: Run 1 vertical regressed (set “on”) asymmetries. The physics asymmetry is
extracted as the amplitude of the sinusoidal variation in the lower plot.
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(b) Sign-corrected plot

Figure C.4: Run 2 horizontal regressed (set “on”) asymmetries. The physics asymmetry is
extracted as the amplitude of the sinusoidal variation in the lower plot.
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Figure C.5: Run 2 vertical regressed (set “on”) asymmetries. The physics asymmetry is
extracted as the amplitude of the sinusoidal variation in the lower plot.
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