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First modern human settlement 
recorded in the Iberian hinterland 
occurred during Heinrich Stadial 
2 within harsh environmental 
conditions
M. Alcaraz‑Castaño 1*, J. J. Alcolea‑González1, M. de Andrés‑Herrero1, S. Castillo‑Jiménez1, 
F. Cuartero2, G. Cuenca‑Bescós3, M. Kehl4, J. A. López‑Sáez5, L. Luque1, S. Pérez‑Díaz6, 
R. Piqué7, M. Ruiz‑Alonso5, G.‑C. Weniger8 & J. Yravedra9

As the south‑westernmost region of Europe, the Iberian Peninsula stands as a key area for 
understanding the process of modern human dispersal into Eurasia. However, the precise timing, 
ecological setting and cultural context of this process remains controversial concerning its 
spatiotemporal distribution within the different regions of the peninsula. While traditional models 
assumed that the whole Iberian hinterland was avoided by modern humans due to ecological factors 
until the retreat of the Last Glacial Maximum, recent research has demonstrated that hunter‑
gatherers entered the Iberian interior at least during Solutrean times. We provide a multi‑proxy 
geoarchaeological, chronometric and paleoecological study on human–environment interactions 
based on the key site of Peña Capón (Guadalajara, Spain). Results show (1) that this site hosts the 
oldest modern human presence recorded to date in central Iberia, associated to pre‑Solutrean 
cultural traditions around 26,000 years ago, and (2) that this presence occurred during Heinrich 
Stadial 2 within harsh environmental conditions. These findings demonstrate that this area of the 
Iberian hinterland was recurrently occupied regardless of climate and environmental variability, thus 
challenging the widely accepted hypothesis that ecological risk hampered the human settlement of 
the Iberian interior highlands since the first arrival of modern humans to Southwest Europe.

The first modern human settlement of southwest Europe and the role of the Iberian hinter‑
land. �e �rst appearance of anatomically modern humans in a given region of the world is always a con-
tentious topic. In Western Europe, the Iberian Peninsula stands as the last region of the process of modern 
human dispersal into Eurasia, and hence is considered of key importance for understanding its cultural and 
natural constraints. However, the precise timing, ecological setting and cultural context of this process remains 
especially controversial when considering its spatiotemporal distribution within the di�erent regions of the pen-
insula. Bearing aside the controversy on the makers of the Chatelperronian and other so-called transitional 
 technocomplexes1–3, if we accept the Proto-Aurignacian as the �rst proxy for modern humans in Western 
Europe, these people were present in the Cantabrian and northern Mediterranean regions of Iberia at ∼42 ka cal 
 BP4,5 (Fig. 1A), or even 43 ka cal  BP6. �is is a roughly similar time as recorded in other regions of Western and 
Central  Europe7,8, although signi�cantly younger than in Eastern Europe according to recent  data9,10. However, 
in light of prevailing evidence, it was much later when Aurignacian cultures spread to the southern parts of 
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Iberia, reaching the southwesternmost regions of Europe at around 36.5 ka cal  BP11, probably matching the time 
of the Neandertals’ �nal  demise12–14 (Fig. 1B). Signi�cantly earlier occurrences of Proto-Aurignacian have been 
recently claimed for the sites of Bajondillo (∼43.0–40.8 ka cal BP)15 and Lapa do Picareiro (∼41.1–38.1 ka cal 
BP)16, in southern Spain and central Portugal respectively. However, published archaeological and chronostrati-
graphic data in the case of Bajondillo are disputable and have been strongly  contested14,17–19.

�e vast hinterland territories of the Iberian Peninsula, an upland plateau divided into the Northern and 
Southern Mesetas by the Central System mountain range (Figs. 1 and 2), have been traditionally considered irrel-
evant in this process, as they have been regarded as a virtually “no-man’s land” until the Late Upper  Paleolithic20. 
At present, there is some sparse data between 33 and 28 ka cal BP in the western and northern borders of the 
Northern Meseta14,21–24 (Fig. 1C). However, to date, e�ective presence of modern human occupations in the 
central regions of Iberia is not found until ∼25.5 ka cal BP, as shown by preliminary evidence gathered at one 
single site: the Peña Capón rock  shelter25,26 (Fig. 1C).

Reasons behind this odd population pattern have revolved around a potentially late-persisting Neandertal 
presence in the center and south of  Iberia12 and, more prominently, the potentially harsh climatic and environ-
mental conditions of the interior and upland regions of Iberia as opposed to the more favored environments 

Figure 1.  Process of peopling of the Iberian Peninsula by modern humans during the Upper Paleolithic. A: 
42 – 38 ka cal BP, B: 38 – 30 ka cal BP, C: 30–25 ka cal BP, D: 25–20 ka cal BP (see Supplementary Text S3 for 
discussion and Supplementary Datasets 1–4 for full data). Maps generated with ArcGIS (ArcMap 10.3.1.) 
(https:// www. arcgis. com/ index. html) using ASTER Global Digital Elevation Model V0032019, distributed by 
NASA EOSDIS Land Processes DAAC, (10.5067/ASTER/ASTGTM.003).

https://www.arcgis.com/index.html
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of the peninsular coastal regions, long considered as refugia for �ora, animals and humans  [see20,27]. Recent 
reviews have roughly supported this latter picture, as they have limited the pre-Magdalenian human presence 
in most of inland Iberia to short-term or sporadic incursions during temperate intervals starting only in Solu-
trean times (i.e. between 25 and 20 ka cal BP)11,27,28. Furthermore, habitat suitability models based mainly on 
paleoclimate  simulations29–33 have provided further support to the traditional model. �ese works describe the 
Iberian interior as an ecologically risky area for human settlement, especially during the Last Glacial Maximum 
(LGM) sensu stricto (i.e. 23–19 ka BP)34, due to its relatively high elevation, degree of climate variability and 
resource unpredictability (but  see35–37 for signi�cant di�erences concerning habitat suitability of the Iberian 
interior, due to the high number of variables and methods involved in modeling building). Other studies have 
recently pointed to arid and cold environmental conditions in central Iberia during ∼40–30 ka cal BP. �ey are 
based both on  paleoecological38,39 and  sedimentological40,41 data and provide further support to the idea that 
climate and environmental conditions somehow hampered the human occupation of these regions during the 
beginning of the Upper Paleolithic.

However, the idea of inland Iberia as either a desolate landscape or a mere crossing-area where human groups 
based elsewhere entered only sporadically during most of the Upper Paleolithic has been under attack in the 
last  years14,20,42. Among the growing number of evidence suggesting a more relevant settlement of the Iberian 
interior not only during the Solutrean, but also  before20,43, data recorded at the Peña Capón rock shelter has 
revealed  crucial25,26 (Supplementary Text S1). Here we report results from new �eldwork and laboratory analyses, 
including geomorphology, sedimentology, micromorphology, radiocarbon dating, palynology, anthracology, zoo-
archeology, microvertebrate paleontology and analysis of lithic technology, with the main aim of providing new 
evidence on human–environment–climate interactions during the �rst settlement of the Iberian central regions 
by modern humans recorded to date. Under a theoretical framework that conceives cultural change, population 
dynamics and adaptive traits of hunter-gatherers as multifactorial responses to �uctuating social and natural 
 parameters44–46, including climate and environmental  change47–49, these results show relevant patterns concerning 
the timing, nature and ecological setting of this process. More speci�cally, considered in the context of recent 
research on the relations between population dynamics, settlement patterns and techno-cultural change in the 
Late Pleistocene of Iberia on one side, and rapid climate and environmental change on the  other27,29–33,50–56, our 
results allow us to test the hypothesis that the �rst modern human settlement of inland Iberia occurred earlier 
than previously thought, and was not impeded by ecological variability.

Figure 2.  Geological maps showing the location of the Peña Capón rock shelter in the Iberian Peninsula 
and the Tagus basin (Guadalajara, Spain) (A), the Sorbe River basin (B) and at the shore of the Beleña water 
reservoir (C). Maps generated using QGIS Open Source Geographic Information System v. 3.4 (Madeira) 
(https:// www. qgis. org/ en/ site/ about/ index. html) combined with Digital Terrain Models and slope maps from 
the Spanish National Centre for Geographic Information (CNIG) (https:// www. ign. es/ web/ ign/ portal/ qsm- cnig) 
and geological maps from the Spanish Geological Survey (IGME) (https:// www. igme. es/ zarag oza/ ingles/ inicio. 
htm).

https://www.qgis.org/en/site/about/index.html
https://www.ign.es/web/ign/portal/qsm-cnig
https://www.igme.es/zaragoza/ingles/inicio.htm
https://www.igme.es/zaragoza/ingles/inicio.htm
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The Peña Capón rock shelter and its regional setting. �e Peña Capón rock shelter (Guadalajara 
province, Spain) is located near the le� bank of the Sorbe River, which �ows into the Henares, tributary of the 
Tagus, the main Iberian watercourse, crossing the Spanish Southern Meseta from E to W (Fig. 2). �e Sorbe 
has its source in the highest part of Sierra de Pela, a mountain range located in the eastern limit of the Central 
System Range at 1,500 m above mean sea level (amsl). �e river runs southwards, �rst crossing gentle Paleozoic 
reliefs (schist, quartzite and slate) and marine Mesozoic carbonates before meeting the alluvial terrains of the 
Tertiary sediment in�ll of the Tagus basin, and �nally joining the Henares River at a height of 710 m amsl. �e 
archaeological site is located at an altitude of 826 m amsl and 11 to 13.5 m above the current riverbed, under a 
dolostone rock cli�, in an area where the Sorbe valley widens and the Quaternary �uvial and alluvial deposits 
become more frequent (Figs. 2 and 3B). �e Quaternary deposits are described in the geological maps of the 
 region57,58 and mainly consist of �uvial terraces, alluvial cones and slope deposits (Fig. 3A). According to these 
geological maps, there are fourteen Quaternary �uvial terraces, from + 6 to + 180–190 m above the current river-
bed. �ose below + 20 m are generally considered Upper Pleistocene and Holocene in other nearby areas of the 
Tagus basin and Duero  basins59,60.

�e Peña Capón site is located under an east–west oriented, 42 m high rock cli�, formed by Upper Cretaceous 
marine dolostone layers dipping to the south. �e dolostone outcrops as part of a long hogback relief oriented to 
the NW–SE that surrounds the Paleozoic shales, schists and quartzites, as well as the Lower Triassic Buntsandstein 
facies, located to the north and west. �e archaeological site is located 80 m away from the current riverbed, 
close to a narrowing of the valley excavated in the dolostone relief. Due to its location, the site is �ooded by the 
Beleña reservoir waters for most of the year since a dam was constructed in 1982 (Supplementary Figs. S1–S2, 
S4–S7 and Supplementary Video 1).

Results
Stratigraphy, sedimentology and micromorphology. �e geomorphological analysis of the site 
indicates that the accommodation space where the Upper Pleistocene sediments were deposited, at the foot 
of the rock wall, was created due to (1) the high slope angle of the dolostone running west to east and crossing 
this sector of the valley and (2) the di�erential erosion of a less compact marly and �nely laminated layer at the 
base of the compact dolostone formation. Vertical dolostone layers parallel to the rock wall and several large 
gravitational blocks could have generated a sort of corridor where mostly �ne-grained deposits accumulated and 
were protected from erosion, as it is also observed on the opposite riverbank (Supplementary Figs. S5–S6). �e 

Figure 3.  (A) Geomorphological map of the study area showing the position of Peña Capon at the foot of a 
dolomite cretaceous relief, and the distribution of the Quaternary deposits located in the area. (B) General view 
of the site from above. Map generated as explained in Fig. 2.
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geomorphological map shows that both �uvial �oods of Sorbe River and surface runo� on nearby alluvial fans 
could have played a role in the formation of the deposits (Fig. 3A).

�e Peña Capon archaeological site covers a 30 m long and 5 to 8 m wide area of about 150 sq m along the foot 
of the dolostone rock wall (Fig. 3B; Supplementary Fig. S5). �e deposit slopes 4.5° to the west, perpendicular 
to the direction of the valley. �e maximum thickness of the deposit recorded in the archaeological excavations 
is 0.95 m.

From a sedimentological point of view, the archaeological deposit consists of �ne sand and silt intermixed 
with rock fragments showing a mixture of natural and anthropogenic sediment components, including varying 
amounts of lithics, charcoal and bones. Rock fragments consist of subangular dolostone derived from the rock 
shelter wall and sub-rounded to rounded quartzite and �ne siltstone gravel. Few small angular pieces of chert, 
rock crystal and quartzite represent by-products of tool  production61. �e stratigraphic sequence is composed 
of six di�erent sedimentological units containing archaeological remains (Levels 1 to 6), de�ned mainly on the 
basis of sediment color variation (Fig. 4). An overlying sedimentary unit of heterogeneous dark grey sandy loam, 
containing mixed archaeological remains including few pottery sherds, unconformably covers the Pleistocene 
archaeological deposit. �is layer has been named R and can be roughly subdivided into a darker (Munsell Color 
Code 0,7Y 5/2), more coarse-grained lower one (R1) and the lighter-colored (0,4Y 5/2), �ner-grained upper one 
(R0). �e layers of the archaeological deposit are quite homogenous, sharing many common sedimentological 
and micromorphological features but varying in color due to their di�erent content in burned components and 
carbonate. Levels 1, 3, 5 and 6 are light orange-brown to reddish-brown (9YR 5/3), while levels 2 and 4 are darker 
grey-brown (10YR 5/2, 10YR 5/3). Levels 1 and 3 are very similar, corresponding to mainly homogeneous �ne 
sand and silt layers. Level 1, thicker, shows some lamination in its lower part. Level 3 thins eastward and has a 
sharp contact with the overlying level 2 and di�use transition to the underlying level 4. Level 2 is divided into two 
sub-units, 2a and 2b. 2a on top is grey-brown and contains charcoal-rich lenses with abundant bone fragments; 2b 
below, is darker and shows higher contents of charcoal and charred organic matter. Its lower contact is irregular. 
Level 2b includes some small pits and a possible micromammal burrowing. �e color of level 4 ranges from 
reddish brown to a more intense reddish tone (10YR 5/2 to 5YR 5/3), suggesting rubefaction processes. Levels 
5 and 6, in the lower part of the sequence, are lighter in color (10YR 7/3) and richer in secondary carbonate.

�e granulometric analyses of the sediment sequence display a homogeneous textural composition dominated 
by poorly sorted very �ne sand and coarse silt, with a low proportion of clay-size particles (maximum of 10%) 
(Fig. S19). �e carbonate content ranges from 10 to 32% with an increase in the lower levels. Total Organic Car-
bon (TOC) values range from 0.3 to 2.9% and match with the color change, indicating that this is mainly related 
to variation in organic matter content. �in sections show that charcoal with well-preserved cell structures is 
common in dark-colored levels, where it occurs together with amorphous charred organic matter of unknown 
origin (Fig. 5). High values in magnetic susceptibility, χlf, also occur in the dark-colored, organic matter-rich 
levels R1, 2b and 4, i.e. layers with high amounts of charred organics. Sediment generally has a low degree of 
compaction, related to presence of abundant pores consisting of biogenic channels and burrows formed by roots 
or soil-dwelling  mesofauna62 creating bioturbation on a microscale. Geometry and thickness of the stratigraphic 
levels are represented in Fig. 4, and detailed results of sedimentology and micromorphology are included in 
Supplementary Texts S4 and S5 and Supplementary Table S2.

Radiocarbon dating and Bayesian modeling. �e chronological setting of the Peña Capón sequence 
is based on radiocarbon dating. Selected samples are faunal remains with anthropogenic modi�cations (mostly 
cut marks) (n = 21) and charcoal fragments (n = 12) recovered from secure stratigraphic contexts and covering 
the whole sequence excavated thus far. �ese samples were �rst identi�ed to taxon (when possible) and then sent 
to two di�erent laboratories for cross-checking results: 15 samples were sent to the CologneAMS centre at the 
University of Cologne and 18 samples to the Oxford Radiocarbon Accelerator Unit (ORAU) at the University 
of Oxford. Out of 33 samples we obtained 22 AMS reliable determinations and found no signi�cant di�erences 
between results provided by both labs. One charcoal sample showed a modern age, while eight bones and two 
charcoals, mostly from levels 4 to 6, failed due to low, very low or no yield (Supplementary Table S3).

With the aim of building a strong probabilistic framework for the sequence of human occupations recorded at 
Peña Capón we constructed a Bayesian model based on obtained radiocarbon determinations. As lengthy applied 
and discussed in the last years, if properly devised, Bayesian modeling is an accurate and informative way to 
integrate radiometric data with stratigraphically recorded archaeological evidence to create reliable chronological 
models, and thus improve chronometric precision, mitigating uncertainties and eliminating  outliers63–66. A pre-
liminary model (Model 1), containing all radiocarbon dates, showed an  Amodel of 53.2, thus pointing to potential 
problems in the relation between the prior and posterior distributions (i.e. between the unmodeled dates and 
their location within the sequence on the one hand, and the modeled calibrated results on the other). One date 
from level 3 (COL4217.1.1) and one from level 5 (OxA-39749) showed agreement indexes < 60% and posterior 
probabilities of being outliers of 81% and 14% respectively (Supplementary Table S4 and Fig. S21). Hence, these 
dates were not included in the �nal model (Model 2). �is model, composed of 19 radiocarbon dates, is presented 
in Fig. 6 and Supplementary Table S5, and shows individual agreement values ranging between 139.3 and 74.7, 
an  Amodel of 107.6, and posterior probabilities of ≤ 5% for all determinations. �e consistency of Model 2 is very 
high, as it shows an excellent degree of agreement between prior information, radiocarbon determinations and 
posterior probabilities, thus con�rming geoarchaeological interpretation on the site’s stratigraphic integrity based 
on sedimentology and micromorphology.

�e model results allow us to place the start boundary of the Peña Capón sequence excavated thus far 
(base of level 6) between 26.3 and 25.7 ka cal BP at 95.4% probability, and the end boundary (top of the known 
sequence) at 24.1–23.6 ka cal BP. However, when considering the results of applying the ‘date’ command in OxCal, 
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the Probability Distribution Function (PDF) for the time span of human occupation at the site is constrained 
between 26.1 and 23.9 ka cal BP. �e calendar age estimates for each level are shown in Table 1 and their associ-
ated PDFs are provided in Supplementary Fig. S22 (complete data and boundaries between levels are shown in 
Supplemaentary Table S5).

�ese results con�rm the high sedimentation rate of the  deposit25,26, where few more than 2,000 years are 
recorded in 95 cm. �is explains the overlap between some dates (both unmodeled and modeled) obtained in 
adjacent levels, which is hence not related to post-depositional mixing—as also shown by sedimentology and 
micromorphology—but to the standard deviations of radiocarbon dates.

Figure 4.  (A) Stratigraphic units de�ned in the Peña Capón site. Note that the main di�erences between layers 
are due to variations in organic matter and secondary carbonate content. (B) Stratigraphic sequence recorded 
in the western pro�le of square 2B showing sample location for micromorphology (B1–B5) and sedimentology 
(dashed-lines rectangles). (C) Views of the excavation pro�les at Peña Capón showing the di�erent distribution 
and geometry of the stratigraphic units de�ned in the site.
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Figure 5.  Flatbed scans (1200 dpi) of selected thin sections from the sediment sequence at Peña Capón. (A) Erosional 
contact between level R1 (LR1) characterized by strong compaction and a platy microstructure and level 1 (L1) showing less 
compaction and a channel microstructure. At the interface, a sediment lens rich in charcoal and bone is present (thin section 
PCPN 1.2). �e dashed line is the boundary between the two levels. (B) �in section PCPN 6.1 with the interface between 
levels L1 and L2a. At the sampling location, the upper part of L2a consists of a 2 cm thick band rich in charcoal and bone 
fragments. (C) �in section PNCP 3.2 showing the gradual transition between levels 2a and 2b. (D) Same as C but captured 
under XPL. Note abundant calcite hypocoatings around biopores. (E) �in section PNCP 4.1 from level L2b with several 
large biopores partly re�lled with granules. (F) �e interface between levels L3 and L4, which is delineated by a thin layer of 
�ne gravel. �e light-colored L3 shows di�use impregnation with secondary calcite. (G) Same as E, but captured under XPL. 
Secondary carbonate is indicated by high birefringence. (H) �in section PNCP 3.2 showing the transition from level 4 to 
level 5.
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Concerning the cultural sequence, the Solutrean at Peña Capón is �rst recorded at ∼25.3 ka BP and lasts 
until ∼23.8 ka BP. In turn, the �rst modern human presence recorded thus far, associated in level 6 to pre-
Solutrean assemblages (either Gravettian or Proto-Solutrean), is detected at ∼26.1 ka BP. Both episodes started 
and developed during Greenland Stadial 3 (GS 3), a stadial phase within the  LGM69 and, more signi�cantly, both 
were triggered during the rapid cooling of Heinrich Stadial 2 (HS 2) (Fig. 6). In fact, the whole pre-Solutrean 

Figure 6.  Bayesian Final Model (2) for the Peña Capón sequence showing Probability Distribution Functions 
(PDFs) for all radiocarbon determinations and boundaries between archaeological levels. Results are plotted 
against the δ18O record of the NGRIP ice core, indicating Greenland Interstadials 3 and 2 (GI 2 & GI 3), 
Greenland Stadial 3 (GS 3)67, and the chronology of Heinrich Stadial 2 (blue bar)68. 14C dates are shown 
in parentheses, and Agreement indexes and Outliers’ prior and posterior probabilities are shown in square 
brackets. Calibration of dates and Bayesian modeling were calculated using OxCal 4.4 online so�ware (https:// 
c14. arch. ox. ac. uk/ oxcal. html).

https://c14.arch.ox.ac.uk/oxcal.html
https://c14.arch.ox.ac.uk/oxcal.html
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occupation, and most of the Solutrean one, were developed during HS 2. �is bears relevant implications for 
understanding human-climate-environment interactions during the �rst settlement of the Iberian interior by 
modern humans, as will be discussed below.

Pollen. For the Peña Capón sequence, 9 pollen spectra were analyzed and 28 taxa were identi�ed. To facilitate 
description and interpretation of the pollen diagram with respect to vegetational changes, three Local Pollen 
Assemblage Zones (LPAZs) were established (Fig. 7). �ese zones denote signi�cant changes in the pollen com-
position and represent major changes in vegetation. LPAZ-1 is largely dominated by Pinus nigra (31.5–35.2%) 
indicating a Spanish black pine forest in the  vicinity70–72, which represents trees that, nowadays, grow in the 
higher mountains of Mediterranean central Iberia under supramediterranean climatic conditions (mean annual 
temperature of 8.13 °C and 400–1000 mm of annual rainfall)73,74. Quercus ilex/coccifera (9.4–13.1%) and Juni-
perus (7.4–9.9%) show continuous high values, concomitant with those of Berberis vulgaris (1.1–2.2%), Linum 
(1.1–1.7%) and Rhamnus (2.3–3.3%), suggesting the regional presence of holm oak (Quercus ilex subp. rotun-
difolia) and juniper (Juniperus thurifera)  woodlands75,76. Mesophilous trees such as Quercus pyrenaica/faginea, 
Acer, Alnus, Betula, Fraxinus, Salix and Tilia are usually low (< 5%) and beech (Fagus) is absent. �is zone shows 
the highest percentages of herbs (30.1–32.6%), mainly represented by cryoxerophytic taxa (Artemisia 5.5–8.5%, 
Chenopodiaceae 7.4–8.5%) and heliophilous/cryophilous herbs (Poaceae 5.9–9.4%), probably indicating cold 
and dry conditions, as also shown by cryoxerophytic shrubs, such as Helianthemum (2.8–4.6%). Anthropogenic-
zoophilous pollen taxa (Asterioideae, Carduoideae, Cichorioideae) present relatively low values that do not 
exceed 12%.

LPAZ-2 is characterized by synchronous increases of mesophilous taxa such as Quercus pyrenaica/faginea 
(23.8–25%), Acer (5–5.5%), Alnus (9.3–9.8%), Betula (2.7–3%), Fraxinus (5.3–7.9%), Salix (4–5%) and Tilia 
(3.7–6%), and the �rst appearance in the pollen diagram of Fagus sylvatica (2.7–3.7%). �ese results suggest (i) 

Table 1.  Calendar age estimates for each archaeological level at Peña Capón, based on the Bayesian Model 
2 (Fig. 6) as calculated by the ‘date’ command in OxCal 4.4 online so�ware (https:// c14. arch. ox. ac. uk/ oxcal. 
html). Associated PDFs are shown in Fig. S22.

Level (phase)

Duration (cal BP)

68.2% 
probability

95.4% 
probability

Peña Capón 25,770 24,110 25,954 23,874

1 (Solutrean) 24,064 23,868 24,190 23,784

2a (Solutrean) 24,330 24,092 24,460 23,968

2b (Solutrean) 24,792 24,370 25,046 24,282

3 (Solutrean) 25,210 24,970 25,264 24,668

4 (Pre-Solutrean) 25,280 25,140 25,406 25,068

5 (Pre-Solutrean) 25,616 25,260 25,798 25,192

6 (Pre-Solutrean) 25,962 25,722 26,130 25,448

Figure 7.  Percentage pollen diagram from the Peña Capón sequence.

https://c14.arch.ox.ac.uk/oxcal.html
https://c14.arch.ox.ac.uk/oxcal.html


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15161  | https://doi.org/10.1038/s41598-021-94408-w

www.nature.com/scientificreports/

denser deciduous oak woodlands (trees and shrubs values between 88.4 and 90%), and (ii) the �rst arrival of 
beech near the site as a result of climatic warming and increased  humidity77. �us, the Iberian Central System 
is con�rmed as a refuge zone for this taxon during much of the Late Pleistocene, including the  LGM78–80, as has 
been also documented in other mountains in northern  Iberia81,82. �is �nding represents the �rst record of beech 
from the LGM in the Iberian Central System. Pinus nigra, Quercus ilex/coccifera and Juniperus decrease, as well as 
cryoxerophytic (Artemisia, Chenopodiaceae) and heliophilous/cryophilous (Poaceae) taxa, while Helianthemum, 
Berberis vulgaris, Linum and Rhamnus disappear. Shrub and herb taxa percentages related to deciduous oak 
woods (Arctostaphylos uva-ursi 1.4–2.4%, Cistus laurifolius 3.3–4.3%, Cytisus/Genista 3.3–3.7%, Geum 1.2–1.7%, 
Lavandula stoechas 1.3–1.8%) experience an increasing tendency, while anthropogenic-zoophilous pollen taxa 
(Asterioideae 14.7–22.1%, Carduoideae 6–7.9%, Cichorioideae 26–26.4%) are much more abundant.

Finally, LPAZ-3 shows a similar pattern to that of LPAZ-1. Pinus nigra is at its maximum in this pollen 
sequence (37.3%). Other components increase such as Quercus ilex/coccifera (10.1–11.6%), Juniperus (7.7–11.6%), 
Berberis vulgaris (1.8–2.2%), Rhamnus (1.8–2.2%), Artemisia (6.1–7.7%), Chenopodiaceae (6.1–7.7%), Helian-
themum (4.1–5%), Linum (0.6–1.1%) and Poaceae (8.8–8.9%), while some tree or shrub taxa (Acer, Alnus, Betula, 
Cistus laurifolius, Cytisus/Genista, Fraxinus, Quercus pyrenaica/faginea, Tilia) abruptly decrease and some even 
disappear (Fagus, Salix), as do Arctostaphylos uva-ursi, Lavandula stoechas and Geum. Anthropogenic-zoophilous 
taxa (Asterioideae, Carduoideae, Cichorioideae) also decrease.

Wood charcoal. Charcoal remains were mostly scattered throughout the excavated area, besides some con-
centrations, including a �replace in level 2a (Supplementary Figs. S12–S13). In general terms, carbonized wood 
found at Peña Capón is scarce in relation to the number of fragments recovered. Even in the �otation samples, 
where all charcoal remains present in the sediment are recovered, the number of identi�ed fragments is low, lim-
ited in many cases to just one fragment, being most of them smaller than 2 cm. �ese samples mostly included 
black and ash-gray sediment devoid of charcoal input.

Among the 154 identi�ed wood fragments, taxonomic diversity is low (Table 2). Most of the fragments have 
been assigned to either Salix sp. or Juniperus sp., being the rest taxa (Alnus sp., Cistus sp., Fraxinus sp., Legumi-
nosae, Rhamnus/Phillyrea, Rosaceae) represented by a low number of fragments. Moreover, a large number of 
remains could only be identi�ed as angiosperms dicotyledons or gimnosperms (conifers) due to poor preserva-
tion or small size. A total number of 52 remains were unidenti�able.

Unlike other proxies studied at the site –especially pollen– wood charcoal analysis do not show signi�cant 
environmental di�erences throughout the sequence. �us, charcoal results point to a recurrent pattern of wood 
procurement from level 5 to 1, being level 6 the only episode where a di�erent behavior is attested (Table 2). 
�is level has shown the higher number of Juniperus sp. (juniper/sabina) fragments, together with one remain 
of Rhamnus/Phillyrea and one of Rosaceae (Maloideae type), while Salix is totally absent. In contrast, in levels 5 
and 4 Salix wood is the most represented, and Juniperus is represented only by 4 fragments in level 5.

It is noteworthy that thicker and more extensively excavated levels (1, 2a, 2b and 3) (Fig. 4) present relatively 
lower amounts of charcoal remains compared to levels excavated only in the 1 sq meter test pit (4, 5 and 6). 
�us, in these levels, corresponding to the Solutrean human occupations, the number of identi�ed fragments 
is scarce, and a relevant number of them have been assigned to unidenti�able angiosperms, mostly due to their 
small size and their deformed and altered conditions. However, levels 1, 2a and 2b show the greatest diversity 
within the sequence, including taxa such as Alnus, Cistus, Fraxinus or Leguminosae (although limited in most 
cases to isolated fragments) together with Salix and Juniperus (Table 2).

Although the low number of identi�ed charcoals calls for some caution concerning the palaeoenvironmental 
interpretation of these results, some conclusions can be drawn from them. Juniperus sp, present in levels 1, 2b, 5 
and especially 6, is a little tree or shrub typical of open landscapes, and some species within this genus, such as 

Table 2.  Wood charcoal identi�ed in Peña Capón.

Taxon/level 1 2a 2b 3 4 5 6

 Alnus sp 1

Cistus sp 1 1

cf. Cistus 2 2

Fraxinus sp 1 4

Juniperus sp 2 5 4 25

Leguminosae 1

Rhammus/Phillyrea 1

Rosacea tpmaloidea 1

cf. Rosaceae (tp maloidea) 1

Salix sp 7 1 3 11 31

cf. Salix 3

Ang. no id 13 6 9 2 1 1

Gim. no id 2 1 1 1

Total 26 11 25 2 12 40 29

Unidentif. 5 3 15 1 1 27
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sabina, cope well with low temperatures and rocky �oors. �e rest of identi�ed taxa are mainly riverbank species, 
including Salix, Alnus and Fraxinus, which could point to a greater availability of these species in the surrounding 
area. Lastly, Cistus, Leguminosae and Juniperus point to shrub-dominated landscapes.

Microvertebrates. �e small vertebrate assemblage identi�ed at Peña Capón accounts for one of the few 
microfossil collections associated to the LGM time span recorded to date in  Iberia83–85, being the only one in the 
whole Iberian hinterland. A total of 226 samples, collected throughout the whole sequence of human occupa-
tion at the site, have been analyzed. Of them, 205 contained identi�able remains, among which we determined 
�shes, amphibians, snakes, birds, insectivores, lagomorphs and rodents. Only lagomorphs and rodents have 
been determined to the species level (Table 3 and Fig. 8). Among the lagomorphs, the species Oryctolagus cunic-
ulus, the �eld rabbit or European rabbit, dominates (see also Macrovertebrates section below). �e dominant 
species of rodents is Microtus arvalis, the common vole, while other species are poorly represented. �ese are 
Eliomys quercinus, the dormouse; indeterminate species of the genera Apodemus, the �eld mouse; Terricola, the 
“microtus” group of species with pitymyan rhombus; and Microtus agrestis, the �eld vole or short-tailed vole. �e 
complete microvertebate taxonomic association per stratigraphic level is presented in Table 3 according to the 
NISP (number of identi�ed specimens).

Microtus arvalis is an Arvicolinae (Cricetidae) that currently lives in temperate Europe and some regions of 
western Asia. It is a strictly herbivorous species inhabiting open meadows, and it is well adapted to cold condi-
tions, as shown by its survival to the climatic changes of the LGM. Local extinctions of M. arvalis have been 
recorded in northern and central Europe, as well as in Britain, due to post-LGM reforestation, which replaced 
the dominant open grassland areas present during the  LGM86. �erefore, the signi�cant presence of M. arvalis 
in levels 2a, 2b and 5 of Peña Capón points to environmental conditions that favored open and humid meadows, 
the species’ favorite habitat.

More broadly, although samples from levels 4 to 6 have been only gathered in a 1 sq-meter test pit, thus biasing 
the sampling throughout the sequence (Figs. S24 & S25), the distribution of taxa and the biodiversity recorded in 
levels 1 to 6 at Peña Capón, points to levels 1, 2a and 3 as those presenting better climatic and habitat conditions 
for Mediterranean species and open spaces, such as wet meadows. In turn, the lower biodiversity found in levels 
4 to 6, as measured by the low number of taxa (Table 3), and in general the lesser representation of micromam-
mals in these layers, could point to harsher environments, as shown by the presence of Microtus agrestis in level 6.

Macrovertebrates. Most of the 17,275 analyzed bone fragments throughout the Peña Capón sequence pre-
sent a high degree of fragmentation, and hence only 2.85% of them were identi�ed to taxon (Table 4). However, 
although 97.15% of remains are thus indeterminate, 11.9% of them could be assigned to either small, medium 
or large-sized animals (Table 4).

Among the identi�ed species, rabbit is the most abundant throughout the sequence, except in levels 5 and 6, 
where horse is equally represented (Tables 4 and 5). Concerning macrovertebrates, horse is the best-represented 
taxon according to the MNI, and it also dominates the NISP in levels 2a, 2b, 5 and 6. Iberian ibex is the most 
represented with respect to NISP in level 1, while red deer dominates level 3 and shows similar values to horse 
in level 4 (Table 5). Other identi�ed species are the large bovid in levels 2a and 2b, roe deer in level 1, chamois 
in levels 1, 2a and 2b, and badger and wildcat in level 2a (Table 5). �e three best-represented macroverte-
brates –horse, red deer and Iberian ibex– are related to di�erent landscapes, being horse mostly adapted to 
open environments, deer pointing to woods and ibex to rocky areas. However, the three of them are generalist 
animals, capable of adapting to a range of climatic conditions and are not typical of either cold or temperate 

Table 3.  Microfossil remains (NISP) identi�ed in Peña Capón. “#Samples” refers to the number of plastic bags 
collected for the study. “#Taxa (S)” is the number of taxa identi�ed in the total number of samples for each 
level.

Taxon/level 1 2a 2b 3 4 5 6

Fishes 5 1 2

Amphibians 1 5 1

Serpentes 1 1

Birds 11 14 2 3 2

Insectivores 2

Rodentia indet 2 5 4

Eliomys quercinus 1

Apodemus 2

Microtus 2 8 1 1

Microtus arvalis 6 8 2

Microtus agrestis 2 1 1 1 2

Terricola 7

#Taxa (S) 7 9 5 6 1 2 2

#Samples 50 72 45 20 9 20 10
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environments. �us, in the absence of dental wear and stable isotope analyses (both to be conducted soon), 
macromammal evidence is still uninformative in terms of reconstructing surrounding environments, mainly 
due to the low number of remains still collected for layers 3 to 6. However, when considered together with pol-
len and micromammal results, macrovertebrate evidence is consistent with the interpretation of level 2a and 
2b as showing temperate and humid environments. �is is supported by the presence of roe deer, wildcat and 
badger in these levels, as these species are adapted to wooded environments. Likewise, although available data 

Figure 8.  Photographs of the occlusal surface of molars from selected species of small mammals collected at 
Peña Capón levels 1–6. (a) le� m1, m2 of Microtus arvalis (level 1); (b) M1, M2 of Microtus arvalis-M. agrestis 
(level 2a); (c) upper M1 of Arvicolinae (level 2a); (d) right m1, m2 of Microtus agrestis (level 2a); (e) right m1, 
m2 of Microtus agrestis (level 2a); (f) m1d of Microtus arvalis (level 2a); (g) m1d of Microtus agrestis, juvenile 
(level 2a); (h) Microtus arvalis (level 2b); (i) Microtus arvalis (level 3); (j)–(n) lower molars of lagomorphs (j–l 
level 1; m level 3; n level 5).
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for levels 5 and 6 is still sparse, the relatively higher presence of horse, together with the decrease in the number 
of rabbits, is consistent with the existence of dry environments and open landscapes as shown by the pollen and 
micromammal analyses for these levels.

Overall, these patterns are consistent with those indicated by the study of faunal assemblages from level II 
(Solutrean) and level III (Proto-Solutrean) as de�ned in the 1972 excavation (Supplementary Text S1), where 
the preferred hunted animals were also horses, red deer and  ibex25,87. Stable isotopes obtained from herbivore 
teeth from those levels pointed to warm climate and temperate environments around ∼24 ka cal  BP87, which 
also �ts current palaeoenvironmental evidence for levels 2a and 2b, but not for level 1 as especially shown by 
pollen remains.

Mortality patterns and taphonomic analysis of the macrofaunal assemblages are provided in the Supplemen-
tary Information (Supplementary Text S7, Tables S6–S9, Fig. S26).

Table 4.  Taxonomic representation of macrovertebrates remains at the Peña Capón sequence.

Taxon/level 1 % 2a % 2b % 3 % 4 % 5 % 6 % Total

Bos/Bison 0.0 2 0.0 1 0.0 0.0 0.0 0.0 0.0 3

Equus caballus 7 0.2 39 0.6 20 0.4 11 0.8 2 1.3 13 0.9 4 6.8 96

Cervus elaphus 2 0.1 20 0.3 5 0.1 12 0.9 2 1.3 0.0 0.0 41

Capreolus capreolus 1 0.0 0.0 0 0.0 0.0 0.0 0.0 1

Capra pyrenaica 9 0.3 17 0.3 5 0.1 3 0.2 0.0 1 0.1 0.0 35

Rupicapra pyrenaica 2 0.1 8 0.1 1 0 0.0 0.0 0.0 0.0 11

Meles meles 0.0 4 0.1 0 0.0 0.0 0.0 0.0 4

Felix silvestris 0.0 1 0.0 0 0.0 0.0 0.0 0.0 1

Carnivore indet 0.0 1 0.0 0 0.0 0.0 0.0 0.0 1

Oryctolagus cuniculus 128 3.6 97 1.6 28 0.6 51 3.7 4 2.6 13 0.9 4 6.8 325

Indet. large size 43 1.2 59 1.0 35 0.8 24 1.8 16 10.6 4 0.3 0.0 181

Indet. medium size 89 2.5 144 2.3 77 1.7 70 5.1 7 4.6 13 0.9 1 1.7 401

Indet. small size 382 10.7 551 8.9 291 6.5 213 15.6 7 4.6 34 2.3 1 1.7 1479

Indetermined 2899 81.3 5218 84.6 4033 89.7 984 71.9 113 74.8 1400 94.7 49 83.1 14,696

Total 3562 100.0 6161 100.0 4496 100.0 1368 100.0 151 100.0 1478 100.0 59 100.0 17,275

Table 5.  Taxonomic representation of macrovertebrates remains at the Peña Capón sequence according to 
NISP and MNI.

NISP/level 1 % 2a % 2b % 3 % 4 % 5 % 6 % Total

Bos/Bison 0.0 2 1.0 1 1.8 0.0 0.0 0.0 0.0 3

Equus caballus 7 4.7 39 20.1 20 36.4 11 14.3 2 25.0 13 48.1 4 50.0 96

Cervus elaphus 2 1.3 20 10.3 5 9.1 12 15.6 2 25.0 0.0 0.0 41

Capreolus capreolus 1 0.7 0.0 0.0 0.0 0.0 0.0 0.0 1

Capra pyrenaica 9 6.0 19 9.8 3 5.5 3 3.9 0.0 1 3.7 0.0 35

Rupicapra pyrenaica 2 1.3 8 4.1 1 1.8 0.0 0.0 0.0 0.0 11

Meles meles 0.0 4 2.1 0.0 0.0 0.0 0.0 0.0 4

Felix silvestris 0.0 1 0.5 0.0 0.0 0.0 0.0 0.0 1

Carnivore indet 0.0 1 0.5 0.0 0.0 0.0 0.0 0.0 1

Oryctolagus cuniculus 123 85.9 97 51.5 25 45.5 51 66.2 4 50.0 13 48.1 4 50.0 325

Total 144 100.0 191 100.0 55 100.0 77 100.0 8 100.0 27 100.0 8 100.0 518

MNI 1 % 2a % 2b % 3 % 4 % 5 % 6 % Total

Bos/Bison 0.0 1 4.8 1 9.1 0.0 0.0 0.0 0.0 2

Equus caballus 1 7.7 3 14.3 3 27.3 2 33.3 1 33.3 1 33.3 4 80.0 15

Cervus elaphus 1 7.7 2 9.5 1 9.1 1 16.7 1 33.3 0.0 0.0 6

Capreolus capreolus 1 7.7 0.0 0.0 0.0 0.0 0.0 0.0 1

Capra pyrenaica 1 7.7 1 4.8 2 18.2 1 16.7 0.0 1 33.3 0.0 6

Rupicapra pyrenaica 1 7.7 4 19.0 1 9.1 0.0 0.0 0.0 0.0 6

Meles meles 0.0 1 4.8 0.0 0.0 0.0 0.0 0.0 1

Felix silvestris 0.0 1 4.8 0.0 0.0 0.0 0.0 0.0 1

Oryctolagus cuniculus 8 61.5 8 38.1 3 27.3 2 33.3 1 33.3 1 33.3 1 20.0 22

Total 13 100.0 21 100.0 11 100.0 6 100.0 3 100.0 3 100.0 4 100.0 60
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Archaeological assemblages. As previously  reported20,25,26,88, Peña Capón hosts a sequence of recurrent 
occupations of hunter-gatherers bearing Solutrean and pre-Solutrean technocomplexes which, to date, has no 
parallel in the whole Iberian Meseta43. Together with anthropized faunal remains, a limited number of bone 
tools, ocher fragments and at least two �replaces in levels 2a and 2b, lithics account for the most abundant 
archaeological material (Supplementary Figs. S8–S18). Foliate lithic armatures obtained through bifacial and 
unifacial invasive �at retouch are found throughout levels 1 to 3 (Fig. 9). Considering the classic typology-based 
chronological framework of the  Solutrean50,89–93, the presence in all these levels of bifacial laurel leaf points and 
the absence of typically Upper Solutrean types, such as shouldered or barbed-and-tanged points (only recorded 
at Peña Capón as surface �nds), enable us to place them in the Middle Solutrean (Supplementary Dataset 5). �e 
dating of levels 1, 2a and 2b between 23.8 and 25.0 ka cal BP is roughly coherent with a Middle Solutrean attri-
bution. However, level 3, dated between 24.7 and 25.3 ka cal BP, best �ts the initial phase of the Solutrean. �is 
partial incoherence supports the questioning of the traditional type-fossils as precise temporal  markers64,94,95. 
Anyhow, typically Lower Solutrean types, such as pointes à face plane, are not found in the Peña Capón sequence, 
a circumstance that parallels the nearly absence of this phase/facies in central and southern Portugal, where the 
Proto-Solutrean is followed by the Middle  Solutrean64,93,96.

Since levels 4–6, dated between 25.1 and 26.1 ka cal BP, have been excavated in only 1 sq meter, their archaeo-
logical assemblages are still scarce. Although no index fossils or signi�cant technological strategies have been rec-
ognized in these levels, the absence of foliate armatures, the higher presence of quartz and bladelets as compared 
to levels 1–3 (Supplementary Dataset 5), and their chrono-stratigraphic position, allow us to securely relate them 
to pre-Solutrean human occupations (Fig. 10). Based on the assemblages from the 1972 excavation at the site 
(Supplementary Text S1), a Proto-Solutrean component with Vale Comprido points (level III) (Supplementary 
Fig. S3), and a potentially Gravettian occupation (level IV) were  described20,25. According to new radiocarbon 
determinations, these two levels (III and IV as de�ned in 1972) are currently dated to 25.6–24.9 ka cal BP and 
26.3–25.7 ka cal BP (Supplementary Table S1), thus fairly mirroring levels 4–5 and level 6 of the new excava-
tions respectively (Table 1 and Fig. 6). However, a �ne-grained correlation between levels from the old and new 
excavations has not been possible to date, since no clear Proto-Solutrean or Gravettian traits have been identi�ed 
in either level 4, 5 or 6, or a combination of them. �erefore, we prefer to provisionally describe archaeologi-
cal assemblages of levels 4–6 just as “pre-Solutrean”. Yet, the presence of a Proto-Solutrean component at Peña 
Capón remains without doubt, and is now reinforced by obtained radiocarbon dates in levels 4–6 matching 
the Proto-Solutrean time span, as recorded in Portugal, between ∼26 and 25 ka cal  BP53,64,96. Furthermore, this 
dating supports the triggering of the Proto-Solutrean as related to the rapid climate and environmental changes 
caused by HS 2, and especially to a decrease in vegetation cover and forest  diversity52–54, as also reinforced by 
palaeoecological data obtained at Peña Capón.

Discussion
Site formation processes. �e site has been previously interpreted as a result of the contribution of �uvial 
sedimentation and fallen blocks from the  roof26. Fluvial origin is con�rmed because of the homogeneity in grain 
size of the �ne sediments, which suggests the lack of in�uence of debris �ows coming from closer alluvial fans 
or slope deposits. �e few sub-rounded to rounded quartzite and �ne siltstone gravel found are consistent with 
the accumulation by �uvial transport. However, the downslope geometry of the deposit suggests that it is not 
that much a classic �at �ood plain terrace deposit but the deposition during �oods on the hill slope. �e  in situ 
preservation of the deposits can be explained by protection from reworking and erosion by the corridor formed 
between the rock wall and verticalized dolostone layers and big gravitational blocks in the external side of the 
site. �e sediment low heterogeneity observed is just due to variations in organic matter and secondary carbon-
ate content and not to changes in the sedimentary environment. �e variation in χlf over some of the layers 
makes it more likely that the higher magnetic signal of the darker ones has been induced by burning. Besides 
�uvial deposition, physical disintegration of the rock shelter wall and gravitational processes have provided 
limited amounts of �nes and frost-shattered debris contributing to accumulation of the archaeological sequence.

Apart from the erosion of the uppermost levels of the archaeological sequence, micromammal burrowing and 
local sediment disturbing in the top of level 3 and the lower part of level 2b, the main post-depositional processes 
are just the dissolution of primary carbonate grains and the intergranular precipitation of secondary carbonate, 
sometimes forming small nodules. �ese calcitic pedofeatures testify the lixiviation or carbonate leaching of 
larger blocks and �ne sediments. �e dominating channel and burrow microstructure testi�es to intensive rooting 
and burrowing activity of mesofauna but only on a microscale. �is bioturbation may have destroyed the primary 
depositional fabric of the �nes but no signs of mixing between levels have been recorded. Overall, levels 5 to 1 
rapidly accumulated over a period of about 2,000 years and represent an excellently preserved sediment sequence.

Human–environment interactions and population dynamics during the HS 2 in the Iberian 
hinterland. Although the whole sequence of human occupation recorded to date at Peña Capón occurred 
during a stadial phase (GS-3), it included periods of both cold and relatively warm climates, corresponding 
to arid and more humid environments respectively. �e warmest period corresponds to the bulk of the Solu-
trean occupations between 25.3 and 24.0 ka cal BP (levels 2a, 2b and 3), and is characterized by deciduous oak 
groves enriched with numerous mesophilous trees, including beech (LPAZ-2), and the presence of animals well-
adapted to wooded environments, such as roe deer, wildcat and badger. �is picture partially supports previous 
data from stable isotopes pointing to warm climate and temperate conditions at the  site87, but it is now clear that 
this period was limited to part of the Solutrean (and not the Proto-Solutrean) and occurred well within GS-3 
(and not during GI-2), including part of HS 2.



15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15161  | https://doi.org/10.1038/s41598-021-94408-w

www.nature.com/scientificreports/

�e Peña Capón site hosts the oldest Upper Paleolithic presence recorded so far in central Iberia, starting at 
26.1 ka cal BP as dated in level 6. �is presence, currently accounting for the �rst peopling of the deep interior 
of the peninsula by modern humans, occurred during the central moments of HS 2, and hence during a cold 
and arid global  period68. �is harsh climate/environment is associated with the pre-Solutrean occupations of 
Peña Capón (levels 4, 5 and 6), dated between 26.1 and 25.0 ka cal BP. At these levels, data point to the presence 
of pine forests at higher altitudes and evergreen oak and juniper woodlands at lower ones, as well as to shrub 
and herb communities dominated by cryoxerophytic and heliophilous/cryophilous elements (LPAZ-1). Faunal 
associations, dominated by horse, show a generalized decrease in biodiversity as compared to levels 2a, 2b and 3, 
and include the presence of the cold-adapted Microtus agrestis. �is paleoecological framework is consistent with 
the general context of increasing aridity and decrease in vegetation cover for the HS 2 in Iberia, as recorded both 
in  continental97,98 and coastal  archives99–101 (Fig. 11). Furthermore, it poses a marked contrast with the warm/

Figure 9.  Solutrean lithic assemblages. Level 1: 1–3. Level 2a: 4–6. Level 2b: 7–9. Level 3: 10–12.
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humid conditions recorded in the Solutrean levels, except for level 1, which shows again a cold/arid landscape 
(LPAZ-3) between 24.1 and 23.8 ka cal BP.

Additionally, regional climatic and environmental proxies documented in inland Iberia point to harsh con-
ditions during the time in which Peña Capón was occupied by hunter-gatherers. A pronounced period of loess 
deposition recorded in the Upper Tagus basin between 25.9 ± 2.4 ka and 23.2 ± 1.6 ka BP, interpreted as evidence 
of arid  conditions40,41, matches the time span of the human presence at Peña Capón (Fig. 11). Also matching the 
�rst occupation of the site by humans, the maximum extent of glaciers recorded in the Iberian Central System 
range, dated at 26.1 ± 1.3 ka BP and backed by a local speleothem record, points to high precipitation rates within 
a cold  period102,103 (Fig. 11). Further south, pollen data from the Fuentillejo maar lacustrine record and the TD 
core at Tablas de Daimiel National Park point to a cold period at ∼25–23 ka BP, characterized by Juniperus and 
xeric vegetation  dominance104,105. All these data demonstrate that the �rst human settlement of this area of central 
Iberia occurred during a cold and mostly arid period.

�ese results confront traditional views and recent models positing that harsh climatic and environmental 
conditions hampered the human occupation of inland Iberia during most of the Upper Paleolithic. Geoarchaeo-
logical and paleoecological evidence gathered at Peña Capón demonstrate that this area of the Iberian hinterland 
was recurrently occupied during both temperate/humid and cold/arid periods, and thus regardless of climatic 
and environmental variability. Furthermore, although no other Solutrean or pre-Solutrean sites have been clearly 
identi�ed thus far in the surrounding area of the site, the nearby caves of El Reno, El Cojo (both 9 km away), 
and Los Casares (76 km away) (Fig. 1D and Supplementary Fig. S1), were probably occupied by humans at the 
same time as Peña Capón. �ese sites host pre-Magdalenian rock art depictions, including cold-adapted fauna, 
which have been related to Solutrean or Gravettian times based on stylistic grounds and superimpositions with 
other  images43,106. �is, together with the nearby (but still poorly dated) Solutrean cluster of the Madrid  basin107 
strongly suggests that the human occupation sequence recorded at Peña Capón was not the product of isolated 
occasional visits to this region. Rather, it is increasingly clear that it was part of an organized settlement, estab-
lished perhaps throughout the Tagus basin, and covering a prolonged sequence of time during the LGM, which 
in Peña Capón started at least in the HS 2 (Fig. 1C,D). Results of lithic raw material sourcing showing mobility 
between some Gravettian sites of the Côa valley (inner northeastern Portugal) and inner areas of the Northern 
and Southern Mesetas23,108,109, reinforces this hypothesis.

However, besides Peña Capón, pre-Solutrean occupations in inland Iberia remain absent for the central area 
of the peninsula, and they are very sparse in the rest of the plateau. Only at the western limit of the Northern 
Meseta there is sound evidence of Upper Paleolithic prior to 26 ka cal BP. Here, several Gravettian sites at the 
Côa valley are dated around 28 ka cal  BP23, and the single site of Cardina-Salto do Boi have recently yielded an 

Figure 10.  Pre-Solutrean lithic assemblages. Level 4: 1–3. Level 5: 4–5. Level 6: 6–7.
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OSL date as old as 33.6 ± 2.0 ka cal BP associated to Aurignacian  assemblages14 (Fig. 1B,C). Although these dates 
shorten the gap of human occupation a�er the Neandertal disappearance for the western margins of the plateau, 
in the rest of the Iberian hinterland, and especially in the very center, there is still a hiatus of ∼16,000 years devoid 
of human populations between ∼42 and 26 ka cal  BP40,110,111.

Figure 11.  Global and regional Iberian climatic/environmental proxies from ∼35 to 12.5 ka cal BP (modi�ed 
from  [43: �g. 1] and  [40: �g. 3] in relation to the modeled sequence of human occupation recorded at Peña 
Capón. A: δ18O record of the NGRIP ice core, with numbers and grey bars referring to Greenland  Stadials67, 
and indication of the LGM and HS2  chronology68,69. B: Sea Surface Temperature reconstructions of marine 
drilling core MD95-2043 (Alborán Sea)99, and Heinrich Events detected in the same core. C: Percentage 
of temperate forest pollen in core MD95-2043100. D: Sea Surface Temperature reconstructions of marine 
cores MD95-2042 and SU81-18 (Atlantic)101 and Heinrich Events detected in the same cores. E: Percentage 
of temperate forest pollen in cores MD95-2042 and SU81-18. F: Main loess deposition periods and their 
sedimentation rates recorded in the Upper Tagus Basin (ochre bars)40 and Maximum extension stages of glaciers 
recorded in the Iberian Central System Range (blue bars)102. G: Estimated duration of the human occupation 
recorded at Peña Capón, based on the Bayesian Model 2 (Fig. 6) as calculated by the ‘date’ command in Oxcal.
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Conclusions
Given the current archaeological record, the argument that climate and environmental variability hampered 
the settlement of the Iberian hinterland by modern humans remains a valid hypothesis for the �rst phases of 
the Initial Upper Paleolithic in most of the inland territories. Yet, the fact that the �rst modern human pres-
ence recorded thus far in the deep interior occurred precisely during a cold and arid period of Heinrich Stadial 
2, allows us to keep working on the hypothesis that the �rst settlement of these regions occurred earlier and 
regardless of climatic and environmental variability. As systematic �eldwork campaigns are still few in inland 
Iberia, ongoing and future research is very much needed to keep testing this and other competing hypotheses. 
Anyhow, the results presented in this paper show that the inland Iberian highlands were not an exception to the 
wide variety of landscapes to which Paleolithic hunter-gatherers were capable of adapting. Although it is well 
documented that large regions of Europe remained depopulated during long periods of the Last Glacial, it has 
also been thoroughly demonstrated that, given a certain availability of herbivore and plant resources, humans 
were always willing to expand and prosper anywhere,  worldwide112–117.

Methods
Methods for excavation, spatial recording and sampling are presented in Supplementary Text S2. Methods con-
cerning geomorphology, sedimentology and micromorphology are provided in Supplementary Text S4.

Radiocarbon dating and Bayesian modeling. In CologneAMS, bone samples were processed by col-
lagen extraction and charcoals were AAA (Acid–Alkali–Acid extraction) processed according to sample prepa-
ration described by Rethemeyer et al.118. At ORAU, extraction, puri�cation, and dating of bone collagen were 
carried out following ultra�ltration  methods119, while dating of charcoal was undertaken using an ABOx-SC 
 pretreatment120.

For Bayesian modeling we used the OxCal 4.4 online  so�ware121 and the most recent terrestrial radiocarbon 
curve,  IntCal20122, to combine the radiocarbon likelihoods with the stratigraphic position of all samples. Since 
each sample was three-dimensionally recorded during excavation, relationships between samples and levels 
(including depth within a given level) were included within the Bayesian model as prior information. We used 
a General t-type Outlier  Model123 with a resolution of 20 years and assigned 5% chances for each determination 
to be an outlier, as it is commonplace in recent research. In OxCal, commands and parameters are written in a 
C++ CQL (Command Query Language)121, and Model CQL codes are provided in Supplementary Text S6. �e 
commands used to constrain the dated events in chronological order, group them within a given stratigraphic 
level, and calculate a start and end boundary (Probability Distribution Functions or PDFs) to bracket each 
archaeological episode, have been ‘sequence’, ‘phase’ and ‘boundary’  respectively121. Furthermore, we used the 
‘date’ command to query further on the accuracy of the time spans of each archaeological layer and the whole 
sequence of human occupation at Peña Capón.

In order to best identify outliers in the sequence, we run the model in two stages following the agreement 
index method as described by Bronk  Ramsey123. �us, a�er running a Preliminary Model (1) including all 
obtained radiocarbon measurements, a Final Model (2) was constructed by removing results with less than 60% 
agreement (matching those with posterior probabilities of > 5%), interpreted as potential outliers. Both models 
were run 3 times at > 3 million iterations and yielded no signi�cant variation in their posterior results, thus 
showing that they were reproducible and the convergence values were high.

Palynological analysis. During the 2015 season, eight sediment samples of 5 square cm were extracted 
for pollen analysis from the southern pro�le of square 2B (levels 1top, 1base, 2a, 2b, 4, 5top, 5base and 6) 
(Supplementary Fig. S23) and one more from the western pro�le of the same square (level 3) (Supplementary 
Fig. S20). Extraction followed standardized techniques for archeological  sites124,125. �e nine collected samples 
were prepared for pollen analysis (10  g per sample) at the CSIC labs (Madrid) following standard methods 
in  archaeopalynology124, using treatment with HCl, 10% KOH, HF and concentration with �oulet liquor, 
although acetolysis was not carried out to allow the identi�cation of any contamination by modern pollen. �e 
�nal residue was suspended in glycerin and counted until a pollen sum of 250 pollen grains was reached. Count-
ing was undertaken using a Nikon Elipse 50i light microscope at × 400 magni�cation. Pollen grains were identi-
�ed according to Moore et al.126 and  Reille127 at the lowest currently possible taxonomical level. Pinus nigra-type 
pollen grains were categorized following measurements in Desprat et al.128. Pollen percentages were calculated 
using a pollen sum excluding indeterminable pollen grains (i.e., those that were broken, concealed, corroded, 
crumpled or degraded), as well as Asterioideae, Carduoideae and Cichorioideae with possible  zoophily125, and 
presented as bars in a pollen diagram (Fig. 7). To establish the zonation of the pollen sequence, we tested several 
divisive and agglomerative methods with the program IBM SPSS Statistics 21. Based on the ecological meaning 
of the obtained zones, three local pollen assemblage zones (LPAZ-1 to LPAZ-3) were constructed on the basis 
of agglomerative constrained cluster analysis of incremental sum of squares (Coniss) with square root trans-
formed percentage  data129. �e number of statistically signi�cant zones was determined by using the broken-
stick  model130. Tilia and  TGView131,132 and CorelDraw so�ware were used to plot the pollen diagram.

Anthracological analysis. Charcoal remains were sampled by hand during �eldwork and by �otation in 
the laboratories of the University of Alcalá and the Museo Nacional de Ciencias Naturales (Madrid). 131 sam-
ples from levels 1 to 6 have been studied in the Archaeobotanical laboratory of the Autonomous University of 
Barcelona and the Environmental Archeology laboratory of the CSIC (Madrid). A total of 197 fragments of 
carbonized wood were localized, of which 145 were identi�ed to taxon. Identi�cation of taxa was carried out fol-
lowing standard procedures. �e anatomical patterns of each wood species were observed along three sections 
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(transversal, longitudinal tangential, and longitudinal radial) using a re�ected light microscope equipped with 
light �eld/dark �eld and objectives of 50 ×, 100 ×, 200 × and 500 ×. Archeological samples have been compared 
with modern woods as well as with wood anatomy  atlases133–135.

Microvertebrate analysis. In order to collect all small bone and teeth fragments from the fossil assem-
blages, all excavated sediments, bagged by sector, layer and stratigraphic level, were water-screened using 
superimposed 1.5 mm, 1.0 mm, and 0.5 mm-mesh screens, both at the site and in the labs of the University of 
Alcalá and the Spanish National Natural Sciences Museum (Madrid). A total of 226 bags (∼3–1 kg each) were 
wet-screened and the resulting concentrates were examined by naked eye as well as by optical microscopes. 
Microfauna and other small fragments of large fossils were separated by picking up the elements. �e resulted 
collections of fossils were then sent to the Department of Earth Sciences of the University of Zaragoza, where 
assemblages were examined, photographed and stored. Additional washing with micro-mesh techniques and 
10% HCl, and/or H2O2 was used when the surfaces of the molars, especially the enamel-dentine junction on 
the occlusal surface, were covered with particles of sediment that impeded the visual analysis. �is anatomical 
region is needed pristine for the good classi�cation and the morphometric analysis of small mammals. Drawings 
were made a�er photographs taken with an Olympus SZ61 microscope with a camera attached to it. Images and 
measurements were taken with the camera and the LCMicro so�ware provided for the Olympus equipment.

Classi�cation of small mammals into species was based on the morphology and biometry of the occlusal 
surface of the molars, following general criteria of systematic  paleontology136–138. In each sample, we counted the 
number of skeletal elements, mainly dentition, and calculated the minimum number of Identi�ed species (NISP). 
Interpretation of the microvertebrate assemblages in palaeoenvironmental terms is based on the taxonomic 
association present in each archaeological layer and their ecological preferences, as well as their temperature 
and humidity limitations as a whole assemblage.

Zooarcheology. 17,275 faunal remains from levels 1 to 6 of Peña Capón, coming mostly from the 2015 
season, were subject to zooarcheological and taphonomic analyses. Studied remains included both identi�a-
ble and unidenti�able fragments and their taxonomic identi�cation were based on reference material held at 
the Prehistory Department of the Complutense University of Madrid (Spain). When the identi�cation was not 
feasible, epiphyses, axial and sha� fragments were assigned to three animal weight/size classes: 1) small-sized 
carcasses, < 100 kg (e.g. Capra pyrenaica, Rupicapra rupicapra), 2) medium-sized carcasses, > 100–300 kg (e.g. 
Cervus elaphus) and 3) large-sized carcasses, > 300 kg (e.g. Equus ferus, Bos primigenius)  [see110].

�e estimation of NISP (Number of Identi�ed Specimens) and MNI (Minimum Number of Individuals) 
were used to quantify the faunal remains and determine the most appropriate features of the faunal taxonomic 
distribution. NISP determination follows  Lyman139, whereas MNI is based on Brain’s140 method, which uses bone 
laterality and estimated age. Furthermore, skeletal pro�les and MNI consider sha� thickness, section shape and 
medullar surface  properties141. In this way, bones were divided into four anatomical regions: 1) cranial (antlers-
horn, skull, mandible and dentition), 2) axial (vertebrae, ribs, pelvis and scapula,  sensu142), 3) upper appendicular 
limbs (humerus, radius, ulna, femur, patella and tibia) and 4) lower appendicular limbs (metapodial, carpals, 
tarsals, phalanges and sesamoideal).

Lithic analysis. A�er manual cleaning and removal of adhering concretion (Supplementary Fig. S17), lithic 
artifacts were studied at the Prehistory Laboratory of the University of Alcalá. We followed the chaîne opératoire 
or ‘operational sequence’ approach [e.g.143,144], combined with the ‘Technological organization’ approach aimed 
at examining links between technology and paleoenvironmental change [e.g.145–147]. We assigned each lithic arti-
fact to one of the three chaîne opératoire stages commonly recognized in the literature (Supplementary Dataset 
5). �us, cortical �akes, preparation products and tested cores were assigned to the initialization stage or phase 
I; raw blanks, core maintenance by-products, thinning �akes and productive cores to the exploitation stage or 
phase II; and retouched blanks, retouching �akes and exhausted cores to the consumption and abandonment 
stage or phase III. �e study of bifacial reduction sequences aimed at the production of foliate armatures fol-
lowed methods described in Alcaraz-Castaño et al.107 and were ultimately backed in experimental �intknapping 
 works148–150.

Data availability
�e authors declare that all data supporting this research are available within the paper, its Supplementary 
Information and Supplementary Data �les. �e Peña Capón archaeological assemblages are housed in the His-
tory and Philosophy Department (Prehistory Area) of the University of Alcalá and the Museo de Guadalajara 
(Guadalajara, Spain). Both repositories are accessible for all researchers upon request.
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