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1. Introduction

In the present work, we study the differential geometry of the almost paracontact,
almost paracomplex Riemannian manifolds, called briefly Riemannian Π-manifolds [1,2].
The considered odd dimensional manifolds have a traceless induced almost product struc-
ture on the paracontact distribution, and the restriction on the paracontact distribution
of the almost paracontact structure is an almost paracomplex structure. The start of the
investigation of the Riemannian Π-manifolds is given in [1] by the name almost paracontact
Riemannian manifolds of type (n, n). After that, their study continues in a series of works
(e.g., [2–5]).

In [1], M. Manev and M. Staikova presented a classification of the Riemannian Π-
manifolds with respect to the fundamental tensor F, which contains eleven basic classes.
We consider four of these eleven basic classes, the so-called main classes, in which F is
expressed explicitly by the metrics and the Lee forms.

In differential geometry of manifolds with additional tensor structures, those affine
connections play an important role, which is to preserve the structure tensors and the
metric, known also as natural connections (e.g., [6–15]). We define a non-symmetric natural
connection, and we call it the first natural connection on a Riemannian Π-manifold. We
obtain relations between the introduced connection and the Levi–Civita connection, as well
as studying some of its curvature characteristics in the main classes.

The paper is structured as follows. After this introductory Section 1, in Section 2,
we recall some preliminary background facts about the considered geometry. In the next
Section 3, we define the concept of natural connection on the Riemannian Π-manifold, and
we prove the necessary and sufficient condition for the affine connection to be natural.
Section 4 is devoted to the first natural connection on the Riemannian Π-manifold and its
relations to the Levi–Civita connection. Moreover, in this section, we prove assertions for
relations between these two connections and their respective curvature tensors, torsion
tensors, Ricci tensors, and scalar curvatures. In the final Section 5, we support the results
with an explicit example of dimension five.

2. Riemannian Π-Manifolds

Let (M, φ, ξ, η, g) be a Riemannian Π-manifold, whereM is (2n + 1)-dimensional dif-
ferentiable manifold, equipped with a Riemannian metric g and a Riemannian Π-structure
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(φ, ξ, η). This structure consists of a (1,1)-tensor field φ, a Reeb vector field ξ and its dual
1-form η. The following basic identities and their immediately derived properties are valid:

φξ = 0, φ2 = I − η ⊗ ξ, η ◦ φ = 0, η(ξ) = 1,
tr φ = 0, g(φx, φy) = g(x, y)− η(x)η(y),

(1)

g(φx, y) = g(x, φy), g(x, ξ) = η(x),
g(ξ, ξ) = 1, η(∇xξ) = 0,

(2)

where I and ∇ denote the identity transformation on TM and the Levi–Civita connection
of g, respectively ([2,16]). Here and further, x, y, z, and w stand for arbitrary differentiable
vector fields onM or tangent vectors at a point ofM.

The associated metric g̃ of g on (M, φ, ξ, η, g) is defined by g̃(x, y) = g(x, φy) +
η(x)η(y). It is an indefinite metric of signature (n + 1, n), and it is compatible with the
manifold in the same way as g. In further investigations, we use the following notations:

g∗(x, y) = g(x, φy), g∗∗(x, y) = g(φx, φy). (3)

Using ξ and η on an arbitrary Riemannian Π-manifold (M, φ, ξ, η, g), we consider
two complementary distributions of TM—the horizontal distributionH = ker(η) and the
vertical distribution V = span(ξ). They are mutually orthogonal with respect to the both
metrics g and g̃, i.e.,

H⊕V = TM, H ⊥ V , H∩ V = {o}, (4)

where o stands for the zero vector field onM. In this way, the respective horizontal and
vertical projectors are determined by h : TM 7→ H and v : TM 7→ V .

An arbitrary vector field x has corresponding projections xh and xv such that

x = xh + xv, (5)

where
xh = φ2x, xv = η(x)ξ (6)

are the so-called horizontal and vertical component of x, respectively.
Let us denote by ∇ the Levi–Civita connection of g. The following tensor field F of

type (0, 3) plays an important role in the geometry of the Riemannian Π-manifolds [1]:

F(x, y, z) = g
(
(∇xφ)y, z

)
. (7)

From (1) and (7), the following general properties of F are obtained [1]:

F(x, y, z) = F(x, z, y) = −F(x, φy, φz) + η(y)F(x, ξ, z) + η(z)F(x, y, ξ),

F(x, y, φz) = −F(x, φy, z) + η(z)F(x, φy, ξ) + η(y)F(x, φz, ξ),

F(x, φy, φz) = −F(x, φ2y, φ2z),

F(x, φy, φ2z) = −F(x, φ2y, φz).

(8)

Lemma 1 ([2]). The following identities are valid:

(1) (∇xη)(y) = g(∇xξ, y);
(2) η(∇xξ) = 0;
(3) F(x, φy, ξ) = −(∇xη)(y).

The 1-forms associated with F, known as Lee forms, are defined by

θ = gijF(ei, ej, ·), θ∗ = gijF(ei, φej, ·), ω = F(ξ, ξ, ·),
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where
(

gij) is the inverse matrix of
(

gij
)

of g with respect to a basis {ξ; ei} of TpM (i =
1, 2, . . . , 2n; p ∈ M). Using (8), the following relations for the Lee forms are obtained [1]:

ω(ξ) = 0, θ∗ ◦ φ = −θ ◦ φ2, θ∗ ◦ φ2 = θ ◦ φ. (9)

In [1], M. Manev and M. Staikova presented a classification of Riemannian Π-mani-
folds with respect to the fundamental tensor F, which contains eleven basic classes denoted
by F1, F2, . . . , F11. The intersection of the basic classes is the special class F0 determined
by the condition F = 0. Let us remark that the main objects of our consideration are the
so-called main classes of the considered manifolds among the basic eleven. These are the
classes F1, F4, F5, F11 in which the fundamental tensor F is expressed explicitly by the
metrics and the Lee forms. The characteristic conditions of these classes are [1,2]

F1 : F(x, y, z) =
1

2n
{

g(φx, φy)θ(φ2z) + g(φx, φz)θ(φ2y)

− g(x, φy)θ(φz)− g(x, φz)θ(φy)
}

;

F4 : F(x, y, z) =
θ(ξ)

2n
{

g(φx, φy)η(z) + g(φx, φz)η(y)
}

;

F5 : F(x, y, z) =
θ∗(ξ)

2n
{

g(x, φy)η(z) + g(x, φz)η(y)
}

;

F11 : F(x, y, z) = η(x){η(y)ω(z) + η(z)ω(y)}.

(10)

The (1, 2)-tensors N and N̂ defined by

N(x, y) =
(
∇φxφ

)
y− φ(∇xφ)y− (∇xη)(y)ξ

−
(
∇φyφ

)
x + φ

(
∇yφ

)
x +

(
∇yη

)
(x)ξ,

N̂(x, y) =
(
∇φxφ

)
y− φ(∇xφ)y− (∇xη)(y)ξ

+
(
∇φyφ

)
x− φ

(
∇yφ

)
x−

(
∇yη

)
(x)ξ

are called the Nijenhuis tensor and associated Nijenhuis tensor, respectively, for the Π-
structure onM [2].

It can be immediately established that we have an antisymmetric tensor N and a
symmetric N̂, i.e.,

N(x, y) = −N(y, x), N̂(x, y) = N̂(y, x). (11)

The corresponding (0, 3)-tensors of N and N̂ on (M, φ, ξ, η, g) are denoted by the
same letter and are expressed by means of F through the equalities [2]

N(x, y, z) = g(N(x, y), z)

= F(φx, y, z)− F(φy, x, z)− F(x, y, φz) + F(y, x, φz)

+ η(z){F(x, φy, ξ)− F(y, φx, ξ)},

N̂(x, y, z) = g
(

N̂(x, y), z
)

= F(φx, y, z) + F(φy, x, z)− F(x, y, φz)− F(y, x, φz)

+ η(z){F(x, φy, ξ) + F(y, φx, ξ)}.
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On the other hand, the fundamental tensor F of a Riemannian Π-manifold can be
expressed only by the pair of tensors N and N̂ as follows [2]:

F(x, y, z) =
1
4
{

N(φx, y, z) + N(φx, z, y) + N̂(φx, y, z) + N̂(φx, z, y)
}

− 1
2

η(x)
{

N(ξ, y, φz) + N̂(ξ, y, φz) + η(z)N̂(ξ, ξ, φy)
}

.
(12)

Let R denote the curvature tensor of type (1, 3) for the Levi–Civita connection ∇
generated by the metric g on (M, φ, ξ, η, g), i.e.,

R(x, y)z = ∇x∇yz−∇y∇xz−∇[x,y]z. (13)

Let us denote the corresponding curvature (0, 4)-tensor by the same letter and let us
define it by the following equality:

R(x, y, z, w) = g(R(x, y)z, w). (14)

The following known basic properties hold for R:

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z), (15)

R(x, y, z, w) + R(y, z, x, w) + R(z, x, y, w) = 0. (16)

For R, we define Ricci tensor ρ of type (0, 2) as follows:

ρ(x, y) = gijR(ei, x, y, ej), (17)

and scalar curvature τ as the trace of ρ through

τ = gijρ(ei, ej). (18)

The associated quantities ρ∗ and τ∗ corresponding to ρ and τ are determined by the
following equalities:

ρ∗(x, y) = gijR(ei, x, y, φej), τ∗ = gijρ∗(ei, ej). (19)

The notation S ? P stands for the Kulkarni–Nomizu product of two tensors S and P of
type (0, 2), defined as follows:

(S ? P)(x, y, z, w) = S(x, z)P(y, w)− S(y, z)P(x, w)

+ S(y, w)P(x, z)− S(x, w)P(y, z).
(20)

It is easy to see that S ? P possesses the basic properties (15) and (16) of R just when S
and P are symmetric tensors.

Let T denote the torsion tensor of an arbitrary affine connection D, i.e.,

T(x, y) = Dxy− Dyx− [x, y]. (21)

Let us remark that D is symmetric if and only if its torsion tensor T is zero.
Let us denote by the same letter the corresponding (0, 3)-tensor with respect to the

metric g, i.e.,
T(x, y, z) = g(T(x, y), z). (22)

Torsion forms t, t∗ and t̂ of T we call the associated 1-forms of T defined by

t(x) = gijT(x, ei, ej), t∗(x) = gijT(x, ei, φej), t̂(x) = T(x, ξ, ξ) (23)
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with respect to a basis {ξ; ei} of TpM (i = 1, 2, . . . , 2n; p ∈ M). Obviously, the identity
t̂(ξ) = 0 holds.

3. Natural Connection on Riemannian Π-Manifolds

Let us consider an arbitrary Riemannian Π-manifold (M, φ, ξ, η, g).

Definition 1. An affine connection D on a Riemannian Π-manifold (M, φ, ξ, η, g) is called a
natural connection for the Riemannian Π-structure (φ, ξ, η, g) if this structure is parallel with
respect to D, i.e.,

Dφ = Dξ = Dη = Dg = 0.

It is easily verified, as a consequence, that the associated metric g̃ is also parallel with
respect to the natural connection D on (M, φ, ξ, η, g), i.e., Dg̃ = 0.

Therefore, D on a Riemannian Π-manifold (M, φ, ξ, η, g) /∈ F0 plays the same role as
∇ on (M, φ, ξ, η, g) ∈ F0. Obviously, D and ∇ coincide when (M, φ, ξ, η, g) ∈ F0.

Let Q denote the difference of D and ∇ which we call the potential of D with respect
to ∇. Then we have

Dxy = ∇xy + Q(x, y). (24)

Moreover, by the same letter, we denote the corresponding (0, 3)-tensor field of Q with
respect to g, i.e.,

Q(x, y, z) = g(Q(x, y), z). (25)

Proposition 1. An affine connection D is a natural connection on the Riemannian Π-manifold if
and only if the following properties hold:

Q(x, y, φz)−Q(x, φy, z) = F(x, y, z), (26)

Q(x, y, z) = −Q(x, z, y). (27)

Proof. Using (24) and (25), we obtain the following relations:

g(Dxφy, z) = g(∇xφy, z) + Q(x, φy, z),

g(Dxy, φz) = g(∇xy, φz) + Q(x, y, φz).

We form the difference of the last two equalities and directly obtain the identity

g
(
(Dxφ)y, z

)
= F(x, y, z) + Q(x, φy, z)−Q(x, y, φz).

Then the condition Dφ = 0 is equivalent to (26).
We obtain, sequentially,

(Dxg)(y, z) = g(∇xy, z) + g(y,∇xz)− g(Dxy, z)− g(y, Dxz)

= −Q(x, y, z)−Q(x, z, y).

Therefore, the condition Dg = 0 holds if and only if (27) holds.
From (24), we obtain

g(Dxξ, z) = g(∇xξ, z) + g(Q(x, ξ), z) = g(∇xξ, z) + Q(x, ξ, z). (28)

After that, from Lemma 1 and (8), we derive the following relation:

g(∇xξ, z) = −F(x, ξ, φz).

Substituting the latter result into (28), we obtain

g(Dxξ, z) = −F(x, ξ, φz) + Q(x, ξ, z),
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i.e., the condition Dξ = 0 is equivalent to the following relation

−F(x, ξ, φz) + Q(x, ξ, z) = 0,

which is a consequence of (26).
Since the relation η(·) = g(·, ξ) holds, then, using Dg = 0, we obtain that Dξ = 0 is

valid if and only if Dη = 0.

Theorem 1. An affine connection D is natural on a Riemannian Π-manifold if and only if

Dφ = Dg = 0.

Proof. In the proof of the preceding statement, we showed that the condition Dφ = 0 is
equivalent to (26) and Dg = 0 holds if and only if (27) holds. In this way, according to
Proposition 1, we complete the proof.

4. First Natural Connection on Riemannian Π-Manifolds

Let Ḋ denote an affine connection on (M, φ, ξ, η, g) defined by

Ḋxy = ∇xy− 1
2
{
(∇xφ)φy− (∇xη)y · ξ

}
− η(y)∇xξ. (29)

Therefore, the potential Q̇ of Ḋ with respect to ∇ is defined by

Q̇(x, y) = −1
2
{
(∇xφ)φy− (∇xη)y · ξ

}
− η(y)∇xξ. (30)

Using (1), (7) and (8), we verify that Ḋφ = Ḋg = 0. Therefore, according to Theorem 1,
Ḋ is a natural connection.

Definition 2. The natural connection Ḋ, defined by (29), is called first natural connection on a
Riemannian Π-manifold (M, φ, ξ, η, g).

Obviously, Ḋ and ∇ coincide only on a manifold of class F0. Therefore, ∇ is a first
natural connection when (M, φ, ξ, η, g) ∈ F0.

Let us remark that the restriction of Ḋ on the paracontact distribution H of (M, φ,
ξ, η, g) is another studied natural connection (called P-connection) on the corresponding
Riemannian manifold equipped with an almost product structure (see [9]).

Theorem 2. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold belonging to
the main classes Fi (i = 1, 4, 5, 11). Then, the first natural connection Ḋ is determined by

1. If (M, φ, ξ, η, g) ∈ F1, then

Ḋxy = ∇xy− 1
4n

{
θ(φy)φ2x− θ(φ2y)φx + g(x, φy)φ2θ] − g(φx, φy)φθ]

}
,

where θ(·) = g(θ], ·);
2. If (M, φ, ξ, η, g) ∈ F4, then

Ḋxy = ∇xy− 1
2n

θ(ξ){g(x, φy)ξ − η(y)φx};

3. If (M, φ, ξ, η, g) ∈ F5, then

Ḋxy = ∇xy− 1
2n

θ∗(ξ)
{

g(φx, φy)ξ − η(y)φ2x
}

;
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4. If (M, φ, ξ, η, g) ∈ F11, then

Ḋxy = ∇xy− η(x)
{

ω(φy)ξ − η(y)φω]
}

,

where ω(·) = g(ω], ·).

Proof. We present the proof of the theorem in the first considered case, i.e., (M, φ, ξ,
η, g) ∈ F1.

The potential Q̇ has the following form given in (30):

Q̇(x, y) = −1
2
{
(∇xφ)φy− (∇xη)y · ξ

}
− η(y)∇xξ.

Using (7), Lemma 1 and the analogous definitions of (24) and (25) for Q̇,

Ḋxy = ∇xy + Q̇(x, y), (31)

Q̇(x, y, z) = g
(
Q̇(x, y), z

)
, (32)

we obtain the corresponding form of Q̇ as a tensor of type (0, 3)

Q̇(x, y, z) = −1
2
{

F(x, φy, z) + η(z)F(x, φy, ξ)
}
+ η(y)F(x, φz, ξ).

Applying the definition condition of F in F1 from (10)

F(x, y, z) =
1

2n
{

g(φx, φy)θ(φ2z) + g(φx, φz)θ(φ2y)

− g(x, φy)θ(φz)− g(x, φz)θ(φy)
} (33)

in the latter formula and using (1) and (2), we obtain

Q̇(x, y, z) = − 1
4n
{

g(φx, φ2y)θ(φ2z)− g(x, φ2y)θ(φz)

+g(φx, φz)θ(φy)− g(x, φz)θ(φ2y)
}

.
(34)

From the latter equality and (32), we obtain

Q̇(x, y) = − 1
4n

{
θ(φy)φ2x− θ(φ2y)φx + g(x, φy)φ2θ] − g(φx, φy)φθ]

}
, (35)

where θ(·) = g(θ], ·).
Thus, we establish the truthfulness of the first statement in the theorem, considering (31).

The other cases are proved in a similar way.

Let Ṫ denote the torsion tensor of Ḋ, i.e., according to (21), we have

Ṫ(x, y) = Ḋxy− Ḋyx− [x, y].

Then, using (29), we obtain

Ṫ(x, y) = −1
2
{
(∇xφ)φy− (∇yφ)φx− dη(x, y)ξ

}
+ η(x)∇yξ − η(y)∇xξ. (36)

Let us remark that Ḋ is not a symmetric connection since obviously Ṫ is nonzero.
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The corresponding (0, 3)-tensor with respect to g is determined as follows:

Ṫ(x, y, z) = g(Ṫ(x, y), z). (37)

Then, by (36), (7) and Lemma 1, we obtain

Ṫ(x, y, z) = −1
2
{F(x, φy, z)− F(y, φx, z)}

− 1
2

η(z){F(x, φy, ξ)− F(y, φx, ξ)}

+ η(y)F(x, φz, ξ)− η(x)F(y, φz, ξ).

(38)

We apply (12) in (38). Thus, taking into account (11), we obtain the form of the torsion
of the first natural connection with respect to N and N̂:

Ṫ(x, y, z) = −1
8
{

2N(φx, φy, z) + N(φx, z, φy)− N(φy, z, φx)

+ N̂(φx, z, φy)− N̂(φy, z, φx)
}

+
1
4

η(x)
{

2N(ξ, φy, φz)− N(φy, φz, ξ)

+ 2η(z)N̂(ξ, ξ, φ2y)− N̂(φy, φz, ξ)
}

− 1
4

η(y)
{

2N(ξ, φx, φz)− N(φx, φz, ξ)

+ 2η(z)N̂(ξ, ξ, φ2x)− N̂(φx, φz, ξ)
}

− 1
8

η(z)
{

2N(φx, φy, ξ) + N(φx, ξ, φy)− N(φy, ξ, φx)

+ N̂(φx, ξ, φy)− N̂(φy, ξ, φx)
}

.

(39)

We use (39) and the decomposition in (4)–(6) to obtain the following form of Ṫ regard-
ing the pair N and N̂ with respect to the horizontal and the vertical components of the
vector fields:

Ṫ(x, y, z) = −1
8
{
S N(xh, yh, zh) + N(xh, yh, zh)

+ N̂(yh, zh, xh)− N̂(zh, xh, yh)
}

−1
4
{

2N(xh, yh, zv) + N(yh, zv, xh) + N(zv, xh, yh)

+ 2N(xv, yh, zh) + N(yh, zh, xv) + 2N(xh, yv, zh)

+ N(zh, xh, yv) + 2N̂(yh, zh, xv)− N̂(zv, xh, yh)

− N̂(zh, xh, yv)− 2N̂(zv, xv, yh) + 2N̂(yv, zv, xh)
}

,

where S stands for the cyclic sum by the three arguments.

Theorem 3. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold belonging to
the main classes Fi (i = 1, 4, 5, 11). Then, the torsion tensor Ṫ of the first natural connection Ḋ
has the form

1. If (M, φ, ξ, η, g) ∈ F1, then

Ṫ(x, y) = − 1
4n
{

θ(φy)φ2x− θ(φx)φ2y + θ(φ2x)φy− θ(φ2y)φx
}

;
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2. If (M, φ, ξ, η, g) ∈ F4, then

Ṫ(x, y) =
1

2n
θ(ξ){η(y)φx− η(x)φy};

3. If (M, φ, ξ, η, g) ∈ F5, then

Ṫ(x, y) =
1

2n
θ∗(ξ)

{
η(y)φ2x− η(x)φ2y

}
;

4. If (M, φ, ξ, η, g) ∈ F11, then

Ṫ(x, y) = {η(y)ω(φx)− η(x)ω(φy)}ξ.

Proof. We present the proof of the theorem in the first considered case, i.e., (M, φ, ξ,
η, g) ∈ F1.

We apply (33) in (38) and taking into account (1) and (2), we obtain

Ṫ(x, y, z) = − 1
4n
{g(φx, φz)θ(φy)− g(φy, φz)θ(φx)

−g(x, φz)θ(φ2y) + g(y, φz)θ(φ2x)
}

.

The form of Ṫ in case 1 follows from the last expression and (37).
Thus, we establish the truthfulness of the first statement in the theorem. The other

cases are proved in a similar way.

Similarly to (23), we define torsion forms ṫ, ṫ∗ and ̂̇t for Ṫ with respect to a basis {ξ; ei}
of TpM (i = 1, 2, . . . , 2n; p ∈ M):

ṫ(x) = gijṪ(x, ei, ej), ṫ∗(x) = gijṪ(x, ei, φej), ̂̇t(x) = Ṫ(x, ξ, ξ). (40)

Using (38), (40) and η(ei) = 0 (i = 1, . . . , 2n), we obtain

ṫ(x) = −1
2

gij{F(x, φm
i em, ej)− F(ei, φx, ej) + 2η(x)F(ei, φm

j em, ξ)
}

.

On the one hand, by (1) and the identities φk
i φs

j gij = gks − ξkξs and η(ei) = 0 (i =
1, . . . , 2n), for the first addend of the last equality, we obtain

gijF(x, φs
i es, ej) = gijF(x, φs

i es, φm
j φl

mel) = φs
i φl

j g
ijF(x, es, φm

l em)

= gsl F(x, es, φm
l em)− ξsξ l F(x, es, φm

l em) = gijF(x, ei, φl
jel).

On the other hand, from (8), we have for it

gijF(x, φs
i es, ej) = −gijF(x, φm

i φs
mes, φl

jel) = −gijF(x, ei, φl
jel).

Therefore, gijF(x, φs
i es, ej) = gijF(x, ei, φl

jel) = 0.
Thus, according to (23), we obtain the following formula:

ṫ(x) =
1
2

θ(φx)− θ∗(ξ)η(x). (41)



Mathematics 2023, 11, 1146 10 of 16

By an analogous approach, we calculate the form of ṫ∗ and ̂̇t as follows:

ṫ∗(x) =
1
2

θ∗(φx)− θ(ξ)η(x),̂̇t(x) = ω(φx).
(42)

Taking into account (9), (41) and (42), we obtain the following relations between the
torsion forms ṫ, ṫ∗ and the Lee forms θ, θ∗:

ṫ∗ ◦ φ = ṫ ◦ φ2,

2ṫ ◦ φ = θ ◦ φ2, 2ṫ ◦ φ2 = θ ◦ φ,

2ṫ∗ ◦ φ = θ∗ ◦ φ2, 2ṫ∗ ◦ φ2 = θ∗ ◦ φ.

(43)

Corollary 3. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold belonging to
the main classes Fi (i = 1, 4, 5, 11). Then the torsion tensor Ṫ of the first natural connection Ḋ is
expressed by its torsion forms ṫ, ṫ∗ and ̂̇t as follows:

F1 : Ṫ(x, y) = − 1
2n
{

ṫ(φ2y)φ2x− ṫ(φ2x)φ2y + ṫ(φx)φy− ṫ(φy)φx
}

;

F4 : Ṫ(x, y) = − 1
2n

ṫ∗(ξ){η(y)φx− η(x)φy};

F5 : Ṫ(x, y) = − 1
2n

ṫ(ξ)
{

η(y)φ2x− η(x)φ2y
}

;

F11 : Ṫ(x, y) =
{

η(y)̂ṫ(x)− η(x)̂ṫ(y)
}

ξ.

Proof. We obtain the expression of Ṫ using its form from Theorem 3 and the relations (43)
between the torsion forms and the Lee forms.

Let Ṙ denote the curvature tensor for the first natural connection Ḋ. Similarly to the
definitions (13) and (14) of R regarding ∇, we define Ṙ as a tensor of type (1, 3) and (0, 4)
for Ḋ, respectively, by

Ṙ(x, y)z = ḊxḊyz− ḊyḊxz− Ḋ[x,y]z, (44)

Ṙ(x, y, z, w) = g
(

Ṙ(x, y)z, w
)
. (45)

Theorem 4. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold belonging to
the main classes Fi (i = 1, 4, 5, 11). Then, the curvature tensor Ṙ of the first natural connection Ḋ
has the form

1. If (M, φ, ξ, η, g) ∈ F1, then

Ṙ(x, y, z, w) = R(x, y, z, w)

+
1

4n
{(

g∗ ? S1 − g∗∗ ? S2
)
(x, y, z, w)

−θ(φθ])
(

g∗ ? g∗∗
)
(x, y, z, w)

−θ(φ2θ])
(

g ? g∗∗ + g∗ ? g̃− g̃ ? g
)
(x, y, z, w)

}
,
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where

S1(x, y) =
(
∇x
(
θ ◦ φ2))(y) + 1

4n
{

θ(φx)θ(φ2y) + θ(φ2x)θ(φy)
}

,

S2(x, y) = (∇x(θ ◦ φ))(y) +
1

4n
{

θ(φ2x)θ(φ2y) + θ(φx)θ(φy)
}

;

2. If (M, φ, ξ, η, g) ∈ F4, then

Ṙ(x, y, z, w) = R(x, y, z, w)

+
1

2n
{

x
(
θ(ξ)

)
{(η ⊗ η)? g∗}(ξ, y, z, w)

−y
(
θ(ξ)

)
{(η ⊗ η)? g∗}(ξ, x, z, w)

}
− 1

8n2 (θ(ξ))
2{2(η ⊗ η)? g− g∗ ? g∗}(x, y, z, w);

3. If (M, φ, ξ, η, g) ∈ F5, then

Ṙ(x, y, z, w) = R(x, y, z, w)

+
1

4n
{

x
(
θ∗(ξ)

)
{g ? g}(ξ, y, z, w)

−y
(
θ∗(ξ)

)
{g ? g}(ξ, x, z, w)

}
+

1
8n2 (θ

∗(ξ))2{g ? g}(x, y, z, w);

4. If (M, φ, ξ, η, g) ∈ F11, then

Ṙ(x, y, z, w) = R(x, y, z, w)

− {(η ⊗ η)? S3}(x, y, z, w),

where
S3(x, y) = (∇xω)(φy) + ω(φx)ω(φy).

Proof. We present the proof of the theorem in the first considered case, i.e., (M, φ, ξ,
η, g) ∈ F1.

Using (44) and (45) together with (31), (32) and the analogous relation of (27) for Q̇,
we obtain the following form of Ṙ for an arbitrary Riemannian Π-manifold (M, φ, ξ, η, g):

Ṙ(x, y, z, w) = R(x, y, z, w) + (∇xQ̇)(y, z, w)− (∇yQ̇)(x, z, w)

+ g(Q̇(x, z), Q̇(y, w))− g(Q̇(y, z), Q̇(x, w)).
(46)



Mathematics 2023, 11, 1146 12 of 16

Taking into account (7), (8) and (34), we obtain

(
∇xQ̇

)
(y, z, w) = − 1

4n
{

x
(
θ(φ2w)

)
g(y, φz) + x(θ(φz))g(φy, φw)

−x(θ(φw))g(φy, φz)− x
(
θ(φ2z)

)
g(y, φw)

+θ(φ2w)F(x, y, z)− θ(φ2z)F(x, y, w)

−θ(φw){F(x, y, φz) + F(x, z, φy)}

+θ(φz){F(x, y, φw) + F(x, w, φy)}

−θ(φ2∇xw)g(y, φz) + θ(φ∇xw)g(φy, φz)

+θ(φ2∇xz)g(y, φw)− θ(φ∇xz)g(φy, φw)
}

.

(47)

Then, using (35), we obtain

g
(
Q̇(x, z), Q̇(y, w)

)
= − 1

16n2

{
θ(φz)

[
θ(φw)g(φx, φy)− θ(φ2w)g(φx, y)

+θ(φ2x)g(y, φw)− θ(φx)g(φy, φw)
]

−θ(φ2z)
[
θ(φw)g(x, φy)− θ(φ2w)g(φx, φy)

+ θ(φx)g(y, φw)−θ(φ2x)g(φy, φw)
]

+g(x, φz)
[
θ(φ2y)θ(φw)− θ(φy)θ(φ2w)

+θ(φ2θ])g(y, φw)− θ(φθ])g(φy, φw)
]

−g(φx, φz)
[
θ(φy)θ(φw)− θ(φ2y)θ(φ2w)

+θ(φθ])g(y, φw)− θ(φ2θ])g(φy, φw)
]}

.

(48)

Applying (47) and (48) into (46) and using (1) and (2) as well as the notations (3) and (20),
we obtain the form of Ṙ presented in the theorem.

Thus, we establish the truthfulness of the first statement in the theorem. The other
cases are proved in a similar way.

Similarly to the definitions (17)–(19) for ρ, τ, ρ∗ and τ∗ regarding R, we define the
corresponding ones with respect to Ṙ as follows:

ρ̇(x, y) = gijṘ(ei, x, y, ej), τ̇ = gijρ̇(ei, ej),

ρ̇∗(x, y) = gijṘ(ei, x, y, φej), τ̇∗ = gijρ̇∗(ei, ej).

Corollary 4. Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional Riemannian Π-manifold belonging to
the main classes Fi (i = 1, 4, 5, 11). Then the following relations for the Ricci tensors and the scalar
curvatures with respect to Ḋ and ∇ hold:
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1. If (M, φ, ξ, η, g) ∈ F1, then

ρ̇(y, z) = ρ(y, z)

+
1
2

{(
∇y(θ ◦ φ)

)
(z) +

1
4n
{

θ(φ2y)θ(φ2z) + θ(φy)θ(φz)
}}

− 1
4n

{(
div(θ ◦ φ2)− 4n2 − 4n− 1

2n
θ(φθ])

+2(n− 1) θ(φ2θ])

)
g(y, φz)

−
(

div(θ ◦ φ) +
8n2 − 8n + 1

2n
θ(φ2θ])

)
g(φy, φz)

}
,

ρ̇∗(y, z) = ρ∗(y, z)

− 1
2

{(
∇y
(
θ ◦ φ2))(z) + 1

4n
{

θ(φy)θ(φ2z) + θ(φ2y)θ(φz)
}}

+
1

4n

{(
div∗(θ ◦ φ) +

(2n− 1)2

2n
θ(φθ])

−2(n− 1) θ(φ2θ])

)
g(φy, φz)

−
(

div∗(θ ◦ φ2)− 8n2 − 8n− 1
2n

θ(φ2θ])

)
g(y, φz)

}
,

τ̇ = τ + div(θ ◦ φ) +
(2n− 1)2

2n
θ(φ2θ]),

τ̇∗ = τ∗ + (n− 1) θ(φθ])− 2n− 3
2

θ(φ2θ]),

where div(θ) = gij(∇ei θ)(ej), div∗(θ) = gij(∇ei θ)(φej);
2. If (M, φ, ξ, η, g) ∈ F4, then

ρ̇(y, z) = ρ(y, z)

− 1
2n
{

ξ
(
θ(ξ)

)
g(y, φz)− φy

(
θ(ξ)

)
η(z)

}
+

1
2n2 (θ(ξ))2{g(y, z) + (n− 1)η(y)η(z)},

ρ̇∗(y, z) = ρ∗(y, z)

+
1

2n
{

φ2y
(
θ(ξ)

)
− 2n y

(
θ(ξ)

)}
η(z)

− 2n− 1
4n2 (θ(ξ))2g(y, φz),

τ̇ = τ +
1

2n
(θ(ξ))2,

τ̇∗ = τ∗ − ξ
(
θ(ξ)

)
;

3. If (M, φ, ξ, η, g) ∈ F5, then

ρ̇(y, z) = ρ(y, z)

− 1
2n
{

ξ
(
θ∗(ξ)

)
g(y, z) + (2n− 1) y

(
θ∗(ξ)

)
η(z)

}
− 1

2n
(θ∗(ξ))2g(y, z),

ρ̇∗(y, z) = ρ∗(y, z)

− 1
2n
{

φy
(
θ∗(ξ)

)
η(z)

}
+

1
4n2 (θ∗(ξ))2g(y, φz),
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τ̇ = τ − 2ξ
(
θ∗(ξ)

)
− 2n + 1

2n
(
θ∗(ξ)

)2,

τ̇∗ = τ∗;

4. If (M, φ, ξ, η, g) ∈ F11, then

ρ̇(y, z) = ρ(y, z)

+ (∇yω)(φz) + ω(φy)ω(φz)

+
{

div∗(ω) + ω(φ2ω])
}

η(y)η(z),

ρ̇∗(y, z) = ρ∗(y, z)

+
{

div(ω) + ω(φω])
}

η(y)η(z),

τ̇ = τ + 2
{

div∗(ω) + ω(φ2ω])
}

,

τ̇∗ = τ∗ +
{

div(ω) + ω(φω])
}

,

where div(ω) = gij(∇ei ω)(ej), div∗(ω) = gij(∇ei ω)(φej);

Proof. We present the proof of the theorem in the first considered case, i.e., (M, φ, ξ,
η, g) ∈ F1.

Using (1) and (2), we easily compute ρ̇ as the trace of Ṙ(x, y, z, w), given in Theorem 4 (1),
by gij for x = ei and w = ej.

Similarly, we calculate the trace of Ṙ(x, y, z, w) by gij for x = ei and w = φej, and we
obtain the form of ρ̇∗, again taking into account (1) and (2).

Finally, the values of τ̇ and τ̇∗ are obtained by calculating the traces of ρ̇(y, z) and
ρ̇∗(y, z) by gij for y = ei and z = ej.

Thus, we establish the truthfulness of the first statement in the corollary. The other
cases are proved in a similar way.

5. Example

In this section, we consider a known example of a Riemannian Π-manifold of dimen-
sion five, recalling some obtained results for it and presenting new ones related to the
studied theory.

The authors of [2] studied the so-called paracontact almost paracomplex Rieman-
nian manifolds, which are Riemannian Π-manifolds having the property 2g(x, φy) =
(∇xη)(y) + (∇yη)(x).

According to the classification of the considered manifolds from [1], we denote by F4
′

a subclass of F4, which is defined by the condition θ(ξ) = −2n. It is important to note that
F4
′ and F0 are subclasses of F4 but without common elements.

A paracontact almost paracomplex Riemannian manifold having the additional condi-
tion φx = ∇xξ is called a para-Sasakian paracomplex Riemannian manifold, and it belongs
to the class F4

′ [2].
In [3], the same class of manifolds is obtained by a cone construction of a paraholomor-

phic paracomplex Riemannian manifold. There, they are called para-Sasaki-like paracontact
paracomplex Riemannian manifolds.

Let us consider a Lie group G of dimension 5 (i.e., n = 2) which has a basis of left-
invariant vector fields {e0, . . . , e4} and the corresponding Lie algebra is defined for λ, µ ∈ R
by the following commutators:

[e0, e1] = λe2 − e3 + µe4, [e0, e2] = −λe1 − µe3 − e4,

[e0, e3] = −e1 + µe2 + λe4, [e0, e4] = −µe1 − e2 − λe3.
(49)
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The defined Lie group G is equipped with an invariant Riemannian Π-structure
(φ, ξ, η, g) as follows:

ξ = e0, φe1 = e3, φe2 = e4, φe3 = e1, φe4 = e2,

η(e1) = η(e2) = η(e3) = η(e4) = 0, η(e0) = 1,

g(e0, e0) = g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = 1,

g(ei, ej) = 0, i, j ∈ {0, 1, . . . , 4}, i 6= j.

(50)

It is proved that the constructed manifold (G, φ, ξ, η, g) is a para-Sasaki-like paracon-
tact paracomplex Riemannian manifold, i.e., (G, φ, ξ, η, g) ∈ F4 [3].

Using (49), (50) and the well-known Koszul equality regarding g and ∇, we calculate
the components of the Levi–Civita connection, and the nonzero ones of them are the
following:

∇e0 e1 = λe2 + µe4, ∇e1 e0 = e3,

∇e0 e2 = −λe1 − µe3, ∇e2 e0 = e4,

∇e0 e3 = µe2 + λe4, ∇e3 e0 = e1,

∇e0 e4 = −µe1 − λe3, ∇e4 e0 = e2,

∇e1 e3 = ∇e2 e4 = ∇e3 e1 = ∇e4 e2 = −e0.

(51)

Taking into account (49)–(51), we calculate the components R_ijkl = R(e_i, e_j, e_k, e_l),
ρij = ρ(ei, ej) and ρ∗ij = ρ∗(ei, ej) as well as the values of τ and τ∗. The nonzero ones of them are
determined by the following equalities and their well-known symmetries and antisymmetries:

R0101 = R0202 = R0303 = R0404 = R1331 = R2442 = R1234 = R1432 = 1,

ρ00 = −4, ρ∗13 = ρ∗24 = −3, τ = −4.
(52)

Let us consider the first natural connection Ḋ on (G, φ, ξ, η, g) defined by (29).
Then, by the relation between Ḋ and ∇ in the case of F4 from Theorem 2, and using (51),
we obtain the components of Ḋ. The nonzero ones of them are the following:

Ḋe0 e1 = λe2 + µe4, Ḋe0 e2 = −λe1 − µe3,

Ḋe0 e3 = µe2 + λe4, Ḋe0 e4 = −µe1 − λe3.
(53)

Proposition 2. The Riemannian Π-manifold (G, φ, ξ, η, g) has a flat first natural connection Ḋ,
i.e., Ṙ = 0.

Proof. Using (44) and (53), we establish that the components of Ṙ vanish. Thus, we prove
the assertion.

Corollary 4. The Riemannian Π-manifold (G, φ, ξ, η, g) is Ricci flat and scalar flat with respect
to the first natural connection Ḋ, i.e., ρ̇ = 0 and τ̇ = 0.

Proof. The truthfulness of the corollary is obvious bearing in mind Proposition 2.

Taking into account (20), (50) and (52), Proposition 2 and Corollary 4, the presented
example confirms the statements in Theorem 4 and Corollary 4.

By virtue of (36), (37), (50) and (51), we calculate the components Ṫijk = Ṫ(e_i, e_j, e_k).
The nonzero ones of them are determined by the following equalities and their well-known
antisymmetries:

Ṫ013 = Ṫ031 = Ṫ024 = Ṫ042 = 1. (54)
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Then, using (40) and (54), we calculate ṫ, ṫ∗, and ̂̇t. The only nonzero one of them is

ṫ∗(e0) = 4. (55)

The obtained results in (54) and (55) regarding the torsion properties of the studied
example confirm the assertion made in Corollary 3 in the case of the class F4.

6. Conclusions

In the present work, we defined a non-symmetric natural connection and called it
the first natural connection on a Riemannian Π-manifold. The most significant results
obtained in this work are as follows. We introduced the notion of a natural connection on
the Riemannian Π-manifolds and proved the necessary and sufficient conditions for an
affine connection to be natural on them. We defined the first natural connection Ḋ by an
explicit expression and obtained relations between Ḋ and the Levi–Civita connection ∇
in the main classes of the studied manifolds, as well as determining the relations between
their respective curvature tensors, torsion tensors, Ricci tensors, and scalar curvatures.
Finally, we supported the results with an explicit five-dimensional example.
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