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We present a new solution method for a class of first order analytic difference
equations. The method yields explicit ‘‘minimal’’ solutions that are essentially
unique. Special difference equations give rise to minimal solutions that may be
viewed as generalized gamma functions of hyperbolic, trigonometric and elliptic
type—Euler’s gamma function being of rational type. We study these generalized
gamma functions in considerable detail. The scattering and weight functions (u-
and w-functions! associated to various integrable quantum systems can be ex-
pressed in terms of our generalized gamma functions. We obtain detailed informa-
tion on theseu- andw-functions, exploiting the difference equations they satisfy.
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I. INTRODUCTION

This paper is concerned both with the general theory of first order analytic difference
tions ~from now on ADEs! and with certain special functions that arise as solutions to ADEs of a
quite restricted type. As announced and partly detailed in our survey1 and lectures,2 among these
special functions are the weight functions and scattering amplitudes associated with rela
quantum integrable systems of Calogero-Moser type—which, in turn, for special para
0022-2488/97/38(2)/1069/78/$10.00
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choices reduce to functions occurring in various well-known infinite-dimensional integrable
tems, such as the sine-Gordon theory, the XYZ chain and the eight-vertex model.

The first part of the paper~Sections II and III! does not involve integrable systems. T
describe the scope of the results obtained therein, we start from two quite elementary firs
ADEs, namely,

M ~w11!5cM~w!, wPC, cPC* , ~1.1!

M ~w11!5wM~w!, wPC. ~1.2!

Obviously, the first one is solved by the function exp(w ln c) and the second one by Euler
gamma functionG(w). These functions can be used as building blocks for solving ADEs of the
form

M ~w11!5Q~w!M ~w!, wPC, ~1.3!

whereQ(w) is a rational function ofw. Indeed, any function of the form

M ~w!5eaw
P j51

M G~w2bj !

Pk51
N G~w2ck!

, a,bj ,ckPC, ~1.4!

satisfies~1.3! with Q(w) rational, and varying the parametersa,M ,N,bj ,ck , yields all rational
functions.

Suppose now that one can find meromorphic solutions to the ADE ~1.3! for Q(w) equal to the
Weierstrasss-functions(w;v,v8) with v,2 iv8 P (0,̀ ), and its trigonometric (2 iv85`) and
hyperbolic (v5`) degenerations—the sine and sinh-functions.~The additional factor
cexp(aw2) in the degenerates-functions is easily taken into account—one need only includ
factor exp(P(w)) with P(w) a third order polynomial.! Then the respective solution
Mell(w),M trig(w) and Mhyp(w) can be used as building blocks to solve the ADE ~1.3! with
Q(w) any elliptic function with periods 2v,2v8 or its trigonometric and hyperbolic counterpar
resp. Indeed, any elliptic functionQ(w) can be written in the form~1.4!, with the exponential
replaced by a constant andG(w) by s(w), so a corresponding meromorphic solutionM (w) to
~1.3! is obtained by takingG→Mell in ~1.4!.

Among other things, this paper presents and studies special functions generalizing the
function, which can be used as building blocks to solve ADEs of the three types just described.
one case the pertinent function is not really new—up to a constant and an exponential it am
to Thomae’sq-gamma function.3,4 For the other two cases, however, the corresponding gen
ized gamma functions are new, and turn out to have some quite remarkable propertie
comprehensive study of these functions~to be found in Section III! constitutes one of the principa
results of this paper.

In order to sketch the setting from which our generalized gamma functions emerge, we
by pointing out that even when one restricts attention to functionsQ(w) and solutionsM (w) that
are meromorphic~as we do!, there is an enormous ambiguity in the solution. Indeed, assum
M (w) is a solution andm(w) anymeromorphic function with period 1, it is obvious that th
functionm(w)M (w) is a solution as well. The importance of singling out solutions withspecial
properties is therefore evident.

In previous literature, the class of ADEs to be studied—that is, the class of meromorp
functionsQ(w)—has been narrowed down by insisting thatQ(w) have a special asymptotics fo
Rew→`. In particular, No¨rlund in his comprehensive monograph5 uses this prescribed asymp
totics to construct the uniquely determined solution he refers to as the ‘‘Hauptlo¨sung’’ ~see also
Refs. 6–8!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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By contrast, the key requirement onQ(w) andM (w) we impose is a special asymptotics f
uIm wu→`, satisfied in particular for functionsQ(w) that are periodic in the imaginary direction
As will transpire below, this leads to essentially the same solutions only for rational and h
bolic Q(w), whereas No¨rlund’s methods do not apply to the trigonometric and elliptic cases

As a matter of fact, we have opted for a shift in the imaginary direction—in contrast to
shift by 1 in the ADE ~1.3!. This corresponds to the applications to integrable systems, and is
convenient in view of our different requirements concerning asymptotics. Moreover, we shal
the step size as a variable, and we do not single out the positive or negative imaginary dir
Thus our starting point is the ADE

F~z1 ia/2!5F~z!F~z2 ia/2!, ~1.5!

whereF(z) is meromorphic, and where the step sizea is an arbitrary positive number. Of cours
this ADE is related by a scaling and a shift over half the step size to the ADE ~1.3!, so all results
can be rephrased for~1.3!—at the expense, however, of cumbersome notation, which more
hides some symmetries that naturally emerge when the second convention is used.

We are now prepared to describe the organization and results of the paper in more
Section II contains our general results on first order ADEs. In Subsection II A we set the stage b
delineating the class of functionsF(z) allowed in ~1.5!. As a first requirement, we insist o
F(z) being free of zeros and poles in a stripuImzu,s, s.0. We denote such ADEs as regular
ADEs, and refer to solutions that are free of zeros and poles in the stripuImzu,s1a/2 as regular
solutions. The poles and zeros of a regular solutionF(z) outsideuImzu,s1a/2 are completely
determined by the poles and zeros ofF(z) outsideuImzu,s, as easily follows from~1.5!.

Regular ADEs can be rewritten in the additive form

f ~z1 ia/2!2 f ~z2 ia/2!5f~z!, uImzu,s, ~1.6!

wheref(z) denotes~a suitable branch of! lnF(z). Thus the search for regular solutions to~1.5! is
reduced to finding solutionsf (z) to ~1.6! that are analytic foruImzu,s1a/2. Using well-known
properties of the partial differential operator]/] z̄5]x1 i ]y and Runge’s approximation theorem
it can be proved that such solutions exist. We shall not detail this, however, since the exi
arguments yield no information on the solution thus obtained.~An existence proof can be as
sembled from Ref. 9, for example.!

By contrast, the extra requirements we impose onF(z) ~or equivalentlyf(z)) enable us to
constructexplicit solutions, with special properties that render them essentially unique. Rou
speaking, we require thatf(z) have at worst polynomial increase asuRezu→`, and construct
solutions f (z) with the same property, which are moreover regular~i.e., analytic for
uImzu,s1a/2). We refer to such solutions asminimalsolutions: both their singularities and the
asymptotics foruRezu→` are ‘‘best possible’’—being enforced by the singularities and asym
totics of f(z). Among other things, Theorem II.1 entails the uniqueness up to a consta
minimal solutions to the additive ADE ~1.6!—assuming they exist.

In Subsections II B and II C we study two classes of ADEs that do admit minimal
solutions—as is shown by exhibiting a minimal solution via explicit formulas involvingf(x),x
P R. The key results are Theorem II.2 and II.5, resp. Theorem II.2 presupposes thatf(x) is an
L1(R)-function, whose Fourier transformf̂(y) is in L1(R), too, and satisfiesf̂(y)5O(y) for
y→0; its corollary Theorem II.3 handles functions that have these properties after taking a c
number ofx-derivatives. In Theorem II.5 it is assumed thatf(x) has periodp/r ,r.0, and its
zeroth Fourier coefficient vanishes; then Theorem II.6 handles functionsf(x) for which f (k)

(x),k P N* , has these properties.
The arbitrary additive constant in a minimal solution to the ADE ~1.6! can and will be fixed

in the Fourier transform setting of Theorem II.2 by requiring that the solution go to 0 forx to `;
in the Fourier series setting of Theorem II.5 it is fixed by requiring that the minimal solu
J. Math. Phys., Vol. 38, No. 2, February 1997
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~which is shown to bep/r -periodic! have vanishing zeroth Fourier coefficient. The unique so
tion f (a;z) thus obtained is given by~2.26! and ~2.106!, resp. From the identity~2.38! it then
follows that f (a;z) satisfies the addition formula~2.28! in both settings.

The solutionf (a;z) has another illuminating feature: In both cases it satisfies

lim
a↓0

ia f ~a;z!5c~z!, uImzu,s, ~1.7!

wherec(z) is a primitive off(z). Therefore,ia f (a;z) may be viewed as a ‘‘generalized prim
tive’’ of f(z). It should be noted that this feature is obviously compatible with the ADE ~1.6!, but
nota priori implied by it: In view of the huge multiplier ambiguity already discussed, the pertin
limit typically does not exist for more general solutions.

Theorems II.4 and II.7 are concerned with thea↓0 limit of minimal solutions to the ADE
~1.6! whenf is allowed to have a suitablea-dependence. At first sight, the assumptions m
appear very restrictive, but they can in fact be verified for the applications occurring in Sectio
The limit ~1.7! may be viewed as a quite special consequence of these zero step size
theorems.

In Appendix A we derive various results that involve Euler’s gamma function, not only
concrete illustration of the theory developed in Subsections II A and II B, but also to prepa
ground for Section III, which is devoted to a study of generalized gamma functions. Below~1.4!
we have already delineated the three cases that will be considered in Section III. Since we e
the ADE ~1.5! and not the ADE ~1.3!, however, the trigonometric case turns into the hyperbo
case and vice versa. Moreover, the Weierstrasss-function and its degenerations are traded
close relatives, to which the theory of Section II applies. The resulting minimal solutions~rendered
unique in obvious ways! will be dubbedG-functions.

More specifically, Subsection III A deals with the hyperbolicG-function—the unique mini-
mal solution to the ADE

G~z1 ia/2!52ch~pz/b!G~z2 ia/2!, b.0, ~1.8!

that satisfiesG(0)51 anduG(x)u51 for realx. Now it is evident that any solutionG(z) to ~1.8!
has the property that the quotientG(z1 ib/2)/G(z2 ib/2) is ania-antiperiodic function. It is not
at all obvious, though, that a solution exists for which this quotient equals 2ch(pz/a). The
hyperbolicG-function does have this striking property: It is given by

Ghyp~a,b;z!5expS i E
0

`dy

y S sin2yz

2shayshby
2

z

abyD D , uIm2zu,a1b, ~1.9!

and hence is manifestly symmetric undera↔b.
We present our results on the hyperbolicG-function in seven propositions. Proposition III.

deals with the three elementary ADEs to whichG is a minimal solution, and Prop. III.2 detail
various automorphy properties. As already noted above, the poles and zeros of a regular s
to ~1.5! readily follow from those ofF(z); similarly, residues at simple poles can be determin
in terms ofF(z). This is worked out forGhyp in Prop. III.3. An important dichotomy first emerge
here: Whena/b is an irrational number, all poles and zeros are simple, whereas for rat
a/b this is not the case.

SinceGhyp(z) is a minimal solution, its logarithm is polynomially bounded foruRezu→` and
uImzu<a/2. For the case at hand, the precise asymptotics can be explicitly determined by
parison to the casea5b. ~This case has special features that render it more accessible.! Proposi-
tion III.4 presents the details; the restriction onuImzu is readily lifted by exploiting the ADE ~1.8!.

From the representation~1.9! it is already clear that for fixedz in the stripuIm2zu,a1b the
G-function is real-analytic on (0,̀) in the parametersa andb. In Prop. III.5 we prove thatG
J. Math. Phys., Vol. 38, No. 2, February 1997
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actually extends to a function that is meromorphic ina,b andz, as long as the quotientb/a stays
away from the negative real axis. This readily follows from a representation for theG-function in
terms of an infinite product of gamma functions. To control the convergence of this product,
estimates on Laplace transforms assembled in Appendix B are crucial.

The latter estimates are also exploited in proving that a renormalized version of the hype
G-function converges to the gamma function when one takesa51 and ubu→0 in any sector
uArgbu<x,x P @0,p). This is detailed in Prop. III.6. Two more zero step size limits are obtai
in Prop. III.7. In the latter context the limit has branch cuts on the imaginary axis that arise
a confluence of zeros and poles.

Before turning to a sketch of Subsection III B, we would like to mention thatGhyp is not only
the key building block for the hyperbolic scattering and weight functions of Subsections IVA
VA, but also for our recent generalization of Gauss’ hypergeometric function2F1. In this context
Ghyp plays the role of the gamma function in the Barnes representation for2F1—except that the
generalization is far more symmetric. For2F1 the symmetry is broken, since a step size is taken
zero that leads to the two quite different limiting functions of Propositions III.6 and III.7~cf. Ref.
2, Subsection 6.3, and papers to appear!.

In Subsection III B we study the ellipticG-function, which is given by

Gell~r ,a,b;z!5expS i(
n51

`
sin2nrz

2nshnrashnrbD , uIm2zu,a1b, ~1.10!

along the same lines as its hyperbolic counterpart~1.9!. It is not obvious, but true thatGell is a
minimal solution to an ADE of the form

G~z1 ia/2!

G~z2 ia/2!
5exp~c01c1z1c2z

2!s~z1 ib/2;p/2r ,ib/2!, ~1.11!

wheres denotes the Weierstrasss-function. Thus it can be used as a building block to solve
ADE ~1.5! with F(z) an elliptic function—as already discussed above.

As it turns out, it is quite convenient to trade thes-function s(z;p/2r ,ia/2) for a closely
related functions(r ,a;z) ~2.89!. The latter function is odd andp/r -antiperiodic inz, and has
limits r21sinrz andpa21shpa21z for a↑` and r↓0, cf. ~2.90! and ~2.92!, resp. Similarly, the
function arising on the rhs of~1.11! will be denotedR(r ,b;z). In view of ~1.10! it is given
explicitly by

R~r ,b;z!5expS 2 (
n51

`
cos2nrz

nshnrb D , uIm2zu,b, ~1.12!

so it is even andp/r -periodic inz. Most of the propositions in Subsection III B may be viewed
generalizations of hyperbolic counterparts, since one has

lim
r↓0

exp~p2/6rb !R~r ,b;z!52ch~pz/b! ~1.13!

and

lim
r↓0

exp~p2z/6irab !Gell~r ,a,b;z!5Ghyp~a,b;z!, ~1.14!

cf. Prop. III.12.
Subsection III C concerns the trigonometric case. Our trigonometricG-function is given by
J. Math. Phys., Vol. 38, No. 2, February 1997
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Gtrig~r ,a;z!5expS (
n51

`
e2inrz

2nshnraD , Im2z.2a, ~1.15!

and can be obtained as a limit of the ellipticG-function, viz.,

Gtrig~r ,a;z!5 lim
b↑`

Gell~r ,a,b;z2 ib/2!. ~1.16!

In this case the elementary ADE satisfied by theG-function reads

G~z1 ia/2!

G~z2 ia/2!
512e2irz. ~1.17!

Since the rhs has zeros on the real axis, this is not a regular ADE. However, any shift
z→z1 ip,p.0, yields a regular ADE, to which the~shifted! G-function is a minimal solution.

Propositions III.14–III.19 concern various properties of theG-function that are quite easily
obtained from the series representation~1.15! or the product representation

Gtrig~r ,a;z!5 )
m51

`
1

12exp~2irz2~2m21!ar !
. ~1.18!

Proposition III.20, however, involves more work. Here, we prove that a renormalized versi
Gtrig converges to the gamma function forr↓0.

Fixing a.0, it is clear from~1.18! thatGtrig(r ,a;z) extends to a meromorphic function o
r and z, as long asr stays in the right half plane. But one cannot solve the hyperbolic ADE,
obtained from ~1.17! upon taking r→ ip/b,b.0, by making use of the trigonometri
G-function. By contrast, oneis allowed to takeb→ ip/r ,r.0, in the hyperbolicG-function,
yielding the trigonometric function 2cosrz on the rhs of~1.8!. Accordingly, the quotient of the
renormalized versions ofGhyp(1,ip/r ;z) andGtrig(r ,1;z) ~both of which converge to the gamm
function asr↓0) is a quite nontriviali -periodic function, cf.~3.171!–~3.173!.

Just as in Subsections III A and III B, the last proposition of Subsection III C deals with
zero step size limits; once again, a confluence of zeros and poles gives rise to branch cu
subsection is concluded by detailing the relation of our trigonometricG-function to the
q-gamma function.

We continue by sketching the physical setting in which the scattering and weight func
u(z) andw(z) of Sections IV and V, resp., arise. These functions are associated to relativist
invariant integrable generalizations10,11of the nonrelativistic Calogero-MoserN-particle quantum
systems.12 The dynamics of these relativistic systems belongs to a commutative algebra gen
by N independent commuting analytic difference operators. The step size in these diffe
operators is inversely proportional to the speed of lightc, and forc→` the commuting difference
operators converge to commuting differential operators.

Now a factorized product ofu-functions is expected to encode the asymptotics of the dia
nalizing joint eigenfunction transform, whereas a factorized product ofw-functions can be used to
transform the difference operators and eigenfunctions to an especially convenient form. I
ticular, in the trigonometric case the transformed eigenfunctions amount to Macdon
q-Jacobi multivariableAN21 polynomials, and the product of weight functions yields the funct
with respect to which the polynomials are orthogonal~cf. Ref. 2, Subsection 6.2 and referenc
given there!. ~This is whyw(z) is referred to as a ‘‘weight function.’’!

The key point is now thatu(z) andw(z) solve first order ADEs to which the theory develope
in Sections II and III applies. In fact, in suitable parameter regimesu(z) can be characterized a
the unique minimal solution satisfyingu(0)51 and uu(x)u51 for real x, whereas a reduced
weight functionwr(z) ~closely related tow(z)) can be characterized in a similar way. It wou
J. Math. Phys., Vol. 38, No. 2, February 1997
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take us too far afield to explain here how these ADEs ~which are specified in Sections IV and V!
emerge from the difference operators and their eigenfunctions. Instead, we refer to Ref. 1,
and Ref. 2, Subsection 4.3, for a derivation of the ADEs satisfied byu(z) andw(z), resp.~See
also our forthcoming paper.13!

From the viewpoint of special function theory, theu- andw-functions are just simple com
binations of the G-functions from Section III: Both functions are of the form
G(•••)G(•••)/G(•••)G(•••). The pertinent combinations, however, turn out to have quite
markable properties, which reflect their origins in the context of analytic difference operator
eigenfunction transforms.

We study the functionsu(z) andw(z) along similar lines, once more handling the hyperbo
elliptic and trigonometric cases successively. In each case we first define the relevant func
terms ofG-functions, read off some automorphy properties, and introduce some associated
tions and/or parameter regimes. Then we study the functions in relation to the elementaryDEs
they obey. As it happens, there is an additional elementary ADE pertaining to a parameter~es-
sentially the coupling constant in the integrable system picture!, which makes it possible to
expressu(z) andw(z) in terms of products ofs-functions~i.e., sh(•),s(•) and sin(•), resp.! for
certain parameter values. In the hyperbolic and elliptic cases, these values are in factdensein the
parameter space.

After obtaining these elementary representations for special parameters, we return
general case and derive various representations of a different character. At the end of ea
section we obtain a number of limits, whose existence is suggested by the formal limiting be
of the difference Hamiltonians. Quite a few of these limits may be physically interprete
nonrelativistic limits. For the scattering functions we also derive limits that may be viewe
classical limits. The zero step size results of Sections II and III are the main tools in contr
most of the limits—in particular the classical limits.

To conclude this introduction, we would like to point out that our results entail a great m
nontrivial identities. As a rule, these identities are not spelled out: they follow from diffe
representations for the same function. To be sure, quite a few of these formulas can be ass
via elementary identities—one may even assert that this is precisely what we have done
paper. But this hindsight wisdom obscures what we view as the basic reason underlying m
the identities, namely, the uniqueness of minimal solutions to first order ADEs that admit such
solutions.

To render the previous paragraph more concrete, we add an example. The sine-Gord
cialization of theu-function from Subsection IV A has been known in terms of the integral~4.30!
for almost two decades~cf. Ref. 14 and references given there!. Specifically, using our conven
tions, thisS-matrix element reads

u~p,a,p/2;z!5expS i E
0

`dy

y

sh~a2p/2!y

ch~py/2!shay
sin2yzD , uIm2zu,d, ~1.19!

with d given by~4.32!. ~In point of fact, the integral occurred even earlier as a partition func
of the six-vertex model, cf. Ref. 15.! Nevertheless, the result~4.28!, expressing~1.19! as an
elementary function for the dense set~4.27! of a-values, is new. Fora,p the resulting identity
can be verified directly by noting that the rhs of~4.28! is a minimal solution to the ADE ~4.6! with
d52, a15p anda25a, which moreover has value 1 and modulus 1 forz50 andz real, resp.,
just as~1.19!.
J. Math. Phys., Vol. 38, No. 2, February 1997
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II. GENERAL RESULTS ON ANALYTIC DIFFERENCE EQUATIONS

A. Preliminaries

As announced in the Introduction, we are concerned with ADEs of the form

F~z1 ia/2!

F~z2 ia/2!
5F~z!, a.0, ~2.1!

whereF(z) is a function that is meromorphic inC ~briefly: meromorphic!. We shall call a
function F(z) a solution to ~2.1! if and only if F(z) is meromorphic in a stripuImzu,s1a/2,s
P (0,̀ ), andF(z) satisfies~2.1! for uImzu,s.

The first thing to note is that any solution thus defined extends to a meromorphic fun
Indeed, one can extendF(z) upwards strip by strip via

F~z1 ika![)
j51

k

F~z1~ j21/2!ia !•F~z!, uImzu<a/2, ~2.2!

and downwards via

F~z2 ika![)
j51

k
1

F~z2~ j21/2!ia !
•F~z!, uImzu<a/2. ~2.3!

Clearly, the quotient of two solutions to~2.1! is an ia-periodic meromorphic function.
WheneverF(x1 iy),x,y P R, converges to 1 fory→`, uniformly forx varying over arbitrary

compact subsets ofR and sufficiently fast, the infinite product

F1~z![)
j51

`
1

F~z1~ j21/2!ia !
~2.4!

defines a solution to~2.1!. We shall refer toF1 as the upward iteration solution. It is readily se
that it is the only solution satisfyingF(x1 iy)→1 for y→`. Similarly, the downward iteration
solution

F2~z![)
j51

`

F~z2~ j21/2!ia ! ~2.5!

exists providedF(x1 iy)→1 for y→2` ~uniformly onx-compacts and sufficiently fast!, and is
the unique solution satisfyingF(x1 iy)→1 for y→2`.

Consider, for example, the ADEs with right-hand sides

F1~z!5chz, F2~z!512exp~ iz2s!, F3~z!512exp~ iz1s!, s.0. ~2.6!

In the first case no iteration solution exists, whereas in the second and third casesF1 exists, but
F2 does not.

Our main interest is in ADEs ~or, equivalently, meromorphic functionsF(z)) that admit
solutions with special properties in the stripuImzu<a/2. Specifically, we shall restrict attentio
from now on to meromorphic functionsF(z) that have no poles and zeros in a stripuImzu,s.
Such functions and the associated ADEs ~2.1! will be calledregular. A solution to a regular ADE
will be calledregular iff it has no poles and zeros inuImzu<a/2. In view of ~2.2! and~2.3! it then
actually has no poles and zeros inuImzu,s1a/2. Clearly, the quotient of two regular solutions
J. Math. Phys., Vol. 38, No. 2, February 1997
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an ia-periodic nowhere vanishing entire function. Note that the three ADEs defined by~2.6! are all
regular; in the second caseF1 is regular, whilst in the third caseF1 is not ~it has a pole in the se
ia/2@21,1#).

It should be noticed that a regular solution is ‘‘maximally analytic,’’ in the sense that it is
of poles and zeros in the stripuImzu<a/2; its poles and zeros outside the latter strip are th
determined by the ADE ~2.1!, and can be read off from~2.2! and ~2.3!, whenever the poles an
zeros ofF(z) are known. We shall be primarily concerned with a restricted type of ADE, which
admits regular solutions that are ‘‘minimal.’’ To define this notion, we observe that a reg
solution F(z) to ~2.1! admits a one-valued analytic logarithm inuImzu,s1a/2. We call F a
minimalsolution iff lnF(z) is polynomially bounded inuImzu<a/2. That is, there existc,d.0 and
kP N such that

u lnF~z!u,c1duzuk, ;zP$uImzu<a/2%. ~2.7!

Takingz5x P R in ~2.1!, we deduce

uF~x!ud,exp~2c12duxuk!, ;xPR, d561. ~2.8!

Thus,F(z) must satisfy~2.8! for minimal solutions to exist.
To show that ADEs admitting minimal solutions are by no means exceptional, letg(z) be any

meromorphic function that is analytic inuImzu,s1a/2 and polynomially bounded in
uImzu<a/2. Then the ADE with rhsF(z)[exp(g(z1ia/2)2g(z2 ia/2)) admits a minimal solu-
tion, viz., F(z)5exp(g(z)). It is also to be noted that the right-hand side functionsF(z) of ~2.1!
that admit minimal solutions form a group: IfF(z) is a minimal solution to~2.1!, then 1/F(z) is
a minimal solution to~2.1! with F→1/F, and ifF1 ,F2 are minimal solutions to ADEs ~2.1! with
rhs F1 ,F2, resp., then F(z)5F1(z)F2(z) is a minimal solution to ~2.1! with
F(z)5F1(z)F2(z).

A minimal solution is not only maximally analytic~since it is regular by definition!, but also
has the slowest increase tòand/or decrease to 0 for Rez→6` in the stripuImzu<a/2 that is
compatible with~2.1!. This will be clear from the following theorem, which shows, moreover, t
minimal solutions have ‘‘minimal ambiguity.’’

Theorem II.1: Assume that the meromorphic functionF(z) is regular and satisfies (2.8). Le
F1(z) and F2(z) be minimal solutions to the ADE (2.1). Then there exist CP C* and l P Z such
that

F1~z!/F2~z!5Cexp~2p lz/a!. ~2.9!

If F 1(z) and F2(z) are bounded away from0 and` onR, then one has l50 in (2.9). IfF(z) is
even, then for all minimal solutions F(z) the function F(z)F(2z) is constant. IfF(0)51 and the
functionF(z)F(2z) equals 1, then for any minimal solution F(z) there exists kP Z such that
exp(2pkz/a)F(z) is an even minimal solution.

Proof: SinceF1 andF2 are minimal, they area fortiori regular. Therefore,F1(z)/F2(z) is an
ia-periodic entire functionq(z) without zeros. Hence there existsl P Z such that the function
q0(z)[q(z)exp(22plz/a) has zero winding number around 0 asz goes fromz0 to z01 ia.

To prove thatq0(z) is constant, we note that it can be written exp@r(z)#, with r (z) an
ia-periodic entire function. SinceF1 andF2 are minimal,r (z) is polynomially bounded:

ur ~z!u<C11C2uzuk, uImzu<a/2. ~2.10!

It is not hard to see that this entails constancy ofr (z). ~Indeed, we can, for instance, argue
follows. Since r (z) is ia-periodic and entire, it can be written(nPZcnw

n[s(w), where
J. Math. Phys., Vol. 38, No. 2, February 1997
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w[exp(2pz/a), and where the series converges forw P C* . In view of the bound~2.10!, the
functionws(w) has limit 0 forw→0, so it is analytic atw50. Hence,cn50 for n,0. Similarly,
since~2.10! entailss(w)/w→0 for w→`, we deducecn50 for n.0.!

We have now proved the first assertion~2.9!. The second one is then clear from~2.9!. Now
assumeF(z) is even andF(z) is a minimal solution. Consider the functionG(z)[1/F(2z). It
satisfies

G~z1 ia/2!

G~z2 ia/2!
5
F~2z1 ia/2!

F~2z2 ia/2!
5F~2z!5F~z!, ~2.11!

so it is a solution, too. From minimality ofF one easily deduces minimality ofG, so~2.9! entails
there existsl P Z such thatF(z)/G(z)5Cexp(2plz/a). But the function on the lhs equal
F(z)F(2z) and hence is even. Therefore, we havel50 and the third assertion follows.

To prove the last assertion, consider the functionH(z)[F(2z). It satisfies

H~z1 ia/2!

H~z2 ia/2!
5
F~2z2 ia/2!

F~2z1 ia/2!
51/F~2z!5F~z!, ~2.12!

and so it is a second minimal solution. Thus we must haveF(2z)5Cexp(2plz/a)F(z). Putting
z50 yields C51 and putting z5 ia/2 yields (2) lF(0)51, so that l is even. But then
exp(2pkz/a)F(z) with k[ l /2 is an even minimal solution. h

Thus far, we have been dealing with meromorphic ADEs of the multiplicative form~2.1!. To
study these in more detail and, in particular, to construct minimal solutions, it turns out
convenient to also consider ADEs of the additive form

f ~z1 ia/2!2 f ~z2 ia/2!5f~z!, a.0. ~2.13!

Here,f(z) is assumed to be meromorphic in a stripuImzu,s, s P (0,̀ ), and we restrict attention
to functions f (z) that are meromorphic in the stripuImzu,s1a/2 and that satisfy~2.13! for
uImzu,s; the term ‘‘solution to ~2.13!’’ will be used only for such functions. The function
f(z) and the associated ADE ~2.13! will be termedregular iff f(z) is analytic inuImzu,s, and
a solutionf (z) to a regular ADE will be calledregular iff f (z) is analytic inuImzu,s1a/2.

Obviously, taking logarithms of a regular ADE of the multiplicative form~2.1! leads to a
regular ADE of the additive form~2.13!. Since the meromorphic functionF(z) may have zeros
and/or poles foruImzu>s, its logarithm may have branch points foruImzu>s. Such branch points
are irrelevant for studying the ADE ~2.1!, and therefore we restrict attention to the str
uImzu,s in the additive case.

The above-mentioned notions and results connected to~2.1! have obvious analogs for~2.13!.
In particular, a regular solutionf (z) to a regular ADE ~2.13! will be termedminimal iff it is
polynomially bounded inuImzu<a/2, and a necessary condition for the existence of minim
solutions is thatf(z) be polynomially bounded onR. Of course, in the additive case two minim
solutions can only differ by a constant, cf. the proof of Theorem II.1.

Let us now compare the above to the older literature on first order ADEs, cf. in particular
Refs. 5–8. Here, one usually considers additive ADEs of the form

u~w11!2u~w!5b~w!. ~2.14!

Of course, these are essentially equal to~2.13!, as follows by making the change of variabl
z5 ia(w11/2) in ~2.13!. But these different conventions reflect a different emphasis. Indeed
main interest is in the behavior off(z) and associated solutions in the stripuImzu<a/2; in
particular, we shall obtain representations for minimal solutions that hold true in this strip, c
next two subsections.
J. Math. Phys., Vol. 38, No. 2, February 1997
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By contrast, No¨rlund5 singles out the ‘‘principal solution’’~Hauptlösung! to ~2.14! by impos-
ing conditions onb(w) for Rew→`; accordingly, his principal solution can be characteriz
among all other solutions by its having the slowest possible increase for Rew→`. The principal
solution equals the obvious iteration solution to~2.14! wheneverb(w) goes to 0 sufficiently fast
for Rew→`, but it can be defined for larger classes of right-hand sides by modifying the itera
cf. loc. cit. Chapters 3 and 4. As we have already seen@cf. F3(z) in ~2.6!#, an iteration solution
need not be regular, and so,a fortiori, it need not be minimal. Moreover, minimality concerns t
asymptotics for Imw→6`, and not Rew→6`.

If one writes the hyperbolic and elliptic ADEs occurring below~for which we construct
minimal solutions! in the form ~2.14!, then Nörlund’s conditions are violated, and no princip
solution exists. On the other hand, No¨rlund’s conditions allow right-hand side functionsf(z) in
~2.13! that are not polynomially bounded onR; in that case,~2.13! does not admit minimal
solutions. For the regular trigonometric and rational ADEs occurring below, both No¨rlund’s and
our solution methods apply, and the principal solution is then a minimal solution. Our Fo
series representation for the trigonometric case is however very different from the represen
for the principal solution occurring in Ref. 5.

B. Fourier transform solutions

In this subsection we obtain minimal solutions to a large class of ADEs by exploiting Fourier
transformation onL2(R). ~This class contains the ADEs that occur in the hyperbolic context, c
the Introduction.! Our normalization reads

Ĉ~y![
1

2pE2`

`

dxC~x!eixy ~2.15!

so that

C~x!5E
2`

`

dyĈ~y!e2 ixy. ~2.16!

Of course, we may and will use the definition~2.15! for C P L1(R), too; in this case, recal
Ĉ(y)→0 for y→6` ~Riemann-Lebesgue lemma!. We also have occasion to use the distrib
tional Fourier transform

E
2`

`

dye22iyzP
1

shay
52

ip

a
thS pz

a D , uImzu,a/2, ~2.17!

where P denotes the principal value.~This formula can be verified by a straightforward conto
integration.!

Theorem II.2: Assumef(z) is a function with the following properties:

f~z! is analytic in a stripuImzu,s,sP~0,̀ !, ~2.18!

f~x!PL1~R!, ~2.19!

f̂~y!PL1~R!, ~2.20!

f̂~y!5O~y!,y→0. ~2.21!

Then the ADE

f ~z1 ia/2!2 f ~z2 ia/2!5f~z!, a.0, uImzu,s, ~2.22!
J. Math. Phys., Vol. 38, No. 2, February 1997
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has a unique solution f(a;z) such that

f ~a;z! is analytic in the stripuImzu,s1a/2, ~2.23!

f ~a;z! is bounded in the stripuImzu<a/2, ~2.24!

lim
x→6`

f ~a;x1 i t !50, tP@2a/2,a/2#. ~2.25!

Explicitly, this solution can be written as

f ~a;z!5E
2`

`

dy
f̂~2y!

shay
e22iyz, uImzu<a/2, ~2.26!

or as

f ~a;z!5
1

2iaE2`

`

duf~u!th
p

a
~z2u!, uImzu,a/2. ~2.27!

It satisfies the addition formula

f S ak ;zD5(
j51

k

f S a;z1
ia

2k
~k1122 j ! D . ~2.28!

If f(z) is even/odd, then f(a;z) is odd/even. Finally, letc(x) be the following primitive of
f(x),xPR:

c~x!5
1

2 S E
2`

x

duf~u!2E
x

`

duf~u! D . ~2.29!

Then one has

lim
a→0

ia f ~a;z!5c~z! ~2.30!

uniformly on compact subsets of the stripuImzu,s.
Proof: First we prove uniqueness. Thus, letd(z) be the difference of two solutions to~2.22!

with properties~2.23!–~2.25!. Then d(z) is an analytic function inuImzu,s1a/2, satisfying
d(z1 ia/2)5d(z2 ia/2) for uImzu,s. Therefore,d(z) extends to ania-periodic entire function.
By virtue of ~2.24!, d(z) is bounded in the period stripuImzu<a/2, sod(z) is constant in view of
Liouville’s theorem. On account of~2.25! this constant equals 0, so uniqueness follows.

Next, we use~2.19! and~2.21! to infer that the functionf̂(2y)/shay is bounded and satisfie

uf̂~2y!/shayu5o~e2auyu!, y→6`. ~2.31!

Thus, defining a functionf (z) by the rhs of~2.26!, it is clear thatf (z) is analytic inuImzu,a/2
and thatf (x1 i t ) converges to 0 forx→6` and utu,a/2. Moreover, using also~2.20!, we infer
that the functions

b6~x![E
2`

`

dy
f̂~2y!

shay
e6aye22iyx, xPR, ~2.32!

are continuous and vanish at6`, and that we have
J. Math. Phys., Vol. 38, No. 2, February 1997
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lim
t↑1

f ~x6 i ta/2!5b6~x! ~2.33!

uniformly onR.
Now consider the auxiliary function

A~z![ f ~z2 ia/2!1f~z!. ~2.34!

Clearly,A(z) is analytic in the strip

S1[$zPCuImzP~0,g!%, g[min~s,a!, ~2.35!

andA(x1 i e) converges tob2(x)1f(x) ase↓0, uniformly for x in compact subsets ofR. But
from ~2.32! we have

b1~x!2b2~x!52E
2`

`

dyf̂~2y!e22iyx5f~x!, ~2.36!

so this boundary value is equal tob1(x). On the other hand, the functionf (z1 ia/2) is analytic in
the strip Imz P (2a,0) and converges uniformly onR to b1(x) as Imz↑0. Consequently, we may
invoke Painleve´’s lemma to deduce thatf (z1 ia/2) extends to an analytic function i
Imz P (2a,g), which coincides withA(z) whenz P S1 . That is, the ADE ~2.22! holds true for
zPS1 .

We may now exploit~2.22! for z P S1 to deduce thatf (z) extends to an analytic function in
uImzu,s1a/2. Since the functionsf (x6 ia/2) equalb6(x), they converge to 0 forx→6`.
Moreover, recalling the definition off (z), we obtain

u f ~z!u<E
2`

`

dy
uf̂~2y!u
ushayu

eauyu, uImzu<a/2, ~2.37!

and in view of~2.20! and~2.21! the rhs is finite. Therefore, the rhs of~2.26! defines a solution to
~2.22! with the properties~2.23!–~2.25!.

Next, we prove~2.27!. Replacing the integral in~2.26! by a principal value integral, and th
functionsf andf̂ in ~2.27! and~2.26! by a Schwartz space functionx and its Fourier transform
x̂, resp., the equality of the resulting integrals is clear from~2.17! and the Plancherel relations
SinceS(R) is dense inL1(R), we deduce~2.27! from ~2.26!.

The function at the rhs of~2.28! obviously solves~2.22! with a replaced bya/k. Since it also
has the properties~2.23!–~2.25! that uniquely determinef (a/k;z), we obtain~2.28!. Alternatively,
~2.28! follows directly from the representation~2.26! by using the elementary identity

(
j51

k

expS ayk ~k1122 j ! D5
sh~ay!

sh~ay/k!
. ~2.38!

The parity assertion can be read off from both of the representations~2.26! and ~2.27!.
It remains to prove the last assertion. To this end we first observe that the representation~2.27!

entails that~2.30! holds true pointwise forz5x P R. Next, we use the bound~2.37! and the
assumptions~2.20! and ~2.21! to infer that the functiona f(a;z) remains bounded by an
a-independent constant in the stripuImzu<a/2 asa→0. By iteration of the ADE ~2.22! we now
deduce thata f(a;z) remains bounded in compact subsets of the stripuImzu,s asa→0. There-
fore, the last assertion follows from Vitali’s theorem. h
J. Math. Phys., Vol. 38, No. 2, February 1997
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For our purposes the conditions~2.18!–~2.21! on f(z) are sufficiently weak. In genera
however, the conditions~2.20! and ~2.21! may be difficult to check. Requiring solely~2.18! and
~2.19!, the rhs of~2.27! defines a functionf (z) that is clearly analytic in the stripuImzu,a/2 and
that satisfies

lim
x→6`

f ~x6 i t !56
1

2iaE2`

`

duf~u!, tP~2a/2,a/2!. ~2.39!

We conjecture that this function is in fact a solution to~2.22! satisfying~2.23! and ~2.24!.
Returning to the assumptions of the theorem, let us note that~2.21! entails that the primitive

c(x) ~2.29! vanishes at6`. Thus, writingf(u)5c8(u) in the representation~2.27!, and inte-
grating by parts, we obtain the formula

f ~a;z!5
p

2ia2E2`

`

du
c~u!

ch2
p

a
~z2u!

, uImzu,a/2. ~2.40!

Comparing this representation to Eq.~14! in Chapter 4 of No¨rlund’s monograph,5 one sees that the
solution f (a;z) and Nörlund’s principal solution differ only by a constant wheneverf(z) satisfies
not only the assumptions of Theorem II.2, but also the various restrictions that No¨rlund needs for
his principal solution to exist and admit the representation~14! in loc. cit. ~As already mentioned
his assumptions onf(z) are quite different from ours, cf. the discussion after~2.14!.!

It is also of interest to observe that the assumptions~2.19!–~2.21! entail that f̂(y) is an
L2(R)-function in the domain of the unbounded self-adjoint multiplication operator 1/sh(ay/2).
From this point of view the functionf (a;x),x P R, given by ~2.26!, is the obvious
L2(R)-solution to~2.22! with z P R, reinterpreted as a Hilbert space equation.~Indeed, the func-
tion f̂ (a;y)—being equal to f̂(y)/2sh(ay/2)—is in the domain of multiplication by
exp(6ay/2).!

We proceed by generalizing the above key result Theorem II.2. We shall detail this gen
zation in the multiplicative context~2.1!; the additive version will be clear from this.

Theorem II.3: AssumeF(z) is a meromorphic function that has no poles and zeros in
strip uImzu,s for some sP (0,̀ ). Setting

f l~z![S ddzD
l

lnF~z!, lPN, ~2.41!

assume there exists kP N* such thatf(z)[fk(z) satisfies (2.18)–(2.21). Then the ADE

F~z1 ia/2!

F~z2 ia/2!
5F~z! ~2.42!

admits minimal solutions. Any minimal solution can be written as

F~z!5exp~e~z!1P~z!!, ~2.43!

where

e~z![E
2`

`

dy
f̂~2y!

shay
~22iy !2kS e22iyz2 (

j50

k21
~22iyz! j

j ! D , uImzu<a/2, ~2.44!

and
J. Math. Phys., Vol. 38, No. 2, February 1997
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P~z![(
j50

k

cjz
j / j !, c0 , . . . ,ckPC. ~2.45!

The coefficients c2 , . . . ,ck are uniquely determined, whereas c1 is uniquely determined
mod 2p/a.

Proof: Consider the ADEs

f l~z1 ia/2!2 f l~z2 ia/2!5f l~z!, l50, . . . ,k. ~2.46!

By virtue of Theorem II.2 the function

f k~z![E
2`

`

dy
f̂~2y!

shay
e22iyz, uImzu<a/2, ~2.47!

admits an analytic continuation touImzu,s1a/2 and satisfies~2.46! with l5k. Introducing

f k21~z![ckz1E
0

z

ds fk~s!, ckPC, ~2.48!

we infer that the rhs of the resulting equation

f k21~z1 ia/2!2 f k21~z2 ia/2!5 iack1E
z2 ia/2

z1 ia/2

ds fk~s! ~2.49!

equalsfk21(z) for a suitable choice ofck @since itsz-derivative equalsfk(z)]; specifically, we
may and will chooseck such that

iack1E
2 ia/2

ia/2

ds fk~s!5fk21~0!. ~2.50!

Proceeding recursively, we obtain functionsf k(z), f k21(z), . . . ,f 0(z) related by

f l21~z!5clz1E
0

z

ds fl~s!, l51, . . . ,k, ~2.51!

with cl given by

cl5
1

ia S f l21~0!2E
2 ia/2

ia/2

ds fl~s! D , l51, . . . ,k. ~2.52!

Then f l(z),l P $0, . . . ,k%, is analytic inuImzu,s1a/2 and is a minimal solution to~2.46!. More-
over, from~2.51! and~2.47! one easily sees thatf 0(z) equals the sum ofe(z) and a polynomial of
degree<k. The proof can now be completed by invoking Theorem II.1. h

In Appendix A we show~among other things! how the above results can be used to arrive
the psi and gamma functions, and derive various salient features along the way. Here, we a
applications exemplifying the above, yielding identities we have occasion to use later on.
consider the function

F~z!5cthz2
p

a
cth

pz

a
. ~2.53!

It satisfies the ADE
J. Math. Phys., Vol. 38, No. 2, February 1997
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F~z1 ia/2!2F~z2 ia/2!5cth~z1 ia/2!2cth~z2 ia/2![x~z!. ~2.54!

Inverting ~2.17! yields the distributional Fourier transforms

E
2`

`

dxctha~x6 ib!eixy5
ip

a
P
exp6~2py/2a1by!

sh~py/2a!
, a.0, bP~0,p/a!, ~2.55!

so we have

x̂~y!5
1

2pE2`

`

dxx~x!eixy5 i
shy~a2p!/2

shyp/2
, aP~0,2p!. ~2.56!

Thus,x(z) satisfies the assumptions~2.18!–~2.20!, but not~2.21!. But f(z)[x8(z) does satisfy
~2.18!–~2.21!, since

f̂~y!5y
shy~a2p!/2

shyp/2
. ~2.57!

Therefore, we obtain a solution

f ~z!54E
0

`

dy
ysh~a2p!y

shayshpy
cos2yz ~2.58!

to the ADE ~2.22!. Now sinceF8(z) satisfies~2.22!, too, and obviously has the properties~2.23!–
~2.25!, we must havef (z)5F8(z), by uniqueness. Integrating the resulting identity w.r.t.z, we
obtain

cthz2
p

a
cth

pz

a
52E

0

`

dy
sh~a2p!y

shayshpy
sin2yz. ~2.59!

Here we havea P (0,2p) in view of the restriction in~2.56!. But for z P R the integral converges
for anya.0, and so it readily follows that~2.59! holds for anya.0 ~taking uImzu small enough,
of course!. Integrating once more now yields

ln~shz!2 lnS apshpza D5E
0

`dy

y

sh~a2p!y

shayshpy
~12cos2yz!, a.0. ~2.60!

Second, consider the function

h~z![
z

a
cth

pz

a
. ~2.61!

It satisfies the ADE

h~z1 ia/2!2h~z2 ia/2!5 i th
pz

a
. ~2.62!

Therefore,h9(z) satisfies the ADE

f ~z1 ia/2!2 f ~z2 ia/2!5
ip

a

d

dzS 1/ch2pz

a D[f~z!. ~2.63!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Now one readily verifies

f̂~y!5
ay2

2psh~ay/2!
, a.0, ~2.64!

sof(z) satisfies the assumptions of Theorem II.2. The resulting solution

f ~z!5
4a

p E
0

`

dy
y2

sh2ay
cos2yz ~2.65!

must then be equal toh9(z), sinceh9(z) clearly has the properties~2.23!–~2.25!. Integrating twice
w.r.t. z we now obtain

pzcth
pz

a
5a1a2E

0

`

dy
~12cos2yz!

sh2ay
, a.0. ~2.66!

The identities~2.66! and~2.60! can be combined to evaluate integrals occurring below. F
they entail that fora P (0,p) one has

ap

a2p
lnS pshz

ash
pz

a
D 2pzcth

pz

a
1a5E

0

`

dyS apsh~a2p!y

~a2p!yshayshpy
2

a2

sh2ayD ~12cos2yz!.

~2.67!

Taking z→` and using the Riemann-Lebesgue lemma we obtain the integral

ap

a2p
ln

p

a
1a5E

0

`

dyS apsh~a2p!y

~a2p!yshayshpy
2

a2

sh2ayD . ~2.68!

Adding the elementary integral

E
0

`

dyS a2

sh2ay
2

1

y2D52a ~2.69!

yields

ln
p

a
5E

0

`dy

y S sh~a2p!y

shayshpy
2

~a2p!

apy D , ~2.70!

and combining this with~2.60! we get

lnS shpza D2 ln~shz!5E
0

`dy

y S sh~a2p!y

shayshpy
cos2yz2

~a2p!

apy D , a.0. ~2.71!

Just as in the above examples, ADEs with a-dependent right-hand side functions will b
encountered later on. The last theorem of this subsection concerns the limita→0 in this setting.
It is convenient to use the assumptions of Theorem II.2 as a starting point; corresponding
in the slightly more general context of Theorem II.3 can then be obtained byk-fold integration.

Specifically, we consider an ADE of the form

f ~z1 ia/2!2 f ~z2 ia/2!5fa~z!, a.0, ~2.72!
J. Math. Phys., Vol. 38, No. 2, February 1997
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wherefa(z) satisfies the assumptions~2.18!–~2.21! for anya P (0,a0#. ~Of course, the choice o
a0 is irrelevant for the limita→0.! We allow dependence of the maximal numbersm P (0,̀ # in
~2.18! on a; in particular, one may havesm→0 asa→0. However, we do assume that for an
a P (0,a0# the functionfa(z) is analytic in the open right half plane

R0[$zPCuRez.0%. ~2.73!

Moreover, we assume that for any compactK,R0 there existsCK.0 with

ufa~z!2ax~z!u<CKa
2, ;~a,z!P~0,a0#3K, ~2.74!

wherex(z) is analytic inR0.
Now let f a(z) be the unique solution to~2.72! given by Theorem II.2~with f(z)→fa(z), of

course!. Thus, f a(z) is analytic in the stripuImzu,a/21sm(a) and inR0. We are now in the
position to state the next result.

Theorem II.4: In addition to the above assumptions, let

u f a~z!u<Cd,M , ;~a,z!P~0,a0#3$zPCuRezP@d,M #,uImzu<a/2%, ~2.75!

for any d.0 and M.d, and let the pointwise limit

lim
a↓0

f a~z![ f ~z! ~2.76!

exist for any zP (0,̀ ). Then fa(z) converges uniformly on compact subsets ofR0 to a function
f (z) that is analytic inR0. Moreover, one has

f 8~z!52 ix~z!,zPR0 ~2.77!

with x(z) defined by (2.74).
Proof: Upward iteration of the ADE ~2.72! yields

f a~z1 iLa !5 f a~z!1(
j51

L

fa~z1~ j21/2!ia !, uImzu<a/2. ~2.78!

Choosing

L5N@a21#, RezP@d,M #, 0,d,M , ~2.79!

in this equation, the arguments offa occurring on the rhs stay in a closed rectang
K(N,d,M ),R0 as a↓0. Thus we may invoke the bounds~2.74! and ~2.75! to conclude that
f a(z) remains bounded for Rez P @d,M #,Imz P @0,N#, asa↓0. Similarly, iterating downwardsL
times and requiring~2.79!, we deduce thatf a(z) remains bounded for Rez P @d,M #,Imz
P@2N,0#.

Combining uniform boundedness off a(z) on compacts ofR0 with the pointwise convergenc
assumption~2.76!, it follows from Vitali’s theorem thatf a(z) converges uniformly on compacts o
R0 to a functionf (z) that is analytic inR0. Therefore, it remains to prove~2.77!.

To this end, we use~2.72! to write

fa~z!

ia
5 f a8~z!1

1

iaEz2 ia/2

z1 ia/2

dw~ f a8~w!2 f a8~z!!, zPR0 . ~2.80!

Clearly, the second term on the rhs can be majorized by
J. Math. Phys., Vol. 38, No. 2, February 1997
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supwP$z1 ibubP[2a/2,a/2]%u f a8~w!2 f a8~z!u. ~2.81!

Now f a8(z) converges tof 8(z) uniformly on compactsK,R0, and the lhs of~2.80! converges to
2 ix(z) uniformly onK @due to~2.74!#, so one easily deduces~2.77!. h

We conclude this subsection with some comments on the assumptions of the theore
obtained. In later applications, the assumptions onfa(z) are easily verified. Moreover, fixingz
P R0, the functionfa(z) is actually real-analytic ina for a P R. ~Note this property is stronge
than ~2.74!.! Possibly, these properties already entail the hypotheses~2.75! and ~2.76!, but we
believe this is not true in general.~Observe that the functionf a(z) is not likely to be analytic at
a50 forzP R0.!

The above convergence result should also be compared to the last assertion of Theore
Takingfa(z)[af(z), one sees that this assertion amounts to a simple special case of Th
II.4—except that the analyticity region is different, and that the constant left undetermin
f (z)52 ic(z) by ~2.77! is fixed in terms ofx(z)5f(z). In this connection we point out that th
choice of the regionR0 ~2.73! in which fa(z) is assumed to remain analytic asa→0 is deter-
mined more by convenience of exposition than by necessity. Indeed, as will be exemplifi
Prop. III.7 below, the maximal region with this property can be larger, and correspondingly
can obtain convergence in this larger region.

C. Fourier series solutions

We proceed by obtaining results that will enable us to solve ADEs occurring in the trigono-
metric and elliptic contexts. Correspondingly, we will be dealing with meromorphic functions
are periodic in the real direction. It is convenient to parametrize this period byp/r ,r P (0,̀ ). For
C(x) P L2(@2p/2r ,p/2r #,dx) we employ Fourier coefficients

Ĉn[
r

pE2p/2r

p/2r

dxC~x!e2inrx, nPZ, ~2.82!

so that

C~x!5 (
nPZ

Ĉne
22inrx ~2.83!

with the series converging in theL2-topology.
As we have seen in the previous subsection, the ADE ~2.22! naturally leads to hyperbolic

functions whenf satisfies~2.18!–~2.21!, cf. ~2.26! and~2.27!. In much the same way, periodicit
of f(z) leads to the emergence of elliptic functions. It is convenient to collect some features
functions that arise before stating the analog of Theorem II.2. First, we recall the product
sentations of the Weierstrasss-function ~cf., e.g., Ref. 16!: We have, takingr ,a.0,

sS z; p

2r
,
ia

2 D5exp~hz2r /p!
sinrz

r )
k51

`
~12pkexp~2irz !!~z→2z!

~12pk!2
~2.84!

with

p[exp~22ar ! ~2.85!

or, alternatively,

sS z; p

2r
,
ia

2 D5exp~h8z2/ ia !
shpz/a

p/a )
k51

`
~12 p̃kexp~2pz/a!!~z→2z!

~12 p̃k!2
~2.86!
J. Math. Phys., Vol. 38, No. 2, February 1997
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with

p̃[exp~22p2/ar !. ~2.87!

Here,h andh8 are connected by Legendre’s relation

h85 ihar/p2 ir . ~2.88!

The function

s~r ,a;z![sS z; p

2r
,
ia

2 Dexp~2hz2r /p! ~2.89!

plays a key role in the sequel. In view of~2.84! s is odd andp/r -antiperiodic, and satisfies

lim
a→`

s~r ,a;z!5
sinrz

r
~uniformly on compacts!. ~2.90!

Moreover, using~2.86! and ~2.88! one sees thats solves the ADE

s~z1 ia/2!

s~z2 ia/2!
52exp~22irz ! ~2.91!

and obeys

lim
r→0

s~r ,a;z!5
shpz/a

p/a
~uniformly on compacts!. ~2.92!

Note thats(r ,a;z) is not a regular solution to the regular ADE ~2.91!: It has zeros for Imz50.
Next, using the power series for ln(12x),uxu,1, one easily verifies the identity

)
k51

`

~12pkexp~2irz !!~z→2z!5expS 2 (
n51

`
e2nra

nshnra
cos2nrzD , uImzu,a. ~2.93!

Combining this with~2.84! and ~2.89! one obtains

s~r ,a;z!5
sinrz

r
expS (

n51

`
e2nra

nshnra
~12cos2nrz!D , uImzu,a. ~2.94!

From this representation we deduce

s8~r ,a;z!

s~r ,a;z!
5rcotrz12r (

n51

`
e2nra

shnra
sin2nrz, uImzu,a. ~2.95!

Using the elementary Fourier series

cotr ~z1 ia/2!52 i22i(
n51

`

e2nrae2inrz, Imz.2a/2, ~2.96!

we finally obtain
J. Math. Phys., Vol. 38, No. 2, February 1997
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K~r ,a;z!5 ir1 ir (
nPZ*

e22inrz

shnra
, uImzu,a/2, ~2.97!

where we have introduced

K~r ,a;z![
d

dz
lns~r ,a;z1 ia/2!. ~2.98!

Note that~2.92! entails

lim
r→0

K~r ,a;z!5
p

a
th

pz

a
~2.99!

uniformly on compact subsets ofuImzu,a/2.
Theorem II.5: Assumef(z) is a function with the following properties:

f~z! is analytic in a stripuImzu,s,sP~0,̀ !, ~2.100!

f~z! has periodp/r , ~2.101!

f̂050. ~2.102!

Then the ADE (2.22) has a unique solution f(a;z) such that

f ~a;z! is analytic in the stripuImzu,s1a/2, ~2.103!

f ~a;z! has periodp/r , ~2.104!

f̂ 050. ~2.105!

Explicitly, this solution can be written as

f ~a;z!5
1

2 (
nPZ*

f̂ne
22inrz

shnra
, uImzu<a/2, ~2.106!

or as

f ~a;z!5
1

2ipE2p/2r

p/2r

duf~u!K~r ,a;z2u!, uImzu,a/2. ~2.107!

It obeys the addition formula (2.28). Iff(z) is even/odd, then f(a;z) is odd/even. Finally, the
limit relation (2.30) holds true uniformly on compact subsets of the stripuImzu,s, with c(x) the
primitive off(x) that satisfiesĉ050.

Proof: In order to prove uniqueness, we argue as in the proof of Theorem II.2 to conclud
the differenced(z) of two solutions satisfying~2.103!–~2.105! extends to ania-periodic entire
function. Sinced(z) has periodp/r , too, we deduce thatd(z) equals a constantd. Now we have
05d̂05pd/r by ~2.105!, and so uniqueness follows.

Next, we define a functionf (z) by the rhs of ~2.106!. Clearly, f (z) is analytic in
uImzu,a/2 and has properties~2.104! and ~2.105!. Moreover, the functions
J. Math. Phys., Vol. 38, No. 2, February 1997

10¬Sep¬2006¬to¬134.107.3.141.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



-

e

ws

for

s

to

1090 S. N. M. Ruijsenaars: Difference equations and integrable systems

Downloaded¬
b6~x![
1

2 (
nPZ*

f̂ne
6nra

shnra
e22inrx, xPR, ~2.108!

are smooth andp/r -periodic, and~2.33! holds true uniformly onR. ~Note that the Fourier coef
ficients f̂n form a fast decreasing sequence, sincef(x) is real-analytic andp/r -periodic.! Since
we also have

b1~x!2b2~x!5 (
nPZ*

f̂ne
22inrx5f~x!, ~2.109!

the reasoning in the proof of Theorem II.2 can be repeated, showing thatf (z) solves~2.22! and
has property~2.103!.

The representation~2.107! follows from ~2.106! and the Fourier series~2.97! by using the
Plancherel relations and~2.102!. The addition formula~2.28! follows in the same way as in th
proof of Theorem II.2. The parity claim is obvious from either~2.106! or ~2.107!. Using ~2.106!
with z P R, it follows from routine arguments that

lim
a→0

ia f ~a;x!5 (
nPZ*

f̂ne
22inrx

22inr
[c~x!, xPR, ~2.110!

and thatc(x) is a primitive off(x) with ĉ050. The uniform convergence assertion then follo
in the same way as before from Vitali’s theorem. h

Recalling the limit ~2.99!, one sees that the representation~2.107! turns into ~2.27! for
r→0. More precisely, this holds true for functionsf(r ;u) with a suitable dependence onr .
Clearly, one needs some restrictions on this dependence to ensure uniform convergencez in
compacts of the stripuImzu,a/2 ~say!, but we shall not pursue this.~For an explicit example, see
Prop. III.12 in Subsection III B.!

We continue with an analog of Theorem II.3.
Theorem II.6: With (2.18)–(2.21) replaced by (2.100)–(2.102) and (2.44) replaced by

e~z![
1

2 (
nPZ*

f̂n

shnra
~22inr !2kS e22inrz2 (

j50

k21
~22inrz! j

j ! D , uImzu<a/2, ~2.111!

the assertions of Theorem II.3 hold true.
Proof:With Theorem II.2 replaced by Theorem II.5, and~2.47! by

f k~z![
1

2 (
nPZ*

f̂n

shnra
e22inrz, uImzu<a/2, ~2.112!

the reasoning in the proof of Theorem II.3 applies verbatim; note that boundedness off k(z) in the
strip uImzu<a/2 entails polynomial boundedness off l(z) in this strip. h

We conclude this subsection with a result pertaining to ADEs~2.72!, adapting the assumption
of the previous subsection to the periodic context. Thus, for anya P (0,a0# the right-hand side
fa(z) is assumed to satisfy~2.100!–~2.102! and to be analytic in the open period strip

Rr[$zPCuRezP~0,p/r !%. ~2.113!

Furthermore, the bound~2.74! is assumed to be valid for any compactK,Rr , with x(z) analytic
in Rr .

Denoting by f a(z) the unique solution to~2.72! given by Theorem II.5, we are prepared
state the analog of Theorem II.4.
J. Math. Phys., Vol. 38, No. 2, February 1997
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Theorem II.7: Assume in addition to the above that (2.75) holds true for anyd P (0,p/r ) and
M P (d,p/r ), and that the pointwise limit (2.76) exists for any zP (0,p/r ). Then the assertions o
Theorem II.4 hold true, withR0 replaced byRr .

Proof: TakingM,p/r in ~2.79! and replacingR0 byRr , the proof of Theorem II.4 applies
verbatim. h

The comments after Theorem II.4 apply with obvious changes to Theorem II.7, so we
not spell them out again.

III. GENERALIZED GAMMA FUNCTIONS

A. The hyperbolic case

Consider the integral

E
0

`dy

y S sin2yz

2sha1ysha2y
2

z

a1a2y
D[g~a1 ,a2 ;z!, ~3.1!

where we takead P (0,̀ ),d51,2, until further notice. Obviously, this integral converges abs
lutely providedz belongs to the strip

S[$zPCuuImzu,~a11a2!/2%, ~3.2!

and it defines a functiong that is analytic inS. In this subsection we study the function

G~z![exp~ ig~z!! ~3.3!

in considerable detail.~Here and in the sequel, we suppress the dependence ona1 ,a2 whenever
this causes no confusion.! We shall collect our results in propositions that concern various feat
of G(z).

Proposition III.1 „defining ADEs…: The function G(z) is analytic and has no zeros in th
strip S. It extends to a meromorphic function that is a minimal solution to the three ADEs

G~z1 iad/2!

G~z2 iad/2!
52ch~pz/a2d!, d51,2, ~3.4!

and

G~z1 i ~a12a2!/2!

G~z2 i ~a12a2!/2!
5
sh~pz/a2!

sh~pz/a1!
. ~3.5!

It is the unique minimal solution satisfying

G~0!51, uG~x!u51, xPR. ~3.6!

Proof: The first assertion is clear from~3.1!–~3.3!. Takingd51 in ~3.4! and denoting the rhs
by F(z), the assumptions of Theorem II.3 are satisfied, witha5a1 , s5a2/2 andk53. Indeed,
we have

f~z![S ddzD
3

lnF~z!5
p

a2
S ddzD

2

th~pz/a2! ~3.7!

so that~cf. ~217!!
J. Math. Phys., Vol. 38, No. 2, February 1997
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f̂~y!5
2 iy2

2sh~a2y/2!
. ~3.8!

From this the properties~2.18!–~2.21! are evident.
As a consequence the ADE at hand admits minimal solutions; these can be written as~2.43!–

~2.44! with k53 and

e~z!52
1

4E2`

` dy

ysha1ysha2y
~e22iyz2~122iyz22y2z2!!

5 i E
0

` dy

sha1ysha2y
S sin2yz2y

2zD . ~3.9!

To determinec1 ,c2 ,c3 we follow the proof of Theorem II.3. Thus, we start from

f 3~z!524i E
0

`

dyy2cos~2yz!/sha1ysha2y, ~3.10!

cf. ~2.47!. Then we get

E
0

z

ds f3~s!522i E
0

`

dyysin~2yz!/sha1ysha2y ~3.11!

so that

E
2 ia1/2

ia1/2

ds f3~s!54E
0

`

dyy/sha2y5S p

a2
D 2. ~3.12!

From ~2.50! we then havec350, and so

f 2~z!522i E
0

`

dyysin~2yz!/sha1ysha2y. ~3.13!

Now f 2(z) is odd, so~2.52! yields c250. Hence,

f 1~z!5 i E
0

`

dy~cos~2yz!21!/sha1ysha2y, ~3.14!

cf. ~2.51!, so that

E
0

z

ds f1~s!5 i E
0

`

dyS sin2yz2y
2zD /sha1ysha2y5e~z!, ~3.15!

cf. ~3.9!. Now we have

6e~6 ia1/2!5
1

2E0
`

dyS a1

sha1ysha2y
2

1

ysha2y
D . ~3.16!

Also, recalling~A33! and ~A34!, we may write
J. Math. Phys., Vol. 38, No. 2, February 1997
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ln25E
0

`

dyS 1

a2y
2 2

1

ysha2y
D . ~3.17!

Using ~2.52! once more, we obtain

c15~ ia1!21~ ln22e~ ia1/2!1e~2 ia1/2!!5 i E
0

`

dyS 1

sha1ysha2y
2

1

a1a2y
2D . ~3.18!

Combining~2.51! with ~3.15! now yields

f 0~z!5c1z1e~z!5 ig~a1 ,a2 ;z!, ~3.19!

cf. ~3.1!. In view of ~3.3!, this entails thatG(z) solves~3.4! with d51. Since the functionG is
manifestly symmetric ina1 ,a2 , it solves~3.4! with d52, too.

To prove thatG also satisfies the ADE ~3.5!, we observe that we may write

G~z1 i ~a12a2!/2!

G~z2 i ~a12a2!/2!
5
G~z2 ia2/21 ia1/2!

G~z2 ia2/22 ia1/2!
•

G~z2 ia1/22 ia2/2!

G~z2 ia1/21 ia2/2!
. ~3.20!

From ~3.4! we now deduce that~3.5! holds true. Finally, the uniqueness assertion is clear fr
Theorem II.1. h

We point out that the identity~2.71! can also be obtained from the ADE ~3.5!. Similarly, the
proposition entails the identity

E
0

`dy

y S 1ay2
cos2yz

shay D5 lnS 2chpza D , a.0, uImzu,a/2. ~3.21!

Indeed, this identity amounts to the functionig @as given by~3.1!# satisfying the additive version
of the ADEs ~3.4!. The integral~3.21! can also be derived directly from~A33!, ~A34! and~2.17!.
In this way one can obtain a shorter proof of~3.4!. The above proof, however, shows how th
functionG(z) emerges from the general theory presented in Subsection II B, when one take
of the ADEs ~3.4! as a starting point.

Proposition III.2 „automorphy properties…: One has

G~2z!51/G~z!, ~3.22!

G~a2 ,a1 ;z!5G~a1 ,a2 ;z!, ~3.23!

G~la1 ,la2 ;lz!5G~a1 ,a2 ;z!, lP~0,̀ !. ~3.24!

For any M,N P N* one has the multiplication formula

GS a1

M
,
a2

N
;zD5)

j51

M

)
k51

N

GS a1 ,a2 ;z1
ia1

2M
~M1122 j !1

ia2

2N
~N1122k! D . ~3.25!

Proof: All of these properties readily follow from the integral representation~3.1!–~3.3! and
meromorphy ofG. Indeed, the first three are immediate from~3.1!. Taking firstN51 in ~3.25!,
and using~3.1! and the identity~2.38! to rewrite the rhs, one obtains the desired result
G(a1 /M ,a2 ;z); the general case then follows by using~3.23!. h

Note that when one takesM5N in the formula~3.25!, one can use~3.24! to write its lhs as
G(a1 ,a2 ;Nz).

Proposition III.3 „zeros, poles, residues…: The zeros and poles of G(z) are given by
J. Math. Phys., Vol. 38, No. 2, February 1997
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zkl
1[ i ~a1~k11/2!1a2~ l11/2!!, k,lPN ~zeros!, ~3.26!

zkl
2[2zkl

1 , k,lPN ~poles!. ~3.27!

For a given(k0 ,l 0) P N2, the multiplicities of the pole zk0l0
2 and zero zk0l0

1 are equal to the numbe

of distinct pairs(k,l ) P N2 such that zkl
15zk0l0

1 ; in particular, for a1 /a2¹Q all poles and zeros

are simple. The pole at z00
2 is simple and has residue

r 005
i

2p
~a1a2!1/2. ~3.28!

More generally, if the quantity

tkl[ )
m51

k

sin~pma1 /a2!)
n51

l

sin~pna2 /a1! ~3.29!

is non-zero, then the pole at zkl
2 is simple and has residue

r kl5~2 !kl~21/2!k1 l r 00/tkl . ~3.30!

Conversely, if zkl
2 is a simple pole, then one has tkl Þ 0.

Proof: In view of ~3.23!, we may assumea1<a2 . Iterating the ADE ~3.4! with d51 we
obtain

G~z2 iMa1!5PM~z!G~z!, MPN* , ~3.31!

where

PM~z![S )
m51

M

2ch
p

a2
~z2 ia1~m21/2!!D 21

. ~3.32!

Now the poles ofPM(z) occur at~and only at!

zml[ ia1~m21/2!2 ia2~ l11/2!, m51, . . . ,M , lPZ. ~3.33!

Introducing the strip

S2[$zPCuImzPa2@21/2,1/2!%, ~3.34!

and fixingm P $1, . . . ,M %, there exists a uniquel>0 such thatzml P S2 . SinceG(z) is analytic
and non-zero inS2 , it now follows from ~3.31! that G hasM and onlyM poles ~counting
multiplicity! in the shifted stripS22 iMa1 ; these occur atzkl

2 ,k50, . . . ,M21, with l P N
uniquely determined byk andM .

Now for a given pair (k0 ,l 0) P N2 one can find someM0.k0 such thatzk0l0
2 P S22 iM 0a1

~since the shifted strips cover the lower half plane!. Also, for any pair (k,l ) P N2 such that
zkl

25zk0l0
2 , one must havek,M0 ~sincezkl

2 P S22 iM 0a1 entailsa1(k11/2)1a2l<a1M0).

Consequently, the multiplicity of the pole ofPM0
(z) at z5zk0l0

2 1 iM 0a1 equals the number o

pairs satisfyingzkl
25zk0l0

2 .

The upshot is that the poles ofG(a1 ,a2 ;z) in the lower half plane are given by~3.27! and
have the asserted multiplicity. SinceG is non-zero inS2 andPM has no zeros at all, it follows
from ~3.31! thatG is non-zero in the lower half plane. Recalling~3.22!, the first two assertions
easily follow.
J. Math. Phys., Vol. 38, No. 2, February 1997
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To prove the third one, we use~3.4! with d51 to get

G~z2 i ~a11a2!/2!5S 22ish
pz

a2
D 21

G~z1 i ~a12a2!/2!. ~3.35!

From this we read off

r 005
ia2

2p
G~ i ~a12a2!/2!. ~3.36!

Similarly, using~3.4! with d52 we obtain

r 005
ia1

2p
G~ i ~a22a1!/2!. ~3.37!

Combining these two expressions forr 00 with ~3.22!, we deduce

G~ i ~a12a2!/2!5~a1 /a2!1/2, ~3.38!

and so~3.28! follows. ~Note that~3.1! and ~3.3! entail thatG is positive forz P i (a11a2)
3(21/2,1/2). Note also that~3.38! can be derived from~3.5!.!

Finally, we exploit both ADEs ~3.4! to write

G~z1zkl
2!5~2 !kl1k1 lS )

m51

k

2ish
p

a2
~z2 ima1!)

n51

l

2ish
p

a1
~z2 ina2!D 21

G~z1z00
2 !.

~3.39!

Taking z→0 in this identity, the remaining assertions follow. h

In principle, the residue atzk0l0
2 can still be determined by using~3.30! even whenzk0l0

2 is not

a simple pole. Indeed, in that case one must havea1 /a2 P Q; choosing sequence
ad,n→ad ,d51,2, for n→` such thata1,n /a2,n¹Q, the residue equals the limit of the sum
the residues at the simple poles that coalesce atzk0l0

2 . There is presumably an explicit formula fo

the limit, but we have not pursued this.
It is evident from~3.3! and the above thatg(z) extends from an analytic function inS to a

multi-valued function with logarithmic branch points at~3.26! and ~3.27!. It is convenient to
specialize to the branch obtained by restrictingz to the cut planeC(a11a2), where

C~d![C\$6 i @d/2,`!%, d.0. ~3.40!

This branch will be again denotedg(z). Asymptotic properties for Rez→6` are most easily
obtained for the special casea15a2[a; the general case can then be handled by a compar
argument, cf. Prop. III.4 below.

We start from the identity

g~a,a;z!52
1

p
b~pz/a!, ~3.41!

where we have introduced

b~w![E
0

w

dttctht, wPC~2p!. ~3.42!
J. Math. Phys., Vol. 38, No. 2, February 1997
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~To see that this holds true, use~3.1! on the lhs and takez-derivatives; this yields a linea
combination of the identities~2.66 ! and ~2.69!.! Next, we write cht5sht1e2t to obtain

b~w!5w2/21c12b1~w!, Rew.0, ~3.43!

where

b1~w![E
w

`

dt
te2t

sht
, Rew.0, ~3.44!

c1[E
0

`

dt
te2t

sht
5
F18~0!

2i
5 (

m51

`
1

2m2 5
p2

12
, ~3.45!

cf. ~A8! and ~A10!. From this representation we read off the bounds

b~w!5
w2

2
1

p2

12
1O~exp~~e22!w!!, Rew→`, ~3.46!

b8~w!5w1O~exp~~e22!w!!, Rew→`. ~3.47!

Here, e is a fixed positive number and the bounds hold true uniformly for Imw varying over
compact subsets ofR.

Of course, these bounds entail bounds ong(a,a;z) via ~3.41!. More generally, they can be
exploited to derive bounds ong(a1 ,a2 ;z), as will now be detailed.

Proposition III.4 „asymptotics…: Fixing e.0 and setting

am[max~a1 ,a2! ~3.48!

one has

6g~a1 ,a2 ;z!52
pz2

2a1a2
2

p

24S a1

a2
1
a2

a1
D1O~exp~6~e22p/am!z!!, Rez→6`,

~3.49!

6g8~a1 ,a2 ;z!52
pz

a1a2
1O~exp~6~e22p/am!z!!, Rez→6`, ~3.50!

where the bounds are uniform forImz in R-compacts.
Proof: Since g is odd in z, it suffices to verify the Rez→` asymptotics. Now when

a15a2 , the formulas~3.49! and ~3.50! are immediate from~3.41!, and~3.46! and ~3.47!, resp.
Sinceg is symmetric ina1 ,a2 , it remains to consider the casea1,a2 .

To this end we rewrite~3.1! as

a1a2g~a1 ,a2 ;z!5a2g~a,a;z!1d~z!, ~3.51!

where we have introduced

a[S a1
2 1a2

2

2 D 1/2, ~3.52!

d~z![E
0

`

dyI~y!sin2yz, ~3.53!
J. Math. Phys., Vol. 38, No. 2, February 1997
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with

I ~y![
1

2y S a1a2

sha1ysha2y
2

a2

sh2ayD . ~3.54!

Here, we takez in the stripS ~3.2!, so that the integral converges~notea11a2<2a). Now we
have

I ~y!5c~a1 ,a2!y1O~y3!, y→0, ~3.55!

soI (y) is analytic in the stripuImyu,p/a2 . Hence, fixingz P Sandr P (0,p/a2), we may shift
contours to obtain

2id~z!5e22rzE
2`

`

duI~u1 ir !e2iuz. ~3.56!

From this we deduce thatd(z) andd8(z) areO(e22rz) for Rez→`, uniformly for z in a closed
substrip ofS.

Combining these bounds with~3.51! and the Rez→` asymptotics ofg(a,a;z), we deduce
that ~3.49! and ~3.50! hold true uniformly forz in the strip uImzu<a1 . Finally, we exploit the
ADEs

g~z6 ia1!5g~z!7 i lnS 2chp

a2
~z6 ia1/2! D ~3.57!

to infer that the bounds hold uniformly foruImzu<2a1 ; by iteration, the proposition now follows
h

Thus far, we have takena1 anda2 positive. However, fixingzP R, it is already obvious from
~3.1! thatG(a1 ,a2 ;z) extends to a function that is analytic and non-zero fora1 ,a2 in the~open!
right half plane. Note this is consistent with the analytic continuation of~3.26! and ~3.27!: The
imaginary part of the rhs is non-zero fora1 ,a2 in the right half plane.

More generally, we shall now prove thatG can be continued to a function that is meromorph
in a1 ,a2 andz, provided the ratio variable

r[a2 /a1 ~3.58!

stays away from the negative real axis. To this end we consider the auxiliary function

A~r,l![)
j50

`

F~~ j11/2!r,l!, rPC2, lPC, ~3.59!

whereC2 denotes the cut plane~A15!. In view of ~B22! and ~B19! this is a well-defined mero-
morphic function inC23C. Moreover, from~A40! we readily deduce

A~r,l!5expS E
0

` dt

tsh~rt/2!
~2l2sh~lt !cth~ t/2!! D , r.0, uRelu,r. ~3.60!

Now from ~3.1! and ~3.3! we have
J. Math. Phys., Vol. 38, No. 2, February 1997
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G~z1 ia1/2!G~z2 ia1/2!5expS E
0

` dt

tsh~rt/2! S sh~ i tz/a1!cth~ t/2!2
2iz

a1
D D

3expS i E
0

`dt

t S 2z

a1sh~a2t/2a1!
2

4z

a2t
D D

5A~r,2 iz/a1!expS 2
2iz

a1
ln2D , ~3.61!

where we used~A33! and ~A34!. Next, we introduce the new variable

l[2 iz/a1 ~3.62!

and combine~3.61! and the ADE ~3.4! to deduce

G~a1 ,a2 ;z1 ia1/2!25A~r,l!exp~2l ln2!•2cos~pl/r!. ~3.63!

We are now prepared for the following proposition.
Proposition III.5 „meromorphic continuation…: The function G(a1 ,a2 ;z) admits analytic

continuation to a function that is meromorphic in a1 ,a2 and z, providedr[a2 /a1 stays in
C2. Fixing a1 ,a2 with Imr Þ 0, one obtains a meromorphic function whose zeros and poles
simple and located at (3.26) and (3.27), resp.

Proof: The function

B~r,l![A~r,l!cos~pl/r! ~3.64!

is meromorphic inC23C, so in view of~3.63! we need only show that forr¹R all of its zeros
and poles are double and located at

l5k1~ l11/2!r, k,lPN ~zeros!, ~3.65!

l52k212~ l11/2!r, k,lPN ~poles!. ~3.66!

Recalling the definitions~2.59! and ~A39!, we obtain the representation

B~r,l!5cos~pl/r!)
j50

`
G~~ j11/2!r1l!

G~~ j11/2!r2l!

G~11~ j11/2!r1l!

G~11~ j11/2!r2l!
exp~24l ln~ j11/2!r!

~3.67!

from which these features can be read off. h

Of course, the proposition just proved entails that various formulas involvingG can be
analytically continued. We mention specifically~3.4!, ~3.5!, ~3.22!–~3.25! @note one can takel
P C* in ~3.24!#, ~3.28!–~3.30!, and the special values

G~ i ~ad2a2d!/2!5~ad /a2d!1/2, G~6 iad/2!5261/2, d51,2. ~3.68!

~These values easily follow from~3.1!–~3.5!.!
We proceed by detailing the relation to the gamma function. To this end we introduce

H~r;z![G~1,r;rz1 i /2!exp~ izln~2pr!2221ln~2p!!, rPC2, zPC. ~3.69!

This renormalized version ofG(a1 ,a2 ;z) is such that the two ADEs ~3.4! translate into the ADE
J. Math. Phys., Vol. 38, No. 2, February 1997
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H~r;z1 i /2!

H~r;z2 i /2!
5
ishprz

pr
~3.70!

and functional equation

H~r;z!H~r;2z!5
chpz

p
. ~3.71!

~Use~3.22! to check~3.71!.! We shall now show that ther→0 limit of H(r;z) exists and equals
1/G( iz11/2). Accordingly,~3.70! and ~3.71! turn into the ADE and functional equation satisfie
by the gamma function.

Proposition III.6 „relation to gamma function…: Takingr P (0,̀ ), one has

lim
r↓0

H~r;z!51/G~ iz11/2! ~3.72!

uniformly for z inC-compacts. More generally, fixe P (0,̀ ),f P (0,p), and an arbitrary compact
K,C. Then there existsd5d(e,f,K) P (0,̀ ) such that

uH~r;z!G~ iz11/2!21u,e, zPK, uArgru<p2f,uruP~0,d#. ~3.73!

Proof: We begin by proving~3.72!. Since the function 1/G( iz11/2) is entire, we need only
show

lim
r↓0

P~r;z!51 ~uniformly on compacts!, ~3.74!

P~r;z![H~r;z!G~ iz11/2!. ~3.75!

Now from Prop. III.3 we see that the poles ofG( iz11/2) are matched by zeros ofH(r;z), so that
P(r;z) has no poles and zeros in the strip

Sr[$zPCuuImzu,1/211/r%. ~3.76!

We continue by deriving an integral representation forP(r;z) that holds true inSr . To this end
we first takeuImzu,1/2. Then we may use~3.3! and ~3.1! to write

G~1,r;rz1 i /2!5expS E
0

`dy

y S e2iryze2y2e22iryzey

4shyshry
2
iz

y
1

1

2ryD D . ~3.77!

Also, from ~A37! we obtain

G~ iz11/2!

~2p!1/2
5expS E

0

`dy

y S ize22ry2
1

2ry
1
e22iryz~ey2e2y!

4shyshry D D . ~3.78!

Finally, combining~A37! ~with z51/2) and the integral~A29!, we write the remaining factor in
~3.69! as

exp~ izln~2pr!!5expS E
0

`dy

y S izy 2
ize2y

shy
2 ize22ryD D . ~3.79!

Putting the pieces together, we obtain
J. Math. Phys., Vol. 38, No. 2, February 1997
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P~r;z!5expS i2E0`dyy e2y

shyshry
~sin~2ryz!22zshry! D . ~3.80!

Clearly, this representation can be analytically continued to the stripSr , as announced above
Now we fix a compactK,C and noteK,Sr for r small enough. Rewriting the integral in~3.80!
as

1

cE0
`

dy
e2cy~sin~2yz!22zshy!

y2shy S cy

shcyD , c[1/r, ~3.81!

it becomes evident that it converges to 0 forc→` uniformly onK. Consequently, we have now
proved that~3.72! holds true uniformly on compacts.

To prove the stronger assertion~3.73!, we observe that forz P K andc.0 large enough, the
contour in~3.81! may be rotated toeixy,y P @0,̀ ), with uxu<(p2f)/2, cf. the proof of Theorem
B.1. The resulting integral can now be estimated in an obvious way forc P C with ucu large enough
and uArg(eixc)u<(p2f)/2, and then~3.73! easily follows. h

The functionP(r;z) ~3.75! is of some interest in itself: It is the unique minimal solution to t
ADE

F~z1 i /2!

F~z2 i /2!
5
shprz

prz
~3.82!

@cf. ~3.70!# that satisfiesF(0)51,uF(x)u51,x P R. Note that the representation~3.80! can be
understood from Theorem II.3.

We conclude this subsection by deriving two more zero step size limits, now involving
functionG(p,a;•) for a→0. ~The choicea15p is notationally convenient; the scaling relatio
~3.24! can be used for othera1-values.! In fact, we shall phrase the limits in terms of the bran
g(z)52 i lnG(z) defined in the cut planeC(p1a), cf. the paragraph containing~3.40!. Introduc-
ing the functions

da~l,m;z![g~p,a;z1 ila!2g~p,a;z1 ima!, zPC~p1a!, l,mPR, ~3.83!

Da~z![ag~p,a;z!, zPC~p1a!, ~3.84!

we are prepared for the following proposition.
Proposition III.7 „zero step size limits…: One has

lim
a↓0

da~l,m;z!52 i ~l2m!ln~2chz!, l,mPR, ~3.85!

lim
a↓0

Da~z!52E
0

z

dwln~2chw!, ~3.86!

uniformly on compact subsets of the cut planeC(p) (3.40). Here,ln is real-valued for z and w
real, resp., and the integration path in (3.86) belongs toC(p).

Proof: From the ADE ~3.4! with ad5a,a2d5p, we deduce that~3.85! need only be proved
for l,m P @21/2,1/2#. Taking from now ona P (0,p/4# ~say!, we fix l andm in this interval and
z in the stripuImzu,p/2. Then we may use~3.1! to write

da~l,m;z!52 i E
0

`dy

y S ~l2m!

py
2
sha~l2m!y

shay

cos~2yz1 ia~l1m!!

shpy D , ~3.87!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Da~z!5E
0

`dy

y2 S ay

shay

sin2yz

2shpy
2

z

p D . ~3.88!

From straightforward estimates one sees that these representations entail the limits

lim
a↓0

da~l,m;z!52 i ~l2m!E
0

`dy

y S 1

py
2
cos2yz

shpy D , ~3.89!

lim
a↓0

Da~z!5E
0

`dy

y2 S sin2yz2shpy
2

z

p D , ~3.90!

and boundedness for (a,z) P (0,p/4#3K, with K a compact subset ofuImzu,p/2.
Invoking now Vitali’s theorem and recalling the identity~3.21!, it follows that ~3.85! and

~3.86! hold true uniformly on compacts inuImzu,p/2. Next, we exploit Theorem II.4 to obtain
uniform convergence on compacts in the right half plane~2.73!. To this end we need only observ
that the ADEs with step sizea obeyed by]z

2da and]z
3Da satisfy all of the assumptions of Theore

II.4, cf. the proof of Prop. III.1. Similarly, we infer uniform convergence on compacts of the
half plane. Since any compact inC(p) can be written as a union of three compacts in the s
uImzu,p/2 and in the left and right half planes, the proposition now follows. h

We point out that~3.85! amounts to

lim
a↓0

G~p,a;z1 ila!

G~p,a;z1 ima!
5exp~~l2m!ln~2chz!!, l,mPR, ~3.91!

uniformly on compacts inC(p). Observe that the rhs is not meromorphic, unlessl2m P Z. The
emergence of branch cuts can be understood from the coalescence of zeros and poles taki
for a→0, cf. Prop. III.3.

B. The elliptic case

In this subsection we are concerned with a function that is a minimal solution to three ADEs
generalizing the hyperbolic ADEs ~3.4! and~3.5!. We study this function along the same lines
in Subsection III A. Our starting point is the infinite series

(
n51

`
sin2nrz

2nshnra1shnra2
[g~r ,a1 ,a2 ;z!, ~3.92!

where we take at firstr ,ad P (0,̀ ),d51,2. Clearly, this series converges absolutely and u
formly for z in an arbitrary compact of the stripS ~3.2!, so it defines a functiong that is analytic
in S. As before, it is convenient to suppress the dependence on the parameters whene
causes no confusion. With this convention, our goal is to study the functionG(z) ~3.3!.

To this end we introduce the ‘‘right-hand side function’’

R~r ,a;z![22ire2ar/2)
k51

`

~12e22kar!2•eirzs~r ,a;z1 ia/2!. ~3.93!

Using the definition~2.89! of s and the product representation~2.84! of thes-function, one easily
verifies thatR can be rewritten

R~r ,a;z!5)
k51

`

~12exp~2irz2~2k21!ar !!~z→2z!, ~3.94!
J. Math. Phys., Vol. 38, No. 2, February 1997
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where the infinite product converges absolutely and uniformly on compacts. From this one r
obtains the representation

R~r ,a;z!5expS 2 (
n51

`
cos2nrz

nshnra D , uImzu,a/2. ~3.95!

~Use the power series for ln(12x) to verify this; cf. also~2.93!.!
In the sequel it is convenient to employ the abbreviations

qd[exp~2adr !, ~3.96!

cd[22irq d
1/2)

k51

`

~12qd
2k!2, ~3.97!

sd~z![s~r ,ad ;z!, ~3.98!

Rd~z![R~r ,ad ;z!5cde
irzsd~z1 iad/2!, ~3.99!

whered51,2. We are now prepared for the following proposition.
Proposition III.8 „defining ADEs…: With (3.4) replaced by

G~z1 iad/2!

G~z2 iad/2!
5R2d~z!, d51,2, ~3.100!

and (3.5) by

G~z1 i ~a12a2!/2!

G~z2 i ~a12a2!/2!
5)

k51

` S 12q2
2k

12q1
2kD 2• s2~z!

s1~z!
, ~3.101!

the assertions of Prop. III.1 hold true.
Proof: In view of ~3.99! and~3.95!, Theorem II.5 may be invoked to solve the additive for

of ~3.100!. Specifically, we may take

f~z![2 (
nPZ*

e2inrz

2nshnra2d
, ~3.102!

s5a2d/2 anda5ad . The solution given by~2.106! is then equal toig(r ,a1 ,a2 ;z) @cf. ~3.92!#,
and so~3.100! follows.

Next, we use~3.20! and the ADEs ~3.100! to conclude that~3.101! amounts to the identity

s2~z!

s1~z!
5)

k51

` S 12q1
2k

12q2
2kD 2• R2~z2 ia2/2!

R1~z2 ia1/2!
. ~3.103!

This identity can be deduced from~3.96!–~3.99!, so the proposition follows. h

Proposition III.9 „automorphy properties…: The function G is periodic with primitive period
p/r . It obeys the multiplication formula (3.25) and the period doubling formula

G~2r ,a1 ,a2 ;z!5G~r ,a1 ,a2 ;z!G~r ,a1 ,a2 ;z2p/2r !. ~3.104!

Moreover, it satisfies (3.22), (3.23), the scaling relation

G~l21r ,la1 ,la2 ;lz!5G~r ,a1 ,a2 ;z!, lP~0,̀ !, ~3.105!
J. Math. Phys., Vol. 38, No. 2, February 1997
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and the duplication formula

G~r ,a1 ,a2 ;2z!5 )
l ,m51,2

G~r ,a1 ,a2 ;z2 i ~ la11ma2!/4!

3G~r ,a1 ,a2 ;z2 i ~ la11ma2!/42p/2r !. ~3.106!

Proof: These features follow from the series representation~3.92! in the same way as in the
hyperbolic case.~Combine~3.25!, ~3.104! and ~3.105! to check~3.106!.! h

Proposition III.10 „zeros, poles, residues…: The zeros and poles of G(z) are given by

zjkl
1 [ jp/r1zkl

1 , jPZ, k,lPN ~zeros!, ~3.107!

zjkl
2 [2zjkl

1 , jPZ, k,lPN ~poles!, ~3.108!

with zkl
1 defined by (3.26). The multiplicities of the poles zjk0l0

2 and zeros zjk0l0
1 , j P Z, are equal to

the number of distinct pairs(k,l ) P N2 such that zkl
15zk0l0

1 .The poles at zj00
2 , j P Z, are simple and

have residue

r 005 i S 2r)
n51

`

~12q2
2n!~12q1

2n!D 21

. ~3.109!

Whenever

ekl[ )
m51

k

is2~ ima1!)
n51

l

is1~ ina2! ~3.110!

is non-zero, the poles at zjkl
2 , j P Z, are simple and have residue

r kl5~2 !klS 12r D
k1 l

q2
~ l21 l !~k11/2!q1

~k21k!~ l11/2!)
n51

`

~12q2
2n!22k~12q1

2n!22l
•r 00/ekl .

~3.111!

Conversely, if zjkl
2 is a simple pole, then ekl Þ 0.

Proof:We proceed along the same lines as in the proof of Prop. III.3. Here,~3.31! holds true
with ~3.32! replaced by

PM~z![S )
m51

M

R2~z2 ia1~m21/2!!D 21

~3.112!

and then the poles ofPM(z) are located atjp/r1zml , with j P Z andzml given by ~3.33!. By
periodicity we may restrict attention to poles and zeros on the imaginary axis. In view of~3.22! the
first two assertions then follow just as in the hyperbolic case.

Turning to the third one, we now get

G~z2 i ~a11a2!/2!5~c2exp@ ir ~z2 ia2/2!#s2~z!!21G~z1 i ~a12a2!/2! ~3.113!

so that@cf. ~3.96! and ~3.97!#

r 005
i

2r)n51

`

~12q2
2n!22G~ i ~a12a2!/2!. ~3.114!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Using symmetry ina1 ,a2 , we deduce

G~ i ~a12a2!/2!5 )
n51

`
~12q2

2n!

~12q1
2n!

~3.115!

and so~3.109! follows. ~Note that~3.115! can also be derived from~3.101!.!
Finally, from the ADEs ~3.100! we calculate

G~z1zkl
2!5~2 !klS c2

k c1
l expS ra2

2
@~ l 21 l !~2k11!1k#1

ra1

2
@~k21k!~2l11!1 l # D

•exp~ irz@k1 l12kl# ! )
m51

k

s2~z2 ima1!)
n51

l

s1~z2 ina2!D 21

•G~z1z00
2 !.

~3.116!

Using ~3.96! and ~ 3.97!, the remaining assertions readily follow from this. h

At the elliptic level the choicea15a2 does not appear to yield extra information, as co
pared to the general case. But sinceG is p/r -periodic, there is no analog of Prop. III.4, and so w
do not need additional information on this special case.

Next, we turn to an analog of Prop. III.5.
Proposition III.11 „meromorphic continuation…: The function G admits the representatio

G~r ,a1 ,a2 ;z!5 )
m,n51

` 12q1
2m21q2

2n21e22irz

12q1
2m21q2

2n21e2irz
, qd[exp~2adr !. ~3.117!

It can be analytically continued to a function that is meromorphic in r,a1 ,a2 and z, provided
a1r and a2r stay in the right half plane. Fixing r,a1 ,a2 with Re(a1r ) andRe(a2r ) positive,
one obtains a meromorphic function whose zeros and poles are located at (3.107) and (3
resp.

Proof: It suffices to prove~3.117!, since the remaining assertions are clear from this form
To this end we observe that the numerator infinite product is the downward iteration solut
both of the ADEs

F~z1 iad/2!

F~z2 iad/2!
5R~2 !~a2d ;z!, d51,2, ~3.118!

with

R~2 !~a;z![)
k51

`

~12e2~2k21!are22irz!. ~3.119!

Similarly, the denominator infinite product is the upward iteration solution to

F~z1 iad/2!

F~z2 iad/2!
5R~1 !~a2d ;z!, d51,2, ~3.120!

with

R~1 !~a;z![R~2 !~a;2z!; ~3.121!

cf. ~2.1!–~2.5!. But we have
J. Math. Phys., Vol. 38, No. 2, February 1997
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R~1 !~ad ;z!R~2 !~ad ;z!5Rd~z!, ~3.122!

cf. ~3.94!, so the rhsG̃ of ~3.117! solves the ADE ~3.100!. Since both solutionsG and G̃ are
p/r -periodic, have no zeros and poles in the stripuImzu<ad/2, and satisfyG(0)5G̃(0)51, we
deduceG5G̃. h

We continue by detailing the relation of the ellipticG-function to the hyperbolic
G-function. This relation is the first instance of a general type of limiting transition betw
meromorphic functions that will reappear several times. Therefore, it is convenient to introd
term referring to the type of limit involved.

To this end, assumef p(z) is a family of meromorphic functions parametrized byp P CN. We
shall say thatf p(z) converges mero-uniformly to a meromorphic functionf (z) asp→p0 when-
ever one has f p(z)→ f (z) uniformly on compacts not containing poles off (z), and
1/f p(z)→1/f (z) uniformly on compacts not containing zeros off (z). ~Equivalently, viewing
meromorphic functions as holomorphic functions fromC to the Riemann sphereP1, one has
f p→ f mero-uniformly asp→p0 iff the convergence isP1-uniform on arbitraryC-compacts.!

Defining the renormalized function

Gren~r ,a1 ,a2 ;z!5G~r ,a1 ,a2 ;z!expS p2z

6ira1a2
D ~3.123!

we are now prepared for the next proposition.
Proposition III.12 „relation to hyperbolic G-function…: Fixing a1 ,a2.0, one has

lim
r↓0

Gren~r ,a1 ,a2 ;z!5G~a1 ,a2 ;z!, ~3.124!

where the limit is mero-uniform.
Proof:Writing Gren5exp(igren), we obtain

gren~r ,a1 ,a2 ;z!5r(
n51

`
1

nr S sin2nrz

2shnra1shnra2
2

z

nra1a2
D , zPS; ~3.125!

cf. ~3.92!. Comparing to~3.1!, a routine dominated convergence argument now yields

lim
r↓0

gren~r ,a1 ,a2 ;z!5g~a1 ,a2 ;z!, zPS, ~3.126!

uniformly onS-compacts.
Next, we note thatGren satisfies the ADE

G~z1 ia1/2!

G~z2 ia1/2!
5R2,ren~z! ~3.127!

with

R2,ren~z![expS p2

6ra2
DR2~z!. ~3.128!

In view of ~3.126! this entails that foruImzu<a2/2 we have

lim
r↓0

R2,ren~z!5
G~a1 ,a2 ;z1 ia1/2!

G~a1 ,a2 ;z2 ia1/2!
52ch

pz

a2
, ~3.129!
J. Math. Phys., Vol. 38, No. 2, February 1997
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where we used~3.4!. Recalling~3.99! and the limit~2.92!, we deduce

lim
r↓0

expS p2

6ra2
D ~ ic2!5

2p

a2
. ~3.130!

Using then~2.92! once more, one sees that~3.129! holds uniformly onC-compacts. Therefore, on
may exploit the ADE ~3.127! and uniform convergence ofGren to G on S-compacts to obtain
uniform convergence onC-compacts that do not contain the poleszjk

2 , j ,k P N, of G. Moreover,
~3.126! entails uniform convergence of 1/Gren to 1/G onS-compacts, so one can also use~3.127!
and ~3.129! to infer 1/Gren→1/G uniformly on compacts not containing the zeroszjk

1 . h

As a corollary of the proof we obtain the limit

lim
r↓0

rexpS p2

6ra D )
n51

`

~12e22nar!25
p

a
, a.0; ~3.131!

cf. ~3.130! and ~3.97!. Equivalently, this can be written

lim
r↓0

S (
n51

`
1

n S e2nra

shnra
2

1

nraD 2 lnr D 5 ln
a

p
, a.0. ~3.132!

The last proposition of this subsection is the analog of Prop. III.7 in the previous one. To
it, we introduce the cut plane

C~r ,d![C\$6 i @d/2,`!1kp/r ukPZ%, r ,d.0, ~3.133!

and define a branchg(r ,A,a;z) of 2 i lnG in C(r ,A1a) via ~3.93! for uImzu,(A1a)/2. Then we
set

da~r ,A,l,m;z![g~r ,A,a;z1 ila!2g~r ,A,a;z1 ima!, zPC~r ,A1a!, l,mPR,
~3.134!

Da~r ,A;z![ag~r ,A,a;z!, zPC~r ,A1a! ~3.135!

~This should be compared to~3.83! and ~3.84!.!
Proposition III.13 „zero step size limits…: One has

lim
a↓0

da~r ,A,l,m;z!52 i ~l2m!lnR~r ,A;z!, l,mPR, ~3.136!

lim
a↓0

Da~r ,A;z!52E
0

z

dwlnR~r ,A;w!, ~3.137!

uniformly on compact subsets of the cut planeC(r ,A) (3.133). Here,ln is real-valued for z and
w real, resp., and the integration path in (3.137) belongs toC(r ,A).

Proof: This follows in the same way as Prop. III.7, with~3.93!, ~the logarithm of! ~3.95! and
Theorem II.7 playing the role of~3.1!, ~3.21! and Theorem II.4, resp.~Since the limits are
p/r -periodic in the stripuImzu,A/2, one need only handle compacts inRr ~2.113!.! h

In terms ofG, ~3.136! reads

lim
a↓0

G~r ,A,a;z1 ila!

G~r ,A,a;z1 ima!
5exp~~l2m!lnR~r ,A;z!!, l,mPR, ~3.138!
J. Math. Phys., Vol. 38, No. 2, February 1997
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uniformly on compacts inC(r ,A). Once more, the branch cuts arise from coalescence of zeros
poles, cf. Prop. III.10.

C. The trigonometric case

The trigonometric case is most easily understood by viewing it as a limiting case of the e
case. In view of~2.90!, this should involve sending one ofa1 ,a2 to `. We shall fix a1[a
P (0,̀ ) and let a2[A go to `. To get finite limits, we clearly should shiftz in an
A-dependent way. We takez→z2 iA/2, and thus wind up with

G~r ,a;z![ lim
A→`

G~r ,a,A;z2 iA/2!. ~3.139!

From the product representation~3.117! it is immediate that this limit exists mero-uniformly
yielding

G~r ,a;z!5 )
m51

`

~12q2m21e2irz!21, q[e2ar. ~3.140!

For Imz.2a/2 we can also evaluate the limit~3.139! by using ~3.92!; this yields the series
representation

G~r ,a;z!5expS (
n51

`
e2inrz

2nshnraD , Imz.2a/2. ~3.141!

We continue by studying the trigonometricG-function just defined.
Proposition III.14 „defining ADE…: The function G(r ,a;z) is the upward iteration solution

to the ADE

G~z1 ia/2!

G~z2 ia/2!
512e2irz. ~3.142!

Proof: This is clear from the product representation~3.140! @recall ~2.1!–~2.4!#. h

Notice that the ADE ~3.142! is not regular. However, a shiftz→z1 ia/2 ~say! gives rise to a
regular ADE. Indeed, the function

f~z!5 ln~12exp~2ir ~z1 ia/2!!!52 (
n51

`

n21qne2inrz ~3.143!

satisfies the assumptions of Theorem II.4, andG(r ,a;z1 ia/2) is a minimal solution to the asso
ciated multiplicative ADE. @Compare the logarithm of~3.141! with ~2.106! to see this.# Observe
also that~3.142! agrees with theA→` limit of the elliptic ADE

G~r ,a,A;z2 iA/21 ia/2!

G~r ,a,A;z2 iA/22 ia/2!
522ir )

n51

`

~12e22nAr!2•eirzs~r ,A;z!, ~3.144!

cf. ~3.100!, ~3.96!–~3.99!, ~3.139! and ~2.90!.
Proposition III.15 „automorphy properties…: The function G is periodic with primitive

periodp/r . It obeys the multiplication formula

GS r , aM ;zD5)
j51

M

GS r ,a;z1
ia

2M
~M1122 j ! D , ~3.145!
J. Math. Phys., Vol. 38, No. 2, February 1997
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the period doubling formula

G~2r ,a;z!5G~r ,a;z!G~r ,a;z2p/2r !, ~3.146!

the scaling relation

G~l21r ,la;lz!5G~r ,a;z!, lP~0,̀ !, ~3.147!

and the duplication formula

G~r ,a;2z!5 )
s51,2

G~r ,a;z2 isa/4!G~r ,a;z2 isa/42p/2r !. ~3.148!

Proof: These properties follow from the series representation~3.141! in the same way as in
the two previous cases. h

Proposition III.16 „zeros, poles, residues…: The function G(z) has no zeros and simple pole
given by

zjk[ jp/r2 ia~k11/2!, jPZ, kPN ~poles!. ~3.149!

The residues at the poles zj0 , j P Z, are given by

r 05 i S 2r)
n51

`

~12q2n!D 21

5
i

2r
G~ ia/2!, ~3.150!

and the residues at the remaining poles zjk , j P Z,k P N* , are given by

r k5r 0 / )
m51

k

~12q22m!. ~3.151!

Proof: The first assertion is immediate from~3.140!. The residues~3.150! follow either from
~3.109! by taking a limit, or directly from~3.140!. Using

G~z1z0k!5 )
m51

k

~12q22me2irz!21G~z1z00!, ~3.152!

the residues at the remaining poles can now be obtained, yielding~3.151!. h

Proposition III.17 „asymptotics…: The function G satisfies the bound

G~r ,a;z!511O~exp~22r Imz!!, Imz→`, ~3.153!

uniformly forRezP R.
Proof: This estimate readily follows from the series representation~3.141!. h

Proposition III.18 „meromorphic continuation…: The function G can be analytically con
tinued to a function that is meromorphic in r,a and z, provided ar stays in the right half plane
Fixing r,a with Re(ar).0, one obtains a meromorphic function without zeros and with sim
poles located at (3.149).

Proof: This can be read off from the product representation~3.140!. h

The propositions derived thus far have elliptic and/or hyperbolic analogs. In the previou
cases, however, theG-function satisfiesG(z)G(2z)51, a relation that does not hold in th
trigonometric case. Instead, we have the following result.

Proposition III.19 „functional equation…: The trigonometric G-function satisfies
J. Math. Phys., Vol. 38, No. 2, February 1997
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G~r ,a;z!G~r ,a;2z!5R~r ,a;z!21, ~3.154!

where the rhs is given by (3.93).
Proof: This is obvious from the series representations~3.141! and ~3.95!. h

We point out that this functional equation may be seen as a footprint left by the secondDE
satisfied by the ellipticG-function: Takinga→a1 , the rhs can be writtenR1(z)

21, so ~3.154!
can be deduced from~3.100! with d52 and the limit~3.139!.

Next, we introduce the function

T~r ;z![
G~r ,1;0!

G~r ,1;2z!
expS rz22 1 izln~2r !2

1

2
lnp D , Rer.0. ~3.155!

This renormalized version ofG(r ,a;z) satisfies the ADE

T~r ;z1 i /2!

T~r ;z2 i /2!
5
isinrz

r
~3.156!

and functional equation

T~r ;z!T~r ;2z!5p21exp~rz21 irz !
s~r ,1;z1 i /2!

s~r ,1;i /2!
. ~3.157!

Taking r↓0, the right-hand sides of~3.156! and ~3.157! obviously converge toiz andp21chpz
@recall ~2.92!#, resp., in accordance with the next proposition.

Proposition III.20 „relation to gamma function…: One has

lim
r↓0

T~r ;z!51/G~ iz11/2! ~3.158!

uniformly for z inC-compacts.
Proof:We begin by noting that it suffices to show that~3.158! holds uniformly on compacts

of the lower half plane~LHP!. ~Indeed, from~3.156! we have

T~r ;z1 ik !5
i

r
sinr ~z1 i ~k21/2!!•••

i

r
sinr ~z1 i /2!T~r ;z!, ~3.159!

so if ~3.158! holds uniformly on LHP-compacts, then the rhs of~3.159! converges in the sam
sense to

~ iz2k11/2!•••~ iz21/2!
1

G~ iz11/2!
5

1

G~ i ~z1 ik !11/2!
. ~3.160!

Hence,~3.158! follows for compacts of Imz<k). To this end we use the formula

e~z!5e~0!1ze8~0!1E
0

z

dwE
0

w

dse9~s! ~3.161!

to rewrite the logarithms ofT(r ;z) and 1/G( iz11/2). This yields

T~r ;z!5expS 2
1

2
lnp1 izK~r !1E

0

z

dwE
0

w

dsh~r ;s! D ~3.162!

with
J. Math. Phys., Vol. 38, No. 2, February 1997
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h~r ;z![2r(
n51

`
nre22inrz

shnr
1r , Imz,1/2, ~3.163!

K~r ![ ln~2r !1 (
n51

`
r

shnr
~3.164!

@cf. ~3.155! and ~3.141!# and

1

G~ iz11/2!
5expS 2

1

2
lnp2 izcS 12D 1E

0

z

dwE
0

w

dsh~s! D ~3.165!

with

h~z![2E
0

`

dy
ye22iyz

shy
, Imz,1/2, ~3.166!

cf. ~A37!, ~A12!, and~A33!, ~A34!.
Comparing~3.163! and ~3.166!, we deduce

lim
r↓0

h~r ;z!5h~z! ~3.167!

uniformly on LHP-compacts. Comparing then~3.162! with ~3.165!, we see that it remains to show

lim
r↓0

K~r !52c~ 1
2!. ~3.168!

To prove this, we use the ADEs ~3.156! and ~A24! to write

T~r ;2 i !

T~r ;0!

G~3/2!

G~1/2!
5

r

2sh~r /2!
. ~3.169!

Due to ~3.162! and ~3.165!, the lhs can be rewritten

expSK~r !1cS 12D 1E
0

2 i

dwE
0

w

ds@h~r ;s!2h~s!# D , ~3.170!

and since the integral converges to 0 forr↓0 we now obtain~3.168!. Therefore, the proof of the
proposition is complete. h

Comparing the ADEs ~3.156! and ~3.70!, we deduce that the quotient

Q~r ;z![T~r ;z!/H~ ir /p;z!, Rer.0, ~3.171!

of the trigonometric and hyperbolic functions isi -periodic. Moreover, comparing poles and zer
of T andH, we deduce thatQ is entire inz and has simple zeros at

z52kp/r1 i ~ l11/2!, kPN* , lPZ. ~3.172!

Furthermore, recalling Prop. III.6, we infer

lim
r↓0

Q~r ;z!51 ~uniformly on compacts!. ~3.173!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Our last proposition concerns two zero step size limits that may be tied in with~3.136! and
~3.137! via ~3.139!. We set

C2~r ,d![C\$2 i @d/2,`!1kp/r ukPZ%, r.0,d>0, ~3.174!

and define a branchg(r ,a;z) of 2 i lnG in C2(r ,a) by requiring

g~r ,a;z![2 i(
n51

`
e2inrz

2nshnra
, Imz.2a/2, ~3.175!

cf. ~3.141!. Now we put

da~r ,l,m;z![g~r ,a;z1 ila!2g~r ,a;z1 ima!, zPC2~r ,a!, l,mPR, ~3.176!

Da~r ;z![ag~r ,a;z!, zPC2~r ,a!. ~3.177!

~Compare this to~3.133!–~3.135!.!
Proposition III.21 „zero step size limits…: One has

lim
a↓0

da~r ,l,m;z!52 i ~l2m!ln~12e2irz!, l,mPR, ~3.178!

lim
a↓0

Da~r ;z!52E
i`

z

dwln~12e2irw !, ~3.179!

uniformly on compact subsets of the cut planeC2(r ,0) (3.174). Here,ln is real valued for
z,w P i (0,̀ ), and the integration path in (3.179) belongs toC2(r ,0).

Proof: From ~3.175! it readily follows that the proposition is valid when the cut pla
C2(r ,0) is replaced by its upper half plane subset. Applying Theorem II.7 to the func
f a(z)[da(z1 i ) and f a(z)[Da(z1 i ) ~which satisfy the hypotheses of that theorem fora0 small
enough!, one obtains validity for all of the cut plane. h

Translated toG, the limit ~3.178! becomes

lim
a↓0

G~r ,a;z1 ila!

G~r ,a;z1 ima!
5exp~~l2m!ln~12e2irz!!, l,mPR, ~3.180!

uniformly on compact subsets of the cut planeC2(r ,0). Just as in the previous two cases@cf.
~3.91! and~3.138!#, this formula is evident from the defining ADE whenl2m is an integer. For
l2m¹Z, the branch cuts in the lower half plane arise from the coalescence of poles and
that can be read off from~3.149!.

We conclude this subsection by detailing the relation of the trigonometricG-function
G(r ,a;z) to the q̃-gamma functionG q̃(z). Recall the latter is given by~cf., e.g., Ref. 4, p. 16!

G q̃~z!5~12q̃!12z)
n51

`
~12q̃ n!

~12q̃z1n21!
. ~3.181!

Comparing this to the product formula~3.140! for G, we see that when we take

q̃[q25e22ar ~3.182!

we may writeG as
J. Math. Phys., Vol. 38, No. 2, February 1997
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G~r ,a;az!5G q̃~2 iz11/2!~12q̃!2 iz21/2)
n51

`

~12q̃ n!21. ~3.183!

From this we readily obtain@recall ~3.155!#

T~r ;z!5
G q̃~1/2!

G q̃~ iz11/2!
expS 2

1

2
lnp1

rz2

2
2 izlnS 12e22r

2r D D . ~3.184!

Using these relations, some of the above results can be translated in terms ofG q̃ , recovering
results that have been obtained by several authors, cf. Ref. 4 and references given there.

IV. SCATTERING FUNCTIONS

A. The hyperbolic case

We present our results on the hyperbolic scattering functionu(a1 ,a2 ,b;z) in a form that
anticipates our account of the elliptic case. First of all, we defineu by

u~z![
G~z2 ib1 i ~a11a2!/2!G~z1 ib2 i ~a11a2!/2!

G~z2 i ~a12a2!/2!G~z1 i ~a12a2!/2!
, ~4.1!

whereG(z)5G(a1 ,a2 ;z) is the hyperbolicG-function from Subsection III A. In~4.1! and in
many later formulas, the dependence ona1 anda2 is suppressed. This should cause no confus
sinceu—just likeG—satisfies

u~a1 ,a2 ;z!5u~a2 ,a1 ;z!, ~4.2!

cf. ~3.23!. Similarly, the automorphy properties~3.22! and ~3.24! yield

u~2z!51/u~z!, ~4.3!

u~la1 ,la2 ,lb;lz!5u~a1 ,a2 ,b;z!, lP~0,̀ !. ~4.4!

By virtue of Prop. III.5 theu-function is meromorphic ina1 ,a2 ,b and z, provided the
quotient a1 /a2 stays away from the negative real axis. As a rule, however, we restrict
considerations to parameters in the set

H[$~a1 ,a2 ,b!ua1 ,a2.0,bPR%. ~4.5!

This choice corresponds to physical applications; in particular, it guaranteesuu(x)u51 for real
x.

Next, we observe that the ADEs ~3.4! entail thatu solves the ADEs

u~z1 iad/2!

u~z2 iad/2!
5
s2d~z2 ib1 iad/2!s2d~z1 ib2 iad/2!

s2d~z1 iad/2!s2d~z2 iad/2!
, ~4.6!

where we have introduced

sd~z![
sh~pz/ad!

p/ad
, d51,2. ~4.7!

~This definition mimicks the elliptic definition~3.98!, cf. ~2.92!.! Fixing d P $1,2%, the ADE
~4.6! is regular unless the parameters (a1 ,a2 ,b) belong to the planes
J. Math. Phys., Vol. 38, No. 2, February 1997
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ad52na2d , nPN* , ~4.8!

or

b5ka2d1ad/2, kPZ. ~4.9!

These planes separate the regionH ~4.5! into infinitely many connected components, one
which reads

Rd[$~a1 ,a2 ,b!PHuadP~0,2a2d!,bP~ad/2,a2d1ad/2!. ~4.10!

Choosing parameters inRd , theu-function may now be characterized as the unique minim
solution to the ADE ~4.6! that satisfies

u~0!51, uu~x!u51, xPR. ~4.11!

Indeed, the pole/zero properties of theG-function ~cf. Prop. III.3! entail thatu ~4.1! is a regular
solution to~4.6! if and only if (a1 ,a2 ,b) P Rd . Moreover, for all (a1 ,a2 ,b) P H one has

u~z!5expS 6
ip

a1a2
~b2a1!~b2a2! D1O~exp~6~e22p/am!z!!, Rez→6`, ~4.12!

uniformly for Im z in R-compacts, cf. Prop. III.4. Therefore,u is indeed a minimal solution to
~4.6! for parameters inRd ~4.10!. From Theorem II.1 and~4.11! one now easily deduces th
above uniqueness assertion.

It should be remarked at this point that the ADE ~4.6! does admit minimal solutions wheneve
the parameters do not belong to the planes~4.8! and ~4.9!. Indeed, this readily follows from
Section II. More concretely, a minimal solution can be constructed by multiplyingu(z) by finitely
many factors of the formsd(z2p)/sd(z1p) that cancel the poles and zeros ofu(z) in the strip
uImzu,ad/2. ~Observe thatu(z) has no poles and zeros foruImzu5ad/2 unless~4.8! or ~4.9! holds
true.!

Since the rhs of ~4.6! is a2d-periodic in b, the quotient u(b1a2d ;z)/u(b;z) is
iad-periodic inz. Specifically, one obtains from~4.1! and ~3.4!

u~b1a2d ;z!

u~b;z!
52

sd~z1 ib !

sd~z2 ib !
. ~4.13!

Therefore, iteration yields~takingk1 ,k2 P Z)

u~b1k1a11k2a2 ;z!

u~b;z!
5 )

d51,2
)
j d51

ukdu
s2d~z1 i ~kd /ukdu! ~b2ad/2!1 iad~ j d2 1/2!!

~z→2z!
.

~4.14!

Next, we introduce the parameter subset

D[$~a1 ,a2 ,b!PHub5k1a11k2a2 ,k1 ,k2PZ% ~4.15!

ofH ~4.5!. Since the numbersk1a11k2a2 ,k1 ,k2 P Z, are dense inR whenevera1 /a2¹Q,
the subsetD is dense inH. Now from ~4.1! we read off

u~a1 ,a2 ,a1 ;z!5u~a1 ,a2 ,a2 ;z!51 ~4.16!

and also, using~3.4!,
J. Math. Phys., Vol. 38, No. 2, February 1997
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u~a1 ,a2,0;z!521. ~4.17!

Hence,~4.14! yields

u~a1 ,a2 ,k1a11k2a2 ;z!5ck1 ,k2 )
d51,2

)
j d51

ukdu
s2d~z1 iad~ j d2u~kd!!!

~ i→2 i !
~4.18!

with

u~ j ![H 0, j,0,

1, j.0,
~4.19!

and

ck,l[~2 !k1 l11, k,lPZ. ~4.20!

In words, theu-function is an elementary function for parameters in the dense subsetD ofH. ~Of
course, whenevera2 /a1 is a rational number, there exist infinitely many distinct pairs (k,l )
P Z2 for which the numberka11 la2 is the same; this yields different representations for
same function.!

We continue by noting the symmetry property

u~b;z!5u~a11a22b;z!, ~4.21!

which can be read off from~4.1!. Combining this with~4.14! ~taking k1 ,k251), we deduce

u~2b;z!

u~b;z!
5
s1~z1 ib !

s1~z2 ib !

s2~z1 ib !

s2~z2 ib !
. ~4.22!

Since this parameter transformation leavesD ~4.15! invariant, it does not give rise to additiona
elementary representations foru.

Next, we derive analogs of the multiplication formula~3.25!. First, we use~4.1! to get

uS a1

M
,a2 ,b;zD5)

j51

M
G~z2 ib1 i ~a1/2! 1 i ~a2/2! 1 i ~a1 /M ! ~12 j !!

G~z2 i ~a1/2! 1 i ~a2/2! 1 i ~a1 /M ! ~M2 j !!

3
G~z1 ib2 i ~a1/2! 2 i ~a2/2! 1 i ~a1 /M ! ~M2 j !!

G~z1 i ~a1/2! 2 i ~a2/2! 1 i ~a1 /M ! ~12 j !!
. ~4.23!

with G(z)5G(a1 ,a2 ;z). Rearranging and using~4.1! once more, we deduce

uS a1

M
,a2 ,b;zD5u~a1 ,a2 ,b;z! )

k51

M21

uS a1 ,a2 ,b;z1 ik
a1

M D
3
G~z1 ik ~a1 /M ! 2 ib1 i ~a2/2! 2 i ~a1/2!!

G~z1 ik ~a1 /M ! 2 ib1 i ~a2/2! 1 i ~a1/2!!

3
G~z1 ik ~a1 /M ! 2 i ~a2/2! 1 i ~a1/2!!

G~z1 ik ~a1 /M ! 2 i ~a2/2! 2 i ~a1/2!!
. ~4.24!

This can be simplified by using the ADE ~3.4!, which yields
J. Math. Phys., Vol. 38, No. 2, February 1997
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uS a1

M
,a2 ,b;zD5~2 !M21 )

k50

M21

uS a1 ,a2 ,b;z1 ik
a1

M D )
j51

M21
s2~z1 i ja1 /M !

s2~z2 ib1 i ja1 /M !
. ~4.25!

Equivalently, we may also rearrange~4.23! to get

uS a1

M
,a2 ,b;zD5~2 !M21 )

k50

M21

uS a1 ,a2 ,b;z2 ik
a1

M D )
j51

M21
s2~z1 ib2 i ja1 /M !

s2~z2 i ja1 /M !
. ~4.26!

Substitutinga2→a2 /N in the formulas~4.25! and ~4.26!, and using first~4.2! and then one of
these formulas again, one obtains four representations foru(a1 /M ,a2 /N,b;z) in terms of
u(a1 ,a2 ,b;z) and sh-quotients.

The choicesb5a1/2 or b5a2/2 yield the sine-Gordon soliton–solitonS-matrix. Taking
b5a1/2, it follows from ~4.18! that there exists a dense set ofa2-choices yielding an elementar
u. Specifically, choosinga25a1(112 j )/2l with j P N,l P N* , we haveb5a1/25 la22 ja1 .
Thus, setting

a j l[
p

2l
~112 j !, jPN, lPN* , ~4.27!

we deduce from~4.18!

u~p,a j l ,p/2;z!5 )
m51

j shpa j l
21~z1 imp!

~z→2z! )
k51

l21
sh~z1 ika j l !

~z→2z!
~sG!. ~4.28!

We proceed by obtaining and studying integral representations. In view of~3.1! and~3.3!, we
may rewriteu ~4.1! as

u~z!5exp~E~z!! ~4.29!

with

E~z![2i E
0

`dy

y

sh~a12b!ysh~a22b!y

sha1ysha2y
sin2yz. ~4.30!

Clearly, the integral converges absolutely provided

uImzu,d~a1 ,a2 ,b!/2, ~4.31!

where

d~a1 ,a2 ,b![a11a22ua12bu2ua22bu. ~4.32!

In particular, one has

d~a1 ,a2 ,b!.ad⇔~a1 ,a2 ,b!PRd , ~4.33!

cf. ~4.10!. This bound amounts to the regularity ofu(z) in Rd , viewed as a solution to~4.6!: u
has no poles and zeros in the stripuImzu<ad/2 when (a1 ,a2 ,b) P Rd .

More generally, setting

C[$~a1 ,a2 ,b!PHubP~0,a11a2!%, ~4.34!
J. Math. Phys., Vol. 38, No. 2, February 1997
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the representation~4.29! makes sense and holds true in a strip around the realz-axis if and only if
the parameters belong toC . Indeed, one easily verifies

d~a1 ,a2 ,b!.0⇔~a1 ,a2 ,b!PC . ~4.35!

Observe thatR1øR2 is a proper subset ofC .
Letting uImzu,ad/2 and choosing parameters inRd , we can derive a second integral repr

sentation from Theorems II.3 and II.2, as applied to the ADE ~4.6!. From~4.29! and~4.30! we read
off that the minimum integerk in Theorem II.3 equals 1. Setting

fd~z![ lnS s2d~z2 ib1 iad/2!s2d~z1 ib2 iad/2!

s2d~z1 iad/2!s2d~z2 iad/2! D ~4.36!

with ln real for z real, we now deduce

E~z!5
1

2iad
E

2`

`

dxfd~x!th
p

ad
~z2x!, ~a1 ,a2 ,b!PRd , uImzu,ad/2. ~4.37!

~Indeed, both lhs and rhs vanish forz50, and equality of derivatives is easily derived via~2.27!
with a→ad andf(u)→fd8(u).! Notice that the integral on the rhs converges absolutely for
z and any (a1 ,a2 ,b) P H; even so,~4.37! is in general false for parameters not belonging
Rd . Note also that for parameters inR1ùR2 one gets two different representations witho
manifesta1↔a2 symmetry.

Using the identity~A42! we can rewrite~4.37! as

E~z!5
sh~2pz/ad!

iad
E
0

` fd~x!dx

ch~2pz/ad!1ch~2px/ad!
, ~a1 ,a2 ,b!PRd , uImzu,ad/2.

~4.38!

Combining this with ~A43!, ~A44! and the Plancherel relation for the cosine transform,
recovers the symmetric representation~4.30!.

We proceed by deriving yet another asymmetric representation for theu-function, in terms of
an infinite product of gamma functions.~Somewhat surprisingly, this representation is not an e
consequence of~3.63!, ~3.64! and ~3.67!.! First, we introduce

g l~r,g,s![G~s111 l /r!G~2s1g1 l /r!G~s1 l /r!G~2s112g1 l /r!/~s→2s!,
~4.39!

wherel P N,r P C2,g,s P C. Fixing l ,g,s and takingr.0 and small enough, we may invok
~A45! to deduce

g l~r,g,s!5expS 4E
0

`dy

y

sh~g21!ysh2syshgy

shy
e22ly /rD . ~4.40!

This representation is well defined and valid for

lRe~r21!.uRegu1uResu. ~4.41!

By virtue of ~B18! it can be rewritten

g l~r,g,s!5expS 4E
0

`

e22l t /r f 3~g21,2s,g,t !dtD . ~4.42!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Next, we assert that the function

P~r,g,s![ lim
N→`

)
l51

N

g l~r,g,s! ~4.43!

is well defined and meromorphic inC23C2. To prove this, we fix a compactK,C23C2 and put
w[2l /r. Letting (r,g,s) vary overK, we can ensure~by taking l>L with L large enough! that
the bound~B21! applies for a suitablex P (0,p/2) andR ~depending onK). Thus we deduce tha
g l is analytic onK and satisfies

ug l~r,g,s!21u<CK / l
2, ;~r,g,s!PK, ; l>L. ~4.44!

Consequently, the function) l5L
N g l converges uniformly onK to an analytic function for

N→`, and the assertion easily follows.
We claim thatu can be written

u~a1 ,a2 ,b;z!5

GS iza2
11DGS 2

iz

a2
1

b

a2
D

~z→2z!
PS a2

a1
,
b

a2
,
iz

a2
D . ~4.45!

Since we already know thatu is meromorphic for (a2 /a1 ,b,z) P C23C2, we need only prove
this for z5x P R and parameters inC ~4.34!. To this end we show that the rhs is given b
exp(E(x)) ~with E(x) defined by~4.30!!: Using ~A45! and ~4.40! we have~with g[b/a2)

GS ixa2
11DGS 2

ix

a2
1gD

~x→2x! )
l51

N

g lS a2

a1
,g,

ix

a2
D

5expS 2i E
0

`dy

y

sh~12g!ysin~2xy/a2!

shy S e2gy22shgy(
l51

N

exp~22lya1 /a2!D D
5expS i E

0

`dy

y

sh~a22b!ysin~2xy!

sha2ysha1y
~e2by~ea1y2e2a1y!

1~e2by2eby!e2a1y~12e22a1Ny!!D . ~4.46!

A dominated convergence argument now shows that we may takeN→` under the integral sign
yielding the limit exp(E(x)), as claimed.

We conclude this subsection by deriving four distinct limits of theu-function, using param-
eters

a1[p,a2[bn,b[bng, b,n.0, gPR. ~4.47!

First, we assert that

lim
b↓0

u~p,bn,bng;bp!5

GS ipn 11DGS 2
ip

n
1gD

~p→2p!
~ II nr limit !, ~4.48!

where the limit is mero-uniform inp. To show this, we use~4.1!, ~3.22!, ~3.24! and~3.69! to write
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u~p,bn,bng;bp!5
H~r; p/n 2 ig1 i /2!H~r;2 p/n 2 i /2!

~p→2p!
, r[bn/p. ~4.49!

Then the assertion follows from~3.72!.
The formula~4.48! can be interpreted as the~nonrelativistic! II nr limit of the ~relativistic!

II rel S-matrix, cf. Ref. 1, Eq.~3.45!. It can also be derived from the product representation~4.45!.
Indeed, one has

lim
r↓0

P~r,g,s!51 ~4.50!

uniformly for g,s in a fixed compactB,C2. To verify this, note first thatg l(r,g,s) ~4.39! is
analytic inB for r.0 small enough, and given by~4.40!. From this representation it follows tha
g l(r,g,s) converges to 1 asr↓0, uniformly for (g,s) P B. Next, observe that forr<e ~with e
depending only onB) one may use~4.42! and the bound~B21! with w[2l /r to deduce

ug l~r,g,s!21u<CBr2/ l 2<CBe2/ l 2, ;~g,s!PB, ; lPN* . ~4.51!

Clearly, this bound suffices to dominate thel -dependence, so one infersP→1, uniformly onB.
The next limit amounts to taking the Irel limit of the dual IIrel S-matrix, cf. Ref. 1: We claim

lim
b↓0

u~p,bn,bng;nx!5exp~ ip~12g!!, xPR0 ~ Irel limit !, ~4.52!

where the limit is uniform on compacts ofR0 ~2.73!. Before proving this, let us note that th
restriction onx is essential: for Rex,0 one obtains the complex conjugate phase factor by vi
of ~4.3!. ~Forg¹Z, the poles and zeros ofu become dense on the imaginary axis asb↓0, cf. ~4.1!
and Prop. III.3.! Observe also that the phase amounts to a limit of the phase in~4.12!.

To prove~4.52!, we use the product representation~4.45! and several results from Appendi
B. First, we handle the prefactor

Qb~g,x![
G~ ix/b 11!G~2 ix/b 1g!

~x→2x!
. ~4.53!

It can be rewritten

Qb~g,x!5eip~12g!S G~w111!

G~w11g!
e~g21!lnw1D S G~w21g!

G~w211!
e~12g!lnw2D , w6[6

ix

b
. ~4.54!

Using ~B23! to rewrite the functions in brackets, and lettingx vary over a fixed compac
K,R0, we now exploit the bound~B20!. First, takingR511ugu and x5p/4 ~say!, one can
ensurew1 ,w2 P SR,x for all x P K by choosingb small enough. Then it follows from~B20! that

lim
b↓0

Qb~g,x!5exp~ ip~12g!! ~4.55!

uniformly for x P K. ~This may be viewed as the IInr→Inr S-matrix limit, cf. Ref. 1, Eq.~3.45!.!
It remains to prove

lim
r↓0

P~r,g,iy /r!51 ~4.56!

uniformly on compacts of$Rey.0%. To this end we first use~4.39! and ~B23! to write
J. Math. Phys., Vol. 38, No. 2, February 1997
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g l~r,g,iy /r!5exp~L2~~ iy1 l !/r,1,g!1L2~~2 iy1 l !/r,g,1!1L2~~ iy1 l !/r,0,12g!

1L2~~2 iy1 l !/r,12g,0!!. ~4.57!

Next, we lety vary over a compactK,R0, and use the bound~B20! in the same way as befor
to infer thatg l→1 for r↓0, uniformly onK.

As a consequence,~4.56! will follow provided we can supply a bound controlling the inte
change of limitsN→` andr↓0. Now the estimate~B20! is not sufficiently strong, since it only
leads to 1/l -decrease ofug l21u, and the sequence (1,1/2,1/3,. . . ) is not inl 1. But we can obtain
a suitable bound by combining the representation~4.42! with the estimates~B21! and ~B26!, as
follows.

We begin by observing that~4.42! and ~B15! entail

g l~r,g,iy /r!5exp~4L3~2l /r,g21,g,2iy /r!!. ~4.58!

Letting y vary overK and choosingr P (0,e# with e small enough, we may taker 35cK /r in the
bound~B21! onL3. Choosing nowx50,R5(cK11)/r andL.(cK11)/2, we deduce

UL3S 2lr ,g21,g,
2iy

r D2
iryg~g21!

l 2 U< r3

4l 2
C3 , rP~0,e#, l>L, yPK. ~4.59!

Next, we use the bound~B26! to majorize the rhs of~4.59! by Cr/ l 2. By dominated convergence
this suffices to conclude that the function) l5L

` g l converges to 1 asr↓0, uniformly onK. Since
we have already shown thatg l→1 uniformly on K for all l>1, we may now deduce~4.56!.
~Notice that~4.58! and~B21! are not adequate for showingg l→1 for smalll ; this is why we used
~4.57! and ~B19!.!

Alternatively, ~4.52! can be derived as a corollary of Prop. III.7. Indeed, from~4.1! we have

u~p,a,ag;z!5
G~p,a;z1 ip/21 ia~1/22g!!

G~p,a;z1 ip/22 ia/2!
•

G~p,a;z2 ip/21 ia~g21/2!!

G~p,a;z2 ip/21 ia/2!
. ~4.60!

Thus, we may use~3.91! with Rez.0 to deduce the limit~4.52!.
It is of interest to reconsider this limit in the setting of Theorem II.4. Choosing, e.gg

P (1/2,1), one can takef a(z) equal to]zlnu(p,a,ag;z); letting a→0, one getssm(a)→0 and
f a(z)→0 uniformly on compacts in the left and right half planes. Even so,f a(z) does not remain
bounded near the origin, sinceu(z) has distinct limits in the left and right half planes.

We continue by obtaining a third limit of theu-function, keeping the parameters~4.47!, but
now takingb fixed while lettingb↓0. Specifically, we claim

lim
b↓0

expS 2
2ip

n
lnS b

2sinbD Du~p,bn,b;bp!5

GS ipn 11D
~p→2p!

expS 2ipn ln~2n! D ,
bP~0,p! ~VInr limit !, ~4.61!

where the limit is mero-uniform. The function on the rhs may be viewed as the~nonrelativistic
Toda! VInr S-matrix, cf. Ref. 1, Eq.~3.45!. The limiting transition IIrel→VInr is readily controlled
at the level of the Poisson commuting classical Hamiltonians, cf. the paragraph containin
~3.87! in Ref. 2. Formally, it also holds true for the corresponding quantum Hamiltonians.
S-matrix limit ~4.61! agrees with the obvious conjecture that the limit holds true for the suit
normalized~reducedN52) eigenfunctions; the plane wave factor on the lhs reflects the diver
position shift~3.87! in Ref. 2.

To prove~4.61!, we begin by observing that
J. Math. Phys., Vol. 38, No. 2, February 1997
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lim
g↑`

expS 2ipn lngD GS 2
ip

n
1gD

~p→2p!
51 ~4.62!

uniformly on p-compacts.~This limit amounts to the IInr→VInr S-matrix limit, cf. Ref. 1, Eq.
~3.45!, and the paragraph containing Eq.~2.116! in Ref. 2.! Indeed, this follows from~B23! and
~B20! ~takingw5g) in a by now familiar way. As a result,~4.61! will follow once we show

lim
r↓0

P~r,b/pr,s!5expS 2slnS b

sinbD D , bP~0,p!, ~4.63!

uniformly on s-compacts.
To prove~4.63!, we write

g l~r,b/pr,s!5exp~L2~ l /r,s11,2s11!!exp~L2~ l /r,s,2s!!

3exp~L2~~ lp1b!/pr,2s,s!!

3exp~L2~~ lp2b!/pr,2s11,s11!!exp~22sln~12b2/ l 2p2!!. ~4.64!

Sinceb P (0,p), we havelp6b.0, and so we conclude using~B20!

lim
r↓0

g l~r,b/pr,s!5exp~22sln~12b2/ l 2p2!! ~4.65!

uniformly on s-compacts. Now from~A23!–~A25! @with a50, cf. ~A28!# one derives the well-
known identity

sinb

b
5)

l51

` S 12
b2

l 2p2D . ~4.66!

Using this on the rhs of~4.63! and comparing with~4.65!, we infer that we need only supply
bound that is sufficiently strong to render the interchange of limits legitimate.

The bound~B20! leads to anO( l21)-majorization, so it is not strong enough. Just as in
previous case, we will now derive onO( l22) estimate~for l sufficiently large! by combining
~B21! and ~B26!. To this purpose we observe that we may write

g l~r,b/pr,s!5exp~4L3~2l /r,211b/pr,2s,b/pr!!, ~4.67!

cf. ~4.42! and ~B15!. For s in a compactB,C andr P (0,e# with e small enough, we can tak
r 35cB /r in ~B21!. Choosing thenx50,R5(cB11)/r andL.(cB11)/2, we obtain

UL3S 2lr ,211
b

pr
,2s,

b

pr D2
sb~b2pr!

2l 2p2 U< r3

4l 2
C3 , rP~0,e#, l>L, sPB. ~4.68!

Using now~B26!, we obtain an upper boundC/ l 2 on the rhs. As before, this suffices to conclu
that ~4.63! holds true. The upshot is that the proof of~4.61! is now complete.

As a corollary of~4.61!, we can obtain the integral

G~11 iz!

G~12 iz!
5expS sh2pz2i E

0

` dt

ch2pz1chpt
lnS 4

t211D D , uImzu,
1

2
. ~4.69!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Indeed, combining the integral

sh2pzE
0

` dt

ch2pz1chpt
52z, uImzu,

1

2
~4.70!

~which results from~A43!, e.g.!, with ~4.29!, ~4.38! and ~4.36!, we obtain

expS 22izlnS b

sinbD D u~p,b,b;bz!

5expS sh2pz2i E
0

` dt

ch2pz1chpt
lnS sh2bt/21sin2~b2b/2!

sh2bt/21sin2b/2
•

b2

sin2bD D , ~4.71!

whereb P (0,b/2),b P (0,p), uImzu,1/2. A straightforward dominated convergence argum
now shows that the rhs of~4.71! converges to the rhs of~4.69! for b↓0. From~4.61! we see that
the lhs converges to the lhs of~4.69!, so ~4.69! results.

Finally, we obtain a limit that may be viewed as the classical limit of the quantumrel
S-matrix. To this end we introduce

L\~p![ i\ lnu~p,\/l,b;p!, ~l,b,p!P~0,̀ !3~0,p!3R0 , ~4.72!

with lnu→0 for p→0, \.0 denoting Planck’s constant. We now claim that

lim
\→0

]pL\~p!5l lnS sh~p1 ib !sh~p2 ib !

sh2p D ~classical limit! ~4.73!

uniformly on compact subsets of the right half planeR0, with ln real valued forp.0. ~The rhs
amounts to the classical IIrel phase shift, cf. Ref. 1, Eq.~2.75! with b51.!

To prove this claim, we substituteag→b in ~4.60! and use~3.83! and ~3.84! to write

ia lnu~p,a,b;z!52Da~z1 ip/22 ib !2Da~z2 ip/21 ib !1Da~z1 ip/2!1Da~z2 ip/2!

2ada~1/2,0;z1 ip/22 ib !2ada~21/2,0;z2 ip/21 ib !

1ada~21/2,0;z1 ip/2!1ada~1/2,0;z2 ip/2!. ~4.74!

Taking a→0, the limit of ~4.74! exists uniformly on compacts inR0 by virtue of ~3.85! and
~3.86!. Takingz-derivatives, one readily obtains a limit that amounts to~4.73!.

B. The elliptic case

The elliptic scattering function is defined in terms of the ellipticG-function from Subsection
III B via ~4.1!. In view of Prop. III.11, this yields a function that is meromorphic inr ,a1 ,a2 ,b
and z, as long asa1r anda2r stay in the right half plane. We shall from now on restrict t
parameters to

E[$~r ,a1 ,a2 ,b!ur.0,~a1 ,a2 ,b!PH%, ~4.75!

cf. ~4.5!. By virtue of Prop. III.9 the ellipticu-function is periodic inz with primitive period
p/r ; moreover, it satisfies~4.2!, ~4.3!, and

u~2r ,a1 ,a2 ,b;z!5u~r ,a1 ,a2 ,b;z!u~r ,a1 ,a2 ,b;z2p/2r !, ~4.76!

u~l21r ,la1 ,la2 ,lb;lz!5u~r ,a1 ,a2 ,b;z!, lP~0,̀ !. ~4.77!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Recalling~3.96!–~3.100!, and using also~2.91!, we see thatu solves the ADEs

u~z1 iad/2!

u~z2 iad/2!
5exp~2r ~ad2b!!

s2d~z2 ib1 iad/2!s2d~z1 ib2 iad/2!

s2d~z1 iad/2!s2d~z2 iad/2!
. ~4.78!

It now follows just as in the hyperbolic case thatu is a regular solution to~4.78! if and only if
(a1 ,a2 ,b) P Rd . Sinceu is p/r -periodic inz, the latter restriction also ensures thatu is the
unique minimal solution satisfying~4.11!. Furthermore, with~4.6! replaced by~4.78!, the remark
below ~4.12! applies verbatim to the elliptic case.

Using ~3.100! and ~2.91! we now obtain the analog of~4.13!:

u~b1a2d ;z!

u~b;z!
52e2irz

sd~z1 ib !

sd~z2 ib !
. ~4.79!

To simplify the iterations of these ADEs, we use the formula

s~r ,a;z11 ina!

s~r ,a;z22 ina!
5e22irn ~z11z2!

s~r ,a;z1!

s~r ,a;z2!
, nPN, ~4.80!

which follows from ~2.91!. Then we obtain once more the relation~4.14!, but now with an extra
factor exp(2irz(k11k222k1k2)) on the rhs. Noting the elliptic analog

u~r ,a1 ,a2 ,a1 ;z!5u~r ,a1 ,a2 ,a2 ;z!51 ~4.81!

of ~4.16!, we deduce the elliptic analog

u~r ,a1 ,a2,0;z!52e22irz ~4.82!

of ~4.17! and, more generally, the explicit formula~4.18!, with ~4.20! replaced by

ck,l[~2 !k1 l11exp~2irz~k1 l22kl21!!, k,lPZ ~4.83!

It is clear that the symmetry property~4.21! continues to hold in the elliptic case. Moreove
it leads again to the relation~4.22! betweenu(2b;z) andu(b;z). Next, we note that~4.23! still
holds true, since the ellipticG-function satisfies the multiplication formula~3.25!. Hence,~4.24!
follows as before. Using the ADEs ~3.100! and~2.91! we then obtain as the analogs of~4.25! and
~4.26!

uS r , a1

M
,a2 ,b;zD5~2 !M21exp~ ir ~M21!~2Mz1 ia12 ib !!

• )
k50

M21

uS r ,a1 ,a2 ,b;z1 ik
a1

M D )
j51

M21
s2~z1 i ja1 /M !

s2~z2 ib1 i ja1 /M !
~4.84!

and

uS r , a1

M
,a2 ,b;zD5~2 !M21exp~ ir ~M21!~2Mz2 ia11 ib !!

• )
k50

M21

uS r ,a1 ,a2 ,b;z2 ik
a1

M D )
j51

M21
s2~z1 ib2 i ja1 /M !

s2~z2 i ja1 /M !
. ~4.85!
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Once more,a1↔a2 symmetry can now be used to obtain four distinct representations
u(r ,a1 /M ,a2 /N,b;z) in terms ofu(r ,a1 ,a2 ,b;z) ands-quotients.

The choicesb5a1/2 or b5a2/2 yield the XYZ soliton-solitonS-matrix. Thus it follows
from ~4.18! and ~4.83! that the counterpart of~4.28! reads

u~r ,p,a j l ,p/2;z!5exp~2irz~ l2 j12l j21!!

• )
m51

j
s~r ,a j l ;z1 imp!

~z→2z! )
k51

l21
s~r ,p;z1 ika j l !

~z→2z!
~XYZ !. ~4.86!

Next, we use~4.1!, ~3.92! and ~3.3! to obtain

u~z!5exp~E~z!!5expS 2i(
n51

`
sh~a12b!nrsh~a22b!nr

nsha1nrsha2nr
sin2nrzD . ~4.87!

The series converges absolutely if and only if~4.31! holds true. As before, regularity ofu(z) for
parameters inRd can be read off from~4.33!. Furthermore, the series representation~4.87! is
valid for realz iff the parameters belong to the convergence region~4.34!.

Choosing (a1 ,a2 ,b) P Rd and introducing

fd~z![ lnS s2d~z2 ib1 iad/2!s2d~z1 ib2 iad/2!

s2d~z1 iad/2!s2d~z2 iad/2! D12r ~ad2b! ~4.88!

with ln real for z real, we can combine~4.78! and ~4.87! to deduce thatfd(z) satisfies the
assumptions~2.100!–~2.102! of Theorem II.5. Therefore,~2.107! yields

E~z!5
1

2ipE2p/2r

p/2r

dyfd~y!K~r ,ad ;z2y!, ~a1 ,a2 ,b!PRd , uImzu,
ad

2
. ~4.89!

This representation amounts to the elliptic counterpart of~4.37!. Once more, the restriction on th
parameters is essential~though boundary points ofRd belonging toH ~4.5! can be allowed, of
course!.

The product representation~3.117! for the ellipticG-function can be combined with~4.1! to
yield

u~r ,a1 ,a2 ,b;z!5 )
m,n51

`
~122q1

2m21q2
2n21e22irzch~b2~a11a2!/2!1q1

4m22q2
4n22e24irz!

~z→2z!

•

~122q1
2m21q2

2n21e2irzch~a12a2!/21q1
4m22q2

4n22e4irz!

~z→2z!
, qd[e2adr .

~4.90!

From this product representation one can read off meromorphy and pole/zero proper
u(z). Notice that it is manifestly symmetric ina1 ,a2 , in contradistinction to the product repre
sentation~4.45! for the hyperbolicu-function.

We proceed by deriving four limits of theu-function. First, we observe that

lim
r↓0

u~r ,a1 ,a2 ,b;z!5uhyp~a1 ,a2 ,b;z! ~ II rel limit !, ~4.91!
J. Math. Phys., Vol. 38, No. 2, February 1997
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where the limit is mero-uniform.~Here, uhyp denotes theu-function from Subsection IV A.!
Indeed, in the definition~4.1! of the ellipticu-function we may replace the ellipticG-functions by
Gren-functions, cf.~3.123!. Then~4.91! is a consequence of Prop. III.12.

Second, we assert that the limit

lim
A↑`

u~r ,a,A,b;z!5utrig~r ,a,b;z! ~ ÎII rel limit ! ~4.92!

exists mero-uniformly.~Here,utrig denotes theu-function studied in the next subsection.! To prove
this, we use~4.1! and ~3.22! to write

u~r ,a,A,b;z!5
G~r ,a,A;z1 ib2 ia/22 iA/2!G~r ,a,A;2z1 ia/22 iA/2!

G~r ,a,A;2z1 ib2 ia/22 iA/2!G~r ,a,A;z1 ia/22 iA/2!
. ~4.93!

Invoking now ~3.139!, we obtain the mero-uniform limit

lim
A↑`

u~r ,a,A,b;z!5
G~r ,a;z1 ib2 ia/2!G~r ,a;2z1 ia/2!

G~r ,a;2z1 ib2 ia/2!G~r ,a;z1 ia/2!
, ~4.94!

which amounts to~4.92!, cf. ~4.100! below.
Third, fixingg P R, we claim that

lim
a↓0

u~r ,A,a,ag;z!5exp~~12g!~ ip22irz !!, zPRr ~ ÎVnr limit !, ~4.95!

uniformly on compacts in the period stripRr ~2.113!. Indeed, from~4.93! and~3.138! we obtain

lim
a↓0

u~r ,A,a,ag;z!5exp~~12g!ln~R~r ,A;2z2 iA/2!/R~r ,A;z2 iA/2!! ~4.96!

uniformly on compacts ofRr . Now the limit ~4.95! easily results from~3.93!.
We continue by examining this result in the setting of Subsection II C. Takingg P @1,2# and

a P (0,A/4#, it entails that Theorem II.7 applies tof a(z)[ lnu(r,A,a,ag;z). In this casef a8(z) con-
verges to the constant 2ir (g21), uniformly on compactsK,Rr , but f a8(z) diverges near
z50 as a→0. Indeed, thep/r -periodic function f a(x),x P R, converges pointwise to a
p/r -periodic functionf (x) that has unequal limits forx↓0 andx↑p/r ~unlessg51, of course!.
Notice in this connection that it does not follow from the above thatf a(z) remains bounded in the
strip uImzu<a/2 asa→0; we do not know whether this holds true.

We conclude this subsection by deriving the generalization of the classical limit~4.73!. Thus
we define

L\~z![ i\ lnu~r ,A,\/l,b;z!, ~r ,l,b,z!P~0,̀ !23~0,A!3Rr , ~4.97!

with lnu→0 for z→0 and\.0 Planck’s constant. Then we have

lim
\→0

]zL\~z!5l lnS e22rb
s~r ,A;z1 ib !s~r ,A;z2 ib !

s~r ,A;z!2 D ~classical limit! ~4.98!

uniformly on an arbitrary compactK,Rr , with ln real forz P (0,p/r ).
To prove this assertion, we exploit the obvious generalization of~4.74! and Prop. III.13 to

infer
J. Math. Phys., Vol. 38, No. 2, February 1997
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lim
a↓0

ia]zlnu~r ,A,a,b;z!5 lnSR~r ,A;z1 iA/22 ib !R~r ,A;z2 iA/21 ib !

R~r ,A;z1 iA/2!R~r ,A;z2 iA/2! D ~4.99!

uniformly onK. Using ~3.93! and~2.91!, we see that this limit amounts to~4.98!. Notice that the
limit can be understood from Theorem II.7 and~4.78!, with alnu(z) playing the role off a(z).

C. The trigonometric case

The trigonometric scattering function is defined by

u~r ,a,b;z![
G~z1 ib2 ia/2!G~2z1 ia/2!

G~2z1 ib2 ia/2!G~z1 ia/2!
~4.100!

with G(z)[G(r ,a;z) denoting the trigonometricG-function ~3.140!. From the corresponding
product representation

u~r ,a,b;z!5 )
m51

`
~12q2m22e22rb22irz!~12q2me2irz!

~12q2m22e22rb12irz!~12q2me22irz!
, q[e2ar, ~4.101!

we read off thatu admits analytic continuation to a function that is meromorphic inr ,a,b and
z, providedar stays in the right half plane. However, in the sequel we restrict the paramete

T [$~r ,a,b!ur.0,a.0,bPR%. ~4.102!

As before, this restriction entailsuu(z)u51 for realz.
Obviously,u is periodic inz with primitive periodp/r ; it also satisfies~4.3! and the relations

u~2r ,a,b;z!5u~r ,a,b;z!u~r ,a,b;z2p/2r !, ~4.103!

u~l21r ,la,lb;lz!5u~r ,a,b;z!, lP~0,̀ !. ~4.104!

From ~2.90! and ~4.78! @or directly from ~4.100! and ~3.142!# we deduce thatu satisfies the
ADE

u~z1 ia/2!

u~z2 ia/2!
5exp~2r ~a2b!!

sinr ~z2 ib1 ia/2!sinr ~z1 ib2 ia/2!

sinr ~z1 ia/2!sinr ~z2 ia/2!
. ~4.105!

Clearly, this ADE is regular unlessb5a/2. Now from the product representation~4.101! we see
that u(r ,a,b;z) may be viewed as the unique minimal solution to~4.105! that obeys~4.11!,
provided the parameters belong to the regularity region

R[$~r ,a,b!PT ubP~a/2,`!%. ~4.106!

Next, we use~4.101! to conclude

u~b1a;z!

u~b;z!
52e2irz

sinr ~z1 ib !

sinr ~z2 ib !
. ~4.107!

~Alternatively, this follows from~4.79! by taking a limit.! By iteration this gives rise to~taking
kPZ)

u~b1ka;z!

u~b;z!
5e2irkz)

j51

uku
sinr ~z1 i ~k/uku! ~b2 a/2!1 ia~ j2 1/2!!

~z→2z!
. ~4.108!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Now from the product representation~4.101! we read off

u~r ,a,a;z!51, ~4.109!

u~r ,a,0;z!52e22irz, ~4.110!

and so~4.108! entails

u~r ,a,ka;z!5~2 !k11e2ir ~k21!z)
j51

uku
sinr ~z1 ia~ j2u~k!!

~ i→2 i !
, kPZ, ~4.111!

with u(k) defined by~4.19!.
The trigonometric specializations of the relations~4.84! and ~4.85! read

uS r , aM ,b;zD5~2 !M21exp~ ir ~M21!~2Mz1 ia2 ib !!

• )
k50

M21

uS r ,a,b;z1 ik
a

M D )
j51

M21
sinr ~z1 i ja /M !

sinr ~z2 ib1 i ja /M !
~4.112!

and

uS r , aM ,b;zD5~2 !M21exp~ ir ~M21!~2Mz2 ia1 ib !!

• )
k50

M21

uS r ,a,b;z2 ik
a

M D )
j51

M21
sinr ~z1 ib2 i ja /M !

sinr ~z2 i ja /M !
. ~4.113!

Of course, these formulas can also be verified directly from~4.100! and the multiplication formula
~3.145!.

We proceed by obtaining series and integral representations for the~logarithm of the!
u-function. From~4.100! and ~3.141! we obtain~formally at first!

u~z!5exp~E~z!!5expS 2i(
n51

`
e2bnrsh~a2b!nr

nshanr
sin2nrzD . ~4.114!

~Alternatively, this can be deduced from~4.87! and ~4.92!.! The series converges absolute
provided

uImzu,d~a,b!/2, ~4.115!

with

d~a,b![a1b2ua2bu. ~4.116!

Thus one has

d~a,b!.a⇔b.a/2 ~4.117!

in agreement with the fact thatu is a minimal solution to the ADE ~4.105! for parameters inR
~4.106!. More generally, the series representation~4.114! makes sense and holds true in a st
around the realz-axis iff the parameterb is positive.

Next, we take (r ,a,b) P R and set
J. Math. Phys., Vol. 38, No. 2, February 1997
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f~z![ lnS sinr ~z2 ib1 ia/2!sinr ~z1 ib2 ia/2!

sinr ~z1 ia/2!sinr ~z2 ia/2! D12r ~a2b! ~4.118!

with ln real-valued forz P R. Obviously,f satisfies the assumptions~2.100! and ~2.101! of
Theorem II.5, and comparing~4.105! and ~4.114! it follows that f satisfies~2.102!, too. Thus,
~2.107! applies, yielding the integral representation

E~z!5
1

2ipE2p/2r

p/2r

dyf~y!K~r ,a;z2y!, ~r ,a,b!PR, uImzu,
a

2
. ~4.119!

By continuity, the representation still holds forb5a/2, but it is false in general forb,a/2.
To conclude this subsection, we obtain three limits of the trigonometric scattering func

First, we use~3.155! to write

u~r ,1,b;z!5
T~r ;z2 ib1 i /2!T~r ;2z2 i /2!

T~r ;2z2 ib1 i /2!T~r ;z2 i /2!
exp~2ir ~b21!z!. ~4.120!

Then it follows from Prop. III.20 that we have

lim
r↓0

u~r ,1,g;z!5
G~2 iz1g!G~ iz11!

~z→2z!
~ II nr limit ! ~4.121!

mero-uniformly inz. ~Compare this to~4.48!.!
Second, we observe that

lim
a↓0

u~r ,a,ag;z!5exp~~12g!~ ip22irz !!, zPRr ~ ÎII nr limit !, ~4.122!

uniformly on compact subsets of the period stripRr ~2.113!. Indeed, this readily follows from
~3.180!, cf. also~4.95! and ~4.96!. The remark below~4.96! applies to the case at hand as wel

Third, we introduce

L\~z![ i\ lnu~r ,\/l,b;z!, ~r ,l,b,z!P~0,̀ !33Rr , ~4.123!

with lnu→0 for z→0 and\.0 Planck’s constant. Then we claim that

lim
\→0

]zL\~z!5l lnS e22rb
sinr ~z1 ib !sinr ~z2 ib !

sin2rz D ~classical limit! ~4.124!

uniformly on compacts ofRr , with ln real-valued forz P (0,p/r ). To prove this claim, we use
~4.100! and ~3.176!, ~3.177! to write

ia lnu~r ,a,b;z!52Da~z1 ib !1Da~2z1 ib !2Da~2z!1Da~z!2ada~r ,21/2,0;z1 ib !

1ada~r ,21/2,0;2z1 ib !2ada~r ,1/2,0;2z!1ada~r ,1/2,0;z!, ~4.125!

where we takez P Rr . Invoking now Prop. III.21, the limit~4.124! readily follows.
Comparing the rhs of~4.124! to the classical phase shift obtained in Ref. 17, p. 336, we

agreement when we takel→b21,r→umu/2,b→ubgu, save for a constant shif
22lrb→2umgu. The latter shift can be understood from the fact that the distance betwee
classical actions of the IIIrel system is bounded below byumgu ~cf. Ref. 17, p. 256!; by contrast, the
minimal distance between successive indicesni ,ni11 of the multivariable polynomials occurring
at the quantum level equals 0.~See also Ref. 2, Subsection 6.2.!
J. Math. Phys., Vol. 38, No. 2, February 1997
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V. WEIGHT FUNCTIONS

A. The hyperbolic case

Our study of the hyperbolic weight functionw(a1 ,a2 ,b;z) runs largely parallel to our study
of theu-function in Subsection IV A. Thew-function is defined by

w~z![
G~z1 ib2 i ~a11a2!/2!G~z1 i ~a11a2!/2!

G~z2 ib1 i ~a11a2!/2!G~z2 i ~a11a2!/2!
, ~5.1!

so it satisfies

w~a1 ,a2 ;z!5w~a2 ,a1 ;z! ~5.2!

just asG(z) andu(z), cf. ~4.1! and ~4.2!. The analogs of~4.3! and ~4.4! are

w~2z!5w~z!, ~5.3!

w~la1 ,la2 ,lb;lz!5w~a1 ,a2 ,b;z!, lP~0,̀ !. ~5.4!

For several purposes it is convenient to introduce a reduced weight function

wr~z![
G~z1 ib2 i ~a11a2!/2!

G~z2 ib1 i ~a11a2!/2!
. ~5.5!

Using the ADEs ~3.4!, one infers thatw andwr are related by

w~z!54sh~pz/a1!sh~pz/a2!wr~z!. ~5.6!

Obviously,wr also satisfies~5.2!–~5.4!.
Just as theu-function, the functionsw andwr are meromorphic ina1 ,a2 ,b andz, as long as

a2 /a1 stays away from (2`,0#, cf. Prop. III.5. In particular, bothu andwr are well defined for
b,z P C. Using~4.1! and~3.4!, one readily verifies that the latter functions are related by

u~ iz; ib !5wr~b;z!

4sh
p

a1
~z1 ib !sh

p

a2
~z1 ib !

G~ ib2 i ~a12a2!/2!G~ ib1 i ~a12a2!/2!
. ~5.7!

This relation can be used to translate various features ofwr in terms ofu and vice versa.
From now on we take (a1 ,a2 ,b) P H ~4.5!. We proceed by studyingw andwr with regard

to the ADEs they satisfy, namely

w~z1 iad/2!

w~z2 iad/2!
5
s2d~z1 ib2 iad/2!

s2d~z2 ib1 iad/2!
•

s2d~z1 iad/2!

s2d~z2 iad/2!
~5.8!

and

wr~z1 iad/2!

wr~z2 iad/2!
52

s2d~z1 ib2 iad/2!

s2d~z2 ib1 iad/2!
, ~5.9!

resp.~To check this, recall the definition~4.7! and the ADEs ~3.4!.!
Consider firstwr . The planes~4.9! separate the regionH ~4.5! into infinitely many strip-like

components, one of which reads

S d[$~a1 ,a2 ,b!PHubP~ad/2,a2d1ad/2!%. ~5.10!
J. Math. Phys., Vol. 38, No. 2, February 1997
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The pole/zero properties ofG(z) given by Prop. III.3 entail thatwr is free of zeros and poles in th
strip uImzu<ad/2 if and only if (a1 ,a2 ,b) P S d . Now from Prop. III.4 we deduce that for a
(a1 ,a2 ,b) P H one has

wr~z!5expS 6
pz

a1a2
~2b2a12a2! D ~11O~exp~6~e22p/am!z!!!, Rez→6`,

~5.11!

uniformly for Imz in R-compacts. Thus, choosing parameters inS d , one may characterizewr as
a minimal solution to the ADE ~5.9! that is even and positive forz P R; these properties determin
the solution up to a positive constant, cf. Theorem II.1. Next, we note that the rhs of~5.9! is
a2d-periodic inb, and identically equal to21 for parameters satisfying~4.9!. ~As such, the ADE
is regular for all (a1 ,a2 ,b) P H, by contrast to~4.6!.! But wr is neithera2d-periodic inb, nor
an exponential when~4.9! holds true. We shall presently obtain the correspondingiad-periodic
multiplier, after consideringw in relation to the ADE ~5.8! it obeys.

We begin by noting that thew-function has asymptotics

w~z!5expS 6
2pbz

a1a2
D ~11O~exp~6~e22p/am!z!!!, Rez→6`. ~5.12!

Thus, it is a minimal solution to~5.8! whenever it has no poles and zeros foruImzu<ad/2. In view
of ~5.6!, for this to happen it is necessary thatwr(z) have a double pole atz50. Fora1 ,a2 fixed,
this necessary condition is satisfied only for a discrete set ofb, sow is generically not a regula
solution—in contrast towr , which is regular for parameters inS d .

It should be pointed out, though, that both of the ADEs ~5.8! do admit minimal solutions for
all (a1 ,a2 ,b) P H. ~Indeed, this readily follows from Theorem II.3.! In particular, let us intro-
duce the asymmetric weight function

wd~a1 ,a2 ,b;z![
G~z1 ib2 i ~a11a2!/2!G~z1 i ~ad2a2d!/2!

G~z2 ib1 i ~a11a2!/2!G~z2 i ~ad2a2d!/2!
. ~5.13!

This function is related towr andw via

wd~z!5wr~z!
sh~pz/a2d!

sh~pz/ad!
5w~z!/4sh2~pz/ad! ~5.14!

on account of~3.5!, ~5.8! and~5.6!. Sincew solves~5.8!, so doeswd . Choosing the parameters i
Rd ~4.10!, wd is a minimal solution, as is easily verified. Multiplying and/or dividingwd by
finitely many factors of the formsd(z2c), one can construct explicit minimal solutions fo
arbitrary parameters.

We continue by obtaining analogs of the formulas~4.13!–~4.20!. First, we use the ADEs ~3.4!
to obtain

W~b1a2d ;z!

W~b;z!
54sh

p

ad
~z1 ib !sh

p

ad
~z2 ib !, W5w,wr ,w1 ,w2 . ~5.15!

Takingk1 ,k2 P Z, these ADEs can be iterated to yield
J. Math. Phys., Vol. 38, No. 2, February 1997
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W~b1k1a11k2a2 ;z!

W~b;z!

5 )
d51,2

)
j d51

ukdu S 4S sh p

a2d
S z1 i

kd

ukdu S b2
ad

2 D
1 iadS j d2

1

2D D D ~ i→2 i ! D kd /ukdu

. ~5.16!

Next, we note that~5.5! and ~3.4! entail

w~a1 ,a2,0;z!51, ~5.17!

w~a1 ,a2 ,ad/2;z!52th~pz/ad!sh~pz/a2d!, ~5.18!

w~a1 ,a2 ,~a11a2!/2;z!54sh~pz/a1!sh~pz/a2!. ~5.19!

Therefore, the weight functions are elementary functions for parameters in the dense subs

Dw[$~a1 ,a2 ,b!PHub5 l1a11 l2a2 ,l1 ,l2PZ/2% ~5.20!

of H ~4.5!. Specifically, one readily obtains from~5.16!–~5.19! ~using the notation~4.19! and
takingk1 ,k2 P Z)

w~a1 ,a2 ,k1a11k2a2 ;z!5 )
d51,2

)
j d51

ukdu S 4S sh p

a2d
~z1 iad~ j d2u~kd!!! D ~ i→2 i ! D kd /ukdu

,

~5.21!

w~a1 ,a2 ,ad/21k1a11k2a2 ;z!

52thS pz

ad
D shS pz

a2d
D )
j d51

ukdu S 4S sh p

a2d
S z1 iadS j d2

1

2D D D ~ i→2 i ! D kd /ukdu

• )
j2d51

uk2du S 4S chp

ad
~z1 ia2d~ j2d2u~k2d!!! D ~ i→2 i ! D k2d /uk2du

, ~5.22!

w~a1 ,a2 ,~a11a2!/21k1a11k2a2 ;z!

54shS pz

a1
D shS pz

a2
D )

d51,2
)
j d51

ukdu S 4S ch p

a2d
S z1 iadS j d2

1

2D D D ~ i→2 i ! D kd /ukdu

.

~5.23!

We proceed by noting that none of the weight functions has the reflection symmetry~4.21! of
the scattering function. Instead, one gets from~5.5! the relation

wr~a11a22b;z!51/wr~b;z!. ~5.24!

Combining this with~5.16!, one obtains

wr~2b;z!wr~b;z!5 )
d51,2

S 4shpad
~z1 ib !sh

p

ad
~z2 ib ! D 21

. ~5.25!
J. Math. Phys., Vol. 38, No. 2, February 1997

10¬Sep¬2006¬to¬134.107.3.141.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



all of

he

ight

1131S. N. M. Ruijsenaars: Difference equations and integrable systems

Downloaded¬
Using the multiplication formula~3.25!, one can work out analogs of the relations~4.23!–
~4.26! for the weight functions. We shall not do so, however. We do point out thatwr satisfies an
additional relation involving shifts ofb—as opposed to shifts ofz:

wr S a1

M
,
a2

N
,b;zD5 )

j50

M21

)
k50

N21

wr S a1 ,a2 ,b1
a1

M
j1

a2

N
k;zD . ~5.26!

~Indeed, this formula readily follows from~5.5! and ~3.25!.!
By contrast to the scattering function, the weight functions are elementary functions on

the sine-Gordon lines. In particular, from~5.6! and ~5.18! we have

w~p,a,p/2;z!52thzsh~pa21z! ~sG! ~5.27!

for all a.0. ~Compare this to~4.28!.!
Next, we obtain an integral representation forwr : From ~3.1!, ~3.3! and ~5.5! we have

wr~z!5exp~ I ~z!!, ~5.28!

where

I ~z![E
0

`dy

y S sh~a11a222b!y

sha1ysha2y
cos2yz2

a11a222b

a1a2y
D . ~5.29!

This integral converges absolutely provided

uImzu,e~a1 ,a2 ,b!/2, ~5.30!

where

e~a1 ,a2 ,b![a11a22u2b2a12a2u. ~5.31!

Thus we have in particular

e~a1 ,a2 ,b!.ad⇔~a1 ,a2 ,b!PS d , ~5.32!

which says once more thatwr is regular for parameters inS d .
More generally, the integral representation~5.28! sense and holds true in a strip around t

real z-axis iff the parameters belong toC ~4.34!. Indeed, one clearly has

e~a1 ,a2 ,b!.0⇔~a1 ,a2 ,b!PC . ~5.33!

Combining the representation with~5.6!, ~5.14! and ~5.15!, we obtain the positivity property

W~a1 ,a2 ,b;x!.0, ;~a1 ,a2 ,b,x!PH3R* , W5w,wr ,w1 ,w2 . ~5.34!

From ~3.1! and ~3.3! we also obtain an integral representation for the asymmetric we
functionwd ~5.13!, viz.,

wd~z!5exp~ I d~z!! ~5.35!

with

I d~z![2E
0

`dy

y S sh~a2d2b!ych~ad2b!y

sha1ysha2y
cos2yz2

a2d2b

a1a2y
D . ~5.36!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Obviously, this integral has the same convergence properties as the integral~4.30!, so the analysis
embodied in~4.31!–~4.35! applies once again.

We have not found illuminating analogs of the representations~4.38! and ~4.45!, so we
conclude this subsection by deriving two limits of the weight functionw. ~Corresponding limits
for wr ,w1 andw2 readily follow, so they will not be spelled out.! Once again, we switch to
parameters~4.47!.

First, we use~5.1!, ~3.22!, ~3.24! and ~3.69! to obtain

w~p,bn,bng;bp!5exp~2gln~2bn!!
H~r; p/n 1 i /2!H~r;2 p/n 1 i /2!

H~r; p/n 2 ig1 i /2!H~r;2 p/n 2 ig1 i /2!
, r[bn/p.

~5.37!

Therefore, Prop. III.6 entails

lim
b↓0

~2bn!22gw~p,bn,bng;bp!5
G~ ip/n 1g!G~2 ip/n 1g!

G~ ip/n!G~2 ip/n!
~ Irel limit !, ~5.38!

where the limit is mero-uniform.~The limiting weight function is associated to the analy
difference operators of the Irel regime, cf. Refs. 1 and 2.!

Second, we may write

w~p,a,ag;z!5
G~p,a;z2 ip/21 ia~g21/2!!

G~p,a;z2 ip/21 ia~21/2!!
•

G~p,a;z1 ip/21 ia~1/2!!

G~p,a;z1 ip/21 ia~1/22g!!
. ~5.39!

Therefore, we deduce from~3.91!

lim
b↓0

w~p,bn,bng;nx!5exp~2gln~2shnx!!, xPR0 ~ II nr limit ! ~5.40!

~with ln real-valued forx.0), uniformly on compacts ofR0. ~The limit is the weight function of
the IInr regime, cf. Refs. 1 and 2!

B. The elliptic case

The ellipticw-function is defined by replacing in~5.1! the hyperbolicG-functions by their
elliptic counterparts. Obviously, this yields a function that is periodic inz with primitive period
p/r , and which satisfies~5.2!, ~5.3!, and~4.76!, ~4.77! with u replaced byw.

Just as in the hyperbolic case, we introduce a reduced weight function by~5.5!. Then we
obtain via~3.100! and ~3.96!–~3.99!

w~z!54r 2)
k51

`

~12q1
2k!2~12q2

2k!2•s1~z!s2~z!wr~z!. ~5.41!

Evidently,wr shares the automorphy properties ofw mentioned above.
From Prop. III.11 we deduce thatw andwr are meromorphic inr ,a1 ,a2 ,b andz, provided

a1r anda2r stay in the right half plane. As the analog of~5.7! we then obtain

u~ iz; ib !5wr~b;z!
4r 2Pk51

` ~12q1
2k!2~12q2

2k!2•s1~z1 ib !s2~z1 ib !

G~ ib2 i ~a12a2!/2!G~ ib1 i ~a12a2!/2!
. ~5.42!

From now on we take the parameters inE ~4.75!. Turning to the ADEs satisfied byw and
wr , we obtain once more
J. Math. Phys., Vol. 38, No. 2, February 1997
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w~z1 iad/2!

w~z2 iad/2!
5
s2d~z1 ib2 iad/2!

s2d~z2 ib1 iad/2!
•

s2d~z1 iad/2!

s2d~z2 iad/2!
, ~5.43!

whereas~5.9! is replaced by

wr~z1 iad/2!

wr~z2 iad/2!
52exp~2irz !

s2d~z1 ib2 iad/2!

s2d~z2 ib1 iad/2!
. ~5.44!

Considering firstwr , we reach the same conclusion as in the hyperbolic case—Prop. I
and p/r -periodicity in z play the role of Prop. III.3 and the asymptotics~5.11!. Turning to
w(z), one readily sees that it generically has double zeros atz5kp/r ,k P Z, and hence is not
regular. The asymmetric functionwd defined by~5.13! is now related towr andw via

wd~z!5wr~z!)
k51

` S 12q2d
2k

12qd
2k D 2• s2d~z!

sd~z!
5

w~z!

4r 2Pk51
` ~12qd

2k!4•sd~z!2
. ~5.45!

Sincesd(z)
2 is not iad-periodic,wd does not satisfy the ADE ~5.43!, however. To obtain minima

periodic solutions to~5.43!, one should rather multiplyw(z) by an elliptic function with periods
p/r andiad . We shall neither embark on this nor on a study of the ADEs solved by the functions
w1 andw2 .

We continue by obtaining the counterparts of~5.15!–~5.19!. First, from ~5.1!, ~5.45! and
~3.100! we readily get

W~b1a2d ;z!

W~b;z!
54r 2e22rb)

k51

`

~12qd
2k!4•sd~z1 ib !sd~z2 ib !, W5w,wr ,w1 ,w2 .

~5.46!

To obtain the analog of~5.16!, we employ the relation

s~r ,a;z11 ina!s~r ,a;z22 ina!5e22irn ~z12z2!e2arn
2
s~r ,a;z1!s~r ,a;z2!, nPN,

~5.47!

which is easily derived from~2.91!. ~This formula plays the same role as~4.80! in simplifying the
iterated ADEs.! A straightforward calculation now yields~with k1 ,k2 P Z)

W~b1k1a11k2a2 ;z!

W~b;z!
5exp~2rb~2k1k22k12k2!! )

d51,2
exp~radkd~kd21!~2k2d

21!! )
j d51

ukdu S 4r 2)
k51

`

~12q2d
2k !4S s2dS z1 i

kd

ukdu S b2
ad

2 D
1 iadS j d2

1

2D D D ~ i→2 i !D kd /ukdu

. ~5.48!

Next, we use~5.1! and ~3.100! to obtain

w~r ,a1 ,a2,0;z!51, ~5.49!

w~r ,a1 ,a2 ,ad/2;z!54r 2)
k51

`

~12q1
2k!2~12q2

2k!2•
sd~z!

Rd~z!
s2d~z!, ~5.50!
J. Math. Phys., Vol. 38, No. 2, February 1997
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w~r ,a1 ,a2 ,~a11a2!/2;z!54r 2 )
d51,2

)
k51

`

~12qd
2k!2•sd~z!. ~5.51!

If we now combine these formulas with the quotient formula~5.48!, we obtain obvious analogs o
~5.21!–~5.23!—which we do not spell out.

We proceed by observing that~5.24! holds true for the ellipticwr , too. In tandem with~5.48!,
this entails

wr~2b;z!wr~b;z!5 )
d51,2

S 4r 2)
k51

`

~12qd
2k!4•sd~z1 ib !sd~z2 ib !D 21

. ~5.52!

Analogs of~4.23!–~4.26! for the elliptic weight functions are readily derived from the multip
cation formula~3.25!, so they will be skipped. The latter formula also entails that the ellip
wr-function obeys~5.26!.

As the elliptic counterpart of~5.27! we obtain from~5.50! and ~5.41!

w~r ,p,a,p/2;z!54r 2)
k51

`

~12e22kpr !2~12e22kar !2•
s~r ,p;z!

R~r ,p;z!
s~r ,a;z! ~XYZ !.

~5.53!

This holds true for alla.0, as opposed to the explicit formula~4.86!, which holds for the dense
set ~4.27!.

We now turn to deriving and studying a series representation forwr . Recalling ~3.3! and
~3.92!, the definition~5.5! entails

wr~z!5exp~S~z!!5expS (
n51

`
sh~a11a222b!nr

nsha1nrsha2nr
cos2nrzD . ~5.54!

The convergence properties of the infinite seriesS(z) occurring here are the same as those of
integral I (z) ~5.29!, so the analysis encoded in~5.30!–~5.33! applies verbatim. Using this repre
sentation,~5.46! and ~5.45!, we now deduce the positivity property

W~r ,a1 ,a2 ,b;x!.0, ;~r ,a1 ,a2 ,b,x!PE3~0,p/r !, W5w,wr ,w1 ,w2 . ~5.55!

It is of interest to compare the series representation~5.54! to Theorem II.5. Choosing param
eters inS d , one deduces that Theorem II.5 applies to the additive version of~5.44!, and that
wr corresponds to the unique minimal solution~2.106!. Via ~2.107! one can now obtain an integra
representation forwr—as an analog of the representation~4.89! for the ellipticu-function.

To conclude this subsection, we derive three limits of thew-function. First, we use Prop
III.12 to infer

lim
r↓0

expS p2b

3ra1a2
Dw~r ,a1 ,a2 ,b;z!5whyp~a1 ,a2 ,b;z! ~ II rel limit !, ~5.56!

where the limit is mero-uniform.~Here,whyp denotes thew-function from Subsection V A.! Note
that the renormalizing exponential is necessary, and that no such factor occurs in theu-function
counterpart~4.91!.

Next, we claim that the limit

lim
A↑`

w~r ,a,A,b;z!5wtrig~r ,a,b;z! ~ III rel limit ! ~5.57!
J. Math. Phys., Vol. 38, No. 2, February 1997
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exists mero-uniformly.~Here,wtrig denotes thew-function studied in the next subsection.! Indeed,
we may rewrite~5.1! as

w~r ,a,A,b;z!5
G~r ,a,A;z1 ib2 ia/22 iA/2!G~r ,a,A;2z1 ib2 ia/22 iA/2!

G~r ,a,A;z2 ia/22 iA/2!G~r ,a,A;2z2 ia/22 iA/2!
, ~5.58!

so ~3.139! yields the mero-uniform limit

lim
A↑`

w~r ,a,A,b;z!5
G~r ,a;z1 ib2 ia/2!G~r ,a;2z1 ib2 ia/2!

G~r ,a;z2 ia/2!G~r ,a;2z2 ia/2!
. ~5.59!

In view of ~5.61! below, this entails~5.57!.
Finally, fixingg P R, one has

lim
a↓0

w~r ,A,a,ag;z!5expS 2glnS 2r)
k51

`

~12e22kAr!2•s~r ,A;z!D D , zPRr ~ IVnr limit !

~5.60!

~with ln real forz P (0,p/r )), uniformly on compacts ofRr ~2.113!. To check this, one need onl
substituteb5ag in ~5.58!, invoke the limit~3.138!, and recall~3.96!–~3.99!.

C. The trigonometric case

The trigonometricw-function is defined by

w~r ,a,b;z![
G~z1 ib2 ia/2!G~2z1 ib2 ia/2!

G~z2 ia/2!G~2z2 ia/2!
~5.61!

with G given by ~3.140!. Thus, it can be written

w~r ,a,b;z!5 )
n50

` S 12q2ne2irz

12q2ne22rb12irzD ~z→2z!, q[e2ar. ~5.62!

We note thatw is p/r -periodic and even inz, and satisfies~4.103! and~4.104! with u replaced by
w.

Next, we introduce the reduced weight function

wr~z![G~z1 ib2 ia/2!G~2z1 ib2 ia/2!, ~5.63!

which has the same automorphy properties asw. Recalling the functional equation~3.154! and
ADE ~3.142! satisfied by the trigonometricG-function, one readily verifies thatwr andw are
related by

w~z!54r)
l51

`

~12q2l !2•s~r ,a;z!sin~rz!wr~z!. ~5.64!

Obviously,wr andw are meromorphic inr ,a,b andz, as long asar stays in the right half plane
As the counterpart of~5.42! one easily gets

u~ iz; ib !54r)
l51

`

~12q2l !2•s~r ,a;z1 ib !sinr ~z1 ib !
G~2 ib1 ia/2!

G~ ib1 ia/2!
wr~b;z!. ~5.65!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Taking from now on parameters inT ~4.102!, we turn to the ADEs solved byw andwr , viz.,

w~z1 ia/2!

w~z2 ia/2!
5
sinr ~z1 ib2 ia/2!

sinr ~z2 ib1 ia/2!
•

sinr ~z1 ia/2!

sinr ~z2 ia/2!
~5.66!

and

wr~z1 ia/2!

wr~z2 ia/2!
52exp~2irz !

sinr ~z1 ib2 ia/2!

sinr ~z2 ib1 ia/2!
. ~5.67!

Clearly, both ADEs are regular for arbitrary parameters. Choosing parameters inR ~4.106!, one
readily verifies that the reduced weight function is a minimal solution to~5.67! that is even and
positive forz P R. As such, it is uniquely determined up to a positive constant, cf. Theorem
For b<a/2, however, it has poles in the stripuImzu<a/2, so it is not regular. The weight functio
w(z) has double zeros forz5kp/r ,k P Z, unlessb52na,n P N; in the latter case one easily se
thatw is a minimal solution to~5.66!.

To proceed, we note thatw andwr satisfy theb-ADE

W~b1a;z!

W~b;z!
54e22rbsinr ~z1 ib !sinr ~z2 ib !, W5w,wr . ~5.68!

Hence, iteration yields~with k P Z)

W~b1ka;z!

W~b;z!
5e22rbk2ark~k21!)

j51

uku S 4S sinr S z1 i
k

uku S b2
a

2D1 iaS j2 1

2D D D ~ i→2 i ! D k/uku

.

~5.69!

Now from ~5.61! we read off

w~r ,a,0;z!51, ~5.70!

so we deduce

w~r ,a,ka;z!5e2ark~k21!)
j51

uku

~4@sinr ~z1 ia~ j2u~k!!!#@ i→2 i # !k/uku, ~5.71!

wherek P Z and the notation~4.19! is used. Moreover, from~3.154! we have

wr~r ,a,a/2;z!5R~r ,a;z!21, ~5.72!

so recalling~5.64! we obtain~with k P Z)

w~r ,a,a/21ka;z!54r)
l51

`

~12q2l !2•
s~r ,a;z!

R~r ,a;z!
sinrz

•)
j51

uku S 4S sinr S z1 iaS j2 1

2D D D ~ i→2 i ! D k/uku

. ~5.73!

Using the multiplication formula~3.145!, one easily derives analogs of~4.112! and~4.113! for the
weight functions. In addition,~3.145! entails thatwr satisfies
J. Math. Phys., Vol. 38, No. 2, February 1997

10¬Sep¬2006¬to¬134.107.3.141.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



iod

nt of

more
can be
roper-
rious
proper-

ion III.

1137S. N. M. Ruijsenaars: Difference equations and integrable systems

Downloaded¬
wr S r , aM ,b;zD5 )
k50

M21

wr S r ,a,b1
a

M
k;zD . ~5.74!

Next, we use~3.141! to obtain a series representation forwr , namely

wr~z!5expS (
n51

`
enr~a22b!

nshnra
cos2nrzD . ~5.75!

Providedb.0, this representation makes sense and holds true foruImzu,b. In particular, this
entails once more thatwr is a minimal solution to~5.67! when the parameters belong toR
~4.106!. ~More specifically,wr amounts to the unique minimal solution given by~2.106!.! Fur-
thermore, using~5.68! and ~5.64! one deduces

W~r ,a,b;x!.0, ;~r ,a,b,x!PT 3~0,p/r !, W5w,wr . ~5.76!

We finish this subsection by obtaining two limits of the trigonometric weight functionw.
Recalling~3.155!, we rewrite~5.61! with a51 as

w~r ,1,b;z!5
T~r ;2z1 i /2!T~r ;z1 i /2!

T~r ;2z2 ib1 i /2!T~r ;z2 ib1 i /2!
exp~rb~12b!12bln~2r !!. ~5.77!

From Prop. III.20 we now infer

lim
r↓0

~2r !22gw~r ,1,g;z!5
G~2 iz1g!G~ iz1g!

G~2 iz!G~ iz!
~ Irel limit !, ~5.78!

where the limit is mero-uniform.~Compare this to~5.38!.!
Next, we substituteb5ag, with g P R fixed, in ~5.61!. Recalling then the limit~3.180!, we

deduce

lim
a↓0

w~r ,a,ag;z!5exp~2gln~2sinrz!!, zPRr ~ III nr limit ! ~5.79!

~with ln real-valued forz P (0,p/r )), where the limit is uniform on compact subsets of the per
stripRr ~2.113!.
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APPENDIX A: THE GAMMA FUNCTION AND RELATED INTEGRALS

This appendix serves a twofold purpose. First of all, it is included to render this paper
self-contained. Indeed, most of the Laplace, sine and cosine transforms we derive below
found—without proof—in standard sources such as Refs. 18 and 19; moreover, all of the p
ties of the psi and gamma functions we need can be found—with detailed proofs—in va
sources, for instance Ref. 16. Our second purpose, however, is to demonstrate how these
ties can be very quickly derived via the minimal solution~2.26! to a suitable ADE ~2.22!; this
yields a paradigm for the study of generalized psi and gamma functions undertaken in Sect

Specifically, our starting point is the ADE
J. Math. Phys., Vol. 38, No. 2, February 1997
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F~z1 i /2!2F~z2 i /2!5
i

z2 i /2
[x~z!. ~A1!

A contour integration yields

x̂~y!5
1

2pE2`

`

dx
i

x2 i /2
eixy52e2y/2u~y!, ~A2!

so this ADE is of the type considered in the proof of Theorem II.3. Indeed,~A2! entails

f̂~y!5 iye2y/2u~y!, f~z![x8~z!52 i ~z2 i /2!22, ~A3!

and thereforef(z) has all of the properties~2.18!–~2.21!. From Theorem II.2 we now obtain
solution

f ~z!52i E
0

`

dy
ye2y

shy
e22iyz, Imz,1, ~A4!

to the ADE ~2.22!, which is the uniquely determined solution with properties~2.23!–~2.25!.
As a consequence, the function

F1~z!5F1~0!1c1z1E
0

`

dy
e2y

shy
~12e22iyz! ~A5!

is a solution to~A1! for a certainc1 P C. Now we have

F1~ i /2!2F1~2 i /2!5 ic11E
0

`

dy
e2y

shy
~2ey1e2y!5 ic122. ~A6!

Hence, notingx(0)522, we needc150 to solve ~A1!. Of course, we are free to choos
F1(0), and weshall set

F1~0!5E
0

`

dyS e22y

y
2
e2y

shy D[2g. ~A7!

~As will soon become clear,g is Euler’s constant.! The upshot is that we obtain a solution

F1~z![E
0

`

dyS e22y

y
2
e2y~112iz!

shy D , Imz,1, ~A8!

to the ADE ~A1!. Note that the functionF2(z)[F1(2z1 i ) yields a second solution to~A1!, so
thatF1(z)2F1(2z1 i ) is an i -periodic meromorphic function~determined explicitly below!.

Next, we observe that the ADE ~2.22!, with f(z) given by ~A3!, can also be solved by
downward iteration, yielding the solution

f̃ ~z!52 i(
k51

`

~z2 ik !22. ~A9!

Now this solution clearly has the properties~2.23!–~2.25!, so we must havef̃ (z)5 f (z). From this
we readily deduce
J. Math. Phys., Vol. 38, No. 2, February 1997
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F1~z!52g1 i(
k51

` S 1

z2 ik
1

1

ik D . ~A10!

~Indeed, the function on the rhs has derivativef̃ (z)5 f (z) and value2g for z50, just asF1(z),
~A7! and ~A8!.! As a consequence, we obtain the functional equation

F1~z1 i /2!2F1~2z1 i /2!52 (
n50

` S 1

iz1n11/2
1

1

iz2n21/2D5 ipthpz. ~A11!

Note that the rhs amounts to thei -periodic meromorphic function mentioned below~A8!.
We are now prepared to make contact with the psi and gamma functions. First, we intr

c~z![F1~2 iz1 i !5E
0

`

dyS e22y

y
2
ey~122z!

shy D , Rez.0. ~A12!

Then we obtain from~A1! and ~A11! the ADE

c~z11!2c~z!51/z ~A13!

and functional equation

c~z11/2!2c~2z11/2!5ptgpz. ~A14!

Moreover, we havec(1)52g andc(z) has simple poles atz50,21,22, . . . , cf. ~A10!.
Next, consider any primitiveC(z) of c(z), restricted to the cut plane

C2[$zPCuz¹~2`,0#%. ~A15!

Clearly,C(z) is analytic inC2 and satisfies

C~z11!2C~z!5 lnz1c1 , zPC2, ~A16!

C~z11/2!1C~2z11/2!52 ln~cospz!1c2 , 6z¹@1/2,̀ !, ~A17!

in view of ~A13! and ~A14!. Now from ~A12! we have

C~2!2C~1!5E
1

2

dwc~w!5E
0

`

dyS e22y

y
1

ey

2yshy
~e24y2e22y! D50, ~A18!

so thatc150 in ~A16!. Clearly,c2 in ~A17! depends on the arbitrary constant inC(z); we render
C unique by requiring 2C(1/2)5 lnp and then we getc25 lnp by takingz50 in ~A17!.

The upshot is that we obtain a primitiveC(z) of c(z) satisfying

C~z11!2C~z!5 ln z, ~A19!

C~z11/2!1C~2z11/2!5 ln~p/cospz!. ~A20!

Introducing the function

G~z![exp~C~z!! ~A21!
J. Math. Phys., Vol. 38, No. 2, February 1997
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~defined at first inC2), it readily follows thatG(z) extends to a meromorphic function withou
zeros and with simple poles atz50,21,22, . . . . Indeed, from~A10! and~A12! we deduce that
we have

C~z!5a2gz2 lnz2 (
n51

` S lnS 11
z

nD2
z

nD ~A22!

for somea P C ~with lnz real forz.0, of course!. Therefore, we obtain

1

G~z!
5e2a1gzz)

n51

` S 11
z

nDe2z/n ~A23!

and from this the assertion is clear. From~A19! and ~A20! we also obtain the ADE

G~11z!5zG~z! ~A24!

and functional equation

G~z11/2!G~2z11/2!5p/cospz. ~A25!

In order to determinea, we note that~A23! and ~A24! entail

e2a5 lim
z→0

1

zG~z!
5

1

G~1!
. ~A26!

Now from ~A24! and ~A25! we have

G~z11/2!G~2z13/2!5
p~2z11/2!

cospz
, ~A27!

which yieldsG(1)251 for z→1/2. Thus we conclude

G~1!51, a50, ~A28!

sinceG(z) is positive forz.0. ~To see this, note that~A12! entailsc(z) is real for z.0. As
C(1/2) is real, it follows thatC(z) is real forz.0, so positivity is clear from~A21!.!

Combining~A23! and ~A28!, we see thatG(z) is the customary gamma function in Weie
strass product form, as anticipated by our notation. Similarly,c(z) is the usual psi function~the
logarithmic derivative of the gamma function!, and ~A12! amounts to Gauss’ formula, cf., e.g
Ref. 16.

We now derive a number of definite integrals by exploiting the properties ofc(z) and
G(z) established above. The order in which this is done is determined by the order in which
integrals are needed in the main text, except when logical necessity requires otherwise.

First, we use the well-known integral

E
0

`dy

y
~e2qy2e2py!5E

0

`

dyE
q

p

dse2sy5E
q

pds

s
5 ln~p/q! ~A29!

and ~A12! to obtain

c~z11/2!2 lnz5E
0

`

dyS 1y2
1

shyDe22yz, Rez.0. ~A30!
J. Math. Phys., Vol. 38, No. 2, February 1997
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Integrating this from 0 toz and using 2C(1/2)5 lnp, we arrive at

CS z1
1

2D2
1

2
lnp2zlnz1z5

1

2E0
`dy

y S 1y2
1

shyD ~12e22yz!, Rez.0. ~A31!

Now the function on the lhs is analytic inC2 and the integral on the rhs converges absolutely
Rez>0. Thus,~A31! holds true for Rez50, too. Puttingz5 ix andz52 ix,x P R, in ~A31!, and
taking the sum of the resulting equations, we obtain using~A20!

ln~p/chpx!2 lnp1px5C2E
0

`dy

y S 1y2
1

shyD cos2yx, ~A32!

where we have set

C[E
0

`dy

y S 1y2
1

shyD . ~A33!

If we now takex→` in ~A32!, then the integral has limit 0~by virtue of the Riemann-Lebesgu
lemma!, so we must have

C5 ln 2. ~A34!

Combining this with~A31! and ~A21!, we obtain the integral representation

G~z11/2!5~2p!1/2expS zlnz2z2
1

2E0
`dy

y S 1y2
1

shyD e22yzD , ~A35!

which holds true for Rez>0.
Next, we putq52,p52w in ~A29! and integrate w.r.t.w from 0 to z to obtain the identity

zlnz2z5E
0

`dy

y S e22yz1
e22yz21

2y D . ~A36!

Inserting this in~A35!, we get the representation

G~z11/2!5~2p!1/2expS E
0

`dy

y S ze22y2
1

2y
1
e22yz

2shy D D , ~A37!

which is valid for Rez.21/2. A routine calculation using~A37! and ~A29! ~with q52,p52w)
now yields

G~w1l!

G~w1m!
e~m2l!lnw5expS E

0

`dt

t
e2wtS l2m1

e2lt2e2mt

12e2t D D , ~A38!

which holds true for Rew.max(0,2Rel,2Rem). Therefore, the function

F~w,l![
w1l

w2l S G~w1l!

G~w2l!
e22l lnwD 2 ~A39!

admits the representation
J. Math. Phys., Vol. 38, No. 2, February 1997
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F~w,l!5expS 2E
0

`dt

t
e2wt~2l2shltctht/2! D , ~A40!

provided Rew.uRelu. ~To check this, use~A38! and ~A29! with q5w2l andp5w1l.!
The functionF(w,l) will reappear in Appendix B; it is crucial for obtaining Prop. III.5 i

Subsection III A. We conclude by deriving some formulas that are used towards the e
Subsection IV A. First,~A12! entails the cosine transform

c~~p111 ix !/2!2c~~q111 ix !/2!1~x→2x!

52E
0

` dy

shy
~e2qy2e2py!cosxy, Rep,Req.21, xPR ~A41!

Now we take Rep P (21,1) and putq52p. Using~A14! and the elementary identity

tg~s1 i t!1tg~s2 i t!5
2sin2s

cos2s1ch2t
, s,tPC, ~A42!

we obtain

E
0

`

dy
shpy

shy
cosxy5

p

2

sinpp

cospp1chpx
, uRepu,1, xPR. ~A43!

Integrating this with respect top from s to t yields

2E
0

`dy

y

~chty2chsy!

shy
cosxy5 lnS chpx1cosps

chpx1cospt D , uResu,uRetu,1. ~A44!

Finally, we integrate~A41! w.r.t. x from 0 to 22is and putp5t1l,q5t2l. The resulting
formula entails the identity

G~s1~11l1t !/2!G~2s1~12l1t !/2!

~s→2s!
5expS 2E

0

`dy

y

shlysh2sy

shy
e2tyD ,

Ret2uRelu.21, sP iR. ~A45!

APPENDIX B: UNIFORM ESTIMATES

The main goal of this appendix consists in deriving bounds that are sufficiently stron
control the convergence and meromorphy properties of infinite products involving gamma
tions, which occur in the main text. Our tool for doing so is Theorem B.1, which deals
Laplace transformsL(w),w P C, of a certain type. More generally, this theorem can be use
obtain estimates on remainders in asymptotic expansions that hold uniformly in sectorial re
uArgwu<p2e,uwu>K5K(e) for any e.0. As such, it is inspired by, but simpler than, th
methods that can be found in Ref. 20, Sections 21–25, and Ref. 16, Section 13.6.

Assumeh(z) is a function that is analytic in the right half plane Rez.0 and atz50.
Moreover, assumeh(z) satisfies the bound

uh~ teif!u<C~x!ert , ;~ t,f!P@0,̀ !3@2x,x#, ~B1!

wherex P @0,p/2) and r P @0,̀ ), and whereC(x) is a positive non-decreasing function o
@0,p/2).

Theorem B.1: The function
J. Math. Phys., Vol. 38, No. 2, February 1997

10¬Sep¬2006¬to¬134.107.3.141.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



t

on

,
es

1143S. N. M. Ruijsenaars: Difference equations and integrable systems

Downloaded¬
L~w![E
0

`

e2wth~ t !dt ~B2!

is well defined and analytic in$Rew.r %. Furthermore, L(w) can be continued to a function tha
is analytic in

Ur[$Rew>0,uwu.r %ø$Rew,0,uImwu.r %. ~B3!

Finally, fixingx P @0,p/2) and R.r one has

uL~w!u<C~x!~R2r !21, ;wPSR,x ~B4!

where

SR,x[ø ufu<x$Re~eifw!>R%. ~B5!

Proof: The first assertion is obvious. To prove the second one, consider the integral

eixE
0

`

exp~2wteix!h~ teix!dt, xP~2p/2,p/2!. ~B6!

Due to the bound~B1! this defines a functionLx(w) that is analytic in the region

Ur ,x[$Re~eixw!.r %. ~B7!

We claim thatLx(w) equalsL(w) in Ur ,0ùUr ,x . Taking this for granted, the second asserti
follows, since we have

Ur5ø uxu,p/2Ur ,x . ~B8!

To prove the claim we first takex P @0,p/2). Fixingw P Ur ,0ùUr ,x , we then have

inf
fP[0,x]

$Re~eifw!%5min~Rew,Re~eixw!!5r1e ~B9!

with e5e(w).0. Using~B1! we now obtain

uexp~2wteif!h~ teif!u<C~x!e2et, ;~f,t !P@0,x#3@0,̀ !. ~B10!

This bound entails that the integral ofe2wzh(z) over the contourz5Keif,f P @0,x#, vanishes for
K→`. Thus we may replace the contourteix,t P @0,̀ ), in thez-plane by the positive real axis
yieldingLx(w)5L(w). This proves our claim for non-negativex, and the same reasoning appli
to negativex.

It remains to prove~B4!. To this end we fixw P SR,x . In view of ~B5! we can findf
P @2x,x# such that Re(weif)>R. Then we get

uL~w!u5uLf~w!u<E
0

`

uexp~2wteif!h~ teif!udt<C~x!E
0

`

e2Rtertdt5C~x!~R2r !21,

~B11!

where we used~B1!. Thus~B4! holds true. h

To illustrate how this result can be applied, we consider the Laplace transform
J. Math. Phys., Vol. 38, No. 2, February 1997
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L~w![E
0

`

e2wtf ~ t !dt, ~B12!

f ~ t ![
1

t
2

1

sht
, ~B13!

occurring on the rhs of~A30!. Integrating by partsn times, we obtain

L~w!2(
l51

n

w2 l f ~ l21!~0!5w2nE
0

`

e2wtf ~n!~ t !dt. ~B14!

Now the functionh(t)[ f (n)(t) satisfies the assumptions of Theorem B.1 withr50, so ~B4!
yields a bound on the remainder integral that is uniform inSR,x ; fixing d.0, the sectorial region
uArgwu<p/21x2d,uwu>K, belongs toSR,x for K5K(d,R,x) large enough, cf. Fig. 1.

The Laplace transform in~A35! can be handled in the same way. This yields an asympt
expansion that is substantially equivalent to the Stirling series, valid uniformly in sectorial re
of the above type.

For applications in the main text, however, we shall exploit Theorem B.1 to obtain uni
estimates pertaining to the Laplace transforms

L j~w!5E
0

`

e2wtf j~ t !dt, j51,2,3, ~B15!

with

f 1[
1

t
~2l2shltctht/2!⇒ f 1~0!50, f 18~0!52l~2l211!/6, ~B16!

f 2[
1

t S l2m1
e2lt2e2mt

12e2t D⇒ f 2~0!5~l2m!~l1m21!/2, ~B17!

f 3[
shltshmtshkt

tsht
⇒ f 3~0!50, f 38~0!5lmk. ~B18!

Then the functionsh1[ f 19 ,h2[ f 28 and h3[ f 39 satisfy the hypotheses of Theorem B.1. Cor
spondingly, we deduce the bounds

UL1~w,l!1
l~2l211!

6w2 U< C1~x,l!

uw2u~R2r 1!
, r 1[ulu, ~B19!

UL2~w,l,m!2
~l2m!~l1m11!

2w U< C2~x,l,m!

uwu~R2r 2!
, r 2[max~ ulu,umu!, ~B20!

UL3~w,l,m,k!2
lmk

w2 U< C3~x,l,m,k!

uw2u~R2r 3!
, r 3[ulu1umu1uku, ~B21!

which hold true forR.r j and allw P SR,x . The functionsCj are positive and non-decreasing
x for fixed values of the parameters, and they are continuous in the parameters for fixedx.

Recalling~A40!, one easily obtains a corresponding bound on

F~w,l!5exp~2L1~w,l!!. ~B22!
J. Math. Phys., Vol. 38, No. 2, February 1997
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We will need this bound in Subsection III A. Similarly, from~A38! one has

G~w1l!

G~w1m!
e~m2l!lnw5exp~L2~w,l,m!!, ~B23!

and the bound on the lhs following from~B20! will be used several times in Subsection IV A. For
the applications of~B19! and ~B20! we do not need a bound on the parameter dependence o
C1 andC2; continuity in the parameters suffices. As concerns~B21!, however, it is important to

FIG. 1. The regionSR,x and the complement of the regionUr .
J. Math. Phys., Vol. 38, No. 2, February 1997
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have more information onC3. Indeed, in Subsection IV A we shall use~B21! on four occasions;
in two cases the parameters vary overC-compacts, but in the remaining applications one or t
parameters go to infinity.

In order to control this divergence, we first note that the function

h~ t,p![
shpt

t
~B24!

satisfies the bounds

u] t
jh~ teif,p!<dj~x!upu j11exp~ uput !, ;~ t,f,p!P@0,̀ !3@2x,x#3C, ~B25!

with dj positive non-decreasing functions on@0,p/2), and j50,1,2. ~Write h as
p f(pt), f (x)[shx/x, to verify this.! Factorizingf 3 accordingly, we deduce that the functionC3 in
the bound~B1! on f 39 satisfies

uC3~x,l,m,k!u<d~x!ulmu~ ulu21umu21uku21ulmu1ulku1umku! ~B26!

with d positive and non-decreasing on@0,p/2). This bound on the parameter dependence
sufficient for our purposes.
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